Revive SD downloads from shark_tank. (#1465)

This commit is contained in:
Ean Garvey
2023-05-25 12:03:21 -05:00
committed by GitHub
parent 6d64b8e273
commit 54e57f7771
4 changed files with 16 additions and 5 deletions

View File

@@ -86,8 +86,10 @@ class StableDiffusionPipeline:
self.text_encoder = self.sd_model.clip()
else:
try:
breakpoint()
self.text_encoder = get_clip()
except:
except Exception as e:
print(e)
print("download pipeline failed, falling back to import_mlir")
self.text_encoder = self.sd_model.clip()
@@ -104,7 +106,8 @@ class StableDiffusionPipeline:
else:
try:
self.unet = get_unet()
except:
except Exception as e:
print(e)
print("download pipeline failed, falling back to import_mlir")
self.unet = self.sd_model.unet()
@@ -121,7 +124,8 @@ class StableDiffusionPipeline:
else:
try:
self.vae = get_vae()
except:
except Exception as e:
print(e)
print("download pipeline failed, falling back to import_mlir")
self.vae = self.sd_model.vae()

View File

@@ -83,7 +83,6 @@ def get_shark_model(tank_url, model_name, extra_args=[]):
# Set local shark_tank cache directory.
shark_args.local_tank_cache = args.local_tank_cache
from shark.shark_downloader import download_model
if "cuda" in args.device:

View File

@@ -61,6 +61,8 @@ def download_public_file(
continue
destination_filename = os.path.join(destination_folder_name, blob_name)
if os.path.isdir(destination_filename):
continue
with open(destination_filename, "wb") as f:
with tqdm.wrapattr(f, "write", total=blob.size) as file_obj:
storage_client.download_blob_to_file(blob, file_obj)
@@ -210,6 +212,9 @@ def download_model(
+ "_BS"
+ str(import_args["batch_size"])
)
elif any(model in model_name for model in ["clip", "unet", "vae"]):
# TODO(Ean Garvey): rework extended naming such that device is only included in model_name after .vmfb compilation.
model_dir_name = model_name
else:
model_dir_name = model_name + "_" + frontend
model_dir = os.path.join(WORKDIR, model_dir_name)
@@ -270,6 +275,9 @@ def download_model(
tuned_str = "" if tuned is None else "_" + tuned
suffix = f"{dyn_str}_{frontend}{tuned_str}.mlir"
filename = os.path.join(model_dir, model_name + suffix)
print(
f"Verifying that model artifacts were downloaded successfully to {filename}..."
)
if not os.path.exists(filename):
from tank.generate_sharktank import gen_shark_files

View File

@@ -1,3 +1,3 @@
{
"version": "2023-03-31_02d52bb"
"version": "nightly"
}