mirror of
https://github.com/nod-ai/SHARK-Studio.git
synced 2026-01-10 06:17:55 -05:00
Merge branch 'main' into ean-turbine-gen
This commit is contained in:
File diff suppressed because it is too large
Load Diff
@@ -1,4 +1,5 @@
|
||||
import torch
|
||||
import time
|
||||
|
||||
|
||||
class FirstVicunaLayer(torch.nn.Module):
|
||||
@@ -66,7 +67,6 @@ class ShardedVicunaModel(torch.nn.Module):
|
||||
def __init__(self, model, layers, lmhead, embedding, norm):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
# assert len(layers) == len(model.model.layers)
|
||||
self.model.model.config.use_cache = True
|
||||
self.model.model.config.output_attentions = False
|
||||
self.layers = layers
|
||||
@@ -110,9 +110,11 @@ class LMHeadCompiled(torch.nn.Module):
|
||||
self.model = shark_module
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = hidden_states.detach()
|
||||
hidden_states_sample = hidden_states.detach()
|
||||
|
||||
output = self.model("forward", (hidden_states,))
|
||||
output = torch.tensor(output)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
@@ -136,8 +138,9 @@ class VicunaNormCompiled(torch.nn.Module):
|
||||
hidden_states.detach()
|
||||
except:
|
||||
pass
|
||||
output = self.model("forward", (hidden_states,))
|
||||
output = self.model("forward", (hidden_states,), send_to_host=True)
|
||||
output = torch.tensor(output)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
@@ -158,15 +161,18 @@ class VicunaEmbeddingCompiled(torch.nn.Module):
|
||||
|
||||
def forward(self, input_ids):
|
||||
input_ids.detach()
|
||||
output = self.model("forward", (input_ids,))
|
||||
output = self.model("forward", (input_ids,), send_to_host=True)
|
||||
output = torch.tensor(output)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class CompiledVicunaLayer(torch.nn.Module):
|
||||
def __init__(self, shark_module):
|
||||
def __init__(self, shark_module, idx, breakpoints):
|
||||
super().__init__()
|
||||
self.model = shark_module
|
||||
self.idx = idx
|
||||
self.breakpoints = breakpoints
|
||||
|
||||
def forward(
|
||||
self,
|
||||
@@ -177,10 +183,11 @@ class CompiledVicunaLayer(torch.nn.Module):
|
||||
output_attentions=False,
|
||||
use_cache=True,
|
||||
):
|
||||
if self.breakpoints is None:
|
||||
is_breakpoint = False
|
||||
else:
|
||||
is_breakpoint = self.idx + 1 in self.breakpoints
|
||||
if past_key_value is None:
|
||||
hidden_states = hidden_states.detach()
|
||||
attention_mask = attention_mask.detach()
|
||||
position_ids = position_ids.detach()
|
||||
output = self.model(
|
||||
"first_vicuna_forward",
|
||||
(
|
||||
@@ -188,11 +195,17 @@ class CompiledVicunaLayer(torch.nn.Module):
|
||||
attention_mask,
|
||||
position_ids,
|
||||
),
|
||||
send_to_host=is_breakpoint,
|
||||
)
|
||||
|
||||
output0 = torch.tensor(output[0])
|
||||
output1 = torch.tensor(output[1])
|
||||
output2 = torch.tensor(output[2])
|
||||
if is_breakpoint:
|
||||
output0 = torch.tensor(output[0])
|
||||
output1 = torch.tensor(output[1])
|
||||
output2 = torch.tensor(output[2])
|
||||
else:
|
||||
output0 = output[0]
|
||||
output1 = output[1]
|
||||
output2 = output[2]
|
||||
|
||||
return (
|
||||
output0,
|
||||
@@ -202,11 +215,8 @@ class CompiledVicunaLayer(torch.nn.Module):
|
||||
),
|
||||
)
|
||||
else:
|
||||
hidden_states = hidden_states.detach()
|
||||
attention_mask = attention_mask.detach()
|
||||
position_ids = position_ids.detach()
|
||||
pkv0 = past_key_value[0].detach()
|
||||
pkv1 = past_key_value[1].detach()
|
||||
pkv0 = past_key_value[0]
|
||||
pkv1 = past_key_value[1]
|
||||
output = self.model(
|
||||
"second_vicuna_forward",
|
||||
(
|
||||
@@ -216,11 +226,17 @@ class CompiledVicunaLayer(torch.nn.Module):
|
||||
pkv0,
|
||||
pkv1,
|
||||
),
|
||||
send_to_host=is_breakpoint,
|
||||
)
|
||||
|
||||
output0 = torch.tensor(output[0])
|
||||
output1 = torch.tensor(output[1])
|
||||
output2 = torch.tensor(output[2])
|
||||
if is_breakpoint:
|
||||
output0 = torch.tensor(output[0])
|
||||
output1 = torch.tensor(output[1])
|
||||
output2 = torch.tensor(output[2])
|
||||
else:
|
||||
output0 = output[0]
|
||||
output1 = output[1]
|
||||
output2 = output[2]
|
||||
|
||||
return (
|
||||
output0,
|
||||
|
||||
@@ -105,6 +105,7 @@ def main():
|
||||
cpu_scheduling,
|
||||
args.max_embeddings_multiples,
|
||||
use_stencil=use_stencil,
|
||||
control_mode=args.control_mode,
|
||||
)
|
||||
total_time = time.time() - start_time
|
||||
text_output = f"prompt={args.prompts}"
|
||||
|
||||
96
apps/stable_diffusion/scripts/txt2img_sdxl.py
Normal file
96
apps/stable_diffusion/scripts/txt2img_sdxl.py
Normal file
@@ -0,0 +1,96 @@
|
||||
import torch
|
||||
import time
|
||||
from apps.stable_diffusion.src import (
|
||||
args,
|
||||
Text2ImageSDXLPipeline,
|
||||
get_schedulers,
|
||||
set_init_device_flags,
|
||||
utils,
|
||||
clear_all,
|
||||
save_output_img,
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
if args.clear_all:
|
||||
clear_all()
|
||||
|
||||
# TODO: prompt_embeds and text_embeds form base_model.json requires fixing
|
||||
args.precision = "fp16"
|
||||
args.height = 1024
|
||||
args.width = 1024
|
||||
args.max_length = 77
|
||||
args.scheduler = "DDIM"
|
||||
print(
|
||||
"Using default supported configuration for SDXL :-\nprecision=fp16, width*height= 1024*1024, max_length=77 and scheduler=DDIM"
|
||||
)
|
||||
dtype = torch.float32 if args.precision == "fp32" else torch.half
|
||||
cpu_scheduling = not args.scheduler.startswith("Shark")
|
||||
set_init_device_flags()
|
||||
schedulers = get_schedulers(args.hf_model_id)
|
||||
scheduler_obj = schedulers[args.scheduler]
|
||||
seed = args.seed
|
||||
txt2img_obj = Text2ImageSDXLPipeline.from_pretrained(
|
||||
scheduler=scheduler_obj,
|
||||
import_mlir=args.import_mlir,
|
||||
model_id=args.hf_model_id,
|
||||
ckpt_loc=args.ckpt_loc,
|
||||
precision=args.precision,
|
||||
max_length=args.max_length,
|
||||
batch_size=args.batch_size,
|
||||
height=args.height,
|
||||
width=args.width,
|
||||
use_base_vae=args.use_base_vae,
|
||||
use_tuned=args.use_tuned,
|
||||
custom_vae=args.custom_vae,
|
||||
low_cpu_mem_usage=args.low_cpu_mem_usage,
|
||||
debug=args.import_debug if args.import_mlir else False,
|
||||
use_lora=args.use_lora,
|
||||
use_quantize=args.use_quantize,
|
||||
ondemand=args.ondemand,
|
||||
)
|
||||
|
||||
seeds = utils.batch_seeds(seed, args.batch_count, args.repeatable_seeds)
|
||||
for current_batch in range(args.batch_count):
|
||||
start_time = time.time()
|
||||
generated_imgs = txt2img_obj.generate_images(
|
||||
args.prompts,
|
||||
args.negative_prompts,
|
||||
args.batch_size,
|
||||
args.height,
|
||||
args.width,
|
||||
args.steps,
|
||||
args.guidance_scale,
|
||||
seeds[current_batch],
|
||||
args.max_length,
|
||||
dtype,
|
||||
args.use_base_vae,
|
||||
cpu_scheduling,
|
||||
args.max_embeddings_multiples,
|
||||
)
|
||||
total_time = time.time() - start_time
|
||||
text_output = f"prompt={args.prompts}"
|
||||
text_output += f"\nnegative prompt={args.negative_prompts}"
|
||||
text_output += (
|
||||
f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
|
||||
)
|
||||
text_output += f"\nscheduler={args.scheduler}, device={args.device}"
|
||||
text_output += (
|
||||
f"\nsteps={args.steps}, guidance_scale={args.guidance_scale},"
|
||||
)
|
||||
text_output += (
|
||||
f"seed={seeds[current_batch]}, size={args.height}x{args.width}"
|
||||
)
|
||||
text_output += (
|
||||
f", batch size={args.batch_size}, max_length={args.max_length}"
|
||||
)
|
||||
# TODO: if using --batch_count=x txt2img_obj.log will output on each display every iteration infos from the start
|
||||
text_output += txt2img_obj.log
|
||||
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
|
||||
|
||||
save_output_img(generated_imgs[0], seed)
|
||||
print(text_output)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -19,6 +19,9 @@ a = Analysis(
|
||||
win_private_assemblies=False,
|
||||
cipher=block_cipher,
|
||||
noarchive=False,
|
||||
module_collection_mode={
|
||||
'gradio': 'py', # Collect gradio package as source .py files
|
||||
},
|
||||
)
|
||||
pyz = PYZ(a.pure, a.zipped_data, cipher=block_cipher)
|
||||
|
||||
|
||||
@@ -31,6 +31,7 @@ datas += copy_metadata("Pillow")
|
||||
datas += copy_metadata("sentencepiece")
|
||||
datas += copy_metadata("pyyaml")
|
||||
datas += copy_metadata("huggingface-hub")
|
||||
datas += copy_metadata("gradio")
|
||||
datas += collect_data_files("torch")
|
||||
datas += collect_data_files("tokenizers")
|
||||
datas += collect_data_files("tiktoken")
|
||||
@@ -75,6 +76,7 @@ datas += [
|
||||
# hidden imports for pyinstaller
|
||||
hiddenimports = ["shark", "shark.shark_inference", "apps"]
|
||||
hiddenimports += [x for x in collect_submodules("skimage") if "tests" not in x]
|
||||
hiddenimports += [x for x in collect_submodules("gradio") if "tests" not in x]
|
||||
hiddenimports += [
|
||||
x for x in collect_submodules("diffusers") if "tests" not in x
|
||||
]
|
||||
@@ -85,4 +87,4 @@ hiddenimports += [
|
||||
if not any(kw in x for kw in blacklist)
|
||||
]
|
||||
hiddenimports += [x for x in collect_submodules("iree") if "tests" not in x]
|
||||
hiddenimports += ["iree._runtime", "iree.compiler._mlir_libs._mlir.ir"]
|
||||
hiddenimports += ["iree._runtime"]
|
||||
|
||||
@@ -9,6 +9,7 @@ from apps.stable_diffusion.src.utils import (
|
||||
)
|
||||
from apps.stable_diffusion.src.pipelines import (
|
||||
Text2ImagePipeline,
|
||||
Text2ImageSDXLPipeline,
|
||||
Image2ImagePipeline,
|
||||
InpaintPipeline,
|
||||
OutpaintPipeline,
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from diffusers import AutoencoderKL, UNet2DConditionModel, ControlNetModel
|
||||
from transformers import CLIPTextModel
|
||||
from transformers import CLIPTextModel, CLIPTextModelWithProjection
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
import torch
|
||||
@@ -24,6 +24,8 @@ from apps.stable_diffusion.src.utils import (
|
||||
get_stencil_model_id,
|
||||
update_lora_weight,
|
||||
)
|
||||
from shark.shark_downloader import download_public_file
|
||||
from shark.shark_inference import SharkInference
|
||||
|
||||
|
||||
# These shapes are parameter dependent.
|
||||
@@ -55,6 +57,10 @@ def replace_shape_str(shape, max_len, width, height, batch_size):
|
||||
new_shape.append(math.ceil(height / div_val))
|
||||
elif "width" in shape[i]:
|
||||
new_shape.append(math.ceil(width / div_val))
|
||||
elif "+" in shape[i]:
|
||||
# Currently this case only hits for SDXL. So, in case any other
|
||||
# case requires this operator, change this.
|
||||
new_shape.append(height + width)
|
||||
else:
|
||||
new_shape.append(shape[i])
|
||||
return new_shape
|
||||
@@ -67,6 +73,70 @@ def check_compilation(model, model_name):
|
||||
)
|
||||
|
||||
|
||||
def shark_compile_after_ir(
|
||||
module_name,
|
||||
device,
|
||||
vmfb_path,
|
||||
precision,
|
||||
ir_path=None,
|
||||
):
|
||||
if ir_path:
|
||||
print(f"[DEBUG] mlir found at {ir_path.absolute()}")
|
||||
|
||||
module = SharkInference(
|
||||
mlir_module=ir_path,
|
||||
device=device,
|
||||
mlir_dialect="tm_tensor",
|
||||
)
|
||||
print(f"Will get extra flag for {module_name} and precision = {precision}")
|
||||
path = module.save_module(
|
||||
vmfb_path.parent.absolute(),
|
||||
vmfb_path.stem,
|
||||
extra_args=get_opt_flags(module_name, precision=precision),
|
||||
)
|
||||
print(f"Saved {module_name} vmfb at {path}")
|
||||
module.load_module(path)
|
||||
return module
|
||||
|
||||
|
||||
def process_vmfb_ir_sdxl(extended_model_name, model_name, device, precision):
|
||||
name_split = extended_model_name.split("_")
|
||||
if "vae" in model_name:
|
||||
name_split[5] = "fp32"
|
||||
extended_model_name_for_vmfb = "_".join(name_split)
|
||||
extended_model_name_for_mlir = "_".join(name_split[:-1])
|
||||
vmfb_path = Path(extended_model_name_for_vmfb + ".vmfb")
|
||||
if "vulkan" in device:
|
||||
_device = args.iree_vulkan_target_triple
|
||||
_device = _device.replace("-", "_")
|
||||
vmfb_path = Path(extended_model_name_for_vmfb + f"_vulkan.vmfb")
|
||||
if vmfb_path.exists():
|
||||
shark_module = SharkInference(
|
||||
None,
|
||||
device=device,
|
||||
mlir_dialect="tm_tensor",
|
||||
)
|
||||
print(f"loading existing vmfb from: {vmfb_path}")
|
||||
shark_module.load_module(vmfb_path, extra_args=[])
|
||||
return shark_module, None
|
||||
mlir_path = Path(extended_model_name_for_mlir + ".mlir")
|
||||
if not mlir_path.exists():
|
||||
print(f"Looking into gs://shark_tank/SDXL/mlir/{mlir_path.name}")
|
||||
download_public_file(
|
||||
f"gs://shark_tank/SDXL/mlir/{mlir_path.name}",
|
||||
mlir_path.absolute(),
|
||||
single_file=True,
|
||||
)
|
||||
if mlir_path.exists():
|
||||
return (
|
||||
shark_compile_after_ir(
|
||||
model_name, device, vmfb_path, precision, mlir_path
|
||||
),
|
||||
None,
|
||||
)
|
||||
return None, None
|
||||
|
||||
|
||||
class SharkifyStableDiffusionModel:
|
||||
def __init__(
|
||||
self,
|
||||
@@ -86,13 +156,15 @@ class SharkifyStableDiffusionModel:
|
||||
generate_vmfb: bool = True,
|
||||
is_inpaint: bool = False,
|
||||
is_upscaler: bool = False,
|
||||
use_stencil: str = None,
|
||||
is_sdxl: bool = False,
|
||||
stencils: list[str] = [],
|
||||
use_lora: str = "",
|
||||
use_quantize: str = None,
|
||||
return_mlir: bool = False,
|
||||
):
|
||||
self.check_params(max_len, width, height)
|
||||
self.max_len = max_len
|
||||
self.is_sdxl = is_sdxl
|
||||
self.height = height // 8
|
||||
self.width = width // 8
|
||||
self.batch_size = batch_size
|
||||
@@ -144,7 +216,7 @@ class SharkifyStableDiffusionModel:
|
||||
self.low_cpu_mem_usage = low_cpu_mem_usage
|
||||
self.is_inpaint = is_inpaint
|
||||
self.is_upscaler = is_upscaler
|
||||
self.use_stencil = get_stencil_model_id(use_stencil)
|
||||
self.stencils = [get_stencil_model_id(x) for x in stencils]
|
||||
if use_lora != "":
|
||||
self.model_name = self.model_name + "_" + get_path_stem(use_lora)
|
||||
self.use_lora = use_lora
|
||||
@@ -175,14 +247,15 @@ class SharkifyStableDiffusionModel:
|
||||
model_name = {}
|
||||
sub_model_list = [
|
||||
"clip",
|
||||
"clip2",
|
||||
"unet",
|
||||
"unet512",
|
||||
"stencil_unet",
|
||||
"stencil_unet_512",
|
||||
"vae",
|
||||
"vae_encode",
|
||||
"stencil_adaptor",
|
||||
"stencil_adaptor_512",
|
||||
"stencil_adapter",
|
||||
"stencil_adapter_512",
|
||||
]
|
||||
index = 0
|
||||
for model in sub_model_list:
|
||||
@@ -195,10 +268,19 @@ class SharkifyStableDiffusionModel:
|
||||
)
|
||||
if self.base_vae:
|
||||
sub_model = "base_vae"
|
||||
if "stencil_adaptor" == model and self.use_stencil is not None:
|
||||
model_config = model_config + get_path_stem(self.use_stencil)
|
||||
model_name[model] = get_extended_name(sub_model + model_config)
|
||||
index += 1
|
||||
if "stencil_adapter" in model:
|
||||
stencil_names = []
|
||||
for i, stencil in enumerate(self.stencils):
|
||||
if stencil is not None:
|
||||
cnet_config = model_config + stencil.split("_")[-1]
|
||||
stencil_names.append(
|
||||
get_extended_name(sub_model + cnet_config)
|
||||
)
|
||||
|
||||
model_name[model] = stencil_names
|
||||
else:
|
||||
model_name[model] = get_extended_name(sub_model + model_config)
|
||||
index += 1
|
||||
return model_name
|
||||
|
||||
def check_params(self, max_len, width, height):
|
||||
@@ -342,6 +424,105 @@ class SharkifyStableDiffusionModel:
|
||||
)
|
||||
return shark_vae, vae_mlir
|
||||
|
||||
def get_vae_sdxl(self):
|
||||
# TODO: Remove this after convergence with shark_tank. This should just be part of
|
||||
# opt_params.py.
|
||||
shark_module_or_none = process_vmfb_ir_sdxl(
|
||||
self.model_name["vae"], "vae", args.device, self.precision
|
||||
)
|
||||
if shark_module_or_none[0]:
|
||||
return shark_module_or_none
|
||||
|
||||
class VaeModel(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
model_id=self.model_id,
|
||||
base_vae=self.base_vae,
|
||||
custom_vae=self.custom_vae,
|
||||
low_cpu_mem_usage=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.vae = None
|
||||
if custom_vae == "":
|
||||
print(f"Loading default vae, with target {model_id}")
|
||||
self.vae = AutoencoderKL.from_pretrained(
|
||||
model_id,
|
||||
subfolder="vae",
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
)
|
||||
elif not isinstance(custom_vae, dict):
|
||||
precision = "fp16" if "fp16" in custom_vae else None
|
||||
print(f"Loading custom vae, with target {custom_vae}")
|
||||
if os.path.exists(custom_vae):
|
||||
self.vae = AutoencoderKL.from_pretrained(
|
||||
custom_vae,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
)
|
||||
else:
|
||||
custom_vae = "/".join(
|
||||
[
|
||||
custom_vae.split("/")[-2].split("\\")[-1],
|
||||
custom_vae.split("/")[-1],
|
||||
]
|
||||
)
|
||||
print("Using hub to get custom vae")
|
||||
try:
|
||||
self.vae = AutoencoderKL.from_pretrained(
|
||||
custom_vae,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
variant=precision,
|
||||
)
|
||||
except:
|
||||
self.vae = AutoencoderKL.from_pretrained(
|
||||
custom_vae,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
)
|
||||
else:
|
||||
print(f"Loading custom vae, with state {custom_vae}")
|
||||
self.vae = AutoencoderKL.from_pretrained(
|
||||
model_id,
|
||||
subfolder="vae",
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
)
|
||||
self.vae.load_state_dict(custom_vae)
|
||||
self.base_vae = base_vae
|
||||
|
||||
def forward(self, latents):
|
||||
image = self.vae.decode(latents / 0.13025, return_dict=False)[
|
||||
0
|
||||
]
|
||||
return image
|
||||
|
||||
vae = VaeModel(low_cpu_mem_usage=self.low_cpu_mem_usage)
|
||||
inputs = tuple(self.inputs["vae"])
|
||||
# Make sure the VAE is in float32 mode, as it overflows in float16 as per SDXL
|
||||
# pipeline.
|
||||
if not self.custom_vae:
|
||||
is_f16 = False
|
||||
elif "16" in self.custom_vae:
|
||||
is_f16 = True
|
||||
else:
|
||||
is_f16 = False
|
||||
save_dir = os.path.join(self.sharktank_dir, self.model_name["vae"])
|
||||
if self.debug:
|
||||
os.makedirs(save_dir, exist_ok=True)
|
||||
shark_vae, vae_mlir = compile_through_fx(
|
||||
vae,
|
||||
inputs,
|
||||
is_f16=is_f16,
|
||||
use_tuned=self.use_tuned,
|
||||
extended_model_name=self.model_name["vae"],
|
||||
debug=self.debug,
|
||||
generate_vmfb=self.generate_vmfb,
|
||||
save_dir=save_dir,
|
||||
extra_args=get_opt_flags("vae", precision=self.precision),
|
||||
base_model_id=self.base_model_id,
|
||||
model_name="vae",
|
||||
precision=self.precision,
|
||||
return_mlir=self.return_mlir,
|
||||
)
|
||||
return shark_vae, vae_mlir
|
||||
|
||||
def get_controlled_unet(self, use_large=False):
|
||||
class ControlledUnetModel(torch.nn.Module):
|
||||
def __init__(
|
||||
@@ -380,25 +561,54 @@ class SharkifyStableDiffusionModel:
|
||||
control11,
|
||||
control12,
|
||||
control13,
|
||||
scale1,
|
||||
scale2,
|
||||
scale3,
|
||||
scale4,
|
||||
scale5,
|
||||
scale6,
|
||||
scale7,
|
||||
scale8,
|
||||
scale9,
|
||||
scale10,
|
||||
scale11,
|
||||
scale12,
|
||||
scale13,
|
||||
):
|
||||
# TODO: Average pooling
|
||||
db_res_samples = [
|
||||
control1,
|
||||
control2,
|
||||
control3,
|
||||
control4,
|
||||
control5,
|
||||
control6,
|
||||
control7,
|
||||
control8,
|
||||
control9,
|
||||
control10,
|
||||
control11,
|
||||
control12,
|
||||
]
|
||||
|
||||
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
||||
db_res_samples = tuple(
|
||||
[
|
||||
control1,
|
||||
control2,
|
||||
control3,
|
||||
control4,
|
||||
control5,
|
||||
control6,
|
||||
control7,
|
||||
control8,
|
||||
control9,
|
||||
control10,
|
||||
control11,
|
||||
control12,
|
||||
control1 * scale1,
|
||||
control2 * scale2,
|
||||
control3 * scale3,
|
||||
control4 * scale4,
|
||||
control5 * scale5,
|
||||
control6 * scale6,
|
||||
control7 * scale7,
|
||||
control8 * scale8,
|
||||
control9 * scale9,
|
||||
control10 * scale10,
|
||||
control11 * scale11,
|
||||
control12 * scale12,
|
||||
]
|
||||
)
|
||||
mb_res_samples = control13
|
||||
mb_res_samples = control13 * scale13
|
||||
latents = torch.cat([latent] * 2)
|
||||
unet_out = self.unet.forward(
|
||||
latents,
|
||||
@@ -446,6 +656,19 @@ class SharkifyStableDiffusionModel:
|
||||
True,
|
||||
True,
|
||||
True,
|
||||
True,
|
||||
True,
|
||||
True,
|
||||
True,
|
||||
True,
|
||||
True,
|
||||
True,
|
||||
True,
|
||||
True,
|
||||
True,
|
||||
True,
|
||||
True,
|
||||
True,
|
||||
]
|
||||
shark_controlled_unet, controlled_unet_mlir = compile_through_fx(
|
||||
unet,
|
||||
@@ -462,17 +685,19 @@ class SharkifyStableDiffusionModel:
|
||||
)
|
||||
return shark_controlled_unet, controlled_unet_mlir
|
||||
|
||||
def get_control_net(self, use_large=False):
|
||||
def get_control_net(self, stencil_id, use_large=False):
|
||||
stencil_id = get_stencil_model_id(stencil_id)
|
||||
adapter_id, base_model_safe_id, ext_model_name = (None, None, None)
|
||||
print(f"Importing ControlNet adapter from {stencil_id}")
|
||||
|
||||
class StencilControlNetModel(torch.nn.Module):
|
||||
def __init__(
|
||||
self, model_id=self.use_stencil, low_cpu_mem_usage=False
|
||||
):
|
||||
def __init__(self, model_id=stencil_id, low_cpu_mem_usage=False):
|
||||
super().__init__()
|
||||
self.cnet = ControlNetModel.from_pretrained(
|
||||
model_id,
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
)
|
||||
self.in_channels = self.cnet.in_channels
|
||||
self.in_channels = self.cnet.config.in_channels
|
||||
self.train(False)
|
||||
|
||||
def forward(
|
||||
@@ -481,6 +706,19 @@ class SharkifyStableDiffusionModel:
|
||||
timestep,
|
||||
text_embedding,
|
||||
stencil_image_input,
|
||||
acc1,
|
||||
acc2,
|
||||
acc3,
|
||||
acc4,
|
||||
acc5,
|
||||
acc6,
|
||||
acc7,
|
||||
acc8,
|
||||
acc9,
|
||||
acc10,
|
||||
acc11,
|
||||
acc12,
|
||||
acc13,
|
||||
):
|
||||
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
||||
# TODO: guidance NOT NEEDED change in `get_input_info` later
|
||||
@@ -502,6 +740,20 @@ class SharkifyStableDiffusionModel:
|
||||
)
|
||||
return tuple(
|
||||
list(down_block_res_samples) + [mid_block_res_sample]
|
||||
) + (
|
||||
acc1 + down_block_res_samples[0],
|
||||
acc2 + down_block_res_samples[1],
|
||||
acc3 + down_block_res_samples[2],
|
||||
acc4 + down_block_res_samples[3],
|
||||
acc5 + down_block_res_samples[4],
|
||||
acc6 + down_block_res_samples[5],
|
||||
acc7 + down_block_res_samples[6],
|
||||
acc8 + down_block_res_samples[7],
|
||||
acc9 + down_block_res_samples[8],
|
||||
acc10 + down_block_res_samples[9],
|
||||
acc11 + down_block_res_samples[10],
|
||||
acc12 + down_block_res_samples[11],
|
||||
acc13 + mid_block_res_sample,
|
||||
)
|
||||
|
||||
scnet = StencilControlNetModel(
|
||||
@@ -509,7 +761,23 @@ class SharkifyStableDiffusionModel:
|
||||
)
|
||||
is_f16 = True if self.precision == "fp16" else False
|
||||
|
||||
inputs = tuple(self.inputs["stencil_adaptor"])
|
||||
inputs = tuple(self.inputs["stencil_adapter"])
|
||||
model_name = "stencil_adapter_512" if use_large else "stencil_adapter"
|
||||
ext_model_name = self.model_name[model_name]
|
||||
if isinstance(ext_model_name, list):
|
||||
for i in ext_model_name:
|
||||
if stencil_id.split("_")[-1] in i:
|
||||
desired_name = i
|
||||
print(f"Multi-CN: compiling model {i}")
|
||||
else:
|
||||
continue
|
||||
if desired_name:
|
||||
ext_model_name = desired_name
|
||||
else:
|
||||
raise Exception(
|
||||
f"Could not find extended configuration for {stencil_id}"
|
||||
)
|
||||
|
||||
if use_large:
|
||||
pad = (0, 0) * (len(inputs[2].shape) - 2)
|
||||
pad = pad + (0, 512 - inputs[2].shape[1])
|
||||
@@ -517,21 +785,15 @@ class SharkifyStableDiffusionModel:
|
||||
inputs[0],
|
||||
inputs[1],
|
||||
torch.nn.functional.pad(inputs[2], pad),
|
||||
inputs[3],
|
||||
*inputs[3:],
|
||||
)
|
||||
save_dir = os.path.join(
|
||||
self.sharktank_dir, self.model_name["stencil_adaptor_512"]
|
||||
)
|
||||
else:
|
||||
save_dir = os.path.join(
|
||||
self.sharktank_dir, self.model_name["stencil_adaptor"]
|
||||
)
|
||||
input_mask = [True, True, True, True]
|
||||
model_name = "stencil_adaptor" if use_large else "stencil_adaptor_512"
|
||||
save_dir = os.path.join(self.sharktank_dir, ext_model_name)
|
||||
input_mask = [True, True, True, True] + ([True] * 13)
|
||||
|
||||
shark_cnet, cnet_mlir = compile_through_fx(
|
||||
scnet,
|
||||
inputs,
|
||||
extended_model_name=self.model_name[model_name],
|
||||
extended_model_name=ext_model_name,
|
||||
is_f16=is_f16,
|
||||
f16_input_mask=input_mask,
|
||||
use_tuned=self.use_tuned,
|
||||
@@ -688,6 +950,101 @@ class SharkifyStableDiffusionModel:
|
||||
)
|
||||
return shark_unet, unet_mlir
|
||||
|
||||
def get_unet_sdxl(self):
|
||||
# TODO: Remove this after convergence with shark_tank. This should just be part of
|
||||
# opt_params.py.
|
||||
shark_module_or_none = process_vmfb_ir_sdxl(
|
||||
self.model_name["unet"], "unet", args.device, self.precision
|
||||
)
|
||||
if shark_module_or_none[0]:
|
||||
return shark_module_or_none
|
||||
|
||||
class UnetModel(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
model_id=self.model_id,
|
||||
low_cpu_mem_usage=False,
|
||||
):
|
||||
super().__init__()
|
||||
try:
|
||||
self.unet = UNet2DConditionModel.from_pretrained(
|
||||
model_id,
|
||||
subfolder="unet",
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
variant="fp16",
|
||||
)
|
||||
except:
|
||||
self.unet = UNet2DConditionModel.from_pretrained(
|
||||
model_id,
|
||||
subfolder="unet",
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
)
|
||||
if (
|
||||
args.attention_slicing is not None
|
||||
and args.attention_slicing != "none"
|
||||
):
|
||||
if args.attention_slicing.isdigit():
|
||||
self.unet.set_attention_slice(
|
||||
int(args.attention_slicing)
|
||||
)
|
||||
else:
|
||||
self.unet.set_attention_slice(args.attention_slicing)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
latent,
|
||||
timestep,
|
||||
prompt_embeds,
|
||||
text_embeds,
|
||||
time_ids,
|
||||
guidance_scale,
|
||||
):
|
||||
added_cond_kwargs = {
|
||||
"text_embeds": text_embeds,
|
||||
"time_ids": time_ids,
|
||||
}
|
||||
noise_pred = self.unet.forward(
|
||||
latent,
|
||||
timestep,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
cross_attention_kwargs=None,
|
||||
added_cond_kwargs=added_cond_kwargs,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (
|
||||
noise_pred_text - noise_pred_uncond
|
||||
)
|
||||
return noise_pred
|
||||
|
||||
unet = UnetModel(low_cpu_mem_usage=self.low_cpu_mem_usage)
|
||||
is_f16 = True if self.precision == "fp16" else False
|
||||
inputs = tuple(self.inputs["unet"])
|
||||
save_dir = os.path.join(self.sharktank_dir, self.model_name["unet"])
|
||||
input_mask = [True, True, True, True, True, True]
|
||||
if self.debug:
|
||||
os.makedirs(
|
||||
save_dir,
|
||||
exist_ok=True,
|
||||
)
|
||||
shark_unet, unet_mlir = compile_through_fx(
|
||||
unet,
|
||||
inputs,
|
||||
extended_model_name=self.model_name["unet"],
|
||||
is_f16=is_f16,
|
||||
f16_input_mask=input_mask,
|
||||
use_tuned=self.use_tuned,
|
||||
debug=self.debug,
|
||||
generate_vmfb=self.generate_vmfb,
|
||||
save_dir=save_dir,
|
||||
extra_args=get_opt_flags("unet", precision=self.precision),
|
||||
base_model_id=self.base_model_id,
|
||||
model_name="unet",
|
||||
precision=self.precision,
|
||||
return_mlir=self.return_mlir,
|
||||
)
|
||||
return shark_unet, unet_mlir
|
||||
|
||||
def get_clip(self):
|
||||
class CLIPText(torch.nn.Module):
|
||||
def __init__(
|
||||
@@ -735,6 +1092,78 @@ class SharkifyStableDiffusionModel:
|
||||
)
|
||||
return shark_clip, clip_mlir
|
||||
|
||||
def get_clip_sdxl(self, clip_index=1):
|
||||
if clip_index == 1:
|
||||
extended_model_name = self.model_name["clip"]
|
||||
model_name = "clip"
|
||||
else:
|
||||
extended_model_name = self.model_name["clip2"]
|
||||
model_name = "clip2"
|
||||
# TODO: Remove this after convergence with shark_tank. This should just be part of
|
||||
# opt_params.py.
|
||||
shark_module_or_none = process_vmfb_ir_sdxl(
|
||||
extended_model_name, f"clip", args.device, self.precision
|
||||
)
|
||||
if shark_module_or_none[0]:
|
||||
return shark_module_or_none
|
||||
|
||||
class CLIPText(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
model_id=self.model_id,
|
||||
low_cpu_mem_usage=False,
|
||||
clip_index=1,
|
||||
):
|
||||
super().__init__()
|
||||
if clip_index == 1:
|
||||
self.text_encoder = CLIPTextModel.from_pretrained(
|
||||
model_id,
|
||||
subfolder="text_encoder",
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
)
|
||||
else:
|
||||
self.text_encoder = (
|
||||
CLIPTextModelWithProjection.from_pretrained(
|
||||
model_id,
|
||||
subfolder="text_encoder_2",
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
)
|
||||
)
|
||||
|
||||
def forward(self, input):
|
||||
prompt_embeds = self.text_encoder(
|
||||
input,
|
||||
output_hidden_states=True,
|
||||
)
|
||||
# We are only ALWAYS interested in the pooled output of the final text encoder
|
||||
pooled_prompt_embeds = prompt_embeds[0]
|
||||
prompt_embeds = prompt_embeds.hidden_states[-2]
|
||||
return prompt_embeds, pooled_prompt_embeds
|
||||
|
||||
clip_model = CLIPText(
|
||||
low_cpu_mem_usage=self.low_cpu_mem_usage, clip_index=clip_index
|
||||
)
|
||||
save_dir = os.path.join(self.sharktank_dir, extended_model_name)
|
||||
if self.debug:
|
||||
os.makedirs(
|
||||
save_dir,
|
||||
exist_ok=True,
|
||||
)
|
||||
shark_clip, clip_mlir = compile_through_fx(
|
||||
clip_model,
|
||||
tuple(self.inputs["clip"]),
|
||||
extended_model_name=extended_model_name,
|
||||
debug=self.debug,
|
||||
generate_vmfb=self.generate_vmfb,
|
||||
save_dir=save_dir,
|
||||
extra_args=get_opt_flags("clip", precision="fp32"),
|
||||
base_model_id=self.base_model_id,
|
||||
model_name="clip",
|
||||
precision=self.precision,
|
||||
return_mlir=self.return_mlir,
|
||||
)
|
||||
return shark_clip, clip_mlir
|
||||
|
||||
def process_custom_vae(self):
|
||||
custom_vae = self.custom_vae.lower()
|
||||
if not custom_vae.endswith((".ckpt", ".safetensors")):
|
||||
@@ -767,7 +1196,9 @@ class SharkifyStableDiffusionModel:
|
||||
}
|
||||
return vae_dict
|
||||
|
||||
def compile_unet_variants(self, model, use_large=False):
|
||||
def compile_unet_variants(self, model, use_large=False, base_model=""):
|
||||
if self.is_sdxl:
|
||||
return self.get_unet_sdxl()
|
||||
if model == "unet":
|
||||
if self.is_upscaler:
|
||||
return self.get_unet_upscaler(use_large=use_large)
|
||||
@@ -809,9 +1240,28 @@ class SharkifyStableDiffusionModel:
|
||||
except Exception as e:
|
||||
sys.exit(e)
|
||||
|
||||
def sdxl_clip(self):
|
||||
try:
|
||||
self.inputs["clip"] = self.get_input_info_for(
|
||||
base_models["sdxl_clip"]
|
||||
)
|
||||
compiled_clip, clip_mlir = self.get_clip_sdxl(clip_index=1)
|
||||
compiled_clip2, clip_mlir2 = self.get_clip_sdxl(clip_index=2)
|
||||
|
||||
check_compilation(compiled_clip, "Clip")
|
||||
check_compilation(compiled_clip, "Clip2")
|
||||
if self.return_mlir:
|
||||
return clip_mlir, clip_mlir2
|
||||
return compiled_clip, compiled_clip2
|
||||
except Exception as e:
|
||||
sys.exit(e)
|
||||
|
||||
def unet(self, use_large=False):
|
||||
try:
|
||||
model = "stencil_unet" if self.use_stencil is not None else "unet"
|
||||
stencil_count = 0
|
||||
for stencil in self.stencils:
|
||||
stencil_count += 1
|
||||
model = "stencil_unet" if stencil_count > 0 else "unet"
|
||||
compiled_unet = None
|
||||
unet_inputs = base_models[model]
|
||||
|
||||
@@ -820,7 +1270,7 @@ class SharkifyStableDiffusionModel:
|
||||
unet_inputs[self.base_model_id]
|
||||
)
|
||||
compiled_unet, unet_mlir = self.compile_unet_variants(
|
||||
model, use_large=use_large
|
||||
model, use_large=use_large, base_model=self.base_model_id
|
||||
)
|
||||
else:
|
||||
for model_id in unet_inputs:
|
||||
@@ -831,7 +1281,7 @@ class SharkifyStableDiffusionModel:
|
||||
|
||||
try:
|
||||
compiled_unet, unet_mlir = self.compile_unet_variants(
|
||||
model, use_large=use_large
|
||||
model, use_large=use_large, base_model=model_id
|
||||
)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
@@ -870,7 +1320,10 @@ class SharkifyStableDiffusionModel:
|
||||
is_base_vae = self.base_vae
|
||||
if self.is_upscaler:
|
||||
self.base_vae = True
|
||||
compiled_vae, vae_mlir = self.get_vae()
|
||||
if self.is_sdxl:
|
||||
compiled_vae, vae_mlir = self.get_vae_sdxl()
|
||||
else:
|
||||
compiled_vae, vae_mlir = self.get_vae()
|
||||
self.base_vae = is_base_vae
|
||||
|
||||
check_compilation(compiled_vae, "Vae")
|
||||
@@ -880,18 +1333,18 @@ class SharkifyStableDiffusionModel:
|
||||
except Exception as e:
|
||||
sys.exit(e)
|
||||
|
||||
def controlnet(self, use_large=False):
|
||||
def controlnet(self, stencil_id, use_large=False):
|
||||
try:
|
||||
self.inputs["stencil_adaptor"] = self.get_input_info_for(
|
||||
base_models["stencil_adaptor"]
|
||||
self.inputs["stencil_adapter"] = self.get_input_info_for(
|
||||
base_models["stencil_adapter"]
|
||||
)
|
||||
compiled_stencil_adaptor, controlnet_mlir = self.get_control_net(
|
||||
use_large=use_large
|
||||
compiled_stencil_adapter, controlnet_mlir = self.get_control_net(
|
||||
stencil_id, use_large=use_large
|
||||
)
|
||||
|
||||
check_compilation(compiled_stencil_adaptor, "Stencil")
|
||||
check_compilation(compiled_stencil_adapter, "Stencil")
|
||||
if self.return_mlir:
|
||||
return controlnet_mlir
|
||||
return compiled_stencil_adaptor
|
||||
return compiled_stencil_adapter
|
||||
except Exception as e:
|
||||
sys.exit(e)
|
||||
|
||||
@@ -123,8 +123,11 @@ def get_clip():
|
||||
return get_shark_model(bucket, model_name, iree_flags)
|
||||
|
||||
|
||||
def get_tokenizer():
|
||||
def get_tokenizer(subfolder="tokenizer", hf_model_id=None):
|
||||
if hf_model_id is not None:
|
||||
args.hf_model_id = hf_model_id
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained(
|
||||
args.hf_model_id, subfolder="tokenizer"
|
||||
args.hf_model_id, subfolder=subfolder
|
||||
)
|
||||
return tokenizer
|
||||
|
||||
@@ -1,6 +1,9 @@
|
||||
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_txt2img import (
|
||||
Text2ImagePipeline,
|
||||
)
|
||||
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_txt2img_sdxl import (
|
||||
Text2ImageSDXLPipeline,
|
||||
)
|
||||
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_img2img import (
|
||||
Image2ImagePipeline,
|
||||
)
|
||||
|
||||
@@ -158,8 +158,10 @@ class Image2ImagePipeline(StableDiffusionPipeline):
|
||||
use_base_vae,
|
||||
cpu_scheduling,
|
||||
max_embeddings_multiples,
|
||||
use_stencil,
|
||||
stencils,
|
||||
images,
|
||||
resample_type,
|
||||
control_mode,
|
||||
):
|
||||
# prompts and negative prompts must be a list.
|
||||
if isinstance(prompts, str):
|
||||
|
||||
@@ -55,28 +55,47 @@ class StencilPipeline(StableDiffusionPipeline):
|
||||
import_mlir: bool,
|
||||
use_lora: str,
|
||||
ondemand: bool,
|
||||
controlnet_names: list[str],
|
||||
):
|
||||
super().__init__(scheduler, sd_model, import_mlir, use_lora, ondemand)
|
||||
self.controlnet = None
|
||||
self.controlnet_512 = None
|
||||
self.controlnet = [None] * len(controlnet_names)
|
||||
self.controlnet_512 = [None] * len(controlnet_names)
|
||||
self.controlnet_id = [str] * len(controlnet_names)
|
||||
self.controlnet_512_id = [str] * len(controlnet_names)
|
||||
self.controlnet_names = controlnet_names
|
||||
|
||||
def load_controlnet(self):
|
||||
if self.controlnet is not None:
|
||||
def load_controlnet(self, index, model_name):
|
||||
if model_name is None:
|
||||
return
|
||||
self.controlnet = self.sd_model.controlnet()
|
||||
|
||||
def unload_controlnet(self):
|
||||
del self.controlnet
|
||||
self.controlnet = None
|
||||
|
||||
def load_controlnet_512(self):
|
||||
if self.controlnet_512 is not None:
|
||||
if (
|
||||
self.controlnet[index] is not None
|
||||
and self.controlnet_id[index] is not None
|
||||
and self.controlnet_id[index] == model_name
|
||||
):
|
||||
return
|
||||
self.controlnet_512 = self.sd_model.controlnet(use_large=True)
|
||||
self.controlnet_id[index] = model_name
|
||||
self.controlnet[index] = self.sd_model.controlnet(model_name)
|
||||
|
||||
def unload_controlnet_512(self):
|
||||
del self.controlnet_512
|
||||
self.controlnet_512 = None
|
||||
def unload_controlnet(self, index):
|
||||
del self.controlnet[index]
|
||||
self.controlnet_id[index] = None
|
||||
self.controlnet[index] = None
|
||||
|
||||
def load_controlnet_512(self, index, model_name):
|
||||
if (
|
||||
self.controlnet_512[index] is not None
|
||||
and self.controlnet_512_id[index] == model_name
|
||||
):
|
||||
return
|
||||
self.controlnet_512_id[index] = model_name
|
||||
self.controlnet_512[index] = self.sd_model.controlnet(
|
||||
model_name, use_large=True
|
||||
)
|
||||
|
||||
def unload_controlnet_512(self, index):
|
||||
del self.controlnet_512[index]
|
||||
self.controlnet_512_id[index] = None
|
||||
self.controlnet_512[index] = None
|
||||
|
||||
def prepare_latents(
|
||||
self,
|
||||
@@ -111,8 +130,9 @@ class StencilPipeline(StableDiffusionPipeline):
|
||||
total_timesteps,
|
||||
dtype,
|
||||
cpu_scheduling,
|
||||
controlnet_hint=None,
|
||||
stencil_hints=[None],
|
||||
controlnet_conditioning_scale: float = 1.0,
|
||||
control_mode="Balanced", # Prompt, Balanced, or Controlnet
|
||||
mask=None,
|
||||
masked_image_latents=None,
|
||||
return_all_latents=False,
|
||||
@@ -121,12 +141,18 @@ class StencilPipeline(StableDiffusionPipeline):
|
||||
latent_history = [latents]
|
||||
text_embeddings = torch.from_numpy(text_embeddings).to(dtype)
|
||||
text_embeddings_numpy = text_embeddings.detach().numpy()
|
||||
assert control_mode in ["Prompt", "Balanced", "Controlnet"]
|
||||
if text_embeddings.shape[1] <= self.model_max_length:
|
||||
self.load_unet()
|
||||
self.load_controlnet()
|
||||
else:
|
||||
self.load_unet_512()
|
||||
self.load_controlnet_512()
|
||||
|
||||
for i, name in enumerate(self.controlnet_names):
|
||||
if text_embeddings.shape[1] <= self.model_max_length:
|
||||
self.load_controlnet(i, name)
|
||||
else:
|
||||
self.load_controlnet_512(i, name)
|
||||
|
||||
for i, t in tqdm(enumerate(total_timesteps)):
|
||||
step_start_time = time.time()
|
||||
timestep = torch.tensor([t]).to(dtype)
|
||||
@@ -149,33 +175,93 @@ class StencilPipeline(StableDiffusionPipeline):
|
||||
).to(dtype)
|
||||
else:
|
||||
latent_model_input_1 = latent_model_input
|
||||
if text_embeddings.shape[1] <= self.model_max_length:
|
||||
control = self.controlnet(
|
||||
"forward",
|
||||
(
|
||||
latent_model_input_1,
|
||||
timestep,
|
||||
text_embeddings,
|
||||
controlnet_hint,
|
||||
),
|
||||
send_to_host=False,
|
||||
)
|
||||
else:
|
||||
control = self.controlnet_512(
|
||||
"forward",
|
||||
(
|
||||
latent_model_input_1,
|
||||
timestep,
|
||||
text_embeddings,
|
||||
controlnet_hint,
|
||||
),
|
||||
send_to_host=False,
|
||||
)
|
||||
|
||||
# Multicontrolnet
|
||||
width = latent_model_input_1.shape[2]
|
||||
height = latent_model_input_1.shape[3]
|
||||
dtype = latent_model_input_1.dtype
|
||||
control_acc = (
|
||||
[torch.zeros((2, 320, height, width), dtype=dtype)] * 3
|
||||
+ [
|
||||
torch.zeros(
|
||||
(2, 320, int(height / 2), int(width / 2)), dtype=dtype
|
||||
)
|
||||
]
|
||||
+ [
|
||||
torch.zeros(
|
||||
(2, 640, int(height / 2), int(width / 2)), dtype=dtype
|
||||
)
|
||||
]
|
||||
* 2
|
||||
+ [
|
||||
torch.zeros(
|
||||
(2, 640, int(height / 4), int(width / 4)), dtype=dtype
|
||||
)
|
||||
]
|
||||
+ [
|
||||
torch.zeros(
|
||||
(2, 1280, int(height / 4), int(width / 4)), dtype=dtype
|
||||
)
|
||||
]
|
||||
* 2
|
||||
+ [
|
||||
torch.zeros(
|
||||
(2, 1280, int(height / 8), int(width / 8)), dtype=dtype
|
||||
)
|
||||
]
|
||||
* 4
|
||||
)
|
||||
for i, controlnet_hint in enumerate(stencil_hints):
|
||||
if controlnet_hint is None:
|
||||
continue
|
||||
if text_embeddings.shape[1] <= self.model_max_length:
|
||||
control = self.controlnet[i](
|
||||
"forward",
|
||||
(
|
||||
latent_model_input_1,
|
||||
timestep,
|
||||
text_embeddings,
|
||||
controlnet_hint,
|
||||
*control_acc,
|
||||
),
|
||||
send_to_host=False,
|
||||
)
|
||||
else:
|
||||
control = self.controlnet_512[i](
|
||||
"forward",
|
||||
(
|
||||
latent_model_input_1,
|
||||
timestep,
|
||||
text_embeddings,
|
||||
controlnet_hint,
|
||||
*control_acc,
|
||||
),
|
||||
send_to_host=False,
|
||||
)
|
||||
control_acc = control[13:]
|
||||
control = control[:13]
|
||||
|
||||
timestep = timestep.detach().numpy()
|
||||
# Profiling Unet.
|
||||
profile_device = start_profiling(file_path="unet.rdc")
|
||||
# TODO: Pass `control` as it is to Unet. Same as TODO mentioned in model_wrappers.py.
|
||||
|
||||
dtype = latents.dtype
|
||||
if control_mode == "Balanced":
|
||||
control_scale = [
|
||||
torch.tensor(1.0, dtype=dtype) for _ in range(len(control))
|
||||
]
|
||||
elif control_mode == "Prompt":
|
||||
control_scale = [
|
||||
torch.tensor(0.825**x, dtype=dtype)
|
||||
for x in range(len(control))
|
||||
]
|
||||
elif control_mode == "Controlnet":
|
||||
control_scale = [
|
||||
torch.tensor(float(guidance_scale), dtype=dtype)
|
||||
for _ in range(len(control))
|
||||
]
|
||||
|
||||
if text_embeddings.shape[1] <= self.model_max_length:
|
||||
noise_pred = self.unet(
|
||||
"forward",
|
||||
@@ -197,6 +283,19 @@ class StencilPipeline(StableDiffusionPipeline):
|
||||
control[10],
|
||||
control[11],
|
||||
control[12],
|
||||
control_scale[0],
|
||||
control_scale[1],
|
||||
control_scale[2],
|
||||
control_scale[3],
|
||||
control_scale[4],
|
||||
control_scale[5],
|
||||
control_scale[6],
|
||||
control_scale[7],
|
||||
control_scale[8],
|
||||
control_scale[9],
|
||||
control_scale[10],
|
||||
control_scale[11],
|
||||
control_scale[12],
|
||||
),
|
||||
send_to_host=False,
|
||||
)
|
||||
@@ -222,6 +321,19 @@ class StencilPipeline(StableDiffusionPipeline):
|
||||
control[10],
|
||||
control[11],
|
||||
control[12],
|
||||
control_scale[0],
|
||||
control_scale[1],
|
||||
control_scale[2],
|
||||
control_scale[3],
|
||||
control_scale[4],
|
||||
control_scale[5],
|
||||
control_scale[6],
|
||||
control_scale[7],
|
||||
control_scale[8],
|
||||
control_scale[9],
|
||||
control_scale[10],
|
||||
control_scale[11],
|
||||
control_scale[12],
|
||||
),
|
||||
send_to_host=False,
|
||||
)
|
||||
@@ -245,8 +357,9 @@ class StencilPipeline(StableDiffusionPipeline):
|
||||
if self.ondemand:
|
||||
self.unload_unet()
|
||||
self.unload_unet_512()
|
||||
self.unload_controlnet()
|
||||
self.unload_controlnet_512()
|
||||
for i in range(len(self.controlnet_names)):
|
||||
self.unload_controlnet(i)
|
||||
self.unload_controlnet_512(i)
|
||||
avg_step_time = step_time_sum / len(total_timesteps)
|
||||
self.log += f"\nAverage step time: {avg_step_time}ms/it"
|
||||
|
||||
@@ -272,14 +385,29 @@ class StencilPipeline(StableDiffusionPipeline):
|
||||
use_base_vae,
|
||||
cpu_scheduling,
|
||||
max_embeddings_multiples,
|
||||
use_stencil,
|
||||
stencils,
|
||||
stencil_images,
|
||||
resample_type,
|
||||
control_mode,
|
||||
):
|
||||
# Control Embedding check & conversion
|
||||
# TODO: 1. Change `num_images_per_prompt`.
|
||||
controlnet_hint = controlnet_hint_conversion(
|
||||
image, use_stencil, height, width, dtype, num_images_per_prompt=1
|
||||
)
|
||||
# controlnet_hint = controlnet_hint_conversion(
|
||||
# image, use_stencil, height, width, dtype, num_images_per_prompt=1
|
||||
# )
|
||||
stencil_hints = []
|
||||
for i, stencil in enumerate(stencils):
|
||||
image = stencil_images[i]
|
||||
stencil_hints.append(
|
||||
controlnet_hint_conversion(
|
||||
image,
|
||||
stencil,
|
||||
height,
|
||||
width,
|
||||
dtype,
|
||||
num_images_per_prompt=1,
|
||||
)
|
||||
)
|
||||
|
||||
# prompts and negative prompts must be a list.
|
||||
if isinstance(prompts, str):
|
||||
prompts = [prompts]
|
||||
@@ -327,7 +455,8 @@ class StencilPipeline(StableDiffusionPipeline):
|
||||
total_timesteps=final_timesteps,
|
||||
dtype=dtype,
|
||||
cpu_scheduling=cpu_scheduling,
|
||||
controlnet_hint=controlnet_hint,
|
||||
control_mode=control_mode,
|
||||
stencil_hints=stencil_hints,
|
||||
)
|
||||
|
||||
# Img latents -> PIL images
|
||||
|
||||
@@ -18,7 +18,10 @@ from diffusers import (
|
||||
KDPM2AncestralDiscreteScheduler,
|
||||
HeunDiscreteScheduler,
|
||||
)
|
||||
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
|
||||
from apps.stable_diffusion.src.schedulers import (
|
||||
SharkEulerDiscreteScheduler,
|
||||
SharkEulerAncestralDiscreteScheduler,
|
||||
)
|
||||
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
|
||||
StableDiffusionPipeline,
|
||||
)
|
||||
|
||||
@@ -0,0 +1,220 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
from random import randint
|
||||
from typing import Union
|
||||
from diffusers import (
|
||||
DDIMScheduler,
|
||||
PNDMScheduler,
|
||||
LMSDiscreteScheduler,
|
||||
KDPM2DiscreteScheduler,
|
||||
EulerDiscreteScheduler,
|
||||
EulerAncestralDiscreteScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
DEISMultistepScheduler,
|
||||
DDPMScheduler,
|
||||
DPMSolverSinglestepScheduler,
|
||||
KDPM2AncestralDiscreteScheduler,
|
||||
HeunDiscreteScheduler,
|
||||
)
|
||||
from apps.stable_diffusion.src.schedulers import (
|
||||
SharkEulerDiscreteScheduler,
|
||||
SharkEulerAncestralDiscreteScheduler,
|
||||
)
|
||||
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
|
||||
StableDiffusionPipeline,
|
||||
)
|
||||
from apps.stable_diffusion.src.models import SharkifyStableDiffusionModel
|
||||
from transformers.utils import logging
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class Text2ImageSDXLPipeline(StableDiffusionPipeline):
|
||||
def __init__(
|
||||
self,
|
||||
scheduler: Union[
|
||||
DDIMScheduler,
|
||||
PNDMScheduler,
|
||||
LMSDiscreteScheduler,
|
||||
KDPM2DiscreteScheduler,
|
||||
EulerDiscreteScheduler,
|
||||
EulerAncestralDiscreteScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
SharkEulerDiscreteScheduler,
|
||||
SharkEulerAncestralDiscreteScheduler,
|
||||
DEISMultistepScheduler,
|
||||
DDPMScheduler,
|
||||
DPMSolverSinglestepScheduler,
|
||||
KDPM2AncestralDiscreteScheduler,
|
||||
HeunDiscreteScheduler,
|
||||
],
|
||||
sd_model: SharkifyStableDiffusionModel,
|
||||
import_mlir: bool,
|
||||
use_lora: str,
|
||||
ondemand: bool,
|
||||
is_fp32_vae: bool,
|
||||
):
|
||||
super().__init__(scheduler, sd_model, import_mlir, use_lora, ondemand)
|
||||
self.is_fp32_vae = is_fp32_vae
|
||||
|
||||
def prepare_latents(
|
||||
self,
|
||||
batch_size,
|
||||
height,
|
||||
width,
|
||||
generator,
|
||||
num_inference_steps,
|
||||
dtype,
|
||||
):
|
||||
latents = torch.randn(
|
||||
(
|
||||
batch_size,
|
||||
4,
|
||||
height // 8,
|
||||
width // 8,
|
||||
),
|
||||
generator=generator,
|
||||
dtype=torch.float32,
|
||||
).to(dtype)
|
||||
|
||||
self.scheduler.set_timesteps(num_inference_steps)
|
||||
self.scheduler.is_scale_input_called = True
|
||||
latents = latents * self.scheduler.init_noise_sigma
|
||||
return latents
|
||||
|
||||
def _get_add_time_ids(
|
||||
self, original_size, crops_coords_top_left, target_size, dtype
|
||||
):
|
||||
add_time_ids = list(
|
||||
original_size + crops_coords_top_left + target_size
|
||||
)
|
||||
|
||||
# self.unet.config.addition_time_embed_dim IS 256.
|
||||
# self.text_encoder_2.config.projection_dim IS 1280.
|
||||
passed_add_embed_dim = 256 * len(add_time_ids) + 1280
|
||||
expected_add_embed_dim = 2816
|
||||
# self.unet.add_embedding.linear_1.in_features IS 2816.
|
||||
|
||||
if expected_add_embed_dim != passed_add_embed_dim:
|
||||
raise ValueError(
|
||||
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
||||
)
|
||||
|
||||
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
||||
return add_time_ids
|
||||
|
||||
def generate_images(
|
||||
self,
|
||||
prompts,
|
||||
neg_prompts,
|
||||
batch_size,
|
||||
height,
|
||||
width,
|
||||
num_inference_steps,
|
||||
guidance_scale,
|
||||
seed,
|
||||
max_length,
|
||||
dtype,
|
||||
use_base_vae,
|
||||
cpu_scheduling,
|
||||
max_embeddings_multiples,
|
||||
):
|
||||
# prompts and negative prompts must be a list.
|
||||
if isinstance(prompts, str):
|
||||
prompts = [prompts]
|
||||
|
||||
if isinstance(neg_prompts, str):
|
||||
neg_prompts = [neg_prompts]
|
||||
|
||||
prompts = prompts * batch_size
|
||||
neg_prompts = neg_prompts * batch_size
|
||||
|
||||
# seed generator to create the inital latent noise. Also handle out of range seeds.
|
||||
# TODO: Wouldn't it be preferable to just report an error instead of modifying the seed on the fly?
|
||||
uint32_info = np.iinfo(np.uint32)
|
||||
uint32_min, uint32_max = uint32_info.min, uint32_info.max
|
||||
if seed < uint32_min or seed >= uint32_max:
|
||||
seed = randint(uint32_min, uint32_max)
|
||||
generator = torch.manual_seed(seed)
|
||||
|
||||
# Get initial latents.
|
||||
init_latents = self.prepare_latents(
|
||||
batch_size=batch_size,
|
||||
height=height,
|
||||
width=width,
|
||||
generator=generator,
|
||||
num_inference_steps=num_inference_steps,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
# Get text embeddings.
|
||||
(
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
pooled_prompt_embeds,
|
||||
negative_pooled_prompt_embeds,
|
||||
) = self.encode_prompt_sdxl(
|
||||
prompt=prompts,
|
||||
num_images_per_prompt=1,
|
||||
do_classifier_free_guidance=True,
|
||||
negative_prompt=neg_prompts,
|
||||
)
|
||||
|
||||
# Prepare timesteps.
|
||||
self.scheduler.set_timesteps(num_inference_steps)
|
||||
|
||||
timesteps = self.scheduler.timesteps
|
||||
|
||||
# Prepare added time ids & embeddings.
|
||||
original_size = (height, width)
|
||||
target_size = (height, width)
|
||||
crops_coords_top_left = (0, 0)
|
||||
add_text_embeds = pooled_prompt_embeds
|
||||
add_time_ids = self._get_add_time_ids(
|
||||
original_size,
|
||||
crops_coords_top_left,
|
||||
target_size,
|
||||
dtype=prompt_embeds.dtype,
|
||||
)
|
||||
|
||||
prompt_embeds = torch.cat(
|
||||
[negative_prompt_embeds, prompt_embeds], dim=0
|
||||
)
|
||||
add_text_embeds = torch.cat(
|
||||
[negative_pooled_prompt_embeds, add_text_embeds], dim=0
|
||||
)
|
||||
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
||||
|
||||
prompt_embeds = prompt_embeds
|
||||
add_text_embeds = add_text_embeds.to(dtype)
|
||||
add_time_ids = add_time_ids.repeat(batch_size * 1, 1)
|
||||
|
||||
# guidance scale as a float32 tensor.
|
||||
guidance_scale = torch.tensor(guidance_scale).to(dtype)
|
||||
prompt_embeds = prompt_embeds.to(dtype)
|
||||
add_time_ids = add_time_ids.to(dtype)
|
||||
|
||||
# Get Image latents.
|
||||
latents = self.produce_img_latents_sdxl(
|
||||
init_latents,
|
||||
timesteps,
|
||||
add_text_embeds,
|
||||
add_time_ids,
|
||||
prompt_embeds,
|
||||
cpu_scheduling,
|
||||
guidance_scale,
|
||||
dtype,
|
||||
)
|
||||
|
||||
# Img latents -> PIL images.
|
||||
all_imgs = []
|
||||
self.load_vae()
|
||||
for i in range(0, latents.shape[0], batch_size):
|
||||
imgs = self.decode_latents_sdxl(
|
||||
latents[i : i + batch_size], is_fp32_vae=self.is_fp32_vae
|
||||
)
|
||||
all_imgs.extend(imgs)
|
||||
if self.ondemand:
|
||||
self.unload_vae()
|
||||
|
||||
return all_imgs
|
||||
@@ -20,7 +20,10 @@ from diffusers import (
|
||||
HeunDiscreteScheduler,
|
||||
)
|
||||
from shark.shark_inference import SharkInference
|
||||
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
|
||||
from apps.stable_diffusion.src.schedulers import (
|
||||
SharkEulerDiscreteScheduler,
|
||||
SharkEulerAncestralDiscreteScheduler,
|
||||
)
|
||||
from apps.stable_diffusion.src.models import (
|
||||
SharkifyStableDiffusionModel,
|
||||
get_vae,
|
||||
@@ -33,6 +36,8 @@ from apps.stable_diffusion.src.utils import (
|
||||
end_profiling,
|
||||
)
|
||||
import sys
|
||||
import gc
|
||||
from typing import List, Optional
|
||||
|
||||
SD_STATE_IDLE = "idle"
|
||||
SD_STATE_CANCEL = "cancel"
|
||||
@@ -50,6 +55,7 @@ class StableDiffusionPipeline:
|
||||
EulerAncestralDiscreteScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
SharkEulerDiscreteScheduler,
|
||||
SharkEulerAncestralDiscreteScheduler,
|
||||
DEISMultistepScheduler,
|
||||
DDPMScheduler,
|
||||
DPMSolverSinglestepScheduler,
|
||||
@@ -60,20 +66,23 @@ class StableDiffusionPipeline:
|
||||
import_mlir: bool,
|
||||
use_lora: str,
|
||||
ondemand: bool,
|
||||
is_f32_vae: bool = False,
|
||||
):
|
||||
self.vae = None
|
||||
self.text_encoder = None
|
||||
self.text_encoder_2 = None
|
||||
self.unet = None
|
||||
self.unet_512 = None
|
||||
self.model_max_length = 77
|
||||
self.scheduler = scheduler
|
||||
# TODO: Implement using logging python utility.
|
||||
self.log = ""
|
||||
self.status = SD_STATE_IDLE
|
||||
self.sd_model = sd_model
|
||||
self.scheduler = scheduler
|
||||
self.import_mlir = import_mlir
|
||||
self.use_lora = use_lora
|
||||
self.ondemand = ondemand
|
||||
self.is_f32_vae = is_f32_vae
|
||||
# TODO: Find a better workaround for fetching base_model_id early
|
||||
# enough for CLIPTokenizer.
|
||||
try:
|
||||
@@ -106,6 +115,34 @@ class StableDiffusionPipeline:
|
||||
del self.text_encoder
|
||||
self.text_encoder = None
|
||||
|
||||
def load_clip_sdxl(self):
|
||||
if self.text_encoder and self.text_encoder_2:
|
||||
return
|
||||
|
||||
if self.import_mlir or self.use_lora:
|
||||
if not self.import_mlir:
|
||||
print(
|
||||
"Warning: LoRA provided but import_mlir not specified. "
|
||||
"Importing MLIR anyways."
|
||||
)
|
||||
self.text_encoder, self.text_encoder_2 = self.sd_model.sdxl_clip()
|
||||
else:
|
||||
try:
|
||||
# TODO: Fix this for SDXL
|
||||
self.text_encoder = get_clip()
|
||||
except Exception as e:
|
||||
print(e)
|
||||
print("download pipeline failed, falling back to import_mlir")
|
||||
(
|
||||
self.text_encoder,
|
||||
self.text_encoder_2,
|
||||
) = self.sd_model.sdxl_clip()
|
||||
|
||||
def unload_clip_sdxl(self):
|
||||
del self.text_encoder, self.text_encoder_2
|
||||
self.text_encoder = None
|
||||
self.text_encoder_2 = None
|
||||
|
||||
def load_unet(self):
|
||||
if self.unet is not None:
|
||||
return
|
||||
@@ -159,6 +196,182 @@ class StableDiffusionPipeline:
|
||||
def unload_vae(self):
|
||||
del self.vae
|
||||
self.vae = None
|
||||
gc.collect()
|
||||
|
||||
def encode_prompt_sdxl(
|
||||
self,
|
||||
prompt: str,
|
||||
num_images_per_prompt: int = 1,
|
||||
do_classifier_free_guidance: bool = True,
|
||||
negative_prompt: Optional[str] = None,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
hf_model_id: Optional[
|
||||
str
|
||||
] = "stabilityai/stable-diffusion-xl-base-1.0",
|
||||
):
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
# Define tokenizers and text encoders
|
||||
self.tokenizer_2 = get_tokenizer("tokenizer_2", hf_model_id)
|
||||
self.load_clip_sdxl()
|
||||
tokenizers = (
|
||||
[self.tokenizer, self.tokenizer_2]
|
||||
if self.tokenizer is not None
|
||||
else [self.tokenizer_2]
|
||||
)
|
||||
text_encoders = (
|
||||
[self.text_encoder, self.text_encoder_2]
|
||||
if self.text_encoder is not None
|
||||
else [self.text_encoder_2]
|
||||
)
|
||||
|
||||
# textual inversion: procecss multi-vector tokens if necessary
|
||||
prompt_embeds_list = []
|
||||
prompts = [prompt, prompt]
|
||||
for prompt, tokenizer, text_encoder in zip(
|
||||
prompts, tokenizers, text_encoders
|
||||
):
|
||||
text_inputs = tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=tokenizer.model_max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
text_input_ids = text_inputs.input_ids
|
||||
untruncated_ids = tokenizer(
|
||||
prompt, padding="longest", return_tensors="pt"
|
||||
).input_ids
|
||||
|
||||
if untruncated_ids.shape[-1] >= text_input_ids.shape[
|
||||
-1
|
||||
] and not torch.equal(text_input_ids, untruncated_ids):
|
||||
removed_text = tokenizer.batch_decode(
|
||||
untruncated_ids[:, tokenizer.model_max_length - 1 : -1]
|
||||
)
|
||||
print(
|
||||
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
||||
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
||||
)
|
||||
|
||||
text_encoder_output = text_encoder("forward", (text_input_ids,))
|
||||
prompt_embeds = torch.from_numpy(text_encoder_output[0])
|
||||
pooled_prompt_embeds = torch.from_numpy(text_encoder_output[1])
|
||||
|
||||
prompt_embeds_list.append(prompt_embeds)
|
||||
|
||||
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
||||
|
||||
# get unconditional embeddings for classifier free guidance
|
||||
zero_out_negative_prompt = (
|
||||
negative_prompt is None
|
||||
and self.config.force_zeros_for_empty_prompt
|
||||
)
|
||||
if (
|
||||
do_classifier_free_guidance
|
||||
and negative_prompt_embeds is None
|
||||
and zero_out_negative_prompt
|
||||
):
|
||||
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
||||
negative_pooled_prompt_embeds = torch.zeros_like(
|
||||
pooled_prompt_embeds
|
||||
)
|
||||
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
||||
negative_prompt = negative_prompt or ""
|
||||
negative_prompt_2 = negative_prompt
|
||||
|
||||
uncond_tokens: List[str]
|
||||
if prompt is not None and type(prompt) is not type(
|
||||
negative_prompt
|
||||
):
|
||||
raise TypeError(
|
||||
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
||||
f" {type(prompt)}."
|
||||
)
|
||||
elif isinstance(negative_prompt, str):
|
||||
uncond_tokens = [negative_prompt, negative_prompt_2]
|
||||
elif batch_size != len(negative_prompt):
|
||||
raise ValueError(
|
||||
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
||||
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
||||
" the batch size of `prompt`."
|
||||
)
|
||||
else:
|
||||
uncond_tokens = [negative_prompt, negative_prompt_2]
|
||||
|
||||
negative_prompt_embeds_list = []
|
||||
for negative_prompt, tokenizer, text_encoder in zip(
|
||||
uncond_tokens, tokenizers, text_encoders
|
||||
):
|
||||
max_length = prompt_embeds.shape[1]
|
||||
uncond_input = tokenizer(
|
||||
negative_prompt,
|
||||
padding="max_length",
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_encoder_output = text_encoder(
|
||||
"forward", (uncond_input.input_ids,)
|
||||
)
|
||||
negative_prompt_embeds = torch.from_numpy(
|
||||
text_encoder_output[0]
|
||||
)
|
||||
negative_pooled_prompt_embeds = torch.from_numpy(
|
||||
text_encoder_output[1]
|
||||
)
|
||||
|
||||
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
||||
|
||||
negative_prompt_embeds = torch.concat(
|
||||
negative_prompt_embeds_list, dim=-1
|
||||
)
|
||||
|
||||
if self.ondemand:
|
||||
self.unload_clip_sdxl()
|
||||
gc.collect()
|
||||
|
||||
# TODO: Look into dtype for text_encoder_2!
|
||||
prompt_embeds = prompt_embeds.to(dtype=torch.float16)
|
||||
bs_embed, seq_len, _ = prompt_embeds.shape
|
||||
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
||||
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||
prompt_embeds = prompt_embeds.view(
|
||||
bs_embed * num_images_per_prompt, seq_len, -1
|
||||
)
|
||||
|
||||
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
||||
seq_len = negative_prompt_embeds.shape[1]
|
||||
negative_prompt_embeds = negative_prompt_embeds.to(dtype=torch.float32)
|
||||
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
||||
1, num_images_per_prompt, 1
|
||||
)
|
||||
negative_prompt_embeds = negative_prompt_embeds.view(
|
||||
batch_size * num_images_per_prompt, seq_len, -1
|
||||
)
|
||||
|
||||
pooled_prompt_embeds = pooled_prompt_embeds.repeat(
|
||||
1, num_images_per_prompt
|
||||
).view(bs_embed * num_images_per_prompt, -1)
|
||||
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(
|
||||
1, num_images_per_prompt
|
||||
).view(bs_embed * num_images_per_prompt, -1)
|
||||
|
||||
return (
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
pooled_prompt_embeds,
|
||||
negative_pooled_prompt_embeds,
|
||||
)
|
||||
|
||||
def encode_prompts(self, prompts, neg_prompts, max_length):
|
||||
# Tokenize text and get embeddings
|
||||
@@ -186,6 +399,7 @@ class StableDiffusionPipeline:
|
||||
clip_inf_time = (time.time() - clip_inf_start) * 1000
|
||||
if self.ondemand:
|
||||
self.unload_clip()
|
||||
gc.collect()
|
||||
self.log += f"\nClip Inference time (ms) = {clip_inf_time:.3f}"
|
||||
|
||||
return text_embeddings
|
||||
@@ -298,6 +512,8 @@ class StableDiffusionPipeline:
|
||||
if self.ondemand:
|
||||
self.unload_unet()
|
||||
self.unload_unet_512()
|
||||
gc.collect()
|
||||
|
||||
avg_step_time = step_time_sum / len(total_timesteps)
|
||||
self.log += f"\nAverage step time: {avg_step_time}ms/it"
|
||||
|
||||
@@ -306,6 +522,96 @@ class StableDiffusionPipeline:
|
||||
all_latents = torch.cat(latent_history, dim=0)
|
||||
return all_latents
|
||||
|
||||
def produce_img_latents_sdxl(
|
||||
self,
|
||||
latents,
|
||||
total_timesteps,
|
||||
add_text_embeds,
|
||||
add_time_ids,
|
||||
prompt_embeds,
|
||||
cpu_scheduling,
|
||||
guidance_scale,
|
||||
dtype,
|
||||
mask=None,
|
||||
masked_image_latents=None,
|
||||
return_all_latents=False,
|
||||
):
|
||||
# return None
|
||||
self.status = SD_STATE_IDLE
|
||||
step_time_sum = 0
|
||||
extra_step_kwargs = {"generator": None}
|
||||
self.load_unet()
|
||||
for i, t in tqdm(enumerate(total_timesteps)):
|
||||
step_start_time = time.time()
|
||||
timestep = torch.tensor([t]).to(dtype).detach().numpy()
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
if isinstance(latents, np.ndarray):
|
||||
latents = torch.tensor(latents)
|
||||
latent_model_input = torch.cat([latents] * 2)
|
||||
|
||||
latent_model_input = self.scheduler.scale_model_input(
|
||||
latent_model_input, t
|
||||
)
|
||||
if mask is not None and masked_image_latents is not None:
|
||||
latent_model_input = torch.cat(
|
||||
[
|
||||
torch.from_numpy(np.asarray(latent_model_input)),
|
||||
mask,
|
||||
masked_image_latents,
|
||||
],
|
||||
dim=1,
|
||||
).to(dtype)
|
||||
|
||||
noise_pred = self.unet(
|
||||
"forward",
|
||||
(
|
||||
latent_model_input,
|
||||
timestep,
|
||||
prompt_embeds,
|
||||
add_text_embeds,
|
||||
add_time_ids,
|
||||
guidance_scale,
|
||||
),
|
||||
send_to_host=True,
|
||||
)
|
||||
if not isinstance(latents, torch.Tensor):
|
||||
latents = torch.from_numpy(latents).to("cpu")
|
||||
noise_pred = torch.from_numpy(noise_pred).to("cpu")
|
||||
|
||||
latents = self.scheduler.step(
|
||||
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
||||
)[0]
|
||||
latents = latents.detach().numpy()
|
||||
noise_pred = noise_pred.detach().numpy()
|
||||
|
||||
step_time = (time.time() - step_start_time) * 1000
|
||||
step_time_sum += step_time
|
||||
|
||||
if self.status == SD_STATE_CANCEL:
|
||||
break
|
||||
if self.ondemand:
|
||||
self.unload_unet()
|
||||
gc.collect()
|
||||
|
||||
avg_step_time = step_time_sum / len(total_timesteps)
|
||||
self.log += f"\nAverage step time: {avg_step_time}ms/it"
|
||||
|
||||
return latents
|
||||
|
||||
def decode_latents_sdxl(self, latents, is_fp32_vae):
|
||||
# latents are in unet dtype here so switch if we want to use fp32
|
||||
if is_fp32_vae:
|
||||
print("Casting latents to float32 for VAE")
|
||||
latents = latents.to(torch.float32)
|
||||
images = self.vae("forward", (latents,))
|
||||
images = (torch.from_numpy(images) / 2 + 0.5).clamp(0, 1)
|
||||
images = images.cpu().permute(0, 2, 3, 1).float().numpy()
|
||||
|
||||
images = (images * 255).round().astype("uint8")
|
||||
pil_images = [Image.fromarray(image[:, :, :3]) for image in images]
|
||||
|
||||
return pil_images
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(
|
||||
cls,
|
||||
@@ -338,7 +644,8 @@ class StableDiffusionPipeline:
|
||||
ondemand: bool,
|
||||
low_cpu_mem_usage: bool = False,
|
||||
debug: bool = False,
|
||||
use_stencil: str = None,
|
||||
stencils: list[str] = [],
|
||||
# stencil_images: list[Image] = []
|
||||
use_lora: str = "",
|
||||
ddpm_scheduler: DDPMScheduler = None,
|
||||
use_quantize=None,
|
||||
@@ -355,6 +662,7 @@ class StableDiffusionPipeline:
|
||||
"OutpaintPipeline",
|
||||
]
|
||||
is_upscaler = cls.__name__ in ["UpscalerPipeline"]
|
||||
is_sdxl = cls.__name__ in ["Text2ImageSDXLPipeline"]
|
||||
|
||||
sd_model = SharkifyStableDiffusionModel(
|
||||
model_id,
|
||||
@@ -371,7 +679,8 @@ class StableDiffusionPipeline:
|
||||
debug=debug,
|
||||
is_inpaint=is_inpaint,
|
||||
is_upscaler=is_upscaler,
|
||||
use_stencil=use_stencil,
|
||||
is_sdxl=is_sdxl,
|
||||
stencils=stencils,
|
||||
use_lora=use_lora,
|
||||
use_quantize=use_quantize,
|
||||
)
|
||||
@@ -386,6 +695,21 @@ class StableDiffusionPipeline:
|
||||
ondemand,
|
||||
)
|
||||
|
||||
if cls.__name__ == "StencilPipeline":
|
||||
return cls(
|
||||
scheduler, sd_model, import_mlir, use_lora, ondemand, stencils
|
||||
)
|
||||
if cls.__name__ == "Text2ImageSDXLPipeline":
|
||||
is_fp32_vae = True if "16" not in custom_vae else False
|
||||
return cls(
|
||||
scheduler,
|
||||
sd_model,
|
||||
import_mlir,
|
||||
use_lora,
|
||||
ondemand,
|
||||
is_fp32_vae,
|
||||
)
|
||||
|
||||
return cls(scheduler, sd_model, import_mlir, use_lora, ondemand)
|
||||
|
||||
# #####################################################
|
||||
@@ -498,9 +822,10 @@ class StableDiffusionPipeline:
|
||||
clip_inf_time = (time.time() - clip_inf_start) * 1000
|
||||
if self.ondemand:
|
||||
self.unload_clip()
|
||||
gc.collect()
|
||||
self.log += f"\nClip Inference time (ms) = {clip_inf_time:.3f}"
|
||||
|
||||
return text_embeddings.numpy()
|
||||
return text_embeddings.numpy().astype(np.float16)
|
||||
|
||||
|
||||
from typing import List, Optional, Union
|
||||
|
||||
@@ -1,4 +1,7 @@
|
||||
from apps.stable_diffusion.src.schedulers.sd_schedulers import get_schedulers
|
||||
from apps.stable_diffusion.src.schedulers.shark_eulerdiscrete import (
|
||||
SharkEulerDiscreteScheduler,
|
||||
)
|
||||
from apps.stable_diffusion.src.schedulers.shark_eulerancestraldiscrete import (
|
||||
SharkEulerAncestralDiscreteScheduler,
|
||||
)
|
||||
from apps.stable_diffusion.src.schedulers.sd_schedulers import get_schedulers
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
from diffusers import (
|
||||
LCMScheduler,
|
||||
LMSDiscreteScheduler,
|
||||
PNDMScheduler,
|
||||
DDPMScheduler,
|
||||
@@ -15,9 +16,21 @@ from diffusers import (
|
||||
from apps.stable_diffusion.src.schedulers.shark_eulerdiscrete import (
|
||||
SharkEulerDiscreteScheduler,
|
||||
)
|
||||
from apps.stable_diffusion.src.schedulers.shark_eulerancestraldiscrete import (
|
||||
SharkEulerAncestralDiscreteScheduler,
|
||||
)
|
||||
|
||||
|
||||
def get_schedulers(model_id):
|
||||
# TODO: Robust scheduler setup on pipeline creation -- if we don't
|
||||
# set batch_size here, the SHARK schedulers will
|
||||
# compile with batch size = 1 regardless of whether the model
|
||||
# outputs latents of a larger batch size, e.g. SDXL.
|
||||
# However, obviously, searching for whether the base model ID
|
||||
# contains "xl" is not very robust.
|
||||
|
||||
batch_size = 2 if "xl" in model_id.lower() else 1
|
||||
|
||||
schedulers = dict()
|
||||
schedulers["PNDM"] = PNDMScheduler.from_pretrained(
|
||||
model_id,
|
||||
@@ -39,6 +52,10 @@ def get_schedulers(model_id):
|
||||
model_id,
|
||||
subfolder="scheduler",
|
||||
)
|
||||
schedulers["LCMScheduler"] = LCMScheduler.from_pretrained(
|
||||
model_id,
|
||||
subfolder="scheduler",
|
||||
)
|
||||
schedulers[
|
||||
"DPMSolverMultistep"
|
||||
] = DPMSolverMultistepScheduler.from_pretrained(
|
||||
@@ -84,6 +101,12 @@ def get_schedulers(model_id):
|
||||
model_id,
|
||||
subfolder="scheduler",
|
||||
)
|
||||
schedulers[
|
||||
"SharkEulerAncestralDiscrete"
|
||||
] = SharkEulerAncestralDiscreteScheduler.from_pretrained(
|
||||
model_id,
|
||||
subfolder="scheduler",
|
||||
)
|
||||
schedulers[
|
||||
"DPMSolverSinglestep"
|
||||
] = DPMSolverSinglestepScheduler.from_pretrained(
|
||||
@@ -100,5 +123,6 @@ def get_schedulers(model_id):
|
||||
model_id,
|
||||
subfolder="scheduler",
|
||||
)
|
||||
schedulers["SharkEulerDiscrete"].compile()
|
||||
schedulers["SharkEulerDiscrete"].compile(batch_size)
|
||||
schedulers["SharkEulerAncestralDiscrete"].compile(batch_size)
|
||||
return schedulers
|
||||
|
||||
@@ -0,0 +1,251 @@
|
||||
import sys
|
||||
import numpy as np
|
||||
from typing import List, Optional, Tuple, Union
|
||||
from diffusers import (
|
||||
EulerAncestralDiscreteScheduler,
|
||||
)
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
from diffusers.configuration_utils import register_to_config
|
||||
from apps.stable_diffusion.src.utils import (
|
||||
compile_through_fx,
|
||||
get_shark_model,
|
||||
args,
|
||||
)
|
||||
import torch
|
||||
|
||||
|
||||
class SharkEulerAncestralDiscreteScheduler(EulerAncestralDiscreteScheduler):
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
num_train_timesteps: int = 1000,
|
||||
beta_start: float = 0.0001,
|
||||
beta_end: float = 0.02,
|
||||
beta_schedule: str = "linear",
|
||||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||||
prediction_type: str = "epsilon",
|
||||
timestep_spacing: str = "linspace",
|
||||
steps_offset: int = 0,
|
||||
):
|
||||
super().__init__(
|
||||
num_train_timesteps,
|
||||
beta_start,
|
||||
beta_end,
|
||||
beta_schedule,
|
||||
trained_betas,
|
||||
prediction_type,
|
||||
timestep_spacing,
|
||||
steps_offset,
|
||||
)
|
||||
# TODO: make it dynamic so we dont have to worry about batch size
|
||||
self.batch_size = None
|
||||
self.init_input_shape = None
|
||||
|
||||
def compile(self, batch_size=1):
|
||||
SCHEDULER_BUCKET = "gs://shark_tank/stable_diffusion/schedulers"
|
||||
device = args.device.split(":", 1)[0].strip()
|
||||
self.batch_size = batch_size
|
||||
|
||||
model_input = {
|
||||
"eulera": {
|
||||
"output": torch.randn(
|
||||
batch_size, 4, args.height // 8, args.width // 8
|
||||
),
|
||||
"latent": torch.randn(
|
||||
batch_size, 4, args.height // 8, args.width // 8
|
||||
),
|
||||
"sigma": torch.tensor(1).to(torch.float32),
|
||||
"sigma_from": torch.tensor(1).to(torch.float32),
|
||||
"sigma_to": torch.tensor(1).to(torch.float32),
|
||||
"noise": torch.randn(
|
||||
batch_size, 4, args.height // 8, args.width // 8
|
||||
),
|
||||
},
|
||||
}
|
||||
|
||||
example_latent = model_input["eulera"]["latent"]
|
||||
example_output = model_input["eulera"]["output"]
|
||||
example_noise = model_input["eulera"]["noise"]
|
||||
if args.precision == "fp16":
|
||||
example_latent = example_latent.half()
|
||||
example_output = example_output.half()
|
||||
example_noise = example_noise.half()
|
||||
example_sigma = model_input["eulera"]["sigma"]
|
||||
example_sigma_from = model_input["eulera"]["sigma_from"]
|
||||
example_sigma_to = model_input["eulera"]["sigma_to"]
|
||||
|
||||
class ScalingModel(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, latent, sigma):
|
||||
return latent / ((sigma**2 + 1) ** 0.5)
|
||||
|
||||
class SchedulerStepEpsilonModel(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(
|
||||
self, noise_pred, latent, sigma, sigma_from, sigma_to, noise
|
||||
):
|
||||
sigma_up = (
|
||||
sigma_to**2
|
||||
* (sigma_from**2 - sigma_to**2)
|
||||
/ sigma_from**2
|
||||
) ** 0.5
|
||||
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
|
||||
dt = sigma_down - sigma
|
||||
pred_original_sample = latent - sigma * noise_pred
|
||||
derivative = (latent - pred_original_sample) / sigma
|
||||
prev_sample = latent + derivative * dt
|
||||
return prev_sample + noise * sigma_up
|
||||
|
||||
class SchedulerStepVPredictionModel(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(
|
||||
self, noise_pred, sigma, sigma_from, sigma_to, latent, noise
|
||||
):
|
||||
sigma_up = (
|
||||
sigma_to**2
|
||||
* (sigma_from**2 - sigma_to**2)
|
||||
/ sigma_from**2
|
||||
) ** 0.5
|
||||
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
|
||||
dt = sigma_down - sigma
|
||||
pred_original_sample = noise_pred * (
|
||||
-sigma / (sigma**2 + 1) ** 0.5
|
||||
) + (latent / (sigma**2 + 1))
|
||||
derivative = (latent - pred_original_sample) / sigma
|
||||
prev_sample = latent + derivative * dt
|
||||
return prev_sample + noise * sigma_up
|
||||
|
||||
iree_flags = []
|
||||
if len(args.iree_vulkan_target_triple) > 0:
|
||||
iree_flags.append(
|
||||
f"-iree-vulkan-target-triple={args.iree_vulkan_target_triple}"
|
||||
)
|
||||
|
||||
def _import(self):
|
||||
scaling_model = ScalingModel()
|
||||
self.scaling_model, _ = compile_through_fx(
|
||||
model=scaling_model,
|
||||
inputs=(example_latent, example_sigma),
|
||||
extended_model_name=f"euler_a_scale_model_input_{self.batch_size}_{args.height}_{args.width}_{device}_"
|
||||
+ args.precision,
|
||||
extra_args=iree_flags,
|
||||
)
|
||||
|
||||
pred_type_model_dict = {
|
||||
"epsilon": SchedulerStepEpsilonModel(),
|
||||
"v_prediction": SchedulerStepVPredictionModel(),
|
||||
}
|
||||
step_model = pred_type_model_dict[self.config.prediction_type]
|
||||
self.step_model, _ = compile_through_fx(
|
||||
step_model,
|
||||
(
|
||||
example_output,
|
||||
example_latent,
|
||||
example_sigma,
|
||||
example_sigma_from,
|
||||
example_sigma_to,
|
||||
example_noise,
|
||||
),
|
||||
extended_model_name=f"euler_a_step_{self.config.prediction_type}_{self.batch_size}_{args.height}_{args.width}_{device}_"
|
||||
+ args.precision,
|
||||
extra_args=iree_flags,
|
||||
)
|
||||
|
||||
if args.import_mlir:
|
||||
_import(self)
|
||||
|
||||
else:
|
||||
try:
|
||||
self.scaling_model = get_shark_model(
|
||||
SCHEDULER_BUCKET,
|
||||
"euler_a_scale_model_input_" + args.precision,
|
||||
iree_flags,
|
||||
)
|
||||
self.step_model = get_shark_model(
|
||||
SCHEDULER_BUCKET,
|
||||
"euler_a_step_"
|
||||
+ self.config.prediction_type
|
||||
+ args.precision,
|
||||
iree_flags,
|
||||
)
|
||||
except:
|
||||
print(
|
||||
"failed to download model, falling back and using import_mlir"
|
||||
)
|
||||
args.import_mlir = True
|
||||
_import(self)
|
||||
|
||||
def scale_model_input(self, sample, timestep):
|
||||
if self.step_index is None:
|
||||
self._init_step_index(timestep)
|
||||
sigma = self.sigmas[self.step_index]
|
||||
return self.scaling_model(
|
||||
"forward",
|
||||
(
|
||||
sample,
|
||||
sigma,
|
||||
),
|
||||
send_to_host=False,
|
||||
)
|
||||
|
||||
def step(
|
||||
self,
|
||||
noise_pred,
|
||||
timestep,
|
||||
latent,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
return_dict: Optional[bool] = False,
|
||||
):
|
||||
step_inputs = []
|
||||
|
||||
if self.step_index is None:
|
||||
self._init_step_index(timestep)
|
||||
|
||||
sigma = self.sigmas[self.step_index]
|
||||
|
||||
sigma_from = self.sigmas[self.step_index]
|
||||
sigma_to = self.sigmas[self.step_index + 1]
|
||||
noise = randn_tensor(
|
||||
torch.Size(noise_pred.shape),
|
||||
dtype=torch.float16,
|
||||
device="cpu",
|
||||
generator=generator,
|
||||
)
|
||||
step_inputs = [
|
||||
noise_pred,
|
||||
latent,
|
||||
sigma,
|
||||
sigma_from,
|
||||
sigma_to,
|
||||
noise,
|
||||
]
|
||||
# TODO: deal with dynamic inputs in turbine flow.
|
||||
# update step index since we're done with the variable and will return with compiled module output.
|
||||
self._step_index += 1
|
||||
|
||||
if noise_pred.shape[0] < self.batch_size:
|
||||
for i in [0, 1, 5]:
|
||||
try:
|
||||
step_inputs[i] = torch.tensor(step_inputs[i])
|
||||
except:
|
||||
step_inputs[i] = torch.tensor(step_inputs[i].to_host())
|
||||
step_inputs[i] = torch.cat(
|
||||
(step_inputs[i], step_inputs[i]), axis=0
|
||||
)
|
||||
return self.step_model(
|
||||
"forward",
|
||||
tuple(step_inputs),
|
||||
send_to_host=True,
|
||||
)
|
||||
|
||||
return self.step_model(
|
||||
"forward",
|
||||
tuple(step_inputs),
|
||||
send_to_host=False,
|
||||
)
|
||||
@@ -2,12 +2,9 @@ import sys
|
||||
import numpy as np
|
||||
from typing import List, Optional, Tuple, Union
|
||||
from diffusers import (
|
||||
LMSDiscreteScheduler,
|
||||
PNDMScheduler,
|
||||
DDIMScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
EulerDiscreteScheduler,
|
||||
)
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
from diffusers.configuration_utils import register_to_config
|
||||
from apps.stable_diffusion.src.utils import (
|
||||
compile_through_fx,
|
||||
@@ -27,6 +24,13 @@ class SharkEulerDiscreteScheduler(EulerDiscreteScheduler):
|
||||
beta_schedule: str = "linear",
|
||||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||||
prediction_type: str = "epsilon",
|
||||
interpolation_type: str = "linear",
|
||||
use_karras_sigmas: bool = False,
|
||||
sigma_min: Optional[float] = None,
|
||||
sigma_max: Optional[float] = None,
|
||||
timestep_spacing: str = "linspace",
|
||||
timestep_type: str = "discrete",
|
||||
steps_offset: int = 0,
|
||||
):
|
||||
super().__init__(
|
||||
num_train_timesteps,
|
||||
@@ -35,20 +39,29 @@ class SharkEulerDiscreteScheduler(EulerDiscreteScheduler):
|
||||
beta_schedule,
|
||||
trained_betas,
|
||||
prediction_type,
|
||||
interpolation_type,
|
||||
use_karras_sigmas,
|
||||
sigma_min,
|
||||
sigma_max,
|
||||
timestep_spacing,
|
||||
timestep_type,
|
||||
steps_offset,
|
||||
)
|
||||
# TODO: make it dynamic so we dont have to worry about batch size
|
||||
self.batch_size = 1
|
||||
|
||||
def compile(self):
|
||||
def compile(self, batch_size=1):
|
||||
SCHEDULER_BUCKET = "gs://shark_tank/stable_diffusion/schedulers"
|
||||
BATCH_SIZE = args.batch_size
|
||||
device = args.device.split(":", 1)[0].strip()
|
||||
self.batch_size = batch_size
|
||||
|
||||
model_input = {
|
||||
"euler": {
|
||||
"latent": torch.randn(
|
||||
BATCH_SIZE, 4, args.height // 8, args.width // 8
|
||||
batch_size, 4, args.height // 8, args.width // 8
|
||||
),
|
||||
"output": torch.randn(
|
||||
BATCH_SIZE, 4, args.height // 8, args.width // 8
|
||||
batch_size, 4, args.height // 8, args.width // 8
|
||||
),
|
||||
"sigma": torch.tensor(1).to(torch.float32),
|
||||
"dt": torch.tensor(1).to(torch.float32),
|
||||
@@ -70,12 +83,32 @@ class SharkEulerDiscreteScheduler(EulerDiscreteScheduler):
|
||||
def forward(self, latent, sigma):
|
||||
return latent / ((sigma**2 + 1) ** 0.5)
|
||||
|
||||
class SchedulerStepModel(torch.nn.Module):
|
||||
class SchedulerStepEpsilonModel(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, noise_pred, sigma_hat, latent, dt):
|
||||
pred_original_sample = latent - sigma_hat * noise_pred
|
||||
derivative = (latent - pred_original_sample) / sigma_hat
|
||||
return latent + derivative * dt
|
||||
|
||||
class SchedulerStepSampleModel(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, noise_pred, sigma_hat, latent, dt):
|
||||
pred_original_sample = noise_pred
|
||||
derivative = (latent - pred_original_sample) / sigma_hat
|
||||
return latent + derivative * dt
|
||||
|
||||
class SchedulerStepVPredictionModel(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, noise_pred, sigma, latent, dt):
|
||||
pred_original_sample = latent - sigma * noise_pred
|
||||
pred_original_sample = noise_pred * (
|
||||
-sigma / (sigma**2 + 1) ** 0.5
|
||||
) + (latent / (sigma**2 + 1))
|
||||
derivative = (latent - pred_original_sample) / sigma
|
||||
return latent + derivative * dt
|
||||
|
||||
@@ -90,16 +123,22 @@ class SharkEulerDiscreteScheduler(EulerDiscreteScheduler):
|
||||
self.scaling_model, _ = compile_through_fx(
|
||||
model=scaling_model,
|
||||
inputs=(example_latent, example_sigma),
|
||||
extended_model_name=f"euler_scale_model_input_{BATCH_SIZE}_{args.height}_{args.width}_{device}_"
|
||||
extended_model_name=f"euler_scale_model_input_{self.batch_size}_{args.height}_{args.width}_{device}_"
|
||||
+ args.precision,
|
||||
extra_args=iree_flags,
|
||||
)
|
||||
|
||||
step_model = SchedulerStepModel()
|
||||
pred_type_model_dict = {
|
||||
"epsilon": SchedulerStepEpsilonModel(),
|
||||
"v_prediction": SchedulerStepVPredictionModel(),
|
||||
"sample": SchedulerStepSampleModel(),
|
||||
"original_sample": SchedulerStepSampleModel(),
|
||||
}
|
||||
step_model = pred_type_model_dict[self.config.prediction_type]
|
||||
self.step_model, _ = compile_through_fx(
|
||||
step_model,
|
||||
(example_output, example_sigma, example_latent, example_dt),
|
||||
extended_model_name=f"euler_step_{BATCH_SIZE}_{args.height}_{args.width}_{device}_"
|
||||
extended_model_name=f"euler_step_{self.config.prediction_type}_{self.batch_size}_{args.height}_{args.width}_{device}_"
|
||||
+ args.precision,
|
||||
extra_args=iree_flags,
|
||||
)
|
||||
@@ -109,6 +148,11 @@ class SharkEulerDiscreteScheduler(EulerDiscreteScheduler):
|
||||
|
||||
else:
|
||||
try:
|
||||
step_model_type = (
|
||||
"sample"
|
||||
if "sample" in self.config.prediction_type
|
||||
else self.config.prediction_type
|
||||
)
|
||||
self.scaling_model = get_shark_model(
|
||||
SCHEDULER_BUCKET,
|
||||
"euler_scale_model_input_" + args.precision,
|
||||
@@ -116,7 +160,7 @@ class SharkEulerDiscreteScheduler(EulerDiscreteScheduler):
|
||||
)
|
||||
self.step_model = get_shark_model(
|
||||
SCHEDULER_BUCKET,
|
||||
"euler_step_" + args.precision,
|
||||
"euler_step_" + step_model_type + args.precision,
|
||||
iree_flags,
|
||||
)
|
||||
except:
|
||||
@@ -127,8 +171,9 @@ class SharkEulerDiscreteScheduler(EulerDiscreteScheduler):
|
||||
_import(self)
|
||||
|
||||
def scale_model_input(self, sample, timestep):
|
||||
step_index = (self.timesteps == timestep).nonzero().item()
|
||||
sigma = self.sigmas[step_index]
|
||||
if self.step_index is None:
|
||||
self._init_step_index(timestep)
|
||||
sigma = self.sigmas[self.step_index]
|
||||
return self.scaling_model(
|
||||
"forward",
|
||||
(
|
||||
@@ -138,15 +183,61 @@ class SharkEulerDiscreteScheduler(EulerDiscreteScheduler):
|
||||
send_to_host=False,
|
||||
)
|
||||
|
||||
def step(self, noise_pred, timestep, latent):
|
||||
step_index = (self.timesteps == timestep).nonzero().item()
|
||||
sigma = self.sigmas[step_index]
|
||||
dt = self.sigmas[step_index + 1] - sigma
|
||||
def step(
|
||||
self,
|
||||
noise_pred,
|
||||
timestep,
|
||||
latent,
|
||||
s_churn: float = 0.0,
|
||||
s_tmin: float = 0.0,
|
||||
s_tmax: float = float("inf"),
|
||||
s_noise: float = 1.0,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
return_dict: Optional[bool] = False,
|
||||
):
|
||||
if self.step_index is None:
|
||||
self._init_step_index(timestep)
|
||||
|
||||
sigma = self.sigmas[self.step_index]
|
||||
|
||||
gamma = (
|
||||
min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1)
|
||||
if s_tmin <= sigma <= s_tmax
|
||||
else 0.0
|
||||
)
|
||||
|
||||
sigma_hat = sigma * (gamma + 1)
|
||||
|
||||
noise_pred = (
|
||||
torch.from_numpy(noise_pred)
|
||||
if isinstance(noise_pred, np.ndarray)
|
||||
else noise_pred
|
||||
)
|
||||
|
||||
noise = randn_tensor(
|
||||
torch.Size(noise_pred.shape),
|
||||
dtype=torch.float16,
|
||||
device="cpu",
|
||||
generator=generator,
|
||||
)
|
||||
|
||||
eps = noise * s_noise
|
||||
|
||||
if gamma > 0:
|
||||
latent = latent + eps * (sigma_hat**2 - sigma**2) ** 0.5
|
||||
|
||||
if self.config.prediction_type == "v_prediction":
|
||||
sigma_hat = sigma
|
||||
|
||||
dt = self.sigmas[self.step_index + 1] - sigma_hat
|
||||
|
||||
self._step_index += 1
|
||||
|
||||
return self.step_model(
|
||||
"forward",
|
||||
(
|
||||
noise_pred,
|
||||
sigma,
|
||||
sigma_hat,
|
||||
latent,
|
||||
dt,
|
||||
),
|
||||
|
||||
@@ -8,6 +8,15 @@
|
||||
"dtype":"i64"
|
||||
}
|
||||
},
|
||||
"sdxl_clip": {
|
||||
"token" : {
|
||||
"shape" : [
|
||||
"1*batch_size",
|
||||
"max_len"
|
||||
],
|
||||
"dtype":"i64"
|
||||
}
|
||||
},
|
||||
"vae_encode": {
|
||||
"image" : {
|
||||
"shape" : [
|
||||
@@ -179,9 +188,95 @@
|
||||
"shape": [2],
|
||||
"dtype": "i64"
|
||||
}
|
||||
},
|
||||
"stabilityai/sdxl-turbo": {
|
||||
"latents": {
|
||||
"shape": [
|
||||
"2*batch_size",
|
||||
4,
|
||||
"height",
|
||||
"width"
|
||||
],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"timesteps": {
|
||||
"shape": [
|
||||
1
|
||||
],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"prompt_embeds": {
|
||||
"shape": [
|
||||
"2*batch_size",
|
||||
"max_len",
|
||||
2048
|
||||
],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"text_embeds": {
|
||||
"shape": [
|
||||
"2*batch_size",
|
||||
1280
|
||||
],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"time_ids": {
|
||||
"shape": [
|
||||
"2*batch_size",
|
||||
6
|
||||
],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"guidance_scale": {
|
||||
"shape": 1,
|
||||
"dtype": "f32"
|
||||
}
|
||||
},
|
||||
"stabilityai/stable-diffusion-xl-base-1.0": {
|
||||
"latents": {
|
||||
"shape": [
|
||||
"2*batch_size",
|
||||
4,
|
||||
"height",
|
||||
"width"
|
||||
],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"timesteps": {
|
||||
"shape": [
|
||||
1
|
||||
],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"prompt_embeds": {
|
||||
"shape": [
|
||||
"2*batch_size",
|
||||
"max_len",
|
||||
2048
|
||||
],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"text_embeds": {
|
||||
"shape": [
|
||||
"2*batch_size",
|
||||
1280
|
||||
],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"time_ids": {
|
||||
"shape": [
|
||||
"2*batch_size",
|
||||
6
|
||||
],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"guidance_scale": {
|
||||
"shape": 1,
|
||||
"dtype": "f32"
|
||||
}
|
||||
}
|
||||
},
|
||||
"stencil_adaptor": {
|
||||
"stencil_adapter": {
|
||||
"latents": {
|
||||
"shape": [
|
||||
"1*batch_size",
|
||||
@@ -208,6 +303,58 @@
|
||||
"controlnet_hint": {
|
||||
"shape": [1, 3, "8*height", "8*width"],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"acc1": {
|
||||
"shape": [2, 320, "height", "width"],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"acc2": {
|
||||
"shape": [2, 320, "height", "width"],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"acc3": {
|
||||
"shape": [2, 320, "height", "width"],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"acc4": {
|
||||
"shape": [2, 320, "height/2", "width/2"],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"acc5": {
|
||||
"shape": [2, 640, "height/2", "width/2"],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"acc6": {
|
||||
"shape": [2, 640, "height/2", "width/2"],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"acc7": {
|
||||
"shape": [2, 640, "height/4", "width/4"],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"acc8": {
|
||||
"shape": [2, 1280, "height/4", "width/4"],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"acc9": {
|
||||
"shape": [2, 1280, "height/4", "width/4"],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"acc10": {
|
||||
"shape": [2, 1280, "height/8", "width/8"],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"acc11": {
|
||||
"shape": [2, 1280, "height/8", "width/8"],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"acc12": {
|
||||
"shape": [2, 1280, "height/8", "width/8"],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"acc13": {
|
||||
"shape": [2, 1280, "height/8", "width/8"],
|
||||
"dtype": "f32"
|
||||
}
|
||||
},
|
||||
"stencil_unet": {
|
||||
@@ -290,7 +437,59 @@
|
||||
"control13": {
|
||||
"shape": [2, 1280, "height/8", "width/8"],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"scale1": {
|
||||
"shape": 1,
|
||||
"dtype": "f32"
|
||||
},
|
||||
"scale2": {
|
||||
"shape": 1,
|
||||
"dtype": "f32"
|
||||
},
|
||||
"scale3": {
|
||||
"shape": 1,
|
||||
"dtype": "f32"
|
||||
},
|
||||
"scale4": {
|
||||
"shape": 1,
|
||||
"dtype": "f32"
|
||||
},
|
||||
"scale5": {
|
||||
"shape": 1,
|
||||
"dtype": "f32"
|
||||
},
|
||||
"scale6": {
|
||||
"shape": 1,
|
||||
"dtype": "f32"
|
||||
},
|
||||
"scale7": {
|
||||
"shape": 1,
|
||||
"dtype": "f32"
|
||||
},
|
||||
"scale8": {
|
||||
"shape": 1,
|
||||
"dtype": "f32"
|
||||
},
|
||||
"scale9": {
|
||||
"shape": 1,
|
||||
"dtype": "f32"
|
||||
},
|
||||
"scale10": {
|
||||
"shape": 1,
|
||||
"dtype": "f32"
|
||||
},
|
||||
"scale11": {
|
||||
"shape": 1,
|
||||
"dtype": "f32"
|
||||
},
|
||||
"scale12": {
|
||||
"shape": 1,
|
||||
"dtype": "f32"
|
||||
},
|
||||
"scale13": {
|
||||
"shape": 1,
|
||||
"dtype": "f32"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
[["A high tech solarpunk utopia in the Amazon rainforest"],
|
||||
["Astrophotography, the shark nebula, nebula with a tiny shark-like cloud in the middle in the middle, hubble telescope, vivid colors"],
|
||||
["A pikachu fine dining with a view to the Eiffel Tower"],
|
||||
["A mecha robot in a favela in expressionist style"],
|
||||
["an insect robot preparing a delicious meal"],
|
||||
|
||||
@@ -85,7 +85,7 @@ p.add_argument(
|
||||
"--height",
|
||||
type=int,
|
||||
default=512,
|
||||
choices=range(128, 769, 8),
|
||||
choices=range(128, 1025, 8),
|
||||
help="The height of the output image.",
|
||||
)
|
||||
|
||||
@@ -93,7 +93,7 @@ p.add_argument(
|
||||
"--width",
|
||||
type=int,
|
||||
default=512,
|
||||
choices=range(128, 769, 8),
|
||||
choices=range(128, 1025, 8),
|
||||
help="The width of the output image.",
|
||||
)
|
||||
|
||||
@@ -420,6 +420,13 @@ p.add_argument(
|
||||
help="Enable the stencil feature.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--control_mode",
|
||||
choices=["Prompt", "Balanced", "Controlnet"],
|
||||
default="Balanced",
|
||||
help="How Controlnet injection should be prioritized.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--use_lora",
|
||||
type=str,
|
||||
@@ -460,6 +467,13 @@ p.add_argument(
|
||||
"Expected form: max_allocation_size;max_allocation_capacity;max_free_allocation_count"
|
||||
"Example: --device_allocator_heap_key='*;1gib' (will limit caching on device to 1 gigabyte)",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--autogen",
|
||||
type=bool,
|
||||
default="False",
|
||||
help="Only used for a gradio workaround.",
|
||||
)
|
||||
##############################################################################
|
||||
# IREE - Vulkan supported flags
|
||||
##############################################################################
|
||||
|
||||
@@ -79,10 +79,12 @@ def controlnet_hint_shaping(
|
||||
)
|
||||
return controlnet_hint
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Acceptble shape of `stencil` are any of ({channels}, {height}, {width}),"
|
||||
+ f" (1, {channels}, {height}, {width}) or ({num_images_per_prompt}, "
|
||||
+ f"{channels}, {height}, {width}) but is {controlnet_hint.shape}"
|
||||
return controlnet_hint_shaping(
|
||||
Image.fromarray(controlnet_hint.detach().numpy()),
|
||||
height,
|
||||
width,
|
||||
dtype,
|
||||
num_images_per_prompt,
|
||||
)
|
||||
elif isinstance(controlnet_hint, np.ndarray):
|
||||
# np.ndarray: acceptable shape is any of hw, hwc, bhwc(b==1) or bhwc(b==num_images_per_promot)
|
||||
@@ -109,29 +111,36 @@ def controlnet_hint_shaping(
|
||||
) # b h w c -> b c h w
|
||||
return controlnet_hint
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Acceptble shape of `stencil` are any of ({width}, {channels}), "
|
||||
+ f"({height}, {width}, {channels}), "
|
||||
+ f"(1, {height}, {width}, {channels}) or "
|
||||
+ f"({num_images_per_prompt}, {channels}, {height}, {width}) but is {controlnet_hint.shape}"
|
||||
)
|
||||
elif isinstance(controlnet_hint, Image.Image):
|
||||
if controlnet_hint.size == (width, height):
|
||||
controlnet_hint = controlnet_hint.convert(
|
||||
"RGB"
|
||||
) # make sure 3 channel RGB format
|
||||
controlnet_hint = np.array(controlnet_hint) # to numpy
|
||||
controlnet_hint = controlnet_hint[:, :, ::-1] # RGB -> BGR
|
||||
return controlnet_hint_shaping(
|
||||
controlnet_hint, height, width, num_images_per_prompt
|
||||
Image.fromarray(controlnet_hint),
|
||||
height,
|
||||
width,
|
||||
dtype,
|
||||
num_images_per_prompt,
|
||||
)
|
||||
|
||||
elif isinstance(controlnet_hint, Image.Image):
|
||||
controlnet_hint = controlnet_hint.convert(
|
||||
"RGB"
|
||||
) # make sure 3 channel RGB format
|
||||
if controlnet_hint.size == (width, height):
|
||||
controlnet_hint = np.array(controlnet_hint).astype(
|
||||
np.float16
|
||||
) # to numpy
|
||||
controlnet_hint = controlnet_hint[:, :, ::-1] # RGB -> BGR
|
||||
return
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Acceptable image size of `stencil` is ({width}, {height}) but is {controlnet_hint.size}"
|
||||
)
|
||||
(hint_w, hint_h) = controlnet_hint.size
|
||||
left = int((hint_w - width) / 2)
|
||||
right = left + height
|
||||
controlnet_hint = controlnet_hint.crop((left, 0, right, hint_h))
|
||||
controlnet_hint = controlnet_hint.resize((width, height))
|
||||
return controlnet_hint_shaping(
|
||||
controlnet_hint, height, width, dtype, num_images_per_prompt
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Acceptable type of `stencil` are any of torch.Tensor, np.ndarray, PIL.Image.Image but is {type(controlnet_hint)}"
|
||||
f"Acceptible controlnet input types are any of torch.Tensor, np.ndarray, PIL.Image.Image but is {type(controlnet_hint)}"
|
||||
)
|
||||
|
||||
|
||||
@@ -141,16 +150,22 @@ def controlnet_hint_conversion(
|
||||
controlnet_hint = None
|
||||
match use_stencil:
|
||||
case "canny":
|
||||
print("Detecting edge with canny")
|
||||
print(
|
||||
"Converting controlnet hint to edge detection mask with canny preprocessor."
|
||||
)
|
||||
controlnet_hint = hint_canny(image)
|
||||
case "openpose":
|
||||
print("Detecting human pose")
|
||||
print(
|
||||
"Detecting human pose in controlnet hint with openpose preprocessor."
|
||||
)
|
||||
controlnet_hint = hint_openpose(image)
|
||||
case "scribble":
|
||||
print("Working with scribble")
|
||||
print("Using your scribble as a controlnet hint.")
|
||||
controlnet_hint = hint_scribble(image)
|
||||
case "zoedepth":
|
||||
print("Working with ZoeDepth")
|
||||
print(
|
||||
"Converting controlnet hint to a depth mapping with ZoeDepth."
|
||||
)
|
||||
controlnet_hint = hint_zoedepth(image)
|
||||
case _:
|
||||
return None
|
||||
|
||||
@@ -30,9 +30,15 @@ class ZoeDetector:
|
||||
pretrained=False,
|
||||
force_reload=False,
|
||||
)
|
||||
model.load_state_dict(
|
||||
torch.load(modelpath, map_location=model.device)["model"]
|
||||
)
|
||||
|
||||
# Hack to fix the ZoeDepth import issue
|
||||
model_keys = model.state_dict().keys()
|
||||
loaded_dict = torch.load(modelpath, map_location=model.device)["model"]
|
||||
loaded_keys = loaded_dict.keys()
|
||||
for key in loaded_keys - model_keys:
|
||||
loaded_dict.pop(key)
|
||||
|
||||
model.load_state_dict(loaded_dict)
|
||||
model.eval()
|
||||
self.model = model
|
||||
|
||||
|
||||
@@ -565,9 +565,10 @@ def get_opt_flags(model, precision="fp16"):
|
||||
iree_flags += opt_flags[model][is_tuned][precision][
|
||||
"specified_compilation_flags"
|
||||
][device]
|
||||
# Due to lack of support for multi-reduce, we always collapse reduction
|
||||
# dims before dispatch formation right now.
|
||||
iree_flags += ["--iree-flow-collapse-reduction-dims"]
|
||||
if "vae" not in model:
|
||||
# Due to lack of support for multi-reduce, we always collapse reduction
|
||||
# dims before dispatch formation right now.
|
||||
iree_flags += ["--iree-flow-collapse-reduction-dims"]
|
||||
return iree_flags
|
||||
|
||||
|
||||
|
||||
@@ -19,6 +19,9 @@ a = Analysis(
|
||||
win_private_assemblies=False,
|
||||
cipher=block_cipher,
|
||||
noarchive=False,
|
||||
module_collection_mode={
|
||||
'gradio': 'py', # Collect gradio package as source .py files
|
||||
},
|
||||
)
|
||||
pyz = PYZ(a.pure, a.zipped_data, cipher=block_cipher)
|
||||
|
||||
|
||||
@@ -97,8 +97,6 @@ if __name__ == "__main__":
|
||||
)
|
||||
return os.path.join(base_path, relative_path)
|
||||
|
||||
dark_theme = resource_path("ui/css/sd_dark_theme.css")
|
||||
|
||||
from apps.stable_diffusion.web.ui import (
|
||||
txt2img_web,
|
||||
txt2img_custom_model,
|
||||
@@ -109,6 +107,16 @@ if __name__ == "__main__":
|
||||
txt2img_sendto_inpaint,
|
||||
txt2img_sendto_outpaint,
|
||||
txt2img_sendto_upscaler,
|
||||
# SDXL
|
||||
txt2img_sdxl_web,
|
||||
txt2img_sdxl_custom_model,
|
||||
txt2img_sdxl_gallery,
|
||||
txt2img_sdxl_png_info_img,
|
||||
txt2img_sdxl_status,
|
||||
txt2img_sdxl_sendto_img2img,
|
||||
txt2img_sdxl_sendto_inpaint,
|
||||
txt2img_sdxl_sendto_outpaint,
|
||||
txt2img_sdxl_sendto_upscaler,
|
||||
# h2ogpt_upload,
|
||||
# h2ogpt_web,
|
||||
img2img_web,
|
||||
@@ -145,7 +153,7 @@ if __name__ == "__main__":
|
||||
upscaler_sendto_outpaint,
|
||||
# lora_train_web,
|
||||
# model_web,
|
||||
# model_config_web,
|
||||
model_config_web,
|
||||
hf_models,
|
||||
modelmanager_sendto_txt2img,
|
||||
modelmanager_sendto_img2img,
|
||||
@@ -159,6 +167,7 @@ if __name__ == "__main__":
|
||||
outputgallery_watch,
|
||||
outputgallery_filename,
|
||||
outputgallery_sendto_txt2img,
|
||||
outputgallery_sendto_txt2img_sdxl,
|
||||
outputgallery_sendto_img2img,
|
||||
outputgallery_sendto_inpaint,
|
||||
outputgallery_sendto_outpaint,
|
||||
@@ -172,7 +181,7 @@ if __name__ == "__main__":
|
||||
button.click(
|
||||
lambda x: (
|
||||
x[0]["name"] if len(x) != 0 else None,
|
||||
gr.Tabs.update(selected=selectedid),
|
||||
gr.Tabs(selected=selectedid),
|
||||
),
|
||||
inputs,
|
||||
outputs,
|
||||
@@ -183,7 +192,7 @@ if __name__ == "__main__":
|
||||
lambda x: (
|
||||
"None",
|
||||
x,
|
||||
gr.Tabs.update(selected=selectedid),
|
||||
gr.Tabs(selected=selectedid),
|
||||
),
|
||||
inputs,
|
||||
outputs,
|
||||
@@ -193,12 +202,14 @@ if __name__ == "__main__":
|
||||
button.click(
|
||||
lambda x: (
|
||||
x,
|
||||
gr.Tabs.update(selected=selectedid),
|
||||
gr.Tabs(selected=selectedid),
|
||||
),
|
||||
inputs,
|
||||
outputs,
|
||||
)
|
||||
|
||||
dark_theme = resource_path("ui/css/sd_dark_theme.css")
|
||||
|
||||
with gr.Blocks(
|
||||
css=dark_theme, analytics_enabled=False, title="SHARK AI Studio"
|
||||
) as sd_web:
|
||||
@@ -235,6 +246,7 @@ if __name__ == "__main__":
|
||||
inpaint_status,
|
||||
outpaint_status,
|
||||
upscaler_status,
|
||||
txt2img_sdxl_status,
|
||||
]
|
||||
)
|
||||
# with gr.TabItem(label="Model Manager", id=6):
|
||||
@@ -243,16 +255,18 @@ if __name__ == "__main__":
|
||||
# lora_train_web.render()
|
||||
with gr.TabItem(label="Chat Bot", id=8):
|
||||
stablelm_chat.render()
|
||||
# with gr.TabItem(
|
||||
# label="Generate Sharding Config (Experimental)", id=9
|
||||
# ):
|
||||
# model_config_web.render()
|
||||
with gr.TabItem(label="MultiModal (Experimental)", id=10):
|
||||
minigpt4_web.render()
|
||||
# with gr.TabItem(
|
||||
# label="Generate Sharding Config (Experimental)", id=9
|
||||
# ):
|
||||
# model_config_web.render()
|
||||
# with gr.TabItem(label="MultiModal (Experimental)", id=10):
|
||||
# minigpt4_web.render()
|
||||
# with gr.TabItem(label="DocuChat Upload", id=11):
|
||||
# h2ogpt_upload.render()
|
||||
# with gr.TabItem(label="DocuChat(Experimental)", id=12):
|
||||
# h2ogpt_web.render()
|
||||
with gr.TabItem(label="Text-to-Image (SDXL)", id=13):
|
||||
txt2img_sdxl_web.render()
|
||||
|
||||
actual_port = app.usable_port()
|
||||
if actual_port != args.server_port:
|
||||
@@ -391,6 +405,12 @@ if __name__ == "__main__":
|
||||
[outputgallery_filename],
|
||||
[upscaler_init_image, tabs],
|
||||
)
|
||||
register_outputgallery_button(
|
||||
outputgallery_sendto_txt2img_sdxl,
|
||||
0,
|
||||
[outputgallery_filename],
|
||||
[txt2img_sdxl_png_info_img, tabs],
|
||||
)
|
||||
register_modelmanager_button(
|
||||
modelmanager_sendto_txt2img,
|
||||
0,
|
||||
|
||||
@@ -10,6 +10,18 @@ from apps.stable_diffusion.web.ui.txt2img_ui import (
|
||||
txt2img_sendto_outpaint,
|
||||
txt2img_sendto_upscaler,
|
||||
)
|
||||
from apps.stable_diffusion.web.ui.txt2img_sdxl_ui import (
|
||||
txt2img_sdxl_inf,
|
||||
txt2img_sdxl_web,
|
||||
txt2img_sdxl_custom_model,
|
||||
txt2img_sdxl_gallery,
|
||||
txt2img_sdxl_status,
|
||||
txt2img_sdxl_png_info_img,
|
||||
txt2img_sdxl_sendto_img2img,
|
||||
txt2img_sdxl_sendto_inpaint,
|
||||
txt2img_sdxl_sendto_outpaint,
|
||||
txt2img_sdxl_sendto_upscaler,
|
||||
)
|
||||
from apps.stable_diffusion.web.ui.img2img_ui import (
|
||||
img2img_inf,
|
||||
img2img_web,
|
||||
@@ -76,6 +88,7 @@ from apps.stable_diffusion.web.ui.outputgallery_ui import (
|
||||
outputgallery_watch,
|
||||
outputgallery_filename,
|
||||
outputgallery_sendto_txt2img,
|
||||
outputgallery_sendto_txt2img_sdxl,
|
||||
outputgallery_sendto_img2img,
|
||||
outputgallery_sendto_inpaint,
|
||||
outputgallery_sendto_outpaint,
|
||||
|
||||
@@ -129,10 +129,6 @@ body {
|
||||
padding: 0 var(--size-4) !important;
|
||||
}
|
||||
|
||||
#ui_title {
|
||||
padding: var(--size-2) 0 0 var(--size-1);
|
||||
}
|
||||
|
||||
#top_logo {
|
||||
color: transparent;
|
||||
background-color: transparent;
|
||||
@@ -140,6 +136,10 @@ body {
|
||||
border: 0;
|
||||
}
|
||||
|
||||
#ui_title {
|
||||
padding: var(--size-2) 0 0 var(--size-1);
|
||||
}
|
||||
|
||||
#demo_title_outer {
|
||||
border-radius: 0;
|
||||
}
|
||||
@@ -234,11 +234,6 @@ footer {
|
||||
display:none;
|
||||
}
|
||||
|
||||
/* Hide the download icon from the nod logo */
|
||||
#top_logo button {
|
||||
display: none;
|
||||
}
|
||||
|
||||
/* workarounds for container=false not currently working for dropdowns */
|
||||
.dropdown_no_container {
|
||||
padding: 0 !important;
|
||||
|
||||
@@ -6,6 +6,12 @@ import PIL
|
||||
from math import ceil
|
||||
from PIL import Image
|
||||
|
||||
from gradio.components.image_editor import (
|
||||
Brush,
|
||||
Eraser,
|
||||
EditorData,
|
||||
EditorValue,
|
||||
)
|
||||
from apps.stable_diffusion.web.ui.utils import (
|
||||
available_devices,
|
||||
nodlogo_loc,
|
||||
@@ -31,6 +37,11 @@ from apps.stable_diffusion.src.utils import (
|
||||
get_generation_text_info,
|
||||
resampler_list,
|
||||
)
|
||||
from apps.stable_diffusion.src.utils.stencils import (
|
||||
CannyDetector,
|
||||
OpenposeDetector,
|
||||
ZoeDetector,
|
||||
)
|
||||
from apps.stable_diffusion.web.utils.common_label_calc import status_label
|
||||
import numpy as np
|
||||
|
||||
@@ -60,7 +71,6 @@ def img2img_inf(
|
||||
precision: str,
|
||||
device: str,
|
||||
max_length: int,
|
||||
use_stencil: str,
|
||||
save_metadata_to_json: bool,
|
||||
save_metadata_to_png: bool,
|
||||
lora_weights: str,
|
||||
@@ -68,6 +78,9 @@ def img2img_inf(
|
||||
ondemand: bool,
|
||||
repeatable_seeds: bool,
|
||||
resample_type: str,
|
||||
control_mode: str,
|
||||
stencils: list,
|
||||
images: list,
|
||||
):
|
||||
from apps.stable_diffusion.web.ui.utils import (
|
||||
get_custom_model_pathfile,
|
||||
@@ -89,14 +102,23 @@ def img2img_inf(
|
||||
args.img_path = "not none"
|
||||
args.ondemand = ondemand
|
||||
|
||||
if image_dict is None:
|
||||
for i, stencil in enumerate(stencils):
|
||||
if images[i] is None and stencil is not None:
|
||||
return
|
||||
if images[i] is not None:
|
||||
if isinstance(images[i], dict):
|
||||
images[i] = images[i]["composite"]
|
||||
images[i] = images[i].convert("RGB")
|
||||
|
||||
if image_dict is None and images[0] is None:
|
||||
return None, "An Initial Image is required"
|
||||
if use_stencil == "scribble":
|
||||
image = image_dict["mask"].convert("RGB")
|
||||
elif isinstance(image_dict, PIL.Image.Image):
|
||||
if isinstance(image_dict, PIL.Image.Image):
|
||||
image = image_dict.convert("RGB")
|
||||
else:
|
||||
elif image_dict:
|
||||
image = image_dict["image"].convert("RGB")
|
||||
else:
|
||||
# TODO: enable t2i + controlnets
|
||||
image = None
|
||||
|
||||
# set ckpt_loc and hf_model_id.
|
||||
args.ckpt_loc = ""
|
||||
@@ -123,10 +145,11 @@ def img2img_inf(
|
||||
args.save_metadata_to_json = save_metadata_to_json
|
||||
args.write_metadata_to_png = save_metadata_to_png
|
||||
|
||||
use_stencil = None if use_stencil == "None" else use_stencil
|
||||
args.use_stencil = use_stencil
|
||||
if use_stencil is not None:
|
||||
args.scheduler = "DDIM"
|
||||
stencil_count = 0
|
||||
for stencil in stencils:
|
||||
if stencil is not None:
|
||||
stencil_count += 1
|
||||
if stencil_count > 0:
|
||||
args.hf_model_id = "runwayml/stable-diffusion-v1-5"
|
||||
image, width, height = resize_stencil(image)
|
||||
elif "Shark" in args.scheduler:
|
||||
@@ -150,7 +173,7 @@ def img2img_inf(
|
||||
width,
|
||||
device,
|
||||
use_lora=args.use_lora,
|
||||
use_stencil=use_stencil,
|
||||
stencils=stencils,
|
||||
ondemand=ondemand,
|
||||
)
|
||||
if (
|
||||
@@ -172,12 +195,12 @@ def img2img_inf(
|
||||
model_id = (
|
||||
args.hf_model_id
|
||||
if args.hf_model_id
|
||||
else "stabilityai/stable-diffusion-2-1-base"
|
||||
else "stabilityai/stable-diffusion-1-5-base"
|
||||
)
|
||||
global_obj.set_schedulers(get_schedulers(model_id))
|
||||
scheduler_obj = global_obj.get_scheduler(args.scheduler)
|
||||
|
||||
if use_stencil is not None:
|
||||
if stencil_count > 0:
|
||||
args.use_tuned = False
|
||||
global_obj.set_sd_obj(
|
||||
StencilPipeline.from_pretrained(
|
||||
@@ -194,7 +217,7 @@ def img2img_inf(
|
||||
args.use_base_vae,
|
||||
args.use_tuned,
|
||||
low_cpu_mem_usage=args.low_cpu_mem_usage,
|
||||
use_stencil=use_stencil,
|
||||
stencils=stencils,
|
||||
debug=args.import_debug if args.import_mlir else False,
|
||||
use_lora=args.use_lora,
|
||||
ondemand=args.ondemand,
|
||||
@@ -251,8 +274,10 @@ def img2img_inf(
|
||||
args.use_base_vae,
|
||||
cpu_scheduling,
|
||||
args.max_embeddings_multiples,
|
||||
use_stencil=use_stencil,
|
||||
stencils,
|
||||
images,
|
||||
resample_type=resample_type,
|
||||
control_mode=control_mode,
|
||||
)
|
||||
total_time = time.time() - start_time
|
||||
text_output = get_generation_text_info(
|
||||
@@ -272,12 +297,17 @@ def img2img_inf(
|
||||
generated_imgs.extend(out_imgs)
|
||||
yield generated_imgs, text_output, status_label(
|
||||
"Image-to-Image", current_batch + 1, batch_count, batch_size
|
||||
)
|
||||
), stencils, images
|
||||
|
||||
return generated_imgs, text_output, ""
|
||||
return generated_imgs, text_output, "", stencils, images
|
||||
|
||||
|
||||
with gr.Blocks(title="Image-to-Image") as img2img_web:
|
||||
# Stencils
|
||||
# TODO: Add more stencils here
|
||||
STENCIL_COUNT = 2
|
||||
stencils = gr.State([None] * STENCIL_COUNT)
|
||||
images = gr.State([None] * STENCIL_COUNT)
|
||||
with gr.Row(elem_id="ui_title"):
|
||||
nod_logo = Image.open(nodlogo_loc)
|
||||
with gr.Row():
|
||||
@@ -289,6 +319,7 @@ with gr.Blocks(title="Image-to-Image") as img2img_web:
|
||||
elem_id="top_logo",
|
||||
width=150,
|
||||
height=50,
|
||||
show_download_button=False,
|
||||
)
|
||||
with gr.Row(elem_id="ui_body"):
|
||||
with gr.Row():
|
||||
@@ -342,75 +373,282 @@ with gr.Blocks(title="Image-to-Image") as img2img_web:
|
||||
# TODO: make this import image prompt info if it exists
|
||||
img2img_init_image = gr.Image(
|
||||
label="Input Image",
|
||||
source="upload",
|
||||
tool="sketch",
|
||||
type="pil",
|
||||
height=300,
|
||||
height=512,
|
||||
interactive=True,
|
||||
)
|
||||
|
||||
with gr.Accordion(label="Stencil Options", open=False):
|
||||
with gr.Accordion(label="Multistencil Options", open=False):
|
||||
choices = [
|
||||
"None",
|
||||
"canny",
|
||||
"openpose",
|
||||
"scribble",
|
||||
"zoedepth",
|
||||
]
|
||||
|
||||
def cnet_preview(
|
||||
model, input_image, index, stencils, images
|
||||
):
|
||||
images[index] = input_image
|
||||
stencils[index] = model
|
||||
match model:
|
||||
case "canny":
|
||||
canny = CannyDetector()
|
||||
result = canny(
|
||||
np.array(input_image["composite"]),
|
||||
100,
|
||||
200,
|
||||
)
|
||||
return (
|
||||
Image.fromarray(result),
|
||||
stencils,
|
||||
images,
|
||||
)
|
||||
case "openpose":
|
||||
openpose = OpenposeDetector()
|
||||
result = openpose(
|
||||
np.array(input_image["composite"])
|
||||
)
|
||||
print(result)
|
||||
# TODO: This is just an empty canvas, need to draw the candidates (which are in result[1])
|
||||
return (
|
||||
Image.fromarray(result[0]),
|
||||
stencils,
|
||||
images,
|
||||
)
|
||||
case "zoedepth":
|
||||
zoedepth = ZoeDetector()
|
||||
result = zoedepth(
|
||||
np.array(input_image["composite"])
|
||||
)
|
||||
return (
|
||||
Image.fromarray(result),
|
||||
stencils,
|
||||
images,
|
||||
)
|
||||
case "scribble":
|
||||
return (
|
||||
input_image["composite"],
|
||||
stencils,
|
||||
images,
|
||||
)
|
||||
case _:
|
||||
return (None, stencils, images)
|
||||
|
||||
def create_canvas(width, height):
|
||||
data = Image.fromarray(
|
||||
np.zeros(
|
||||
shape=(height, width, 3),
|
||||
dtype=np.uint8,
|
||||
)
|
||||
+ 255
|
||||
)
|
||||
img_dict = {
|
||||
"background": data,
|
||||
"layers": [data],
|
||||
"composite": None,
|
||||
}
|
||||
return EditorValue(img_dict)
|
||||
|
||||
def update_cn_input(model, width, height):
|
||||
if model == "scribble":
|
||||
return [
|
||||
gr.ImageEditor(
|
||||
visible=True,
|
||||
interactive=True,
|
||||
show_label=False,
|
||||
image_mode="RGB",
|
||||
type="pil",
|
||||
value=create_canvas(width, height),
|
||||
brush=Brush(
|
||||
colors=["#000000"], color_mode="fixed"
|
||||
),
|
||||
),
|
||||
gr.Image(
|
||||
visible=True,
|
||||
show_label=False,
|
||||
interactive=False,
|
||||
show_download_button=False,
|
||||
),
|
||||
gr.Slider(visible=True),
|
||||
gr.Slider(visible=True),
|
||||
gr.Button(visible=True),
|
||||
]
|
||||
else:
|
||||
return [
|
||||
gr.ImageEditor(
|
||||
visible=True,
|
||||
image_mode="RGB",
|
||||
type="pil",
|
||||
interactive=True,
|
||||
value=None,
|
||||
),
|
||||
gr.Image(
|
||||
visible=True,
|
||||
show_label=False,
|
||||
interactive=True,
|
||||
show_download_button=False,
|
||||
),
|
||||
gr.Slider(visible=False),
|
||||
gr.Slider(visible=False),
|
||||
gr.Button(visible=False),
|
||||
]
|
||||
|
||||
with gr.Row():
|
||||
use_stencil = gr.Dropdown(
|
||||
elem_id="stencil_model",
|
||||
label="Stencil model",
|
||||
value="None",
|
||||
choices=[
|
||||
"None",
|
||||
"canny",
|
||||
"openpose",
|
||||
"scribble",
|
||||
"zoedepth",
|
||||
with gr.Column():
|
||||
cnet_1 = gr.Button(
|
||||
value="Generate controlnet input"
|
||||
)
|
||||
cnet_1_model = gr.Dropdown(
|
||||
label="Controlnet 1",
|
||||
value="None",
|
||||
choices=choices,
|
||||
)
|
||||
canvas_width = gr.Slider(
|
||||
label="Canvas Width",
|
||||
minimum=256,
|
||||
maximum=1024,
|
||||
value=512,
|
||||
step=1,
|
||||
visible=False,
|
||||
)
|
||||
canvas_height = gr.Slider(
|
||||
label="Canvas Height",
|
||||
minimum=256,
|
||||
maximum=1024,
|
||||
value=512,
|
||||
step=1,
|
||||
visible=False,
|
||||
)
|
||||
make_canvas = gr.Button(
|
||||
value="Make Canvas!",
|
||||
visible=False,
|
||||
)
|
||||
|
||||
cnet_1_image = gr.ImageEditor(
|
||||
visible=False,
|
||||
image_mode="RGB",
|
||||
interactive=True,
|
||||
show_label=False,
|
||||
type="pil",
|
||||
)
|
||||
cnet_1_output = gr.Image(
|
||||
visible=True, show_label=False
|
||||
)
|
||||
|
||||
cnet_1_model.input(
|
||||
update_cn_input,
|
||||
[cnet_1_model, canvas_width, canvas_height],
|
||||
[
|
||||
cnet_1_image,
|
||||
cnet_1_output,
|
||||
canvas_width,
|
||||
canvas_height,
|
||||
make_canvas,
|
||||
],
|
||||
)
|
||||
|
||||
def show_canvas(choice):
|
||||
if choice == "scribble":
|
||||
return (
|
||||
gr.Slider.update(visible=True),
|
||||
gr.Slider.update(visible=True),
|
||||
gr.Button.update(visible=True),
|
||||
)
|
||||
else:
|
||||
return (
|
||||
gr.Slider.update(visible=False),
|
||||
gr.Slider.update(visible=False),
|
||||
gr.Button.update(visible=False),
|
||||
)
|
||||
|
||||
def create_canvas(w, h):
|
||||
return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255
|
||||
|
||||
make_canvas.click(
|
||||
update_cn_input,
|
||||
[cnet_1_model, canvas_width, canvas_height],
|
||||
[
|
||||
cnet_1_image,
|
||||
cnet_1_output,
|
||||
canvas_width,
|
||||
canvas_height,
|
||||
make_canvas,
|
||||
],
|
||||
)
|
||||
cnet_1.click(
|
||||
fn=(
|
||||
lambda a, b, s, i: cnet_preview(a, b, 0, s, i)
|
||||
),
|
||||
inputs=[
|
||||
cnet_1_model,
|
||||
cnet_1_image,
|
||||
stencils,
|
||||
images,
|
||||
],
|
||||
outputs=[cnet_1_output, stencils, images],
|
||||
)
|
||||
with gr.Row():
|
||||
canvas_width = gr.Slider(
|
||||
label="Canvas Width",
|
||||
minimum=256,
|
||||
maximum=1024,
|
||||
value=512,
|
||||
step=1,
|
||||
with gr.Column():
|
||||
cnet_2 = gr.Button(
|
||||
value="Generate controlnet input"
|
||||
)
|
||||
cnet_2_model = gr.Dropdown(
|
||||
label="Controlnet 2",
|
||||
value="None",
|
||||
choices=choices,
|
||||
)
|
||||
canvas_width = gr.Slider(
|
||||
label="Canvas Width",
|
||||
minimum=256,
|
||||
maximum=1024,
|
||||
value=512,
|
||||
step=1,
|
||||
visible=False,
|
||||
)
|
||||
canvas_height = gr.Slider(
|
||||
label="Canvas Height",
|
||||
minimum=256,
|
||||
maximum=1024,
|
||||
value=512,
|
||||
step=1,
|
||||
visible=False,
|
||||
)
|
||||
make_canvas = gr.Button(
|
||||
value="Make Canvas!",
|
||||
visible=False,
|
||||
)
|
||||
cnet_2_image = gr.ImageEditor(
|
||||
visible=False,
|
||||
image_mode="RGB",
|
||||
interactive=True,
|
||||
show_label=False,
|
||||
type="pil",
|
||||
)
|
||||
canvas_height = gr.Slider(
|
||||
label="Canvas Height",
|
||||
minimum=256,
|
||||
maximum=1024,
|
||||
value=512,
|
||||
step=1,
|
||||
visible=False,
|
||||
cnet_2_output = gr.Image(
|
||||
visible=True, show_label=False
|
||||
)
|
||||
create_button = gr.Button(
|
||||
label="Start",
|
||||
value="Open drawing canvas!",
|
||||
visible=False,
|
||||
)
|
||||
create_button.click(
|
||||
fn=create_canvas,
|
||||
inputs=[canvas_width, canvas_height],
|
||||
outputs=[img2img_init_image],
|
||||
)
|
||||
use_stencil.change(
|
||||
fn=show_canvas,
|
||||
inputs=use_stencil,
|
||||
outputs=[canvas_width, canvas_height, create_button],
|
||||
cnet_2_model.select(
|
||||
update_cn_input,
|
||||
[cnet_2_model, canvas_width, canvas_height],
|
||||
[
|
||||
cnet_2_image,
|
||||
cnet_2_output,
|
||||
canvas_width,
|
||||
canvas_height,
|
||||
make_canvas,
|
||||
],
|
||||
)
|
||||
make_canvas.click(
|
||||
update_cn_input,
|
||||
[cnet_2_model, canvas_width, canvas_height],
|
||||
[
|
||||
cnet_2_image,
|
||||
cnet_2_output,
|
||||
canvas_width,
|
||||
canvas_height,
|
||||
make_canvas,
|
||||
],
|
||||
)
|
||||
cnet_2.click(
|
||||
fn=(
|
||||
lambda a, b, s, i: cnet_preview(a, b, 1, s, i)
|
||||
),
|
||||
inputs=[
|
||||
cnet_2_model,
|
||||
cnet_2_image,
|
||||
stencils,
|
||||
images,
|
||||
],
|
||||
outputs=[cnet_2_output, stencils, images],
|
||||
)
|
||||
control_mode = gr.Radio(
|
||||
choices=["Prompt", "Balanced", "Controlnet"],
|
||||
value="Balanced",
|
||||
label="Control Mode",
|
||||
)
|
||||
|
||||
with gr.Accordion(label="LoRA Options", open=False):
|
||||
@@ -617,7 +855,6 @@ with gr.Blocks(title="Image-to-Image") as img2img_web:
|
||||
precision,
|
||||
device,
|
||||
max_length,
|
||||
use_stencil,
|
||||
save_metadata_to_json,
|
||||
save_metadata_to_png,
|
||||
lora_weights,
|
||||
@@ -625,8 +862,17 @@ with gr.Blocks(title="Image-to-Image") as img2img_web:
|
||||
ondemand,
|
||||
repeatable_seeds,
|
||||
resample_type,
|
||||
control_mode,
|
||||
stencils,
|
||||
images,
|
||||
],
|
||||
outputs=[
|
||||
img2img_gallery,
|
||||
std_output,
|
||||
img2img_status,
|
||||
stencils,
|
||||
images,
|
||||
],
|
||||
outputs=[img2img_gallery, std_output, img2img_status],
|
||||
show_progress="minimal" if args.progress_bar else "none",
|
||||
)
|
||||
|
||||
|
||||
@@ -122,7 +122,7 @@ def inpaint_inf(
|
||||
width,
|
||||
device,
|
||||
use_lora=args.use_lora,
|
||||
use_stencil=None,
|
||||
stencils=[],
|
||||
ondemand=ondemand,
|
||||
)
|
||||
if (
|
||||
@@ -234,6 +234,7 @@ with gr.Blocks(title="Inpainting") as inpaint_web:
|
||||
elem_id="top_logo",
|
||||
width=150,
|
||||
height=50,
|
||||
show_download_button=False,
|
||||
)
|
||||
with gr.Row(elem_id="ui_body"):
|
||||
with gr.Row():
|
||||
@@ -290,8 +291,7 @@ with gr.Blocks(title="Inpainting") as inpaint_web:
|
||||
|
||||
inpaint_init_image = gr.Image(
|
||||
label="Masked Image",
|
||||
source="upload",
|
||||
tool="sketch",
|
||||
sources="upload",
|
||||
type="pil",
|
||||
height=350,
|
||||
)
|
||||
|
||||
@@ -26,6 +26,7 @@ with gr.Blocks(title="Lora Training") as lora_train_web:
|
||||
elem_id="top_logo",
|
||||
width=150,
|
||||
height=50,
|
||||
show_download_button=False,
|
||||
)
|
||||
with gr.Row(elem_id="ui_body"):
|
||||
with gr.Row():
|
||||
|
||||
@@ -104,7 +104,6 @@ with gr.Blocks() as model_web:
|
||||
civit_models = gr.Gallery(
|
||||
label="Civitai Model Gallery",
|
||||
value=None,
|
||||
interactive=True,
|
||||
visible=False,
|
||||
)
|
||||
|
||||
|
||||
@@ -121,7 +121,7 @@ def outpaint_inf(
|
||||
width,
|
||||
device,
|
||||
use_lora=args.use_lora,
|
||||
use_stencil=None,
|
||||
stencils=[],
|
||||
ondemand=ondemand,
|
||||
)
|
||||
if (
|
||||
@@ -239,6 +239,7 @@ with gr.Blocks(title="Outpainting") as outpaint_web:
|
||||
elem_id="top_logo",
|
||||
width=150,
|
||||
height=50,
|
||||
show_download_button=False,
|
||||
)
|
||||
with gr.Row(elem_id="ui_body"):
|
||||
with gr.Row():
|
||||
|
||||
@@ -84,6 +84,7 @@ with gr.Blocks() as outputgallery_web:
|
||||
show_label=True,
|
||||
elem_id="top_logo",
|
||||
elem_classes="logo_centered",
|
||||
show_download_button=False,
|
||||
)
|
||||
|
||||
gallery = gr.Gallery(
|
||||
@@ -95,7 +96,7 @@ with gr.Blocks() as outputgallery_web:
|
||||
)
|
||||
|
||||
with gr.Column(scale=4):
|
||||
with gr.Box():
|
||||
with gr.Group():
|
||||
with gr.Row():
|
||||
with gr.Column(
|
||||
scale=15,
|
||||
@@ -152,6 +153,7 @@ with gr.Blocks() as outputgallery_web:
|
||||
wrap=True,
|
||||
elem_classes="output_parameters_dataframe",
|
||||
value=[["Status", "No image selected"]],
|
||||
interactive=True,
|
||||
)
|
||||
|
||||
with gr.Accordion(label="Send To", open=True):
|
||||
@@ -162,6 +164,12 @@ with gr.Blocks() as outputgallery_web:
|
||||
elem_classes="outputgallery_sendto",
|
||||
size="sm",
|
||||
)
|
||||
outputgallery_sendto_txt2img_sdxl = gr.Button(
|
||||
value="Txt2Img XL",
|
||||
interactive=False,
|
||||
elem_classes="outputgallery_sendto",
|
||||
size="sm",
|
||||
)
|
||||
|
||||
outputgallery_sendto_img2img = gr.Button(
|
||||
value="Img2Img",
|
||||
@@ -195,17 +203,17 @@ with gr.Blocks() as outputgallery_web:
|
||||
|
||||
def on_clear_gallery():
|
||||
return [
|
||||
gr.Gallery.update(
|
||||
gr.Gallery(
|
||||
value=[],
|
||||
visible=False,
|
||||
),
|
||||
gr.Image.update(
|
||||
gr.Image(
|
||||
visible=True,
|
||||
),
|
||||
]
|
||||
|
||||
def on_image_columns_change(columns):
|
||||
return gr.Gallery.update(columns=columns)
|
||||
return gr.Gallery(columns=columns)
|
||||
|
||||
def on_select_subdir(subdir) -> list:
|
||||
# evt.value is the subdirectory name
|
||||
@@ -215,12 +223,12 @@ with gr.Blocks() as outputgallery_web:
|
||||
)
|
||||
return [
|
||||
new_images,
|
||||
gr.Gallery.update(
|
||||
gr.Gallery(
|
||||
value=new_images,
|
||||
label=new_label,
|
||||
visible=len(new_images) > 0,
|
||||
),
|
||||
gr.Image.update(
|
||||
gr.Image(
|
||||
label=new_label,
|
||||
visible=len(new_images) == 0,
|
||||
),
|
||||
@@ -254,16 +262,16 @@ with gr.Blocks() as outputgallery_web:
|
||||
)
|
||||
|
||||
return [
|
||||
gr.Dropdown.update(
|
||||
gr.Dropdown(
|
||||
choices=refreshed_subdirs,
|
||||
value=new_subdir,
|
||||
),
|
||||
refreshed_subdirs,
|
||||
new_images,
|
||||
gr.Gallery.update(
|
||||
gr.Gallery(
|
||||
value=new_images, label=new_label, visible=len(new_images) > 0
|
||||
),
|
||||
gr.Image.update(
|
||||
gr.Image(
|
||||
label=new_label,
|
||||
visible=len(new_images) == 0,
|
||||
),
|
||||
@@ -289,12 +297,12 @@ with gr.Blocks() as outputgallery_web:
|
||||
|
||||
return [
|
||||
new_images,
|
||||
gr.Gallery.update(
|
||||
gr.Gallery(
|
||||
value=new_images,
|
||||
label=new_label,
|
||||
visible=len(new_images) > 0,
|
||||
),
|
||||
gr.Image.update(
|
||||
gr.Image(
|
||||
label=new_label,
|
||||
visible=len(new_images) == 0,
|
||||
),
|
||||
@@ -332,12 +340,12 @@ with gr.Blocks() as outputgallery_web:
|
||||
return [
|
||||
# disable or enable each of the sendto button based on whether
|
||||
# an image is selected
|
||||
gr.Button.update(interactive=exists),
|
||||
gr.Button.update(interactive=exists),
|
||||
gr.Button.update(interactive=exists),
|
||||
gr.Button.update(interactive=exists),
|
||||
gr.Button.update(interactive=exists),
|
||||
gr.Button.update(interactive=exists),
|
||||
gr.Button(interactive=exists),
|
||||
gr.Button(interactive=exists),
|
||||
gr.Button(interactive=exists),
|
||||
gr.Button(interactive=exists),
|
||||
gr.Button(interactive=exists),
|
||||
gr.Button(interactive=exists),
|
||||
]
|
||||
|
||||
# The time first our tab is selected we need to do an initial refresh
|
||||
@@ -414,6 +422,7 @@ with gr.Blocks() as outputgallery_web:
|
||||
[outputgallery_filename],
|
||||
[
|
||||
outputgallery_sendto_txt2img,
|
||||
outputgallery_sendto_txt2img_sdxl,
|
||||
outputgallery_sendto_img2img,
|
||||
outputgallery_sendto_inpaint,
|
||||
outputgallery_sendto_outpaint,
|
||||
|
||||
@@ -141,7 +141,9 @@ def chat(
|
||||
prompt_prefix,
|
||||
history,
|
||||
model,
|
||||
device,
|
||||
backend,
|
||||
devices,
|
||||
sharded,
|
||||
precision,
|
||||
download_vmfb,
|
||||
config_file,
|
||||
@@ -153,7 +155,8 @@ def chat(
|
||||
global vicuna_model
|
||||
|
||||
model_name, model_path = list(map(str.strip, model.split("=>")))
|
||||
device, device_id = clean_device_info(device)
|
||||
device, device_id = clean_device_info(devices[0])
|
||||
no_of_devices = len(devices)
|
||||
|
||||
from apps.language_models.scripts.vicuna import ShardedVicuna
|
||||
from apps.language_models.scripts.vicuna import UnshardedVicuna
|
||||
@@ -173,6 +176,13 @@ def chat(
|
||||
get_vulkan_target_triple,
|
||||
)
|
||||
|
||||
_extra_args = _extra_args + [
|
||||
"--iree-global-opt-enable-quantized-matmul-reassociation",
|
||||
"--iree-llvmcpu-enable-quantized-matmul-reassociation",
|
||||
"--iree-opt-const-eval=false",
|
||||
"--iree-opt-data-tiling=false",
|
||||
]
|
||||
|
||||
if device == "vulkan":
|
||||
vulkaninfo_list = get_all_vulkan_devices()
|
||||
if vulkan_target_triple == "":
|
||||
@@ -214,7 +224,7 @@ def chat(
|
||||
)
|
||||
print(f"extra args = {_extra_args}")
|
||||
|
||||
if model_name == "vicuna4":
|
||||
if sharded:
|
||||
vicuna_model = ShardedVicuna(
|
||||
model_name,
|
||||
hf_model_path=model_path,
|
||||
@@ -223,6 +233,7 @@ def chat(
|
||||
max_num_tokens=max_toks,
|
||||
compressed=True,
|
||||
extra_args_cmd=_extra_args,
|
||||
n_devices=no_of_devices,
|
||||
)
|
||||
else:
|
||||
# if config_file is None:
|
||||
@@ -250,13 +261,14 @@ def chat(
|
||||
total_time_ms = 0.001 # In order to avoid divide by zero error
|
||||
prefill_time = 0
|
||||
is_first = True
|
||||
for text, msg, exec_time in progress.tqdm(
|
||||
vicuna_model.generate(prompt, cli=cli),
|
||||
desc="generating response",
|
||||
):
|
||||
# for text, msg, exec_time in progress.tqdm(
|
||||
# vicuna_model.generate(prompt, cli=cli),
|
||||
# desc="generating response",
|
||||
# ):
|
||||
for text, msg, exec_time in vicuna_model.generate(prompt, cli=cli):
|
||||
if msg is None:
|
||||
if is_first:
|
||||
prefill_time = exec_time
|
||||
prefill_time = exec_time / 1000
|
||||
is_first = False
|
||||
else:
|
||||
total_time_ms += exec_time
|
||||
@@ -377,6 +389,16 @@ def view_json_file(file_obj):
|
||||
return content
|
||||
|
||||
|
||||
filtered_devices = dict()
|
||||
|
||||
|
||||
def change_backend(backend):
|
||||
new_choices = gr.Dropdown(
|
||||
choices=filtered_devices[backend], label=f"{backend} devices"
|
||||
)
|
||||
return new_choices
|
||||
|
||||
|
||||
with gr.Blocks(title="Chatbot") as stablelm_chat:
|
||||
with gr.Row():
|
||||
model_choices = list(
|
||||
@@ -393,15 +415,22 @@ with gr.Blocks(title="Chatbot") as stablelm_chat:
|
||||
# show cpu-task device first in list for chatbot
|
||||
supported_devices = supported_devices[-1:] + supported_devices[:-1]
|
||||
supported_devices = [x for x in supported_devices if "sync" not in x]
|
||||
backend_list = ["cpu", "cuda", "vulkan", "rocm"]
|
||||
for x in backend_list:
|
||||
filtered_devices[x] = [y for y in supported_devices if x in y]
|
||||
print(filtered_devices)
|
||||
|
||||
backend = gr.Radio(
|
||||
label="backend",
|
||||
value="cpu",
|
||||
choices=backend_list,
|
||||
)
|
||||
device = gr.Dropdown(
|
||||
label="Device",
|
||||
value=supported_devices[0]
|
||||
if enabled
|
||||
else "Only CUDA Supported for now",
|
||||
choices=supported_devices,
|
||||
interactive=enabled,
|
||||
label="cpu devices",
|
||||
choices=filtered_devices["cpu"],
|
||||
interactive=True,
|
||||
allow_custom_value=True,
|
||||
# multiselect=True,
|
||||
multiselect=True,
|
||||
)
|
||||
precision = gr.Radio(
|
||||
label="Precision",
|
||||
@@ -425,14 +454,19 @@ with gr.Blocks(title="Chatbot") as stablelm_chat:
|
||||
value=False,
|
||||
interactive=True,
|
||||
)
|
||||
sharded = gr.Checkbox(
|
||||
label="Shard Model",
|
||||
value=False,
|
||||
interactive=True,
|
||||
)
|
||||
|
||||
with gr.Row(visible=False):
|
||||
with gr.Group():
|
||||
config_file = gr.File(
|
||||
label="Upload sharding configuration", visible=False
|
||||
)
|
||||
json_view_button = gr.Button(label="View as JSON", visible=False)
|
||||
json_view = gr.JSON(interactive=True, visible=False)
|
||||
json_view_button = gr.Button(value="View as JSON", visible=False)
|
||||
json_view = gr.JSON(visible=False)
|
||||
json_view_button.click(
|
||||
fn=view_json_file, inputs=[config_file], outputs=[json_view]
|
||||
)
|
||||
@@ -452,6 +486,13 @@ with gr.Blocks(title="Chatbot") as stablelm_chat:
|
||||
stop = gr.Button("Stop", interactive=enabled)
|
||||
clear = gr.Button("Clear", interactive=enabled)
|
||||
|
||||
backend.change(
|
||||
fn=change_backend,
|
||||
inputs=[backend],
|
||||
outputs=[device],
|
||||
show_progress=False,
|
||||
)
|
||||
|
||||
submit_event = msg.submit(
|
||||
fn=user,
|
||||
inputs=[msg, chatbot],
|
||||
@@ -464,7 +505,9 @@ with gr.Blocks(title="Chatbot") as stablelm_chat:
|
||||
prompt_prefix,
|
||||
chatbot,
|
||||
model,
|
||||
backend,
|
||||
device,
|
||||
sharded,
|
||||
precision,
|
||||
download_vmfb,
|
||||
config_file,
|
||||
@@ -485,7 +528,9 @@ with gr.Blocks(title="Chatbot") as stablelm_chat:
|
||||
prompt_prefix,
|
||||
chatbot,
|
||||
model,
|
||||
backend,
|
||||
device,
|
||||
sharded,
|
||||
precision,
|
||||
download_vmfb,
|
||||
config_file,
|
||||
|
||||
650
apps/stable_diffusion/web/ui/txt2img_sdxl_ui.py
Normal file
650
apps/stable_diffusion/web/ui/txt2img_sdxl_ui.py
Normal file
@@ -0,0 +1,650 @@
|
||||
import os
|
||||
import torch
|
||||
import time
|
||||
import sys
|
||||
import gradio as gr
|
||||
from PIL import Image
|
||||
from math import ceil
|
||||
from apps.stable_diffusion.web.ui.utils import (
|
||||
available_devices,
|
||||
nodlogo_loc,
|
||||
get_custom_model_path,
|
||||
get_custom_model_files,
|
||||
scheduler_list,
|
||||
predefined_sdxl_models,
|
||||
cancel_sd,
|
||||
set_model_default_configs,
|
||||
)
|
||||
from apps.stable_diffusion.web.ui.common_ui_events import lora_changed
|
||||
from apps.stable_diffusion.web.utils.metadata import import_png_metadata
|
||||
from apps.stable_diffusion.web.utils.common_label_calc import status_label
|
||||
from apps.stable_diffusion.src import (
|
||||
args,
|
||||
Text2ImageSDXLPipeline,
|
||||
get_schedulers,
|
||||
set_init_device_flags,
|
||||
utils,
|
||||
save_output_img,
|
||||
prompt_examples,
|
||||
Image2ImagePipeline,
|
||||
)
|
||||
from apps.stable_diffusion.src.utils import (
|
||||
get_generated_imgs_path,
|
||||
get_generation_text_info,
|
||||
)
|
||||
|
||||
# set initial values of iree_vulkan_target_triple, use_tuned and import_mlir.
|
||||
init_iree_vulkan_target_triple = args.iree_vulkan_target_triple
|
||||
init_iree_metal_target_platform = args.iree_metal_target_platform
|
||||
init_use_tuned = args.use_tuned
|
||||
init_import_mlir = args.import_mlir
|
||||
|
||||
|
||||
def txt2img_sdxl_inf(
|
||||
prompt: str,
|
||||
negative_prompt: str,
|
||||
height: int,
|
||||
width: int,
|
||||
steps: int,
|
||||
guidance_scale: float,
|
||||
seed: str | int,
|
||||
batch_count: int,
|
||||
batch_size: int,
|
||||
scheduler: str,
|
||||
model_id: str,
|
||||
custom_vae: str,
|
||||
precision: str,
|
||||
device: str,
|
||||
max_length: int,
|
||||
save_metadata_to_json: bool,
|
||||
save_metadata_to_png: bool,
|
||||
lora_weights: str,
|
||||
lora_hf_id: str,
|
||||
ondemand: bool,
|
||||
repeatable_seeds: bool,
|
||||
):
|
||||
from apps.stable_diffusion.web.ui.utils import (
|
||||
get_custom_model_pathfile,
|
||||
get_custom_vae_or_lora_weights,
|
||||
Config,
|
||||
)
|
||||
import apps.stable_diffusion.web.utils.global_obj as global_obj
|
||||
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
|
||||
SD_STATE_CANCEL,
|
||||
)
|
||||
|
||||
if precision != "fp16":
|
||||
print("currently we support fp16 for SDXL")
|
||||
precision = "fp16"
|
||||
|
||||
args.prompts = [prompt]
|
||||
args.negative_prompts = [negative_prompt]
|
||||
args.guidance_scale = guidance_scale
|
||||
args.steps = steps
|
||||
args.scheduler = scheduler
|
||||
args.ondemand = ondemand
|
||||
|
||||
# set ckpt_loc and hf_model_id.
|
||||
args.ckpt_loc = ""
|
||||
args.hf_model_id = ""
|
||||
args.custom_vae = ""
|
||||
|
||||
# .safetensor or .chkpt on the custom model path
|
||||
if model_id in get_custom_model_files():
|
||||
args.ckpt_loc = get_custom_model_pathfile(model_id)
|
||||
# civitai download
|
||||
elif "civitai" in model_id:
|
||||
args.ckpt_loc = model_id
|
||||
# either predefined or huggingface
|
||||
else:
|
||||
args.hf_model_id = model_id
|
||||
|
||||
if custom_vae:
|
||||
args.custom_vae = get_custom_model_pathfile(custom_vae, model="vae")
|
||||
|
||||
args.save_metadata_to_json = save_metadata_to_json
|
||||
args.write_metadata_to_png = save_metadata_to_png
|
||||
|
||||
args.use_lora = get_custom_vae_or_lora_weights(
|
||||
lora_weights, lora_hf_id, "lora"
|
||||
)
|
||||
|
||||
dtype = torch.float32 if precision == "fp32" else torch.half
|
||||
cpu_scheduling = not scheduler.startswith("Shark")
|
||||
new_config_obj = Config(
|
||||
"txt2img_sdxl",
|
||||
args.hf_model_id,
|
||||
args.ckpt_loc,
|
||||
args.custom_vae,
|
||||
precision,
|
||||
batch_size,
|
||||
max_length,
|
||||
height,
|
||||
width,
|
||||
device,
|
||||
use_lora=args.use_lora,
|
||||
stencils=None,
|
||||
ondemand=ondemand,
|
||||
)
|
||||
if (
|
||||
not global_obj.get_sd_obj()
|
||||
or global_obj.get_cfg_obj() != new_config_obj
|
||||
):
|
||||
global_obj.clear_cache()
|
||||
global_obj.set_cfg_obj(new_config_obj)
|
||||
args.precision = precision
|
||||
args.batch_count = batch_count
|
||||
args.batch_size = batch_size
|
||||
args.max_length = max_length
|
||||
args.height = height
|
||||
args.width = width
|
||||
args.device = device.split("=>", 1)[1].strip()
|
||||
args.iree_vulkan_target_triple = init_iree_vulkan_target_triple
|
||||
args.iree_metal_target_platform = init_iree_metal_target_platform
|
||||
args.use_tuned = init_use_tuned
|
||||
args.import_mlir = init_import_mlir
|
||||
args.img_path = None
|
||||
set_init_device_flags()
|
||||
model_id = (
|
||||
args.hf_model_id
|
||||
if args.hf_model_id
|
||||
else "stabilityai/stable-diffusion-xl-base-1.0"
|
||||
)
|
||||
global_obj.set_schedulers(get_schedulers(model_id))
|
||||
scheduler_obj = global_obj.get_scheduler(scheduler)
|
||||
if global_obj.get_cfg_obj().ondemand:
|
||||
print("Running txt2img in memory efficient mode.")
|
||||
global_obj.set_sd_obj(
|
||||
Text2ImageSDXLPipeline.from_pretrained(
|
||||
scheduler=scheduler_obj,
|
||||
import_mlir=args.import_mlir,
|
||||
model_id=args.hf_model_id,
|
||||
ckpt_loc=args.ckpt_loc,
|
||||
precision=precision,
|
||||
max_length=max_length,
|
||||
batch_size=batch_size,
|
||||
height=height,
|
||||
width=width,
|
||||
use_base_vae=args.use_base_vae,
|
||||
use_tuned=args.use_tuned,
|
||||
custom_vae=args.custom_vae,
|
||||
low_cpu_mem_usage=args.low_cpu_mem_usage,
|
||||
debug=args.import_debug if args.import_mlir else False,
|
||||
use_lora=args.use_lora,
|
||||
use_quantize=args.use_quantize,
|
||||
ondemand=global_obj.get_cfg_obj().ondemand,
|
||||
)
|
||||
)
|
||||
|
||||
global_obj.set_sd_scheduler(scheduler)
|
||||
|
||||
start_time = time.time()
|
||||
global_obj.get_sd_obj().log = ""
|
||||
generated_imgs = []
|
||||
text_output = ""
|
||||
try:
|
||||
seeds = utils.batch_seeds(seed, batch_count, repeatable_seeds)
|
||||
except TypeError as error:
|
||||
raise gr.Error(str(error)) from None
|
||||
|
||||
for current_batch in range(batch_count):
|
||||
out_imgs = global_obj.get_sd_obj().generate_images(
|
||||
prompt,
|
||||
negative_prompt,
|
||||
batch_size,
|
||||
height,
|
||||
width,
|
||||
steps,
|
||||
guidance_scale,
|
||||
seeds[current_batch],
|
||||
args.max_length,
|
||||
dtype,
|
||||
args.use_base_vae,
|
||||
cpu_scheduling,
|
||||
args.max_embeddings_multiples,
|
||||
)
|
||||
|
||||
total_time = time.time() - start_time
|
||||
text_output = get_generation_text_info(
|
||||
seeds[: current_batch + 1], device
|
||||
)
|
||||
text_output += "\n" + global_obj.get_sd_obj().log
|
||||
text_output += f"\nTotal image(s) generation time: {total_time:.4f}sec"
|
||||
|
||||
if global_obj.get_sd_status() == SD_STATE_CANCEL:
|
||||
break
|
||||
else:
|
||||
save_output_img(out_imgs[0], seeds[current_batch])
|
||||
generated_imgs.extend(out_imgs)
|
||||
yield generated_imgs, text_output, status_label(
|
||||
"Text-to-Image-SDXL",
|
||||
current_batch + 1,
|
||||
batch_count,
|
||||
batch_size,
|
||||
)
|
||||
|
||||
return generated_imgs, text_output, ""
|
||||
|
||||
|
||||
theme = gr.themes.Glass(
|
||||
primary_hue="slate",
|
||||
secondary_hue="gray",
|
||||
)
|
||||
|
||||
with gr.Blocks(title="Text-to-Image-SDXL", theme=theme) as txt2img_sdxl_web:
|
||||
with gr.Row(elem_id="ui_title"):
|
||||
nod_logo = Image.open(nodlogo_loc)
|
||||
with gr.Row():
|
||||
with gr.Column(scale=1, elem_id="demo_title_outer"):
|
||||
gr.Image(
|
||||
value=nod_logo,
|
||||
show_label=False,
|
||||
interactive=False,
|
||||
elem_id="top_logo",
|
||||
width=150,
|
||||
height=50,
|
||||
show_download_button=False,
|
||||
)
|
||||
with gr.Row(elem_id="ui_body"):
|
||||
with gr.Row():
|
||||
with gr.Column(scale=1, min_width=600):
|
||||
with gr.Row():
|
||||
with gr.Column(scale=10):
|
||||
with gr.Row():
|
||||
t2i_sdxl_model_info = f"Custom Model Path: {str(get_custom_model_path())}"
|
||||
txt2img_sdxl_custom_model = gr.Dropdown(
|
||||
label=f"Models",
|
||||
info="Select, or enter HuggingFace Model ID or Civitai model download URL",
|
||||
elem_id="custom_model",
|
||||
value=os.path.basename(args.ckpt_loc)
|
||||
if args.ckpt_loc
|
||||
else "stabilityai/stable-diffusion-xl-base-1.0",
|
||||
choices=predefined_sdxl_models
|
||||
+ get_custom_model_files(
|
||||
custom_checkpoint_type="sdxl"
|
||||
),
|
||||
allow_custom_value=True,
|
||||
scale=2,
|
||||
)
|
||||
t2i_sdxl_vae_info = (
|
||||
str(get_custom_model_path("vae"))
|
||||
).replace("\\", "\n\\")
|
||||
t2i_sdxl_vae_info = (
|
||||
f"VAE Path: {t2i_sdxl_vae_info}"
|
||||
)
|
||||
custom_vae = gr.Dropdown(
|
||||
label=f"VAE Models",
|
||||
info=t2i_sdxl_vae_info,
|
||||
elem_id="custom_model",
|
||||
value="None",
|
||||
choices=[
|
||||
None,
|
||||
"madebyollin/sdxl-vae-fp16-fix",
|
||||
]
|
||||
+ get_custom_model_files("vae"),
|
||||
allow_custom_value=True,
|
||||
scale=1,
|
||||
)
|
||||
with gr.Column(scale=1, min_width=170):
|
||||
txt2img_sdxl_png_info_img = gr.Image(
|
||||
label="Import PNG info",
|
||||
elem_id="txt2img_prompt_image",
|
||||
type="pil",
|
||||
visible=True,
|
||||
)
|
||||
|
||||
with gr.Group(elem_id="prompt_box_outer"):
|
||||
txt2img_sdxl_autogen = gr.Checkbox(
|
||||
label="Auto-Generate Images",
|
||||
value=False,
|
||||
visible=False,
|
||||
)
|
||||
prompt = gr.Textbox(
|
||||
label="Prompt",
|
||||
value=args.prompts[0],
|
||||
lines=2,
|
||||
elem_id="prompt_box",
|
||||
show_copy_button=True,
|
||||
)
|
||||
negative_prompt = gr.Textbox(
|
||||
label="Negative Prompt",
|
||||
value=args.negative_prompts[0],
|
||||
lines=2,
|
||||
elem_id="negative_prompt_box",
|
||||
show_copy_button=True,
|
||||
)
|
||||
with gr.Accordion(label="LoRA Options", open=False):
|
||||
with gr.Row():
|
||||
# janky fix for overflowing text
|
||||
t2i_sdxl_lora_info = (
|
||||
str(get_custom_model_path("lora"))
|
||||
).replace("\\", "\n\\")
|
||||
t2i_sdxl_lora_info = f"LoRA Path: {t2i_sdxl_lora_info}"
|
||||
lora_weights = gr.Dropdown(
|
||||
label=f"Standalone LoRA Weights",
|
||||
info=t2i_sdxl_lora_info,
|
||||
elem_id="lora_weights",
|
||||
value="None",
|
||||
choices=["None"] + get_custom_model_files("lora"),
|
||||
allow_custom_value=True,
|
||||
)
|
||||
lora_hf_id = gr.Textbox(
|
||||
elem_id="lora_hf_id",
|
||||
placeholder="Select 'None' in the Standalone LoRA "
|
||||
"weights dropdown on the left if you want to use "
|
||||
"a standalone HuggingFace model ID for LoRA here "
|
||||
"e.g: sayakpaul/sd-model-finetuned-lora-t4",
|
||||
value="",
|
||||
label="HuggingFace Model ID",
|
||||
lines=3,
|
||||
)
|
||||
with gr.Row():
|
||||
lora_tags = gr.HTML(
|
||||
value="<div><i>No LoRA selected</i></div>",
|
||||
elem_classes="lora-tags",
|
||||
)
|
||||
with gr.Accordion(label="Advanced Options", open=False):
|
||||
with gr.Row():
|
||||
scheduler = gr.Dropdown(
|
||||
elem_id="scheduler",
|
||||
label="Scheduler",
|
||||
value=args.scheduler,
|
||||
choices=[
|
||||
"DDIM",
|
||||
"EulerAncestralDiscrete",
|
||||
"EulerDiscrete",
|
||||
"LCMScheduler",
|
||||
],
|
||||
allow_custom_value=False,
|
||||
visible=True,
|
||||
)
|
||||
with gr.Column():
|
||||
save_metadata_to_png = gr.Checkbox(
|
||||
label="Save prompt information to PNG",
|
||||
value=args.write_metadata_to_png,
|
||||
interactive=True,
|
||||
)
|
||||
save_metadata_to_json = gr.Checkbox(
|
||||
label="Save prompt information to JSON file",
|
||||
value=args.save_metadata_to_json,
|
||||
interactive=True,
|
||||
)
|
||||
with gr.Row():
|
||||
height = gr.Slider(
|
||||
512,
|
||||
1024,
|
||||
value=1024,
|
||||
step=256,
|
||||
label="Height",
|
||||
visible=True,
|
||||
interactive=True,
|
||||
)
|
||||
width = gr.Slider(
|
||||
512,
|
||||
1024,
|
||||
value=1024,
|
||||
step=256,
|
||||
label="Width",
|
||||
visible=True,
|
||||
interactive=True,
|
||||
)
|
||||
precision = gr.Radio(
|
||||
label="Precision",
|
||||
value="fp16",
|
||||
choices=[
|
||||
"fp16",
|
||||
],
|
||||
visible=False,
|
||||
)
|
||||
max_length = gr.Radio(
|
||||
label="Max Length",
|
||||
value=77,
|
||||
choices=[
|
||||
64,
|
||||
77,
|
||||
],
|
||||
visible=False,
|
||||
)
|
||||
with gr.Row():
|
||||
with gr.Column(scale=3):
|
||||
steps = gr.Slider(
|
||||
1, 100, value=args.steps, step=1, label="Steps"
|
||||
)
|
||||
with gr.Column(scale=3):
|
||||
guidance_scale = gr.Slider(
|
||||
0,
|
||||
50,
|
||||
value=args.guidance_scale,
|
||||
step=0.1,
|
||||
label="Guidance Scale",
|
||||
)
|
||||
ondemand = gr.Checkbox(
|
||||
value=args.ondemand,
|
||||
label="Low VRAM",
|
||||
interactive=True,
|
||||
)
|
||||
with gr.Row():
|
||||
with gr.Column(scale=3):
|
||||
batch_count = gr.Slider(
|
||||
1,
|
||||
100,
|
||||
value=args.batch_count,
|
||||
step=1,
|
||||
label="Batch Count",
|
||||
interactive=True,
|
||||
)
|
||||
with gr.Column(scale=3):
|
||||
batch_size = gr.Slider(
|
||||
1,
|
||||
4,
|
||||
value=args.batch_size,
|
||||
step=1,
|
||||
label="Batch Size",
|
||||
interactive=False,
|
||||
visible=False,
|
||||
)
|
||||
repeatable_seeds = gr.Checkbox(
|
||||
args.repeatable_seeds,
|
||||
label="Repeatable Seeds",
|
||||
)
|
||||
|
||||
with gr.Row():
|
||||
seed = gr.Textbox(
|
||||
value=args.seed,
|
||||
label="Seed",
|
||||
info="An integer or a JSON list of integers, -1 for random",
|
||||
)
|
||||
device = gr.Dropdown(
|
||||
elem_id="device",
|
||||
label="Device",
|
||||
value=available_devices[0],
|
||||
choices=available_devices,
|
||||
allow_custom_value=True,
|
||||
)
|
||||
with gr.Accordion(label="Prompt Examples!", open=False):
|
||||
ex = gr.Examples(
|
||||
examples=prompt_examples,
|
||||
inputs=prompt,
|
||||
cache_examples=False,
|
||||
elem_id="prompt_examples",
|
||||
)
|
||||
|
||||
with gr.Column(scale=1, min_width=600):
|
||||
with gr.Group():
|
||||
txt2img_sdxl_gallery = gr.Gallery(
|
||||
label="Generated images",
|
||||
show_label=False,
|
||||
elem_id="gallery",
|
||||
columns=[2],
|
||||
object_fit="scale_down",
|
||||
)
|
||||
std_output = gr.Textbox(
|
||||
value=f"{t2i_sdxl_model_info}\n"
|
||||
f"Images will be saved at "
|
||||
f"{get_generated_imgs_path()}",
|
||||
lines=1,
|
||||
elem_id="std_output",
|
||||
show_label=False,
|
||||
)
|
||||
txt2img_sdxl_status = gr.Textbox(visible=False)
|
||||
with gr.Row():
|
||||
stable_diffusion = gr.Button("Generate Image(s)")
|
||||
random_seed = gr.Button("Randomize Seed")
|
||||
random_seed.click(
|
||||
lambda: -1,
|
||||
inputs=[],
|
||||
outputs=[seed],
|
||||
queue=False,
|
||||
)
|
||||
stop_batch = gr.Button("Stop Batch")
|
||||
with gr.Row():
|
||||
txt2img_sdxl_sendto_img2img = gr.Button(
|
||||
value="Send To Img2Img",
|
||||
visible=False,
|
||||
)
|
||||
txt2img_sdxl_sendto_inpaint = gr.Button(
|
||||
value="Send To Inpaint",
|
||||
visible=False,
|
||||
)
|
||||
txt2img_sdxl_sendto_outpaint = gr.Button(
|
||||
value="Send To Outpaint",
|
||||
visible=False,
|
||||
)
|
||||
txt2img_sdxl_sendto_upscaler = gr.Button(
|
||||
value="Send To Upscaler",
|
||||
visible=False,
|
||||
)
|
||||
|
||||
kwargs = dict(
|
||||
fn=txt2img_sdxl_inf,
|
||||
inputs=[
|
||||
prompt,
|
||||
negative_prompt,
|
||||
height,
|
||||
width,
|
||||
steps,
|
||||
guidance_scale,
|
||||
seed,
|
||||
batch_count,
|
||||
batch_size,
|
||||
scheduler,
|
||||
txt2img_sdxl_custom_model,
|
||||
custom_vae,
|
||||
precision,
|
||||
device,
|
||||
max_length,
|
||||
save_metadata_to_json,
|
||||
save_metadata_to_png,
|
||||
lora_weights,
|
||||
lora_hf_id,
|
||||
ondemand,
|
||||
repeatable_seeds,
|
||||
],
|
||||
outputs=[txt2img_sdxl_gallery, std_output, txt2img_sdxl_status],
|
||||
show_progress="minimal" if args.progress_bar else "none",
|
||||
queue=True,
|
||||
)
|
||||
|
||||
status_kwargs = dict(
|
||||
fn=lambda bc, bs: status_label("Text-to-Image-SDXL", 0, bc, bs),
|
||||
inputs=[batch_count, batch_size],
|
||||
outputs=txt2img_sdxl_status,
|
||||
concurrency_limit=1,
|
||||
)
|
||||
|
||||
def autogen_changed(checked):
|
||||
if checked:
|
||||
args.autogen = True
|
||||
else:
|
||||
args.autogen = False
|
||||
|
||||
def check_last_input(prompt):
|
||||
if not prompt.endswith(" "):
|
||||
return True
|
||||
elif not args.autogen:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
auto_gen_kwargs = dict(
|
||||
fn=check_last_input,
|
||||
inputs=[negative_prompt],
|
||||
outputs=[txt2img_sdxl_status],
|
||||
concurrency_limit=1,
|
||||
)
|
||||
|
||||
txt2img_sdxl_autogen.change(
|
||||
fn=autogen_changed,
|
||||
inputs=[txt2img_sdxl_autogen],
|
||||
outputs=None,
|
||||
)
|
||||
prompt_submit = prompt.submit(**status_kwargs).then(**kwargs)
|
||||
neg_prompt_submit = negative_prompt.submit(**status_kwargs).then(
|
||||
**kwargs
|
||||
)
|
||||
generate_click = stable_diffusion.click(**status_kwargs).then(**kwargs)
|
||||
stop_batch.click(
|
||||
fn=cancel_sd,
|
||||
cancels=[
|
||||
prompt_submit,
|
||||
neg_prompt_submit,
|
||||
generate_click,
|
||||
],
|
||||
)
|
||||
|
||||
txt2img_sdxl_png_info_img.change(
|
||||
fn=import_png_metadata,
|
||||
inputs=[
|
||||
txt2img_sdxl_png_info_img,
|
||||
prompt,
|
||||
negative_prompt,
|
||||
steps,
|
||||
scheduler,
|
||||
guidance_scale,
|
||||
seed,
|
||||
width,
|
||||
height,
|
||||
txt2img_sdxl_custom_model,
|
||||
lora_weights,
|
||||
lora_hf_id,
|
||||
custom_vae,
|
||||
],
|
||||
outputs=[
|
||||
txt2img_sdxl_png_info_img,
|
||||
prompt,
|
||||
negative_prompt,
|
||||
steps,
|
||||
scheduler,
|
||||
guidance_scale,
|
||||
seed,
|
||||
width,
|
||||
height,
|
||||
txt2img_sdxl_custom_model,
|
||||
lora_weights,
|
||||
lora_hf_id,
|
||||
custom_vae,
|
||||
],
|
||||
)
|
||||
txt2img_sdxl_custom_model.change(
|
||||
fn=set_model_default_configs,
|
||||
inputs=[
|
||||
txt2img_sdxl_custom_model,
|
||||
],
|
||||
outputs=[
|
||||
prompt,
|
||||
negative_prompt,
|
||||
steps,
|
||||
scheduler,
|
||||
guidance_scale,
|
||||
width,
|
||||
height,
|
||||
custom_vae,
|
||||
txt2img_sdxl_autogen,
|
||||
],
|
||||
)
|
||||
lora_weights.change(
|
||||
fn=lora_changed,
|
||||
inputs=[lora_weights],
|
||||
outputs=[lora_tags],
|
||||
queue=True,
|
||||
)
|
||||
@@ -1,4 +1,6 @@
|
||||
import json
|
||||
import os
|
||||
import warnings
|
||||
import torch
|
||||
import time
|
||||
import sys
|
||||
@@ -35,6 +37,34 @@ from apps.stable_diffusion.src.utils import (
|
||||
resampler_list,
|
||||
)
|
||||
|
||||
# Names of all interactive fields that can be edited by user
|
||||
all_gradio_labels = [
|
||||
"txt2img_custom_model",
|
||||
"custom_vae",
|
||||
"prompt",
|
||||
"negative_prompt",
|
||||
"lora_weights",
|
||||
"lora_hf_id",
|
||||
"scheduler",
|
||||
"save_metadata_to_png",
|
||||
"save_metadata_to_json",
|
||||
"height",
|
||||
"width",
|
||||
"steps",
|
||||
"guidance_scale",
|
||||
"Low VRAM",
|
||||
"use_hiresfix",
|
||||
"resample_type",
|
||||
"hiresfix_height",
|
||||
"hiresfix_width",
|
||||
"hiresfix_strength",
|
||||
"batch_count",
|
||||
"batch_size",
|
||||
"repeatable_seeds",
|
||||
"seed",
|
||||
"device",
|
||||
]
|
||||
|
||||
# set initial values of iree_vulkan_target_triple, use_tuned and import_mlir.
|
||||
init_iree_vulkan_target_triple = args.iree_vulkan_target_triple
|
||||
init_iree_metal_target_platform = args.iree_metal_target_platform
|
||||
@@ -126,7 +156,7 @@ def txt2img_inf(
|
||||
width,
|
||||
device,
|
||||
use_lora=args.use_lora,
|
||||
use_stencil=None,
|
||||
stencils=[],
|
||||
ondemand=ondemand,
|
||||
)
|
||||
if (
|
||||
@@ -226,7 +256,7 @@ def txt2img_inf(
|
||||
width,
|
||||
device,
|
||||
use_lora=args.use_lora,
|
||||
use_stencil="None",
|
||||
stencils=[],
|
||||
ondemand=ondemand,
|
||||
)
|
||||
|
||||
@@ -280,7 +310,8 @@ def txt2img_inf(
|
||||
args.use_base_vae,
|
||||
cpu_scheduling,
|
||||
args.max_embeddings_multiples,
|
||||
use_stencil="None",
|
||||
stencils=[],
|
||||
control_mode=None,
|
||||
resample_type=resample_type,
|
||||
)
|
||||
total_time = time.time() - start_time
|
||||
@@ -302,7 +333,92 @@ def txt2img_inf(
|
||||
return generated_imgs, text_output, ""
|
||||
|
||||
|
||||
with gr.Blocks(title="Text-to-Image") as txt2img_web:
|
||||
def resource_path(relative_path):
|
||||
"""Get absolute path to resource, works for dev and for PyInstaller"""
|
||||
base_path = getattr(
|
||||
sys, "_MEIPASS", os.path.dirname(os.path.abspath(__file__))
|
||||
)
|
||||
return os.path.join(base_path, relative_path)
|
||||
|
||||
|
||||
dark_theme = resource_path("ui/css/sd_dark_theme.css")
|
||||
|
||||
|
||||
# This function export values for all fields that can be edited by user to the settings.json file in ui folder
|
||||
def export_settings(*values):
|
||||
settings_list = list(zip(all_gradio_labels, values))
|
||||
settings = {}
|
||||
|
||||
for label, value in settings_list:
|
||||
settings[label] = value
|
||||
|
||||
settings = {"txt2img": settings}
|
||||
with open("./ui/settings.json", "w") as json_file:
|
||||
json.dump(settings, json_file, indent=4)
|
||||
|
||||
|
||||
# This function loads all values for all fields that can be edited by user from the settings.json file in ui folder
|
||||
def load_settings():
|
||||
try:
|
||||
with open("./ui/settings.json", "r") as json_file:
|
||||
loaded_settings = json.load(json_file)["txt2img"]
|
||||
except (FileNotFoundError, KeyError):
|
||||
warnings.warn(
|
||||
"Settings.json file not found or 'txt2img' key is missing. Using default values for fields."
|
||||
)
|
||||
loaded_settings = (
|
||||
{}
|
||||
) # json file not existing or the data wasn't saved yet
|
||||
|
||||
return [
|
||||
loaded_settings.get(
|
||||
"txt2img_custom_model",
|
||||
os.path.basename(args.ckpt_loc)
|
||||
if args.ckpt_loc
|
||||
else "stabilityai/stable-diffusion-2-1-base",
|
||||
),
|
||||
loaded_settings.get(
|
||||
"custom_vae",
|
||||
os.path.basename(args.custom_vae) if args.custom_vae else "None",
|
||||
),
|
||||
loaded_settings.get("prompt", args.prompts[0]),
|
||||
loaded_settings.get("negative_prompt", args.negative_prompts[0]),
|
||||
loaded_settings.get("lora_weights", "None"),
|
||||
loaded_settings.get("lora_hf_id", ""),
|
||||
loaded_settings.get("scheduler", args.scheduler),
|
||||
loaded_settings.get(
|
||||
"save_metadata_to_png", args.write_metadata_to_png
|
||||
),
|
||||
loaded_settings.get(
|
||||
"save_metadata_to_json", args.save_metadata_to_json
|
||||
),
|
||||
loaded_settings.get("height", args.height),
|
||||
loaded_settings.get("width", args.width),
|
||||
loaded_settings.get("steps", args.steps),
|
||||
loaded_settings.get("guidance_scale", args.guidance_scale),
|
||||
loaded_settings.get("Low VRAM", args.ondemand),
|
||||
loaded_settings.get("use_hiresfix", args.use_hiresfix),
|
||||
loaded_settings.get("resample_type", args.resample_type),
|
||||
loaded_settings.get("hiresfix_height", args.hiresfix_height),
|
||||
loaded_settings.get("hiresfix_width", args.hiresfix_width),
|
||||
loaded_settings.get("hiresfix_strength", args.hiresfix_strength),
|
||||
loaded_settings.get("batch_count", args.batch_count),
|
||||
loaded_settings.get("batch_size", args.batch_size),
|
||||
loaded_settings.get("repeatable_seeds", args.repeatable_seeds),
|
||||
loaded_settings.get("seed", args.seed),
|
||||
loaded_settings.get("device", available_devices[0]),
|
||||
]
|
||||
|
||||
|
||||
# This function loads the user's exported default settings on the start of program
|
||||
def onload_load_settings():
|
||||
loaded_data = load_settings()
|
||||
structured_data = settings_list = list(zip(all_gradio_labels, loaded_data))
|
||||
return dict(structured_data)
|
||||
|
||||
|
||||
default_settings = onload_load_settings()
|
||||
with gr.Blocks(title="Text-to-Image", css=dark_theme) as txt2img_web:
|
||||
with gr.Row(elem_id="ui_title"):
|
||||
nod_logo = Image.open(nodlogo_loc)
|
||||
with gr.Row():
|
||||
@@ -314,6 +430,7 @@ with gr.Blocks(title="Text-to-Image") as txt2img_web:
|
||||
elem_id="top_logo",
|
||||
width=150,
|
||||
height=50,
|
||||
show_download_button=False,
|
||||
)
|
||||
with gr.Row(elem_id="ui_body"):
|
||||
with gr.Row():
|
||||
@@ -326,9 +443,9 @@ with gr.Blocks(title="Text-to-Image") as txt2img_web:
|
||||
label=f"Models",
|
||||
info="Select, or enter HuggingFace Model ID or Civitai model download URL",
|
||||
elem_id="custom_model",
|
||||
value=os.path.basename(args.ckpt_loc)
|
||||
if args.ckpt_loc
|
||||
else "stabilityai/stable-diffusion-2-1-base",
|
||||
value=default_settings.get(
|
||||
"txt2img_custom_model"
|
||||
),
|
||||
choices=get_custom_model_files()
|
||||
+ predefined_models,
|
||||
allow_custom_value=True,
|
||||
@@ -343,9 +460,7 @@ with gr.Blocks(title="Text-to-Image") as txt2img_web:
|
||||
label=f"VAE Models",
|
||||
info=t2i_vae_info,
|
||||
elem_id="custom_model",
|
||||
value=os.path.basename(args.custom_vae)
|
||||
if args.custom_vae
|
||||
else "None",
|
||||
value=default_settings.get("custom_vae"),
|
||||
choices=["None"]
|
||||
+ get_custom_model_files("vae"),
|
||||
allow_custom_value=True,
|
||||
@@ -356,20 +471,24 @@ with gr.Blocks(title="Text-to-Image") as txt2img_web:
|
||||
label="Import PNG info",
|
||||
elem_id="txt2img_prompt_image",
|
||||
type="pil",
|
||||
tool="None",
|
||||
visible=True,
|
||||
)
|
||||
|
||||
with gr.Group(elem_id="prompt_box_outer"):
|
||||
prompt = gr.Textbox(
|
||||
label="Prompt",
|
||||
value=args.prompts[0],
|
||||
value=default_settings.get("prompt"),
|
||||
lines=2,
|
||||
elem_id="prompt_box",
|
||||
)
|
||||
# TODO: coming soon
|
||||
autogen = gr.Checkbox(
|
||||
label="Continuous Generation",
|
||||
visible=False,
|
||||
)
|
||||
negative_prompt = gr.Textbox(
|
||||
label="Negative Prompt",
|
||||
value=args.negative_prompts[0],
|
||||
value=default_settings.get("negative_prompt"),
|
||||
lines=2,
|
||||
elem_id="negative_prompt_box",
|
||||
)
|
||||
@@ -384,7 +503,7 @@ with gr.Blocks(title="Text-to-Image") as txt2img_web:
|
||||
label=f"Standalone LoRA Weights",
|
||||
info=t2i_lora_info,
|
||||
elem_id="lora_weights",
|
||||
value="None",
|
||||
value=default_settings.get("lora_weights"),
|
||||
choices=["None"] + get_custom_model_files("lora"),
|
||||
allow_custom_value=True,
|
||||
)
|
||||
@@ -394,7 +513,7 @@ with gr.Blocks(title="Text-to-Image") as txt2img_web:
|
||||
"weights dropdown on the left if you want to use "
|
||||
"a standalone HuggingFace model ID for LoRA here "
|
||||
"e.g: sayakpaul/sd-model-finetuned-lora-t4",
|
||||
value="",
|
||||
value=default_settings.get("lora_hf_id"),
|
||||
label="HuggingFace Model ID",
|
||||
lines=3,
|
||||
)
|
||||
@@ -408,33 +527,37 @@ with gr.Blocks(title="Text-to-Image") as txt2img_web:
|
||||
scheduler = gr.Dropdown(
|
||||
elem_id="scheduler",
|
||||
label="Scheduler",
|
||||
value=args.scheduler,
|
||||
value=default_settings.get("scheduler"),
|
||||
choices=scheduler_list,
|
||||
allow_custom_value=True,
|
||||
)
|
||||
with gr.Column():
|
||||
save_metadata_to_png = gr.Checkbox(
|
||||
label="Save prompt information to PNG",
|
||||
value=args.write_metadata_to_png,
|
||||
value=default_settings.get(
|
||||
"save_metadata_to_png"
|
||||
),
|
||||
interactive=True,
|
||||
)
|
||||
save_metadata_to_json = gr.Checkbox(
|
||||
label="Save prompt information to JSON file",
|
||||
value=args.save_metadata_to_json,
|
||||
value=default_settings.get(
|
||||
"save_metadata_to_json"
|
||||
),
|
||||
interactive=True,
|
||||
)
|
||||
with gr.Row():
|
||||
height = gr.Slider(
|
||||
384,
|
||||
768,
|
||||
value=args.height,
|
||||
value=default_settings.get("height"),
|
||||
step=8,
|
||||
label="Height",
|
||||
)
|
||||
width = gr.Slider(
|
||||
384,
|
||||
768,
|
||||
value=args.width,
|
||||
value=default_settings.get("width"),
|
||||
step=8,
|
||||
label="Width",
|
||||
)
|
||||
@@ -459,18 +582,22 @@ with gr.Blocks(title="Text-to-Image") as txt2img_web:
|
||||
with gr.Row():
|
||||
with gr.Column(scale=3):
|
||||
steps = gr.Slider(
|
||||
1, 100, value=args.steps, step=1, label="Steps"
|
||||
1,
|
||||
100,
|
||||
value=default_settings.get("steps"),
|
||||
step=1,
|
||||
label="Steps",
|
||||
)
|
||||
with gr.Column(scale=3):
|
||||
guidance_scale = gr.Slider(
|
||||
0,
|
||||
50,
|
||||
value=args.guidance_scale,
|
||||
value=default_settings.get("guidance_scale"),
|
||||
step=0.1,
|
||||
label="CFG Scale",
|
||||
)
|
||||
ondemand = gr.Checkbox(
|
||||
value=args.ondemand,
|
||||
value=default_settings.get("Low VRAM"),
|
||||
label="Low VRAM",
|
||||
interactive=True,
|
||||
)
|
||||
@@ -479,7 +606,7 @@ with gr.Blocks(title="Text-to-Image") as txt2img_web:
|
||||
batch_count = gr.Slider(
|
||||
1,
|
||||
100,
|
||||
value=args.batch_count,
|
||||
value=default_settings.get("batch_count"),
|
||||
step=1,
|
||||
label="Batch Count",
|
||||
interactive=True,
|
||||
@@ -490,23 +617,23 @@ with gr.Blocks(title="Text-to-Image") as txt2img_web:
|
||||
4,
|
||||
value=args.batch_size,
|
||||
step=1,
|
||||
label="Batch Size",
|
||||
label=default_settings.get("batch_size"),
|
||||
interactive=True,
|
||||
)
|
||||
repeatable_seeds = gr.Checkbox(
|
||||
args.repeatable_seeds,
|
||||
default_settings.get("repeatable_seeds"),
|
||||
label="Repeatable Seeds",
|
||||
)
|
||||
with gr.Accordion(label="Hires Fix Options", open=False):
|
||||
with gr.Group():
|
||||
with gr.Row():
|
||||
use_hiresfix = gr.Checkbox(
|
||||
value=args.use_hiresfix,
|
||||
value=default_settings.get("use_hiresfix"),
|
||||
label="Use Hires Fix",
|
||||
interactive=True,
|
||||
)
|
||||
resample_type = gr.Dropdown(
|
||||
value=args.resample_type,
|
||||
value=default_settings.get("resample_type"),
|
||||
choices=resampler_list,
|
||||
label="Resample Type",
|
||||
allow_custom_value=False,
|
||||
@@ -514,34 +641,34 @@ with gr.Blocks(title="Text-to-Image") as txt2img_web:
|
||||
hiresfix_height = gr.Slider(
|
||||
384,
|
||||
768,
|
||||
value=args.hiresfix_height,
|
||||
value=default_settings.get("hiresfix_height"),
|
||||
step=8,
|
||||
label="Hires Fix Height",
|
||||
)
|
||||
hiresfix_width = gr.Slider(
|
||||
384,
|
||||
768,
|
||||
value=args.hiresfix_width,
|
||||
value=default_settings.get("hiresfix_width"),
|
||||
step=8,
|
||||
label="Hires Fix Width",
|
||||
)
|
||||
hiresfix_strength = gr.Slider(
|
||||
0,
|
||||
1,
|
||||
value=args.hiresfix_strength,
|
||||
value=default_settings.get("hiresfix_strength"),
|
||||
step=0.01,
|
||||
label="Hires Fix Denoising Strength",
|
||||
)
|
||||
with gr.Row():
|
||||
seed = gr.Textbox(
|
||||
value=args.seed,
|
||||
value=default_settings.get("seed"),
|
||||
label="Seed",
|
||||
info="An integer or a JSON list of integers, -1 for random",
|
||||
)
|
||||
device = gr.Dropdown(
|
||||
elem_id="device",
|
||||
label="Device",
|
||||
value=available_devices[0],
|
||||
value=default_settings.get("device"),
|
||||
choices=available_devices,
|
||||
allow_custom_value=True,
|
||||
)
|
||||
@@ -592,6 +719,75 @@ with gr.Blocks(title="Text-to-Image") as txt2img_web:
|
||||
txt2img_sendto_upscaler = gr.Button(
|
||||
value="SendTo Upscaler"
|
||||
)
|
||||
with gr.Row():
|
||||
with gr.Column(scale=2):
|
||||
export_defaults = gr.Button(
|
||||
value="Load Default Settings"
|
||||
)
|
||||
export_defaults.click(
|
||||
fn=load_settings,
|
||||
inputs=[],
|
||||
outputs=[
|
||||
txt2img_custom_model,
|
||||
custom_vae,
|
||||
prompt,
|
||||
negative_prompt,
|
||||
lora_weights,
|
||||
lora_hf_id,
|
||||
scheduler,
|
||||
save_metadata_to_png,
|
||||
save_metadata_to_json,
|
||||
height,
|
||||
width,
|
||||
steps,
|
||||
guidance_scale,
|
||||
ondemand,
|
||||
use_hiresfix,
|
||||
resample_type,
|
||||
hiresfix_height,
|
||||
hiresfix_width,
|
||||
hiresfix_strength,
|
||||
batch_count,
|
||||
batch_size,
|
||||
repeatable_seeds,
|
||||
seed,
|
||||
device,
|
||||
],
|
||||
)
|
||||
with gr.Column(scale=2):
|
||||
export_defaults = gr.Button(
|
||||
value="Export Default Settings"
|
||||
)
|
||||
export_defaults.click(
|
||||
fn=export_settings,
|
||||
inputs=[
|
||||
txt2img_custom_model,
|
||||
custom_vae,
|
||||
prompt,
|
||||
negative_prompt,
|
||||
lora_weights,
|
||||
lora_hf_id,
|
||||
scheduler,
|
||||
save_metadata_to_png,
|
||||
save_metadata_to_json,
|
||||
height,
|
||||
width,
|
||||
steps,
|
||||
guidance_scale,
|
||||
ondemand,
|
||||
use_hiresfix,
|
||||
resample_type,
|
||||
hiresfix_height,
|
||||
hiresfix_width,
|
||||
hiresfix_strength,
|
||||
batch_count,
|
||||
batch_size,
|
||||
repeatable_seeds,
|
||||
seed,
|
||||
device,
|
||||
],
|
||||
outputs=[],
|
||||
)
|
||||
|
||||
kwargs = dict(
|
||||
fn=txt2img_inf,
|
||||
@@ -680,12 +876,12 @@ with gr.Blocks(title="Text-to-Image") as txt2img_web:
|
||||
# SharkEulerDiscrete doesn't work with img2img which hires_fix uses
|
||||
def set_compatible_schedulers(hires_fix_selected):
|
||||
if hires_fix_selected:
|
||||
return gr.Dropdown.update(
|
||||
return gr.Dropdown(
|
||||
choices=scheduler_list_cpu_only,
|
||||
value="DEISMultistep",
|
||||
)
|
||||
else:
|
||||
return gr.Dropdown.update(
|
||||
return gr.Dropdown(
|
||||
choices=scheduler_list,
|
||||
value="SharkEulerDiscrete",
|
||||
)
|
||||
|
||||
@@ -120,7 +120,7 @@ def upscaler_inf(
|
||||
args.width,
|
||||
device,
|
||||
use_lora=args.use_lora,
|
||||
use_stencil=None,
|
||||
stencils=[],
|
||||
ondemand=ondemand,
|
||||
)
|
||||
if (
|
||||
@@ -258,6 +258,7 @@ with gr.Blocks(title="Upscaler") as upscaler_web:
|
||||
elem_id="top_logo",
|
||||
width=150,
|
||||
height=50,
|
||||
show_download_button=False,
|
||||
)
|
||||
with gr.Row(elem_id="ui_body"):
|
||||
with gr.Row():
|
||||
|
||||
@@ -4,6 +4,7 @@ import glob
|
||||
import math
|
||||
import json
|
||||
import safetensors
|
||||
import gradio as gr
|
||||
|
||||
from pathlib import Path
|
||||
from apps.stable_diffusion.src import args
|
||||
@@ -30,7 +31,7 @@ class Config:
|
||||
width: int
|
||||
device: str
|
||||
use_lora: str
|
||||
use_stencil: str
|
||||
stencils: list[str]
|
||||
ondemand: str # should this be expecting a bool instead?
|
||||
|
||||
|
||||
@@ -64,9 +65,11 @@ scheduler_list_cpu_only = [
|
||||
"DPMSolverSinglestep",
|
||||
"DDPM",
|
||||
"HeunDiscrete",
|
||||
"LCMScheduler",
|
||||
]
|
||||
scheduler_list = scheduler_list_cpu_only + [
|
||||
"SharkEulerDiscrete",
|
||||
"SharkEulerAncestralDiscrete",
|
||||
]
|
||||
|
||||
predefined_models = [
|
||||
@@ -87,6 +90,10 @@ predefined_paint_models = [
|
||||
predefined_upscaler_models = [
|
||||
"stabilityai/stable-diffusion-x4-upscaler",
|
||||
]
|
||||
predefined_sdxl_models = [
|
||||
"stabilityai/sdxl-turbo",
|
||||
"stabilityai/stable-diffusion-xl-base-1.0",
|
||||
]
|
||||
|
||||
|
||||
def resource_path(relative_path):
|
||||
@@ -140,6 +147,12 @@ def get_custom_model_files(model="models", custom_checkpoint_type=""):
|
||||
)
|
||||
]
|
||||
match custom_checkpoint_type:
|
||||
case "sdxl":
|
||||
files = [
|
||||
val
|
||||
for val in files
|
||||
if any(x in val for x in ["XL", "xl", "Xl"])
|
||||
]
|
||||
case "inpainting":
|
||||
files = [
|
||||
val
|
||||
@@ -247,6 +260,99 @@ def cancel_sd():
|
||||
pass
|
||||
|
||||
|
||||
def set_model_default_configs(model_ckpt_or_id, jsonconfig=None):
|
||||
import gradio as gr
|
||||
|
||||
config_modelname = default_config_exists(model_ckpt_or_id)
|
||||
if jsonconfig:
|
||||
return get_config_from_json(jsonconfig)
|
||||
elif config_modelname:
|
||||
return default_configs[config_modelname]
|
||||
# TODO: Use HF metadata to setup pipeline if available
|
||||
# elif is_valid_hf_id(model_ckpt_or_id):
|
||||
# return get_HF_default_configs(model_ckpt_or_id)
|
||||
else:
|
||||
# We don't have default metadata to setup a good config. Do not change configs.
|
||||
return [
|
||||
gr.Textbox(label="Prompt", interactive=True, visible=True),
|
||||
gr.Textbox(label="Negative Prompt", interactive=True),
|
||||
gr.update(),
|
||||
gr.update(),
|
||||
gr.update(),
|
||||
gr.update(),
|
||||
gr.update(),
|
||||
gr.update(),
|
||||
gr.Checkbox(
|
||||
label="Auto-Generate",
|
||||
visible=False,
|
||||
interactive=False,
|
||||
value=False,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
def get_config_from_json(model_ckpt_or_id, jsonconfig):
|
||||
# TODO: make this work properly. It is currently not user-exposed.
|
||||
cfgdata = json.load(jsonconfig)
|
||||
return [
|
||||
cfgdata["prompt_box_behavior"],
|
||||
cfgdata["neg_prompt_box_behavior"],
|
||||
cfgdata["steps"],
|
||||
cfgdata["scheduler"],
|
||||
cfgdata["guidance_scale"],
|
||||
cfgdata["width"],
|
||||
cfgdata["height"],
|
||||
cfgdata["custom_vae"],
|
||||
]
|
||||
|
||||
|
||||
def default_config_exists(model_ckpt_or_id):
|
||||
if model_ckpt_or_id in [
|
||||
"stabilityai/sdxl-turbo",
|
||||
"stabilityai/stable_diffusion-xl-base-1.0",
|
||||
]:
|
||||
return model_ckpt_or_id
|
||||
elif "turbo" in model_ckpt_or_id.lower():
|
||||
return "stabilityai/sdxl-turbo"
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
default_configs = {
|
||||
"stabilityai/sdxl-turbo": [
|
||||
gr.Textbox(label="", interactive=False, value=None, visible=False),
|
||||
gr.Textbox(
|
||||
label="Prompt",
|
||||
value="masterpiece, a graceful shark leaping out of the water to catch a fish, eclipsing the sunset, epic, rays of light, silhouette",
|
||||
),
|
||||
gr.Slider(0, 10, value=2),
|
||||
gr.Dropdown(value="EulerAncestralDiscrete"),
|
||||
gr.Slider(0, value=0),
|
||||
512,
|
||||
512,
|
||||
"madebyollin/sdxl-vae-fp16-fix",
|
||||
gr.Checkbox(
|
||||
label="Auto-Generate", visible=False, interactive=True, value=False
|
||||
),
|
||||
],
|
||||
"stabilityai/stable-diffusion-xl-base-1.0": [
|
||||
gr.Textbox(label="Prompt", interactive=True, visible=True),
|
||||
gr.Textbox(label="Negative Prompt", interactive=True),
|
||||
40,
|
||||
"EulerDiscrete",
|
||||
7.5,
|
||||
gr.Slider(value=768, interactive=True),
|
||||
gr.Slider(value=768, interactive=True),
|
||||
"madebyollin/sdxl-vae-fp16-fix",
|
||||
gr.Checkbox(
|
||||
label="Auto-Generate",
|
||||
visible=False,
|
||||
interactive=False,
|
||||
value=False,
|
||||
),
|
||||
],
|
||||
}
|
||||
|
||||
nodlogo_loc = resource_path("logos/nod-logo.png")
|
||||
nodicon_loc = resource_path("logos/nod-icon.png")
|
||||
available_devices = get_available_devices()
|
||||
|
||||
@@ -26,7 +26,7 @@ diffusers
|
||||
accelerate
|
||||
scipy
|
||||
ftfy
|
||||
gradio==3.44.3
|
||||
gradio==4.7.1
|
||||
altair
|
||||
omegaconf
|
||||
# 0.3.2 doesn't have binaries for arm64
|
||||
|
||||
@@ -83,7 +83,7 @@ def clean_device_info(raw_device):
|
||||
device_id = int(device_id)
|
||||
|
||||
if device not in ["rocm", "vulkan"]:
|
||||
device_id = ""
|
||||
device_id = None
|
||||
if device in ["rocm", "vulkan"] and device_id == None:
|
||||
device_id = 0
|
||||
return device, device_id
|
||||
@@ -355,11 +355,15 @@ def get_iree_module(
|
||||
device = iree_device_map(device)
|
||||
print("registering device id: ", device_idx)
|
||||
haldriver = ireert.get_driver(device)
|
||||
hal_device_id = haldriver.query_available_devices()[device_idx][
|
||||
"device_id"
|
||||
]
|
||||
haldevice = haldriver.create_device(
|
||||
haldriver.query_available_devices()[device_idx]["device_id"],
|
||||
hal_device_id,
|
||||
allocators=shark_args.device_allocator,
|
||||
)
|
||||
config = ireert.Config(device=haldevice)
|
||||
config.id = hal_device_id
|
||||
else:
|
||||
config = get_iree_runtime_config(device)
|
||||
vm_module = ireert.VmModule.from_buffer(
|
||||
@@ -398,15 +402,16 @@ def load_vmfb_using_mmap(
|
||||
haldriver = ireert.get_driver(device)
|
||||
dl.log(f"ireert.get_driver()")
|
||||
|
||||
hal_device_id = haldriver.query_available_devices()[device_idx][
|
||||
"device_id"
|
||||
]
|
||||
haldevice = haldriver.create_device(
|
||||
haldriver.query_available_devices()[device_idx]["device_id"],
|
||||
hal_device_id,
|
||||
allocators=shark_args.device_allocator,
|
||||
)
|
||||
dl.log(f"ireert.create_device()")
|
||||
config = ireert.Config(device=haldevice)
|
||||
config.id = haldriver.query_available_devices()[device_idx][
|
||||
"device_id"
|
||||
]
|
||||
config.id = hal_device_id
|
||||
dl.log(f"ireert.Config()")
|
||||
else:
|
||||
config = get_iree_runtime_config(device)
|
||||
|
||||
@@ -183,6 +183,9 @@ def get_iree_vulkan_args(device_num=0, extra_args=[]):
|
||||
# res_vulkan_flag = ["--iree-flow-demote-i64-to-i32"]
|
||||
|
||||
res_vulkan_flag = []
|
||||
res_vulkan_flag += [
|
||||
"--iree-stream-resource-max-allocation-size=3221225472"
|
||||
]
|
||||
vulkan_triple_flag = None
|
||||
for arg in extra_args:
|
||||
if "-iree-vulkan-target-triple=" in arg:
|
||||
@@ -204,7 +207,9 @@ def get_iree_vulkan_args(device_num=0, extra_args=[]):
|
||||
@functools.cache
|
||||
def get_iree_vulkan_runtime_flags():
|
||||
vulkan_runtime_flags = [
|
||||
f"--vulkan_validation_layers={'true' if shark_args.vulkan_validation_layers else 'false'}",
|
||||
f"--vulkan_validation_layers={'true' if shark_args.vulkan_debug_utils else 'false'}",
|
||||
f"--vulkan_debug_verbosity={'4' if shark_args.vulkan_debug_utils else '0'}"
|
||||
f"--vulkan-robust-buffer-access={'true' if shark_args.vulkan_debug_utils else 'false'}",
|
||||
]
|
||||
return vulkan_runtime_flags
|
||||
|
||||
|
||||
62
shark/tests/test_txt2img_ui.py
Normal file
62
shark/tests/test_txt2img_ui.py
Normal file
@@ -0,0 +1,62 @@
|
||||
import unittest
|
||||
from unittest.mock import mock_open, patch
|
||||
|
||||
from apps.stable_diffusion.web.ui.txt2img_ui import (
|
||||
export_settings,
|
||||
load_settings,
|
||||
all_gradio_labels,
|
||||
)
|
||||
|
||||
|
||||
class TestExportSettings(unittest.TestCase):
|
||||
@patch("builtins.open", new_callable=mock_open)
|
||||
@patch("json.dump")
|
||||
def test_export_settings(self, mock_json_dump, mock_file):
|
||||
test_values = ["value1", "value2", "value3"]
|
||||
expected_output = {
|
||||
"txt2img": {
|
||||
label: value
|
||||
for label, value in zip(all_gradio_labels, test_values)
|
||||
}
|
||||
}
|
||||
|
||||
export_settings(*test_values)
|
||||
mock_file.assert_called_once_with("./ui/settings.json", "w")
|
||||
mock_json_dump.assert_called_once_with(
|
||||
expected_output, mock_file(), indent=4
|
||||
)
|
||||
|
||||
@patch("apps.stable_diffusion.web.ui.txt2img_ui.json.load")
|
||||
@patch(
|
||||
"builtins.open",
|
||||
new_callable=mock_open,
|
||||
read_data='{"txt2img": {"some_setting": "some_value"}}',
|
||||
)
|
||||
def test_load_settings_file_exists(self, mock_file, mock_json_load):
|
||||
mock_json_load.return_value = {
|
||||
"txt2img": {
|
||||
"txt2img_custom_model": "custom_model_value",
|
||||
"custom_vae": "custom_vae_value",
|
||||
}
|
||||
}
|
||||
|
||||
settings = load_settings()
|
||||
self.assertEqual(settings[0], "custom_model_value")
|
||||
self.assertEqual(settings[1], "custom_vae_value")
|
||||
|
||||
@patch("apps.stable_diffusion.web.ui.txt2img_ui.json.load")
|
||||
@patch("builtins.open", side_effect=FileNotFoundError)
|
||||
def test_load_settings_file_not_found(self, mock_file, mock_json_load):
|
||||
settings = load_settings()
|
||||
|
||||
default_lora_weights = "None"
|
||||
self.assertEqual(settings[4], default_lora_weights)
|
||||
|
||||
@patch("apps.stable_diffusion.web.ui.txt2img_ui.json.load")
|
||||
@patch("builtins.open", new_callable=mock_open, read_data="{}")
|
||||
def test_load_settings_key_error(self, mock_file, mock_json_load):
|
||||
mock_json_load.return_value = {}
|
||||
|
||||
settings = load_settings()
|
||||
default_lora_weights = "None"
|
||||
self.assertEqual(settings[4], default_lora_weights)
|
||||
Reference in New Issue
Block a user