Merge branch 'main' into llm-rest-api

This commit is contained in:
Ean Garvey
2024-04-19 11:11:51 -05:00
committed by GitHub
33 changed files with 860 additions and 793 deletions

View File

@@ -50,10 +50,10 @@ jobs:
shell: powershell
run: |
./setup_venv.ps1
$env:SHARK_PACKAGE_VERSION=${{ env.package_version }}
pip wheel -v -w dist . --pre -f https://download.pytorch.org/whl/nightly/cpu -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SRT/pip-release-links.html
python process_skipfiles.py
pyinstaller .\apps\stable_diffusion\shark_sd.spec
$env:SHARK_PACKAGE_VERSION=${{ env.package_version }}
pip install -e .
pyinstaller .\apps\shark_studio\shark_studio.spec
mv ./dist/nodai_shark_studio.exe ./dist/nodai_shark_studio_${{ env.package_version_ }}.exe
signtool sign /f c:\g\shark_02152023.cer /fd certHash /csp "eToken Base Cryptographic Provider" /k "${{ secrets.CI_CERT }}" ./dist/nodai_shark_studio_${{ env.package_version_ }}.exe
@@ -74,80 +74,3 @@ jobs:
GITHUB_TOKEN: ${{ secrets.NODAI_INVOCATION_TOKEN }}
with:
release_id: ${{ steps.create_release.outputs.id }}
linux-build:
runs-on: a100
strategy:
fail-fast: false
matrix:
python-version: ["3.11"]
backend: [IREE, SHARK]
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v3
with:
python-version: ${{ matrix.python-version }}
- name: Setup pip cache
uses: actions/cache@v3
with:
path: ~/.cache/pip
key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }}
restore-keys: |
${{ runner.os }}-pip-
- name: Install dependencies
run: |
echo "DATE=$(date +'%Y-%m-%d')" >> $GITHUB_ENV
python -m pip install --upgrade pip
python -m pip install flake8 pytest toml
if [ -f requirements.txt ]; then pip install -r requirements.txt -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SRT/pip-release-links.html; fi
- name: Lint with flake8
run: |
# stop the build if there are Python syntax errors or undefined names
flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics --exclude shark.venv,lit.cfg.py
# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics --exclude shark.venv,lit.cfg.py
- name: Build and validate the IREE package
if: ${{ matrix.backend == 'IREE' }}
continue-on-error: true
run: |
cd $GITHUB_WORKSPACE
USE_IREE=1 VENV_DIR=iree.venv ./setup_venv.sh
source iree.venv/bin/activate
package_version="$(printf '%(%Y%m%d)T.${{ github.run_number }}')"
SHARK_PACKAGE_VERSION=${package_version} \
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://llvm.github.io/torch-mlir/package-index/ -f https://openxla.github.io/iree/pip-release-links.html
# Install the built wheel
pip install ./wheelhouse/nodai*
# Validate the Models
/bin/bash "$GITHUB_WORKSPACE/build_tools/populate_sharktank_ci.sh"
pytest --ci --ci_sha=${SHORT_SHA} --local_tank_cache="./gen_shark_tank/" -k "not metal" |
tail -n 1 |
tee -a pytest_results.txt
if !(grep -Fxq " failed" pytest_results.txt)
then
export SHA=$(git log -1 --format='%h')
gsutil -m cp -r $GITHUB_WORKSPACE/gen_shark_tank/* gs://shark_tank/${DATE}_$SHA
gsutil -m cp -r gs://shark_tank/${DATE}_$SHA/* gs://shark_tank/nightly/
fi
rm -rf ./wheelhouse/nodai*
- name: Build and validate the SHARK Runtime package
if: ${{ matrix.backend == 'SHARK' }}
run: |
cd $GITHUB_WORKSPACE
./setup_venv.sh
source shark.venv/bin/activate
package_version="$(printf '%(%Y%m%d)T.${{ github.run_number }}')"
SHARK_PACKAGE_VERSION=${package_version} \
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SRT/pip-release-links.html
# Install the built wheel
pip install ./wheelhouse/nodai*
# Validate the Models
pytest --ci --ci_sha=${SHORT_SHA} -k "not metal" |
tail -n 1 |
tee -a pytest_results.txt

View File

@@ -372,7 +372,7 @@ For a complete list of the models supported in SHARK, please refer to [tank/READ
* [Upstream IREE issues](https://github.com/google/iree/issues): Feature requests,
bugs, and other work tracking
* [Upstream IREE Discord server](https://discord.gg/26P4xW4): Daily development
* [Upstream IREE Discord server](https://discord.gg/wEWh6Z9nMU): Daily development
discussions with the core team and collaborators
* [iree-discuss email list](https://groups.google.com/forum/#!forum/iree-discuss):
Announcements, general and low-priority discussion

View File

@@ -8,11 +8,12 @@ from threading import Thread
from apps.shark_studio.modules.timer import startup_timer
# from apps.shark_studio.web.utils.tmp_configs import (
# config_tmp,
# clear_tmp_mlir,
# clear_tmp_imgs,
# )
from apps.shark_studio.web.utils.tmp_configs import (
config_tmp,
clear_tmp_mlir,
clear_tmp_imgs,
shark_tmp,
)
def imports():
@@ -47,9 +48,9 @@ def initialize():
# existing temporary images there if they exist. Then we can import gradio.
# It has to be in this order or gradio ignores what we've set up.
# config_tmp()
config_tmp()
# clear_tmp_mlir()
# clear_tmp_imgs()
clear_tmp_imgs()
from apps.shark_studio.web.utils.file_utils import (
create_checkpoint_folders,
@@ -82,8 +83,8 @@ def dumpstacks():
code.append(f"""File: "{filename}", line {lineno}, in {name}""")
if line:
code.append(" " + line.strip())
print("\n".join(code))
with open(os.path.join(shark_tmp, "stack_dump.log"), "w") as f:
f.write("\n".join(code))
def setup_middleware(app):

View File

@@ -393,7 +393,6 @@ def llm_chat_api(InputData: dict):
print("prompt = ", prompt)
for res_op, _ in llm_model.chat(prompt):
if is_chat_completion_api:
choices = [
{

View File

@@ -38,41 +38,12 @@ from diffusers.image_processor import VaeImageProcessor
sd_model_map = {
"clip": {
"initializer": clip.export_clip_model,
"ireec_flags": [
"--iree-flow-collapse-reduction-dims",
"--iree-opt-const-expr-hoisting=False",
"--iree-codegen-linalg-max-constant-fold-elements=9223372036854775807",
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-preprocessing-pad-linalg-ops{pad-size=16}))",
],
},
"vae_encode": {
"initializer": vae.export_vae_model,
"ireec_flags": [
"--iree-flow-collapse-reduction-dims",
"--iree-opt-const-expr-hoisting=False",
"--iree-codegen-linalg-max-constant-fold-elements=9223372036854775807",
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-global-opt-detach-elementwise-from-named-ops,iree-global-opt-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=32},iree-linalg-ext-convert-conv2d-to-winograd))",
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-preprocessing-pad-linalg-ops{pad-size=16}))",
],
},
"unet": {
"initializer": unet.export_unet_model,
"ireec_flags": [
"--iree-flow-collapse-reduction-dims",
"--iree-opt-const-expr-hoisting=False",
"--iree-codegen-linalg-max-constant-fold-elements=9223372036854775807",
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-global-opt-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=32}))",
],
},
"vae_decode": {
"initializer": vae.export_vae_model,
"ireec_flags": [
"--iree-flow-collapse-reduction-dims",
"--iree-opt-const-expr-hoisting=False",
"--iree-codegen-linalg-max-constant-fold-elements=9223372036854775807",
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-global-opt-detach-elementwise-from-named-ops,iree-global-opt-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=32},iree-linalg-ext-convert-conv2d-to-winograd))",
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-preprocessing-pad-linalg-ops{pad-size=16}))",
],
},
}
@@ -96,6 +67,7 @@ class StableDiffusion(SharkPipelineBase):
num_loras: int = 0,
import_ir: bool = True,
is_controlled: bool = False,
hf_auth_token=None,
):
self.model_max_length = 77
self.batch_size = batch_size
@@ -111,9 +83,7 @@ class StableDiffusion(SharkPipelineBase):
"clip": {"hf_model_name": base_model_id},
"unet": {
"hf_model_name": base_model_id,
"unet_model": unet.UnetModel(
hf_model_name=base_model_id, hf_auth_token=None
),
"unet_model": unet.UnetModel(hf_model_name=base_model_id),
"batch_size": batch_size,
# "is_controlled": is_controlled,
# "num_loras": num_loras,
@@ -125,8 +95,7 @@ class StableDiffusion(SharkPipelineBase):
"vae_encode": {
"hf_model_name": base_model_id,
"vae_model": vae.VaeModel(
hf_model_name=base_model_id,
custom_vae=custom_vae,
hf_model_name=custom_vae if custom_vae else base_model_id,
),
"batch_size": batch_size,
"height": height,
@@ -136,8 +105,7 @@ class StableDiffusion(SharkPipelineBase):
"vae_decode": {
"hf_model_name": base_model_id,
"vae_model": vae.VaeModel(
hf_model_name=base_model_id,
custom_vae=custom_vae,
hf_model_name=custom_vae if custom_vae else base_model_id,
),
"batch_size": batch_size,
"height": height,
@@ -149,9 +117,10 @@ class StableDiffusion(SharkPipelineBase):
pipe_id_list = [
safe_name(base_model_id),
str(batch_size),
str(static_kwargs["unet"]["max_length"]),
str(self.model_max_length),
f"{str(height)}x{str(width)}",
precision,
self.device,
]
if num_loras > 0:
pipe_id_list.append(str(num_loras) + "lora")
@@ -183,7 +152,7 @@ class StableDiffusion(SharkPipelineBase):
custom_weights_params, _ = process_custom_pipe_weights(custom_weights)
if submodel not in ["clip", "clip2"]:
self.static_kwargs[submodel][
"external_weight_file"
"external_weights"
] = custom_weights_params
else:
self.static_kwargs[submodel]["external_weight_path"] = os.path.join(

View File

@@ -9,7 +9,6 @@ from random import (
from pathlib import Path
from apps.shark_studio.modules.shared_cmd_opts import cmd_opts
from cpuinfo import get_cpu_info
# TODO: migrate these utils to studio
@@ -125,7 +124,6 @@ def set_iree_runtime_flags():
vulkan_runtime_flags += [
f"--device_allocator=caching:device_local={cmd_opts.device_allocator_heap_key}",
]
set_iree_vulkan_runtime_flags(flags=vulkan_runtime_flags)

View File

@@ -90,6 +90,8 @@ class SharkPipelineBase:
)
weights_path = self.get_io_params(submodel)
if weights_path:
ireec_flags.append("--iree-opt-const-eval=False")
self.iree_module_dict[submodel] = get_iree_compiled_module(
self.tempfiles[submodel],

View File

@@ -615,7 +615,7 @@ p.add_argument(
p.add_argument(
"--ckpt_dir",
type=str,
default="",
default="../models",
help="Path to directory where all .ckpts are stored in order to populate "
"them in the web UI.",
)

View File

@@ -0,0 +1,48 @@
# -*- mode: python ; coding: utf-8 -*-
from apps.shark_studio.studio_imports import pathex, datas, hiddenimports
binaries = []
block_cipher = None
a = Analysis(
['web/index.py'],
pathex=pathex,
binaries=binaries,
datas=datas,
hiddenimports=hiddenimports,
hookspath=[],
hooksconfig={},
runtime_hooks=[],
excludes=[],
win_no_prefer_redirects=False,
win_private_assemblies=False,
cipher=block_cipher,
noarchive=False,
module_collection_mode={
'gradio': 'py', # Collect gradio package as source .py files
},
)
pyz = PYZ(a.pure, a.zipped_data, cipher=block_cipher)
exe = EXE(
pyz,
a.scripts,
a.binaries,
a.zipfiles,
a.datas,
[],
name='nodai_shark_studio',
debug=False,
bootloader_ignore_signals=False,
strip=False,
upx=False,
upx_exclude=[],
runtime_tmpdir=None,
console=True,
disable_windowed_traceback=False,
argv_emulation=False,
target_arch=None,
codesign_identity=None,
entitlements_file=None,
)

View File

@@ -0,0 +1,68 @@
from PyInstaller.utils.hooks import collect_data_files
from PyInstaller.utils.hooks import copy_metadata
from PyInstaller.utils.hooks import collect_submodules
import sys
sys.setrecursionlimit(sys.getrecursionlimit() * 5)
# python path for pyinstaller
pathex = [
".",
]
# datafiles for pyinstaller
datas = []
datas += copy_metadata("torch")
datas += copy_metadata("tokenizers")
datas += copy_metadata("tqdm")
datas += copy_metadata("regex")
datas += copy_metadata("requests")
datas += copy_metadata("packaging")
datas += copy_metadata("filelock")
datas += copy_metadata("numpy")
datas += copy_metadata("importlib_metadata")
datas += copy_metadata("omegaconf")
datas += copy_metadata("safetensors")
datas += copy_metadata("Pillow")
datas += copy_metadata("sentencepiece")
datas += copy_metadata("pyyaml")
datas += copy_metadata("huggingface-hub")
datas += copy_metadata("gradio")
datas += copy_metadata("scipy")
datas += collect_data_files("torch")
datas += collect_data_files("tokenizers")
datas += collect_data_files("accelerate")
datas += collect_data_files("diffusers")
datas += collect_data_files("transformers")
datas += collect_data_files("gradio")
datas += collect_data_files("gradio_client")
datas += collect_data_files("iree", include_py_files=True)
datas += collect_data_files("shark", include_py_files=True)
datas += collect_data_files("tqdm")
datas += collect_data_files("tkinter")
datas += collect_data_files("sentencepiece")
datas += collect_data_files("jsonschema")
datas += collect_data_files("jsonschema_specifications")
datas += collect_data_files("cpuinfo")
datas += collect_data_files("scipy", include_py_files=True)
datas += [
("web/ui/css/*", "ui/css"),
("web/ui/js/*", "ui/js"),
("web/ui/logos/*", "logos"),
]
# hidden imports for pyinstaller
hiddenimports = ["shark", "apps"]
hiddenimports += [x for x in collect_submodules("gradio") if "tests" not in x]
hiddenimports += [x for x in collect_submodules("diffusers") if "tests" not in x]
blacklist = ["tests", "convert"]
hiddenimports += [
x
for x in collect_submodules("transformers")
if not any(kw in x for kw in blacklist)
]
hiddenimports += [x for x in collect_submodules("iree") if "test" not in x]
hiddenimports += ["iree._runtime"]
hiddenimports += [x for x in collect_submodules("scipy") if "test" not in x]

View File

@@ -7,9 +7,25 @@
import logging
import unittest
import json
from apps.shark_studio.api.llm import LanguageModel
import gc
from apps.shark_studio.api.llm import LanguageModel, llm_chat_api
from apps.shark_studio.api.sd import shark_sd_fn_dict_input, view_json_file
from apps.shark_studio.web.utils.file_utils import get_resource_path
# class SDAPITest(unittest.TestCase):
# def testSDSimple(self):
# from apps.shark_studio.modules.shared_cmd_opts import cmd_opts
# import apps.shark_studio.web.utils.globals as global_obj
# global_obj._init()
# sd_json = view_json_file(get_resource_path("../configs/default_sd_config.json"))
# sd_kwargs = json.loads(sd_json)
# for arg in vars(cmd_opts):
# if arg in sd_kwargs:
# sd_kwargs[arg] = getattr(cmd_opts, arg)
# for i in shark_sd_fn_dict_input(sd_kwargs):
# print(i)
from apps.shark_studio.api.llm import LanguageModel, llm_chat_api
from apps.shark_studio.api.sd import shark_sd_fn_dict_input, view_json_file

View File

@@ -38,8 +38,7 @@ def llm_chat_test(verbose=False):
if __name__ == "__main__":
# "Exercises the Stable Diffusion REST API of Shark. Make sure "
# "Exercises the chatbot REST API of Shark. Make sure "
# "Shark is running in API mode on 127.0.0.1:8080 before running"
# "this script."

View File

@@ -26,7 +26,6 @@ from apps.shark_studio.api.llm import llm_chat_api
def decode_base64_to_image(encoding):
if encoding.startswith("http://") or encoding.startswith("https://"):
headers = {}
response = requests.get(encoding, timeout=30, headers=headers)
try:

View File

@@ -1 +1,28 @@
{"prompt": ["a photo taken of the front of a super-car drifting on a road near mountains at high speeds with smoke coming off the tires, front angle, front point of view, trees in the mountains of the background, ((sharp focus))"], "negative_prompt": ["watermark, signature, logo, text, lowres, ((monochrome, grayscale)), blurry, ugly, blur, oversaturated, cropped"], "sd_init_image": [null], "height": 512, "width": 512, "steps": 50, "strength": 0.8, "guidance_scale": 7.5, "seed": "-1", "batch_count": 1, "batch_size": 1, "scheduler": "EulerDiscrete", "base_model_id": "stabilityai/stable-diffusion-2-1-base", "custom_weights": "None", "custom_vae": "None", "precision": "fp16", "device": "AMD Radeon RX 7900 XTX => vulkan://0", "ondemand": false, "repeatable_seeds": false, "resample_type": "Nearest Neighbor", "controlnets": {}, "embeddings": {}}
{
"prompt": [
"a photo taken of the front of a super-car drifting on a road near mountains at high speeds with smoke coming off the tires, front angle, front point of view, trees in the mountains of the background, ((sharp focus))"
],
"negative_prompt": [
"watermark, signature, logo, text, lowres, ((monochrome, grayscale)), blurry, ugly, blur, oversaturated, cropped"
],
"sd_init_image": [null],
"height": 512,
"width": 512,
"steps": 50,
"strength": 0.8,
"guidance_scale": 7.5,
"seed": "-1",
"batch_count": 1,
"batch_size": 1,
"scheduler": "EulerDiscrete",
"base_model_id": "stabilityai/stable-diffusion-2-1-base",
"custom_weights": null,
"custom_vae": null,
"precision": "fp16",
"device": "AMD Radeon RX 7900 XTX => vulkan://0",
"ondemand": false,
"repeatable_seeds": false,
"resample_type": "Nearest Neighbor",
"controlnets": {},
"embeddings": {}
}

View File

@@ -1,4 +1,8 @@
from multiprocessing import Process, freeze_support
freeze_support()
from PIL import Image
import os
import time
import sys
@@ -71,6 +75,10 @@ def launch_webui(address):
def webui():
from apps.shark_studio.modules.shared_cmd_opts import cmd_opts
from apps.shark_studio.web.ui.utils import (
nodicon_loc,
nodlogo_loc,
)
launch_api = cmd_opts.api
initialize.initialize()
@@ -81,12 +89,6 @@ def webui():
# required to do multiprocessing in a pyinstaller freeze
freeze_support()
# if args.api or "api" in args.ui.split(","):
# from apps.shark_studio.api.llm import (
# chat,
# )
# from apps.shark_studio.web.api import sdapi
#
# from fastapi import FastAPI, APIRouter
# from fastapi.middleware.cors import CORSMiddleware
@@ -134,6 +136,7 @@ def webui():
return os.path.join(base_path, relative_path)
dark_theme = resource_path("ui/css/sd_dark_theme.css")
gradio_workarounds = resource_path("ui/js/sd_gradio_workarounds.js")
# from apps.shark_studio.web.ui import load_ui_from_script
@@ -158,8 +161,19 @@ def webui():
)
with gr.Blocks(
css=dark_theme, analytics_enabled=False, title="Shark Studio 2.0 Beta"
css=dark_theme,
js=gradio_workarounds,
analytics_enabled=False,
title="Shark Studio 2.0 Beta",
) as studio_web:
nod_logo = Image.open(nodlogo_loc)
gr.Image(
value=nod_logo,
show_label=False,
interactive=False,
elem_id="tab_bar_logo",
show_download_button=False,
)
with gr.Tabs() as tabs:
# NOTE: If adding, removing, or re-ordering tabs, make sure that they
# have a unique id that doesn't clash with any of the other tabs,
@@ -185,10 +199,11 @@ def webui():
# )
# t.start()
studio_web.launch(
share=True,
share=cmd_opts.share,
inbrowser=True,
server_name="0.0.0.0",
server_port=cmd_opts.server_port,
favicon_path=nodicon_loc,
)

View File

@@ -13,9 +13,6 @@ import apps.shark_studio.web.utils.globals as global_obj
B_SYS, E_SYS = "<s>", "</s>"
B_SYS, E_SYS = "<s>", "</s>"
def user(message, history):
# Append the user's message to the conversation history
return "", history + [[message, ""]]

View File

@@ -117,7 +117,7 @@ body {
height: 100% !important;
}
/* display in full width for desktop devices */
/* display in full width for desktop devices, but see below */
@media (min-width: 1536px)
{
.gradio-container {
@@ -182,6 +182,7 @@ footer {
aspect-ratio: unset;
max-height: calc(55vh - (2 * var(--spacing-lg)));
}
/* fix width and height of gallery items when on very large desktop screens, but see below */
@media (min-width: 1921px) {
/* Force a 768px_height + 4px_margin_height + navbar_height for the gallery */
#gallery .grid-wrap, #gallery .preview{
@@ -193,6 +194,20 @@ footer {
max-height: 770px !important;
}
}
/* media rules in custom css are don't appear to be applied in
gradio versions > 4.7, so we have to define classes which
we will manually need add and remove using javascript.
Remove this once this fixed in gradio.
*/
.gallery-force-height768 .grid-wrap, .gallery-force-height768 .preview {
min-height: calc(768px + 4px + var(--size-14)) !important;
max-height: calc(768px + 4px + var(--size-14)) !important;
}
.gallery-limit-height768 .thumbnail-item.thumbnail-lg {
max-height: 770px !important;
}
/* Don't upscale when viewing in solo image mode */
#gallery .preview img {
object-fit: scale-down;
@@ -303,6 +318,15 @@ footer {
min-height: 89vh !important;
}
.sd-right-panel {
height: calc(100vmin - var(--size-32) - var(--size-10)) !important;
overflow-y: scroll;
}
.sd-right-panel .fill {
flex: 1;
}
/* don't stretch non-square images to be square, breaking their aspect ratio */
#outputgallery_gallery .thumbnail-item.thumbnail-lg > img {
object-fit: contain !important;
@@ -314,7 +338,7 @@ footer {
width: 100%;
}
#top_logo.logo_centered img{
#top_logo.logo_centered img {
object-fit: scale-down;
position: absolute;
width: 80%;
@@ -322,3 +346,19 @@ footer {
left: 50%;
transform: translate(-50%, -50%);
}
#tab_bar_logo {
overflow: visible !important;
border-width: 0 !important;
height: 0px !important;
padding: 0;
margin: 0;
}
#tab_bar_logo .image-container {
object-fit: scale-down;
position: absolute !important;
top: 14px;
right: 0px;
height: 36px;
}

View File

@@ -0,0 +1,49 @@
// workaround gradio after 4.7, not applying any @media rules form the custom .css file
() => {
console.log(`innerWidth: ${window.innerWidth}` )
// 1536px rules
const mediaQuery1536 = window.matchMedia('(min-width: 1536px)')
function handleWidth1536(event) {
// display in full width for desktop devices
document.querySelectorAll(".gradio-container")
.forEach( (node) => {
if (event.matches) {
node.classList.add("gradio-container-size-full");
} else {
node.classList.remove("gradio-container-size-full")
}
});
}
mediaQuery1536.addEventListener("change", handleWidth1536);
mediaQuery1536.dispatchEvent(new MediaQueryListEvent("change", {matches: window.innerWidth >= 1536}));
// 1921px rules
const mediaQuery1921 = window.matchMedia('(min-width: 1921px)')
function handleWidth1921(event) {
/* Force a 768px_height + 4px_margin_height + navbar_height for the gallery */
/* Limit height to 768px_height + 2px_margin_height for the thumbnails */
document.querySelectorAll("#gallery")
.forEach( (node) => {
if (event.matches) {
node.classList.add("gallery-force-height768");
node.classList.add("gallery-limit-height768");
} else {
node.classList.remove("gallery-force-height768");
node.classList.remove("gallery-limit-height768");
}
});
}
mediaQuery1921.addEventListener("change", handleWidth1921);
mediaQuery1921.dispatchEvent(new MediaQueryListEvent("change", {matches: window.innerWidth >= 1921}));
}

View File

@@ -14,6 +14,7 @@ from apps.shark_studio.web.utils.file_utils import (
get_checkpoints_path,
get_checkpoints,
get_configs_path,
write_default_sd_config,
)
from apps.shark_studio.api.sd import (
sd_model_map,
@@ -33,6 +34,8 @@ from apps.shark_studio.modules.img_processing import (
from apps.shark_studio.modules.shared_cmd_opts import cmd_opts
from apps.shark_studio.web.ui.utils import (
nodlogo_loc,
none_to_str_none,
str_none_to_none,
)
from apps.shark_studio.web.utils.state import (
status_label,
@@ -122,7 +125,7 @@ def pull_sd_configs(
controlnets,
embeddings,
):
sd_args = locals()
sd_args = str_none_to_none(locals())
sd_cfg = {}
for arg in sd_args:
if arg in [
@@ -138,11 +141,12 @@ def pull_sd_configs(
sd_cfg[arg] = {}
else:
sd_cfg[arg] = sd_args[arg]
return sd_cfg
return json.dumps(sd_cfg)
def load_sd_cfg(sd_json: dict, load_sd_config: str):
new_sd_config = json.loads(view_json_file(load_sd_config))
new_sd_config = none_to_str_none(json.loads(view_json_file(load_sd_config)))
if sd_json:
for key in new_sd_config:
sd_json[key] = new_sd_config[key]
@@ -226,53 +230,93 @@ def import_original(original_img, width, height):
return EditorValue(img_dict)
def base_model_changed(base_model_id):
new_choices = get_checkpoints(
os.path.join("checkpoints", os.path.basename(str(base_model_id)))
) + get_checkpoints(model_type="checkpoints")
return gr.Dropdown(
value=new_choices[0] if len(new_choices) > 0 else "None",
choices=["None"] + new_choices,
)
with gr.Blocks(title="Stable Diffusion") as sd_element:
with gr.Row(elem_id="ui_title"):
nod_logo = Image.open(nodlogo_loc)
with gr.Row(variant="compact", equal_height=True):
with gr.Column(
scale=1,
elem_id="demo_title_outer",
):
gr.Image(
value=nod_logo,
show_label=False,
interactive=False,
elem_id="top_logo",
width=150,
height=50,
show_download_button=False,
)
with gr.Column(elem_id="ui_body"):
with gr.Row():
with gr.Column(scale=2, min_width=600):
with gr.Row(equal_height=True):
with gr.Column(scale=3):
sd_model_info = (
f"Checkpoint Path: {str(get_checkpoints_path())}"
with gr.Accordion(
label="\U0001F4D0\U0000FE0F Device Settings", open=False
):
device = gr.Dropdown(
elem_id="device",
label="Device",
value=global_obj.get_device_list()[0],
choices=global_obj.get_device_list(),
allow_custom_value=False,
)
with gr.Row():
ondemand = gr.Checkbox(
value=cmd_opts.lowvram,
label="Low VRAM",
interactive=True,
)
base_model_id = gr.Dropdown(
label="Base Model",
info="Select or enter HF model ID",
elem_id="custom_model",
value="stabilityai/stable-diffusion-2-1-base",
choices=sd_default_models,
) # base_model_id
precision = gr.Radio(
label="Precision",
value=cmd_opts.precision,
choices=[
"fp16",
"fp32",
],
visible=True,
)
sd_model_info = f"Checkpoint Path: {str(get_checkpoints_path())}"
base_model_id = gr.Dropdown(
label="\U000026F0\U0000FE0F Base Model",
info="Select or enter HF model ID",
elem_id="custom_model",
value="stabilityai/stable-diffusion-2-1-base",
choices=sd_default_models,
) # base_model_id
with gr.Row():
height = gr.Slider(
384,
768,
value=cmd_opts.height,
step=8,
label="\U00002195\U0000FE0F Height",
)
width = gr.Slider(
384,
768,
value=cmd_opts.width,
step=8,
label="\U00002194\U0000FE0F Width",
)
with gr.Accordion(
label="\U00002696\U0000FE0F Model Weights", open=False
):
with gr.Column():
custom_weights = gr.Dropdown(
label="Custom Weights",
label="Checkpoint Weights",
info="Select or enter HF model ID",
elem_id="custom_model",
value="None",
allow_custom_value=True,
choices=["None"] + get_checkpoints(base_model_id),
) #
with gr.Column(scale=2):
choices=["None"]
+ get_checkpoints(os.path.basename(str(base_model_id))),
) # custom_weights
base_model_id.change(
fn=base_model_changed,
inputs=[base_model_id],
outputs=[custom_weights],
)
sd_vae_info = (str(get_checkpoints_path("vae"))).replace(
"\\", "\n\\"
)
sd_vae_info = f"VAE Path: {sd_vae_info}"
custom_vae = gr.Dropdown(
label=f"Custom VAE Models",
label=f"VAE Model",
info=sd_vae_info,
elem_id="custom_model",
value=(
@@ -284,49 +328,9 @@ with gr.Blocks(title="Stable Diffusion") as sd_element:
allow_custom_value=True,
scale=1,
)
with gr.Row():
ondemand = gr.Checkbox(
value=cmd_opts.lowvram,
label="Low VRAM",
interactive=True,
)
precision = gr.Radio(
label="Precision",
value=cmd_opts.precision,
choices=[
"fp16",
"fp32",
],
visible=True,
)
with gr.Group(elem_id="prompt_box_outer"):
prompt = gr.Textbox(
label="Prompt",
value=cmd_opts.prompt[0],
lines=2,
elem_id="prompt_box",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value=cmd_opts.negative_prompt[0],
lines=2,
elem_id="negative_prompt_box",
)
with gr.Accordion(label="Input Image", open=False):
# TODO: make this import image prompt info if it exists
sd_init_image = gr.Image(
label="Input Image",
type="pil",
height=300,
interactive=True,
)
with gr.Accordion(label="Embeddings options", open=True, render=True):
sd_lora_info = (str(get_checkpoints_path("loras"))).replace(
"\\", "\n\\"
)
with gr.Row():
embeddings_config = gr.JSON(min_width=50, scale=1)
sd_lora_info = (str(get_checkpoints_path("loras"))).replace(
"\\", "\n\\"
)
lora_opt = gr.Dropdown(
allow_custom_value=True,
label=f"Standalone LoRA Weights",
@@ -341,106 +345,83 @@ with gr.Blocks(title="Stable Diffusion") as sd_element:
value="<div><i>No LoRA selected</i></div>",
elem_classes="lora-tags",
)
gr.on(
triggers=[lora_opt.change],
fn=lora_changed,
inputs=[lora_opt],
outputs=[lora_tags],
queue=True,
show_progress=False,
).then(
fn=update_embeddings_json,
inputs=[lora_opt],
outputs=[embeddings_config],
show_progress=False,
embeddings_config = gr.JSON(
label="Embeddings Options", min_width=50, scale=1
)
gr.on(
triggers=[lora_opt.change],
fn=lora_changed,
inputs=[lora_opt],
outputs=[lora_tags],
queue=True,
show_progress=False,
).then(
fn=update_embeddings_json,
inputs=[lora_opt],
outputs=[embeddings_config],
show_progress=False,
)
with gr.Accordion(
label="\U0001F9EA\U0000FE0F Input Image Processing", open=False
):
strength = gr.Slider(
0,
1,
value=cmd_opts.strength,
step=0.01,
label="Denoising Strength",
)
with gr.Accordion(label="Advanced Options", open=True):
with gr.Row():
scheduler = gr.Dropdown(
elem_id="scheduler",
label="Scheduler",
value="EulerDiscrete",
choices=scheduler_model_map.keys(),
allow_custom_value=False,
)
height = gr.Slider(
384,
768,
value=cmd_opts.height,
step=8,
label="Height",
)
width = gr.Slider(
384,
768,
value=cmd_opts.width,
step=8,
label="Width",
)
with gr.Row():
with gr.Column(scale=3):
steps = gr.Slider(
1,
100,
value=cmd_opts.steps,
step=1,
label="Steps",
)
batch_count = gr.Slider(
1,
100,
value=cmd_opts.batch_count,
step=1,
label="Batch Count",
interactive=True,
)
batch_size = gr.Slider(
1,
4,
value=cmd_opts.batch_size,
step=1,
label="Batch Size",
interactive=True,
visible=True,
)
repeatable_seeds = gr.Checkbox(
cmd_opts.repeatable_seeds,
label="Repeatable Seeds",
)
with gr.Column(scale=3):
strength = gr.Slider(
0,
1,
value=cmd_opts.strength,
step=0.01,
label="Denoising Strength",
)
resample_type = gr.Dropdown(
value=cmd_opts.resample_type,
choices=resampler_list,
label="Resample Type",
allow_custom_value=True,
)
guidance_scale = gr.Slider(
0,
50,
value=cmd_opts.guidance_scale,
step=0.1,
label="CFG Scale",
)
with gr.Row():
resample_type = gr.Dropdown(
value=cmd_opts.resample_type,
choices=resampler_list,
label="Resample Type",
allow_custom_value=True,
)
with gr.Group(elem_id="prompt_box_outer"):
prompt = gr.Textbox(
label="\U00002795\U0000FE0F Prompt",
value=cmd_opts.prompt[0],
lines=2,
elem_id="prompt_box",
show_copy_button=True,
)
negative_prompt = gr.Textbox(
label="\U00002796\U0000FE0F Negative Prompt",
value=cmd_opts.negative_prompt[0],
lines=2,
elem_id="negative_prompt_box",
show_copy_button=True,
)
with gr.Row(equal_height=True):
seed = gr.Textbox(
value=cmd_opts.seed,
label="Seed",
label="\U0001F331\U0000FE0F Seed",
info="An integer or a JSON list of integers, -1 for random",
show_copy_button=True,
)
device = gr.Dropdown(
elem_id="device",
label="Device",
value=global_obj.get_device_list()[0],
choices=global_obj.get_device_list(),
scheduler = gr.Dropdown(
elem_id="scheduler",
label="\U0001F4C5\U0000FE0F Scheduler",
info="\U000E0020", # forces same height as seed
value="EulerDiscrete",
choices=scheduler_model_map.keys(),
allow_custom_value=False,
)
with gr.Row():
steps = gr.Slider(
1,
100,
value=cmd_opts.steps,
step=1,
label="\U0001F3C3\U0000FE0F Steps",
)
guidance_scale = gr.Slider(
0,
50,
value=cmd_opts.guidance_scale,
step=0.1,
label="\U0001F5C3\U0000FE0F CFG Scale",
)
with gr.Accordion(
label="Controlnet Options",
open=False,
@@ -530,16 +511,6 @@ with gr.Blocks(title="Stable Diffusion") as sd_element:
"Submit",
size="sm",
)
use_input_img.click(
fn=import_original,
inputs=[
sd_init_image,
canvas_width,
canvas_height,
],
outputs=[cnet_input],
queue=False,
)
make_canvas.click(
fn=create_canvas,
inputs=[canvas_width, canvas_height],
@@ -572,156 +543,227 @@ with gr.Blocks(title="Stable Diffusion") as sd_element:
queue=False,
)
with gr.Column(scale=3, min_width=600):
with gr.Group():
sd_gallery = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
columns=2,
object_fit="fit",
preview=True,
with gr.Tabs() as sd_tabs:
sd_element.load(
# Workaround for Gradio issue #7085
# TODO: revert to setting selected= in gr.Tabs declaration
# once this is resolved in Gradio
lambda: gr.Tabs(selected=101),
outputs=[sd_tabs],
)
std_output = gr.Textbox(
value=f"{sd_model_info}\n"
f"Images will be saved at "
f"{get_generated_imgs_path()}",
lines=2,
elem_id="std_output",
show_label=False,
)
sd_element.load(logger.read_sd_logs, None, std_output, every=1)
sd_status = gr.Textbox(visible=False)
with gr.Row():
stable_diffusion = gr.Button("Generate Image(s)")
random_seed = gr.Button("Randomize Seed")
random_seed.click(
lambda: -1,
inputs=[],
outputs=[seed],
queue=False,
show_progress=False,
)
stop_batch = gr.Button("Stop Batch")
with gr.Group():
with gr.Column(scale=3):
sd_json = gr.JSON(
value=view_json_file(
os.path.join(
with gr.Tab(label="Input Image", id=100) as sd_tab_init_image:
with gr.Column(elem_classes=["sd-right-panel"]):
with gr.Row(elem_classes=["fill"]):
# TODO: make this import image prompt info if it exists
sd_init_image = gr.Image(
type="pil",
interactive=True,
show_label=False,
)
use_input_img.click(
fn=import_original,
inputs=[
sd_init_image,
canvas_width,
canvas_height,
],
outputs=[cnet_input],
queue=False,
)
with gr.Tab(label="Generate Images", id=101) as sd_tab_gallery:
with gr.Column(elem_classes=["sd-right-panel"]):
with gr.Row(elem_classes=["fill"]):
sd_gallery = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
columns=2,
object_fit="fit",
preview=True,
)
with gr.Row():
std_output = gr.Textbox(
value=f"{sd_model_info}\n"
f"Images will be saved at "
f"{get_generated_imgs_path()}",
lines=2,
elem_id="std_output",
show_label=True,
label="Log",
show_copy_button=True,
)
sd_element.load(
logger.read_sd_logs, None, std_output, every=1
)
sd_status = gr.Textbox(visible=False)
with gr.Row():
batch_count = gr.Slider(
1,
100,
value=cmd_opts.batch_count,
step=1,
label="Batch Count",
interactive=True,
)
batch_size = gr.Slider(
1,
4,
value=cmd_opts.batch_size,
step=1,
label="Batch Size",
interactive=True,
visible=True,
)
repeatable_seeds = gr.Checkbox(
cmd_opts.repeatable_seeds,
label="Use Repeatable Seeds for Batches",
)
with gr.Row():
stable_diffusion = gr.Button("Start")
random_seed = gr.Button("Randomize Seed")
random_seed.click(
lambda: -1,
inputs=[],
outputs=[seed],
queue=False,
show_progress=False,
)
stop_batch = gr.Button("Stop")
with gr.Tab(label="Config", id=102) as sd_tab_config:
with gr.Column(elem_classes=["sd-right-panel"]):
with gr.Row(elem_classes=["fill"]):
Path(get_configs_path()).mkdir(
parents=True, exist_ok=True
)
default_config_file = os.path.join(
get_configs_path(),
"default_sd_config.json",
)
)
)
with gr.Column(scale=1):
clear_sd_config = gr.ClearButton(
value="Clear Config", size="sm", components=sd_json
)
with gr.Row():
save_sd_config = gr.Button(value="Save Config", size="sm")
sd_config_name = gr.Textbox(
value="Config Name",
info="Name of the file this config will be saved to.",
interactive=True,
)
load_sd_config = gr.FileExplorer(
label="Load Config",
file_count="single",
root=(
cmd_opts.configs_path
if cmd_opts.configs_path
else get_configs_path()
),
height=75,
)
load_sd_config.change(
fn=load_sd_cfg,
inputs=[sd_json, load_sd_config],
outputs=[
prompt,
negative_prompt,
sd_init_image,
height,
width,
steps,
strength,
guidance_scale,
seed,
batch_count,
batch_size,
scheduler,
base_model_id,
custom_weights,
custom_vae,
precision,
device,
ondemand,
repeatable_seeds,
resample_type,
cnet_config,
embeddings_config,
sd_json,
],
)
write_default_sd_config(default_config_file)
sd_json = gr.JSON(
elem_classes=["fill"],
value=view_json_file(default_config_file),
)
with gr.Row():
with gr.Column(scale=3):
load_sd_config = gr.FileExplorer(
label="Load Config",
file_count="single",
root_dir=(
cmd_opts.configs_path
if cmd_opts.configs_path
else get_configs_path()
),
height=75,
)
with gr.Column(scale=1):
save_sd_config = gr.Button(
value="Save Config", size="sm"
)
clear_sd_config = gr.ClearButton(
value="Clear Config",
size="sm",
components=sd_json,
)
with gr.Row():
sd_config_name = gr.Textbox(
value="Config Name",
info="Name of the file this config will be saved to.",
interactive=True,
show_label=False,
)
load_sd_config.change(
fn=load_sd_cfg,
inputs=[sd_json, load_sd_config],
outputs=[
prompt,
negative_prompt,
sd_init_image,
height,
width,
steps,
strength,
guidance_scale,
seed,
batch_count,
batch_size,
scheduler,
base_model_id,
custom_weights,
custom_vae,
precision,
device,
ondemand,
repeatable_seeds,
resample_type,
cnet_config,
embeddings_config,
sd_json,
],
)
save_sd_config.click(
fn=save_sd_cfg,
inputs=[sd_json, sd_config_name],
outputs=[sd_config_name],
)
save_sd_config.click(
fn=save_sd_cfg,
inputs=[sd_json, sd_config_name],
outputs=[sd_config_name],
)
pull_kwargs = dict(
fn=pull_sd_configs,
inputs=[
prompt,
negative_prompt,
sd_init_image,
height,
width,
steps,
strength,
guidance_scale,
seed,
batch_count,
batch_size,
scheduler,
base_model_id,
custom_weights,
custom_vae,
precision,
device,
ondemand,
repeatable_seeds,
resample_type,
cnet_config,
embeddings_config,
],
outputs=[
sd_json,
],
)
pull_kwargs = dict(
fn=pull_sd_configs,
inputs=[
prompt,
negative_prompt,
sd_init_image,
height,
width,
steps,
strength,
guidance_scale,
seed,
batch_count,
batch_size,
scheduler,
base_model_id,
custom_weights,
custom_vae,
precision,
device,
ondemand,
repeatable_seeds,
resample_type,
cnet_config,
embeddings_config,
],
outputs=[
sd_json,
],
)
status_kwargs = dict(
fn=lambda bc, bs: status_label("Stable Diffusion", 0, bc, bs),
inputs=[batch_count, batch_size],
outputs=sd_status,
)
status_kwargs = dict(
fn=lambda bc, bs: status_label("Stable Diffusion", 0, bc, bs),
inputs=[batch_count, batch_size],
outputs=sd_status,
)
gen_kwargs = dict(
fn=shark_sd_fn_dict_input,
inputs=[sd_json],
outputs=[
sd_gallery,
sd_status,
],
)
gen_kwargs = dict(
fn=shark_sd_fn_dict_input,
inputs=[sd_json],
outputs=[
sd_gallery,
sd_status,
],
)
prompt_submit = prompt.submit(**status_kwargs).then(**pull_kwargs)
neg_prompt_submit = negative_prompt.submit(**status_kwargs).then(**pull_kwargs)
generate_click = (
stable_diffusion.click(**status_kwargs)
.then(**pull_kwargs)
.then(**gen_kwargs)
)
stop_batch.click(
fn=cancel_sd,
cancels=[prompt_submit, neg_prompt_submit, generate_click],
)
prompt_submit = prompt.submit(**status_kwargs).then(**pull_kwargs)
neg_prompt_submit = negative_prompt.submit(**status_kwargs).then(**pull_kwargs)
generate_click = (
stable_diffusion.click(**status_kwargs).then(**pull_kwargs).then(**gen_kwargs)
)
stop_batch.click(
fn=cancel_sd,
cancels=[prompt_submit, neg_prompt_submit, generate_click],
)

View File

@@ -29,3 +29,15 @@ def hsl_color(alpha: float, start, end):
# Return a CSS HSL string
return f"hsl({math.floor(result)}, 80%, 35%)"
def none_to_str_none(props: dict):
for key in props:
props[key] = "None" if props[key] == None else props[key]
return props
def str_none_to_none(props: dict):
for key in props:
props[key] = None if props[key] == "None" else props[key]
return props

View File

@@ -11,6 +11,40 @@ checkpoints_filetypes = (
"*.safetensors",
)
default_sd_config = r"""{
"prompt": [
"a photo taken of the front of a super-car drifting on a road near mountains at high speeds with smoke coming off the tires, front angle, front point of view, trees in the mountains of the background, ((sharp focus))"
],
"negative_prompt": [
"watermark, signature, logo, text, lowres, ((monochrome, grayscale)), blurry, ugly, blur, oversaturated, cropped"
],
"sd_init_image": [null],
"height": 512,
"width": 512,
"steps": 50,
"strength": 0.8,
"guidance_scale": 7.5,
"seed": "-1",
"batch_count": 1,
"batch_size": 1,
"scheduler": "EulerDiscrete",
"base_model_id": "stabilityai/stable-diffusion-2-1-base",
"custom_weights": null,
"custom_vae": null,
"precision": "fp16",
"device": "AMD Radeon RX 7900 XTX => vulkan://0",
"ondemand": false,
"repeatable_seeds": false,
"resample_type": "Nearest Neighbor",
"controlnets": {},
"embeddings": {}
}"""
def write_default_sd_config(path):
with open(path, "w") as f:
f.write(default_sd_config)
def safe_name(name):
return name.replace("/", "_").replace("-", "_")
@@ -21,11 +55,14 @@ def get_path_stem(path):
return path.stem
def get_resource_path(relative_path):
def get_resource_path(path):
"""Get absolute path to resource, works for dev and for PyInstaller"""
base_path = getattr(sys, "_MEIPASS", os.path.dirname(os.path.abspath(__file__)))
result = Path(os.path.join(base_path, relative_path)).resolve(strict=False)
return result
if os.path.isabs(path):
return path
else:
base_path = getattr(sys, "_MEIPASS", os.path.dirname(os.path.abspath(__file__)))
result = Path(os.path.join(base_path, path)).resolve(strict=False)
return result
def get_configs_path() -> Path:
@@ -48,36 +85,37 @@ def get_generated_imgs_todays_subdir() -> str:
def create_checkpoint_folders():
dir = ["vae", "lora", "../vmfb"]
if not cmd_opts.ckpt_dir:
dir.insert(0, "models")
else:
if not os.path.isdir(cmd_opts.ckpt_dir):
dir = ["checkpoints", "vae", "lora", "vmfb"]
if not os.path.isdir(cmd_opts.ckpt_dir):
try:
os.makedirs(cmd_opts.ckpt_dir)
except OSError:
sys.exit(
f"Invalid --ckpt_dir argument, "
f"{cmd_opts.ckpt_dir} folder does not exists."
f"{cmd_opts.ckpt_dir} folder does not exist, and cannot be created."
)
for root in dir:
Path(get_checkpoints_path(root)).mkdir(parents=True, exist_ok=True)
def get_checkpoints_path(model=""):
return get_resource_path(f"../models/{model}")
def get_checkpoints_path(model_type=""):
return get_resource_path(os.path.join(cmd_opts.ckpt_dir, model_type))
def get_checkpoints(model="models"):
def get_checkpoints(model_type="checkpoints"):
ckpt_files = []
file_types = checkpoints_filetypes
if model == "lora":
if model_type == "lora":
file_types = file_types + ("*.pt", "*.bin")
for extn in file_types:
files = [
os.path.basename(x)
for x in glob.glob(os.path.join(get_checkpoints_path(model), extn))
for x in glob.glob(os.path.join(get_checkpoints_path(model_type), extn))
]
ckpt_files.extend(files)
return sorted(ckpt_files, key=str.casefold)
def get_checkpoint_pathfile(checkpoint_name, model="models"):
return os.path.join(get_checkpoints_path(model), checkpoint_name)
def get_checkpoint_pathfile(checkpoint_name, model_type="checkpoints"):
return os.path.join(get_checkpoints_path(model_type), checkpoint_name)

View File

@@ -1,3 +1,3 @@
# SHARK Annotator
gradio==3.34.0
gradio==4.19.2
jsonlines

View File

@@ -5,6 +5,7 @@
from distutils.sysconfig import get_python_lib
import fileinput
from pathlib import Path
import os
# Temporary workaround for transformers/__init__.py.
path_to_transformers_hook = Path(
@@ -16,51 +17,16 @@ else:
with open(path_to_transformers_hook, "w") as f:
f.write("module_collection_mode = 'pyz+py'")
path_to_skipfiles = Path(get_python_lib() + "/torch/_dynamo/skipfiles.py")
paths_to_skipfiles = [Path(get_python_lib() + "/torch/_dynamo/skipfiles.py"), Path(get_python_lib() + "/torch/_dynamo/trace_rules.py")]
modules_to_comment = ["abc,", "os,", "posixpath,", "_collections_abc,"]
startMonitoring = 0
for line in fileinput.input(path_to_skipfiles, inplace=True):
if "SKIP_DIRS = " in line:
startMonitoring = 1
print(line, end="")
elif startMonitoring in [1, 2]:
if "]" in line:
startMonitoring += 1
for path in paths_to_skipfiles:
if not os.path.isfile(path):
continue
for line in fileinput.input(path, inplace=True):
if "[_module_dir(m) for m in BUILTIN_SKIPLIST]" in line and "x.__name__ for x in BUILTIN_SKIPLIST" not in line:
print(f"{line.rstrip()} + [x.__name__ for x in BUILTIN_SKIPLIST]")
elif "(_module_dir(m) for m in BUILTIN_SKIPLIST)" in line and "x.__name__ for x in BUILTIN_SKIPLIST" not in line:
print(line, end="")
print(f"SKIP_DIRS.extend(filter(None, (x.__name__ for x in BUILTIN_SKIPLIST)))")
else:
flag = True
for module in modules_to_comment:
if module in line:
if not line.startswith("#"):
print(f"#{line}", end="")
else:
print(f"{line[1:]}", end="")
flag = False
break
if flag:
print(line, end="")
else:
print(line, end="")
# For getting around scikit-image's packaging, laze_loader has had a patch merged but yet to be released.
# Refer: https://github.com/scientific-python/lazy_loader
path_to_lazy_loader = Path(get_python_lib() + "/lazy_loader/__init__.py")
for line in fileinput.input(path_to_lazy_loader, inplace=True):
if 'stubfile = filename if filename.endswith("i")' in line:
print(
' stubfile = (filename if filename.endswith("i") else f"{os.path.splitext(filename)[0]}.pyi")',
end="",
)
else:
print(line, end="")
# For getting around timm's packaging.
# Refer: https://github.com/pyinstaller/pyinstaller/issues/5673#issuecomment-808731505
path_to_timm_activations = Path(get_python_lib() + "/timm/layers/activations_jit.py")
for line in fileinput.input(path_to_timm_activations, inplace=True):
if "@torch.jit.script" in line:
print("@torch.jit._script_if_tracing", end="\n")
else:
print(line, end="")
print(line, end="")

View File

@@ -1,34 +0,0 @@
-f https://download.pytorch.org/whl/nightly/cpu/
--pre
numpy
torch
torchvision
tqdm
#iree-compiler | iree-runtime should already be installed
transformers
#jax[cpu]
# tflitehub dependencies.
Pillow
# web dependecies.
gradio
altair
# Testing and support.
#lit
#pyyaml
#ONNX and ORT for benchmarking
#--extra-index-url https://test.pypi.org/simple/
#protobuf
#coloredlogs
#flatbuffers
#sympy
#psutil
#onnx-weekly
#ort-nightly

View File

@@ -1,41 +0,0 @@
-f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html
--pre
numpy>1.22.4
pytorch-triton
torchvision
tabulate
tqdm
#iree-compiler | iree-runtime should already be installed
iree-tools-xla
# Modelling and JAX.
gin-config
transformers
diffusers
#jax[cpu]
Pillow
# Testing and support.
lit
pyyaml
python-dateutil
sacremoses
sentencepiece
# web dependecies.
gradio==3.44.3
altair
scipy
#ONNX and ORT for benchmarking
#--extra-index-url https://test.pypi.org/simple/
#protobuf
#coloredlogs
#flatbuffers
#sympy
#psutil
#onnx-weekly
#ort-nightly

View File

@@ -5,8 +5,9 @@
setuptools
wheel
shark-turbine @ git+https://github.com/nod-ai/SHARK-Turbine#egg=shark-turbine&subdirectory=core
turbine-models @ git+https://github.com/nod-ai/SHARK-Turbine#egg=turbine-models&subdirectory=models
torch==2.3.0.dev20240305
shark-turbine @ git+https://github.com/nod-ai/SHARK-Turbine.git@main#subdirectory=core
turbine-models @ git+https://github.com/nod-ai/SHARK-Turbine.git@main#subdirectory=models
# SHARK Runner
tqdm
@@ -26,29 +27,15 @@ parameterized
accelerate
scipy
ftfy
gradio==4.8.0
gradio==4.19.2
altair
omegaconf
# 0.3.2 doesn't have binaries for arm64
safetensors==0.3.1
opencv-python
scikit-image
pytorch_lightning # for runwayml models
tk
pywebview
sentencepiece
py-cpuinfo
tiktoken # for codegen
joblib # for langchain
timm # for MiniGPT4
langchain
einops # for zoedepth
pydantic==2.4.1 # pin until pyinstaller-hooks-contrib works with beta versions
mpmath==1.3.0
# Keep PyInstaller at the end. Sometimes Windows Defender flags it but most folks can continue even if it errors
pefile
pyinstaller
# For quantized GPTQ models
optimum
auto_gptq

View File

@@ -7,7 +7,7 @@ import glob
with open("README.md", "r", encoding="utf-8") as fh:
long_description = fh.read()
PACKAGE_VERSION = os.environ.get("SHARK_PACKAGE_VERSION") or "0.0.5"
PACKAGE_VERSION = os.environ.get("SHARK_PACKAGE_VERSION") or "2.0.0"
backend_deps = []
setup(

View File

@@ -7,13 +7,13 @@
It checks the Python version installed and installs any required build
dependencies into a Python virtual environment.
If that environment does not exist, it creates it.
.PARAMETER update-src
git pulls latest version
.PARAMETER force
removes and recreates venv to force update of all dependencies
.EXAMPLE
.\setup_venv.ps1 --force
@@ -39,7 +39,7 @@ if ($arguments -eq "--force"){
Write-Host "deactivating..."
Deactivate
}
if (Test-Path .\shark.venv\) {
Write-Host "removing and recreating venv..."
Remove-Item .\shark.venv -Force -Recurse
@@ -89,9 +89,7 @@ else {python -m venv .\shark.venv\}
python -m pip install --upgrade pip
pip install wheel
pip install -r requirements.txt
pip install --pre torch-mlir torchvision torch --extra-index-url https://download.pytorch.org/whl/nightly/cpu -f https://llvm.github.io/torch-mlir/package-index/
pip install --upgrade -f https://nod-ai.github.io/SRT/pip-release-links.html iree-compiler iree-runtime
Write-Host "Building SHARK..."
pip install -e . -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SRT/pip-release-links.html
Write-Host "Build and installation completed successfully"
# remove this when windows DLL issues are fixed from LLVM changes
pip install --force-reinstall https://github.com/openxla/iree/releases/download/candidate-20240326.843/iree_compiler-20240326.843-cp311-cp311-win_amd64.whl https://github.com/openxla/iree/releases/download/candidate-20240326.843/iree_runtime-20240326.843-cp311-cp311-win_amd64.whl
Write-Host "Source your venv with ./shark.venv/Scripts/activate"

View File

@@ -49,58 +49,20 @@ Red=`tput setaf 1`
Green=`tput setaf 2`
Yellow=`tput setaf 3`
# Assume no binary torch-mlir.
# Currently available for macOS m1&intel (3.11) and Linux(3.8,3.10,3.11)
torch_mlir_bin=false
if [[ $(uname -s) = 'Darwin' ]]; then
echo "${Yellow}Apple macOS detected"
if [[ $(uname -m) == 'arm64' ]]; then
echo "${Yellow}Apple M1 Detected"
hash rustc 2>/dev/null
if [ $? -eq 0 ];then
echo "${Green}rustc found to compile HF tokenizers"
else
echo "${Red}Could not find rustc" >&2
echo "${Red}Please run:"
echo "${Red}curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh"
exit 1
fi
fi
echo "${Yellow}Run the following commands to setup your SSL certs for your Python version if you see SSL errors with tests"
echo "${Yellow}/Applications/Python\ 3.XX/Install\ Certificates.command"
if [ "$PYTHON_VERSION_X_Y" == "3.11" ]; then
torch_mlir_bin=true
fi
elif [[ $(uname -s) = 'Linux' ]]; then
echo "${Yellow}Linux detected"
if [ "$PYTHON_VERSION_X_Y" == "3.8" ] || [ "$PYTHON_VERSION_X_Y" == "3.10" ] || [ "$PYTHON_VERSION_X_Y" == "3.11" ] ; then
torch_mlir_bin=true
fi
else
echo "${Red}OS not detected. Pray and Play"
fi
# Upgrade pip and install requirements.
$PYTHON -m pip install --upgrade pip || die "Could not upgrade pip"
$PYTHON -m pip install --upgrade -r "$TD/requirements.txt"
if [ "$torch_mlir_bin" = true ]; then
if [[ $(uname -s) = 'Darwin' ]]; then
echo "MacOS detected. Installing torch-mlir from .whl, to avoid dependency problems with torch."
$PYTHON -m pip uninstall -y timm #TEMP FIX FOR MAC
$PYTHON -m pip install --pre --no-cache-dir torch-mlir -f https://llvm.github.io/torch-mlir/package-index/ -f https://download.pytorch.org/whl/nightly/torch/
else
$PYTHON -m pip install --pre torch-mlir -f https://llvm.github.io/torch-mlir/package-index/
if [ $? -eq 0 ];then
echo "Successfully Installed torch-mlir"
else
echo "Could not install torch-mlir" >&2
fi
fi
if [[ $(uname -s) = 'Darwin' ]]; then
echo "MacOS detected. Installing torch-mlir from .whl, to avoid dependency problems with torch."
$PYTHON -m pip uninstall -y timm #TEMP FIX FOR MAC
$PYTHON -m pip install --pre --no-cache-dir torch-mlir -f https://llvm.github.io/torch-mlir/package-index/ -f https://download.pytorch.org/whl/nightly/torch/
else
echo "${Red}No binaries found for Python $PYTHON_VERSION_X_Y on $(uname -s)"
echo "${Yello}Python 3.11 supported on macOS and 3.8,3.10 and 3.11 on Linux"
echo "${Red}Please build torch-mlir from source in your environment"
exit 1
$PYTHON -m pip install --pre torch-mlir -f https://llvm.github.io/torch-mlir/package-index/
if [ $? -eq 0 ];then
echo "Successfully Installed torch-mlir"
else
echo "Could not install torch-mlir" >&2
fi
fi
if [[ -z "${USE_IREE}" ]]; then
rm .use-iree
@@ -116,19 +78,6 @@ else
echo "Not installing a backend, please make sure to add your backend to PYTHONPATH"
fi
if [[ ! -z "${IMPORTER}" ]]; then
echo "${Yellow}Installing importer tools.."
if [[ $(uname -s) = 'Linux' ]]; then
echo "${Yellow}Linux detected.. installing Linux importer tools"
#Always get the importer tools from upstream IREE
$PYTHON -m pip install --no-warn-conflicts --upgrade -r "$TD/requirements-importer.txt" -f https://openxla.github.io/iree/pip-release-links.html --extra-index-url https://download.pytorch.org/whl/nightly/cpu
elif [[ $(uname -s) = 'Darwin' ]]; then
echo "${Yellow}macOS detected.. installing macOS importer tools"
#Conda seems to have some problems installing these packages and hope they get resolved upstream.
$PYTHON -m pip install --no-warn-conflicts --upgrade -r "$TD/requirements-importer-macos.txt" -f ${RUNTIME} --extra-index-url https://download.pytorch.org/whl/nightly/cpu
fi
fi
if [[ $(uname -s) = 'Darwin' ]]; then
PYTORCH_URL=https://download.pytorch.org/whl/nightly/torch/
else

View File

@@ -91,7 +91,7 @@ _IREE_TARGET_MAP = {
"cpu-task": "llvm-cpu",
"cpu-sync": "llvm-cpu",
"cuda": "cuda",
"vulkan": "vulkan",
"vulkan": "vulkan-spirv",
"metal": "metal",
"rocm": "rocm",
"intel-gpu": "opencl-spirv",
@@ -122,9 +122,7 @@ def check_device_drivers(device):
)
return True
except RuntimeError as re:
print(
f"[ERR] Failed to get driver for {device} with error:\n{repr(re)}"
)
print(f"[ERR] Failed to get driver for {device} with error:\n{repr(re)}")
return True
# Unknown device. We assume drivers are installed.

View File

@@ -113,8 +113,8 @@ def get_iree_frontend_args(frontend):
# Common args to be used given any frontend or device.
def get_iree_common_args(debug=False):
common_args = [
"--iree-vm-bytecode-module-strip-source-map=true",
"--iree-util-zero-fill-elided-attrs",
"--mlir-elide-elementsattrs-if-larger=10",
]
if debug == True:
common_args.extend(

View File

@@ -33,7 +33,7 @@ def get_vulkan_target_env(vulkan_target_triple):
device_type = get_device_type(triple)
# get capabilities
capabilities = get_vulkan_target_capabilities(triple)
target_env = f"#vk.target_env<{version}, r({revision}), {extensions}, {vendor}:{device_type}, #vk.caps< {capabilities} >>"
target_env = f"<#spirv.vce<{version}, r({revision}), {extensions}>, {vendor}:{device_type}, #spirv.resource_limits< {capabilities} >>"
return target_env
@@ -63,62 +63,62 @@ def get_extensions(triple):
arch, product, os = triple
if arch == "m1":
ext = [
"VK_KHR_16bit_storage",
"VK_KHR_8bit_storage",
"VK_KHR_shader_float16_int8",
"VK_KHR_storage_buffer_storage_class",
"VK_KHR_variable_pointers",
"SPV_KHR_16bit_storage",
"SPV_KHR_8bit_storage",
"SPV_KHR_shader_float16_int8",
"SPV_KHR_storage_buffer_storage_class",
"SPV_KHR_variable_pointers",
]
return make_ext_list(ext_list=ext)
if arch == "valhall":
ext = [
"VK_KHR_16bit_storage",
"VK_KHR_8bit_storage",
"VK_KHR_shader_float16_int8",
"VK_KHR_spirv_1_4",
"VK_KHR_storage_buffer_storage_class",
"VK_KHR_variable_pointers",
"SPV_KHR_16bit_storage",
"SPV_KHR_8bit_storage",
"SPV_KHR_shader_float16_int8",
"SPV_KHR_spirv_1_4",
"SPV_KHR_storage_buffer_storage_class",
"SPV_KHR_variable_pointers",
]
return make_ext_list(ext_list=ext)
if arch == "adreno":
ext = [
"VK_KHR_16bit_storage",
"VK_KHR_shader_float16_int8",
"VK_KHR_spirv_1_4",
"VK_KHR_storage_buffer_storage_class",
"VK_KHR_variable_pointers",
"SPV_KHR_16bit_storage",
"SPV_KHR_shader_float16_int8",
"SPV_KHR_spirv_1_4",
"SPV_KHR_storage_buffer_storage_class",
"SPV_KHR_variable_pointers",
]
if os == "android31":
ext.append("VK_KHR_8bit_storage")
ext.append("SPV_KHR_8bit_storage")
return make_ext_list(ext_list=ext)
if get_vendor(triple) == "SwiftShader":
ext = ["VK_KHR_storage_buffer_storage_class"]
ext = ["SPV_KHR_storage_buffer_storage_class"]
return make_ext_list(ext_list=ext)
if arch == "unknown":
ext = [
"VK_KHR_storage_buffer_storage_class",
"VK_KHR_variable_pointers",
"SPV_KHR_storage_buffer_storage_class",
"SPV_KHR_variable_pointers",
]
return make_ext_list(ext_list=ext)
ext = [
"VK_KHR_16bit_storage",
"VK_KHR_8bit_storage",
"VK_KHR_shader_float16_int8",
"VK_KHR_spirv_1_4",
"VK_KHR_storage_buffer_storage_class",
"VK_KHR_variable_pointers",
"SPV_KHR_16bit_storage",
"SPV_KHR_8bit_storage",
"SPV_KHR_shader_float16_int8",
"SPV_KHR_spirv_1_4",
"SPV_KHR_storage_buffer_storage_class",
"SPV_KHR_variable_pointers",
"VK_EXT_subgroup_size_control",
]
if get_vendor(triple) == "NVIDIA" or arch == "rdna3":
ext.append("VK_KHR_cooperative_matrix")
ext.append("SPV_KHR_cooperative_matrix")
if get_vendor(triple) == ["NVIDIA", "AMD", "Intel"]:
ext.append("VK_KHR_shader_integer_dot_product")
ext.append("SPV_KHR_shader_integer_dot_product")
return make_ext_list(ext_list=ext)
@@ -186,13 +186,13 @@ def get_vulkan_target_capabilities(triple):
"Quad": 128,
"PartitionedNV": 256,
}
cap["maxComputeSharedMemorySize"] = 16384
cap["maxComputeWorkGroupInvocations"] = 128
cap["maxComputeWorkGroupSize"] = [128, 128, 64]
cap["subgroupSize"] = 32
cap["max_compute_shared_memory_size"] = 16384
cap["max_compute_workgroup_invocations"] = 128
cap["max_compute_workgroup_size"] = [128, 128, 64]
cap["subgroup_size"] = 32
cap["subgroupFeatures"] = ["Basic"]
cap["minSubgroupSize"] = None
cap["maxSubgroupSize"] = None
cap["min_subgroup_size"] = None
cap["max_subgroup_size"] = None
cap["shaderFloat16"] = False
cap["shaderFloat64"] = False
cap["shaderInt8"] = False
@@ -209,13 +209,13 @@ def get_vulkan_target_capabilities(triple):
cap["coopmatCases"] = None
if arch in ["rdna1", "rdna2", "rdna3"]:
cap["maxComputeSharedMemorySize"] = 65536
cap["maxComputeWorkGroupInvocations"] = 1024
cap["maxComputeWorkGroupSize"] = [1024, 1024, 1024]
cap["max_compute_shared_memory_size"] = 65536
cap["max_compute_workgroup_invocations"] = 1024
cap["max_compute_workgroup_size"] = [1024, 1024, 1024]
cap["subgroupSize"] = 64
cap["minSubgroupSize"] = 32
cap["maxSubgroupSize"] = 64
cap["subgroup_size"] = 64
cap["min_subgroup_size"] = 32
cap["max_subgroup_size"] = 64
cap["subgroupFeatures"] = [
"Basic",
"Vote",
@@ -244,7 +244,8 @@ def get_vulkan_target_capabilities(triple):
if arch == "rdna3":
# TODO: Get scope value
cap["coopmatCases"] = [
"mSize = 16, nSize = 16, kSize = 16, aType = f16, bType = f16, cType = f16, resultType = f16, accSat = false, scope = #vk.scope<Subgroup>"
"m_size = 16, n_size = 16, k_size = 16, a_type = f16, b_type = f16, c_type = f16, result_type = f16, acc_sat = false, scope = <Subgroup>",
"m_size = 16, n_size = 16, k_size = 16, a_type = f16, b_type = f16, c_type = f32, result_type = f32, acc_sat = false, scope = <Subgroup>"
]
if product == "rx5700xt":
@@ -252,11 +253,11 @@ def get_vulkan_target_capabilities(triple):
cap["storagePushConstant8"] = False
elif arch in ["rgcn5", "rgcn4", "rgcn3"]:
cap["maxComputeSharedMemorySize"] = 65536
cap["maxComputeWorkGroupInvocations"] = 1024
cap["maxComputeWorkGroupSize"] = [1024, 1024, 1024]
cap["max_compute_shared_memory_size"] = 65536
cap["max_compute_workgroup_invocations"] = 1024
cap["max_compute_workgroup_size"] = [1024, 1024, 1024]
cap["subgroupSize"] = 64
cap["subgroup_size"] = 64
cap["subgroupFeatures"] = [
"Basic",
"Vote",
@@ -267,8 +268,8 @@ def get_vulkan_target_capabilities(triple):
"Clustered",
"Quad",
]
cap["minSubgroupSize"] = 64
cap["maxSubgroupSize"] = 64
cap["min_subgroup_size"] = 64
cap["max_subgroup_size"] = 64
if arch == "rgcn5":
cap["shaderFloat16"] = True
@@ -290,11 +291,11 @@ def get_vulkan_target_capabilities(triple):
cap["variablePointersStorageBuffer"] = True
elif arch == "m1":
cap["maxComputeSharedMemorySize"] = 32768
cap["maxComputeWorkGroupInvocations"] = 1024
cap["maxComputeWorkGroupSize"] = [1024, 1024, 1024]
cap["max_compute_shared_memory_size"] = 32768
cap["max_compute_workgroup_invocations"] = 1024
cap["max_compute_workgroup_size"] = [1024, 1024, 1024]
cap["subgroupSize"] = 32
cap["subgroup_size"] = 32
cap["subgroupFeatures"] = [
"Basic",
"Vote",
@@ -321,11 +322,11 @@ def get_vulkan_target_capabilities(triple):
cap["variablePointersStorageBuffer"] = True
elif arch == "valhall":
cap["maxComputeSharedMemorySize"] = 32768
cap["maxComputeWorkGroupInvocations"] = 512
cap["maxComputeWorkGroupSize"] = [512, 512, 512]
cap["max_compute_shared_memory_size"] = 32768
cap["max_compute_workgroup_invocations"] = 512
cap["max_compute_workgroup_size"] = [512, 512, 512]
cap["subgroupSize"] = 16
cap["subgroup_size"] = 16
cap["subgroupFeatures"] = [
"Basic",
"Vote",
@@ -352,11 +353,11 @@ def get_vulkan_target_capabilities(triple):
cap["variablePointersStorageBuffer"] = True
elif arch == "arc":
cap["maxComputeSharedMemorySize"] = 32768
cap["maxComputeWorkGroupInvocations"] = 1024
cap["maxComputeWorkGroupSize"] = [1024, 1024, 64]
cap["max_compute_shared_memory_size"] = 32768
cap["max_compute_workgroup_invocations"] = 1024
cap["max_compute_workgroup_size"] = [1024, 1024, 64]
cap["subgroupSize"] = 32
cap["subgroup_size"] = 32
cap["subgroupFeatures"] = [
"Basic",
"Vote",
@@ -385,8 +386,8 @@ def get_vulkan_target_capabilities(triple):
elif arch == "cpu":
if product == "swiftshader":
cap["maxComputeSharedMemorySize"] = 16384
cap["subgroupSize"] = 4
cap["max_compute_shared_memory_size"] = 16384
cap["subgroup_size"] = 4
cap["subgroupFeatures"] = [
"Basic",
"Vote",
@@ -397,13 +398,13 @@ def get_vulkan_target_capabilities(triple):
]
elif arch in ["pascal"]:
cap["maxComputeSharedMemorySize"] = 49152
cap["maxComputeWorkGroupInvocations"] = 1536
cap["maxComputeWorkGroupSize"] = [1536, 1024, 64]
cap["max_compute_shared_memory_size"] = 49152
cap["max_compute_workgroup_invocations"] = 1536
cap["max_compute_workgroup_size"] = [1536, 1024, 64]
cap["subgroupSize"] = 32
cap["minSubgroupSize"] = 32
cap["maxSubgroupSize"] = 32
cap["subgroup_size"] = 32
cap["min_subgroup_size"] = 32
cap["max_subgroup_size"] = 32
cap["subgroupFeatures"] = [
"Basic",
"Vote",
@@ -431,13 +432,13 @@ def get_vulkan_target_capabilities(triple):
cap["variablePointersStorageBuffer"] = True
elif arch in ["ampere", "turing"]:
cap["maxComputeSharedMemorySize"] = 49152
cap["maxComputeWorkGroupInvocations"] = 1024
cap["maxComputeWorkGroupSize"] = [1024, 1024, 1024]
cap["max_compute_shared_memory_size"] = 49152
cap["max_compute_workgroup_invocations"] = 1024
cap["max_compute_workgroup_size"] = [1024, 1024, 1024]
cap["subgroupSize"] = 32
cap["minSubgroupSize"] = 32
cap["maxSubgroupSize"] = 32
cap["subgroup_size"] = 32
cap["min_subgroup_size"] = 32
cap["max_subgroup_size"] = 32
cap["subgroupFeatures"] = [
"Basic",
"Vote",
@@ -471,11 +472,11 @@ def get_vulkan_target_capabilities(triple):
]
elif arch == "adreno":
cap["maxComputeSharedMemorySize"] = 32768
cap["maxComputeWorkGroupInvocations"] = 1024
cap["maxComputeWorkGroupSize"] = [1024, 1024, 64]
cap["max_compute_shared_memory_size"] = 32768
cap["max_compute_workgroup_invocations"] = 1024
cap["max_compute_workgroup_size"] = [1024, 1024, 64]
cap["subgroupSize"] = 64
cap["subgroup_size"] = 64
cap["subgroupFeatures"] = [
"Basic",
"Vote",
@@ -491,14 +492,14 @@ def get_vulkan_target_capabilities(triple):
cap["shaderInt16"] = True
cap["storageBuffer16BitAccess"] = True
if os == "andorid31":
if os == "android31":
cap["uniformAndStorageBuffer8BitAccess"] = True
cap["variablePointers"] = True
cap["variablePointersStorageBuffer"] = True
elif arch == "unknown":
cap["subgroupSize"] = 64
cap["subgroup_size"] = 64
cap["variablePointers"] = False
cap["variablePointersStorageBuffer"] = False
else:
@@ -521,14 +522,14 @@ def get_vulkan_target_capabilities(triple):
res += f"{k} = {'unit' if v == True else None}, "
elif isinstance(v, list):
if k == "subgroupFeatures":
res += f"subgroupFeatures = {get_subgroup_val(v)}: i32, "
elif k == "maxComputeWorkGroupSize":
res += f"maxComputeWorkGroupSize = dense<{get_comma_sep_str(v)}>: vector<{len(v)}xi32>, "
res += f"subgroup_features = {get_subgroup_val(v)}: i32, "
elif k == "max_compute_workgroup_size":
res += f"max_compute_workgroup_size = dense<{get_comma_sep_str(v)}>: vector<{len(v)}xi32>, "
elif k == "coopmatCases":
cmc = ""
for case in v:
cmc += f"#vk.coop_matrix_props<{case}>, "
res += f"cooperativeMatrixPropertiesKHR = [{cmc[:-2]}], "
cmc += f"#spirv.coop_matrix_props_khr<{case}>, "
res += f"cooperative_matrix_properties_khr = [{cmc[:-2]}], "
else:
res += f"{k} = {get_comma_sep_str(v)}, "
else:

View File

@@ -144,6 +144,8 @@ def get_vulkan_target_triple(device_name):
# Intel Targets
elif any(x in device_name for x in ("A770", "A750")):
triple = f"arc-770-{system_os}"
elif "v620" in device_name:
triple = f"rdna2-v620-{system_os}"
# Adreno Targets
elif all(x in device_name for x in ("Adreno", "740")):
@@ -169,7 +171,7 @@ def get_vulkan_triple_flag(device_name="", device_num=0, extra_args=[]):
print(
f"Found vulkan device {vulkan_device}. Using target triple {triple}"
)
return f"-iree-vulkan-target-triple={triple}"
return f"--iree-vulkan-target-triple={triple}"
print(
"""Optimized kernel for your target device is not added yet.
Contact SHARK Admin on discord[https://discord.com/invite/RUqY2h2s9u]
@@ -184,7 +186,8 @@ def get_iree_vulkan_args(device_num=0, extra_args=[]):
res_vulkan_flag = []
res_vulkan_flag += [
"--iree-stream-resource-max-allocation-size=3221225472"
"--iree-stream-resource-max-allocation-size=3221225472",
"--iree-flow-inline-constants-max-byte-length=0"
]
vulkan_triple_flag = None
for arg in extra_args:
@@ -197,10 +200,8 @@ def get_iree_vulkan_args(device_num=0, extra_args=[]):
vulkan_triple_flag = get_vulkan_triple_flag(
device_num=device_num, extra_args=extra_args
)
res_vulkan_flag += [vulkan_triple_flag]
if vulkan_triple_flag is not None:
vulkan_target_env = get_vulkan_target_env_flag(vulkan_triple_flag)
res_vulkan_flag.append(vulkan_target_env)
return res_vulkan_flag