(Studio) Update gradio and multicontrolnet UI. (#2001)

* (Studio) Update gradio and multicontrolnet UI.

* Fixes for outputgallery, exe build

* Fix image return types.

* Update Gradio to 4.7.1

* Fix send buttons and hiresfix

* Various bugfixes and SDXL additions.

* More UI fixes and txt2img_sdxl presets.

*enable SDXL-Turbo and custom models, custom VAE for sdxl

* img2img ui tweaks
This commit is contained in:
Ean Garvey
2023-12-04 12:37:51 -06:00
committed by GitHub
parent 9c50edc664
commit d72da3801f
27 changed files with 1121 additions and 194 deletions

View File

@@ -19,6 +19,9 @@ a = Analysis(
win_private_assemblies=False,
cipher=block_cipher,
noarchive=False,
module_collection_mode={
'gradio': 'py', # Collect gradio package as source .py files
},
)
pyz = PYZ(a.pure, a.zipped_data, cipher=block_cipher)

View File

@@ -31,6 +31,7 @@ datas += copy_metadata("Pillow")
datas += copy_metadata("sentencepiece")
datas += copy_metadata("pyyaml")
datas += copy_metadata("huggingface-hub")
datas += copy_metadata("gradio")
datas += collect_data_files("torch")
datas += collect_data_files("tokenizers")
datas += collect_data_files("tiktoken")
@@ -75,6 +76,7 @@ datas += [
# hidden imports for pyinstaller
hiddenimports = ["shark", "shark.shark_inference", "apps"]
hiddenimports += [x for x in collect_submodules("skimage") if "tests" not in x]
hiddenimports += [x for x in collect_submodules("gradio") if "tests" not in x]
hiddenimports += [
x for x in collect_submodules("diffusers") if "tests" not in x
]
@@ -85,4 +87,4 @@ hiddenimports += [
if not any(kw in x for kw in blacklist)
]
hiddenimports += [x for x in collect_submodules("iree") if "tests" not in x]
hiddenimports += ["iree._runtime", "iree.compiler._mlir_libs._mlir.ir"]
hiddenimports += ["iree._runtime"]

View File

@@ -109,7 +109,7 @@ def process_vmfb_ir_sdxl(extended_model_name, model_name, device, precision):
if "vulkan" in device:
_device = args.iree_vulkan_target_triple
_device = _device.replace("-", "_")
vmfb_path = Path(extended_model_name_for_vmfb + f"_{_device}.vmfb")
vmfb_path = Path(extended_model_name_for_vmfb + f"_vulkan.vmfb")
if vmfb_path.exists():
shark_module = SharkInference(
None,
@@ -436,24 +436,48 @@ class SharkifyStableDiffusionModel:
super().__init__()
self.vae = None
if custom_vae == "":
print(f"Loading default vae, with target {model_id}")
self.vae = AutoencoderKL.from_pretrained(
model_id,
subfolder="vae",
low_cpu_mem_usage=low_cpu_mem_usage,
)
elif not isinstance(custom_vae, dict):
self.vae = AutoencoderKL.from_pretrained(
custom_vae,
subfolder="vae",
low_cpu_mem_usage=low_cpu_mem_usage,
)
precision = "fp16" if "fp16" in custom_vae else None
print(f"Loading custom vae, with target {custom_vae}")
if os.path.exists(custom_vae):
self.vae = AutoencoderKL.from_pretrained(
custom_vae,
low_cpu_mem_usage=low_cpu_mem_usage,
)
else:
custom_vae = "/".join(
[
custom_vae.split("/")[-2].split("\\")[-1],
custom_vae.split("/")[-1],
]
)
print("Using hub to get custom vae")
try:
self.vae = AutoencoderKL.from_pretrained(
custom_vae,
low_cpu_mem_usage=low_cpu_mem_usage,
variant=precision,
)
except:
self.vae = AutoencoderKL.from_pretrained(
custom_vae,
low_cpu_mem_usage=low_cpu_mem_usage,
)
else:
print(f"Loading custom vae, with state {custom_vae}")
self.vae = AutoencoderKL.from_pretrained(
model_id,
subfolder="vae",
low_cpu_mem_usage=low_cpu_mem_usage,
)
self.vae.load_state_dict(custom_vae)
self.base_vae = base_vae
def forward(self, latents):
image = self.vae.decode(latents / 0.13025, return_dict=False)[
@@ -465,7 +489,12 @@ class SharkifyStableDiffusionModel:
inputs = tuple(self.inputs["vae"])
# Make sure the VAE is in float32 mode, as it overflows in float16 as per SDXL
# pipeline.
is_f16 = False
if not self.custom_vae:
is_f16 = False
elif "16" in self.custom_vae:
is_f16 = True
else:
is_f16 = False
save_dir = os.path.join(self.sharktank_dir, self.model_name["vae"])
if self.debug:
os.makedirs(save_dir, exist_ok=True)
@@ -917,11 +946,19 @@ class SharkifyStableDiffusionModel:
low_cpu_mem_usage=False,
):
super().__init__()
self.unet = UNet2DConditionModel.from_pretrained(
model_id,
subfolder="unet",
low_cpu_mem_usage=low_cpu_mem_usage,
)
try:
self.unet = UNet2DConditionModel.from_pretrained(
model_id,
subfolder="unet",
low_cpu_mem_usage=low_cpu_mem_usage,
variant="fp16",
)
except:
self.unet = UNet2DConditionModel.from_pretrained(
model_id,
subfolder="unet",
low_cpu_mem_usage=low_cpu_mem_usage,
)
if (
args.attention_slicing is not None
and args.attention_slicing != "none"

View File

@@ -123,7 +123,10 @@ def get_clip():
return get_shark_model(bucket, model_name, iree_flags)
def get_tokenizer(subfolder="tokenizer"):
def get_tokenizer(subfolder="tokenizer", hf_model_id=None):
if hf_model_id is not None:
args.hf_model_id = hf_model_id
tokenizer = CLIPTokenizer.from_pretrained(
args.hf_model_id, subfolder=subfolder
)

View File

@@ -158,7 +158,10 @@ class Image2ImagePipeline(StableDiffusionPipeline):
use_base_vae,
cpu_scheduling,
max_embeddings_multiples,
stencils,
images,
resample_type,
control_mode,
):
# prompts and negative prompts must be a list.
if isinstance(prompts, str):

View File

@@ -18,7 +18,10 @@ from diffusers import (
KDPM2AncestralDiscreteScheduler,
HeunDiscreteScheduler,
)
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.schedulers import (
SharkEulerDiscreteScheduler,
SharkEulerAncestralDiscreteScheduler,
)
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
StableDiffusionPipeline,
)

View File

@@ -16,7 +16,10 @@ from diffusers import (
KDPM2AncestralDiscreteScheduler,
HeunDiscreteScheduler,
)
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.schedulers import (
SharkEulerDiscreteScheduler,
SharkEulerAncestralDiscreteScheduler,
)
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
StableDiffusionPipeline,
)
@@ -38,6 +41,7 @@ class Text2ImageSDXLPipeline(StableDiffusionPipeline):
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
SharkEulerAncestralDiscreteScheduler,
DEISMultistepScheduler,
DDPMScheduler,
DPMSolverSinglestepScheduler,
@@ -48,8 +52,10 @@ class Text2ImageSDXLPipeline(StableDiffusionPipeline):
import_mlir: bool,
use_lora: str,
ondemand: bool,
is_fp32_vae: bool,
):
super().__init__(scheduler, sd_model, import_mlir, use_lora, ondemand)
self.is_fp32_vae = is_fp32_vae
def prepare_latents(
self,
@@ -203,10 +209,10 @@ class Text2ImageSDXLPipeline(StableDiffusionPipeline):
# Img latents -> PIL images.
all_imgs = []
self.load_vae()
# imgs = self.decode_latents_sdxl(None)
# all_imgs.extend(imgs)
for i in range(0, latents.shape[0], batch_size):
imgs = self.decode_latents_sdxl(latents[i : i + batch_size])
imgs = self.decode_latents_sdxl(
latents[i : i + batch_size], is_fp32_vae=self.is_fp32_vae
)
all_imgs.extend(imgs)
if self.ondemand:
self.unload_vae()

View File

@@ -20,7 +20,10 @@ from diffusers import (
HeunDiscreteScheduler,
)
from shark.shark_inference import SharkInference
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
from apps.stable_diffusion.src.schedulers import (
SharkEulerDiscreteScheduler,
SharkEulerAncestralDiscreteScheduler,
)
from apps.stable_diffusion.src.models import (
SharkifyStableDiffusionModel,
get_vae,
@@ -52,6 +55,7 @@ class StableDiffusionPipeline:
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
SharkEulerDiscreteScheduler,
SharkEulerAncestralDiscreteScheduler,
DEISMultistepScheduler,
DDPMScheduler,
DPMSolverSinglestepScheduler,
@@ -62,6 +66,7 @@ class StableDiffusionPipeline:
import_mlir: bool,
use_lora: str,
ondemand: bool,
is_f32_vae: bool = False,
):
self.vae = None
self.text_encoder = None
@@ -69,14 +74,15 @@ class StableDiffusionPipeline:
self.unet = None
self.unet_512 = None
self.model_max_length = 77
self.scheduler = scheduler
# TODO: Implement using logging python utility.
self.log = ""
self.status = SD_STATE_IDLE
self.sd_model = sd_model
self.scheduler = scheduler
self.import_mlir = import_mlir
self.use_lora = use_lora
self.ondemand = ondemand
self.is_f32_vae = is_f32_vae
# TODO: Find a better workaround for fetching base_model_id early
# enough for CLIPTokenizer.
try:
@@ -202,6 +208,9 @@ class StableDiffusionPipeline:
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
hf_model_id: Optional[
str
] = "stabilityai/stable-diffusion-xl-base-1.0",
):
if prompt is not None and isinstance(prompt, str):
batch_size = 1
@@ -211,7 +220,7 @@ class StableDiffusionPipeline:
batch_size = prompt_embeds.shape[0]
# Define tokenizers and text encoders
self.tokenizer_2 = get_tokenizer("tokenizer_2")
self.tokenizer_2 = get_tokenizer("tokenizer_2", hf_model_id)
self.load_clip_sdxl()
tokenizers = (
[self.tokenizer, self.tokenizer_2]
@@ -332,7 +341,7 @@ class StableDiffusionPipeline:
gc.collect()
# TODO: Look into dtype for text_encoder_2!
prompt_embeds = prompt_embeds.to(dtype=torch.float32)
prompt_embeds = prompt_embeds.to(dtype=torch.float16)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
@@ -523,6 +532,9 @@ class StableDiffusionPipeline:
cpu_scheduling,
guidance_scale,
dtype,
mask=None,
masked_image_latents=None,
return_all_latents=False,
):
# return None
self.status = SD_STATE_IDLE
@@ -533,11 +545,22 @@ class StableDiffusionPipeline:
step_start_time = time.time()
timestep = torch.tensor([t]).to(dtype).detach().numpy()
# expand the latents if we are doing classifier free guidance
if isinstance(latents, np.ndarray):
latents = torch.tensor(latents)
latent_model_input = torch.cat([latents] * 2)
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t
).to(dtype)
)
if mask is not None and masked_image_latents is not None:
latent_model_input = torch.cat(
[
torch.from_numpy(np.asarray(latent_model_input)),
mask,
masked_image_latents,
],
dim=1,
).to(dtype)
noise_pred = self.unet(
"forward",
@@ -549,11 +572,17 @@ class StableDiffusionPipeline:
add_time_ids,
guidance_scale,
),
send_to_host=False,
send_to_host=True,
)
if not isinstance(latents, torch.Tensor):
latents = torch.from_numpy(latents).to("cpu")
noise_pred = torch.from_numpy(noise_pred).to("cpu")
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
)[0]
latents = latents.detach().numpy()
noise_pred = noise_pred.detach().numpy()
step_time = (time.time() - step_start_time) * 1000
step_time_sum += step_time
@@ -569,11 +598,15 @@ class StableDiffusionPipeline:
return latents
def decode_latents_sdxl(self, latents):
latents = latents.to(torch.float32)
def decode_latents_sdxl(self, latents, is_fp32_vae):
# latents are in unet dtype here so switch if we want to use fp32
if is_fp32_vae:
print("Casting latents to float32 for VAE")
latents = latents.to(torch.float32)
images = self.vae("forward", (latents,))
images = (torch.from_numpy(images) / 2 + 0.5).clamp(0, 1)
images = images.cpu().permute(0, 2, 3, 1).float().numpy()
images = (images * 255).round().astype("uint8")
pil_images = [Image.fromarray(image[:, :, :3]) for image in images]
@@ -666,6 +699,17 @@ class StableDiffusionPipeline:
return cls(
scheduler, sd_model, import_mlir, use_lora, ondemand, stencils
)
if cls.__name__ == "Text2ImageSDXLPipeline":
is_fp32_vae = True if "16" not in custom_vae else False
return cls(
scheduler,
sd_model,
import_mlir,
use_lora,
ondemand,
is_fp32_vae,
)
return cls(scheduler, sd_model, import_mlir, use_lora, ondemand)
# #####################################################

View File

@@ -2,3 +2,6 @@ from apps.stable_diffusion.src.schedulers.sd_schedulers import get_schedulers
from apps.stable_diffusion.src.schedulers.shark_eulerdiscrete import (
SharkEulerDiscreteScheduler,
)
from apps.stable_diffusion.src.schedulers.shark_eulerancestraldiscrete import (
SharkEulerAncestralDiscreteScheduler,
)

View File

@@ -15,9 +15,22 @@ from diffusers import (
from apps.stable_diffusion.src.schedulers.shark_eulerdiscrete import (
SharkEulerDiscreteScheduler,
)
from apps.stable_diffusion.src.schedulers.shark_eulerancestraldiscrete import (
SharkEulerAncestralDiscreteScheduler,
)
def get_schedulers(model_id):
# TODO: Robust scheduler setup on pipeline creation -- if we don't
# set batch_size here, the SHARK schedulers will
# compile with batch size = 1 regardless of whether the model
# outputs latents of a larger batch size, e.g. SDXL.
# This also goes towards enabling batch size cfg for SD in general.
# However, obviously, searching for whether the base model ID
# contains "xl" is not very robust.
batch_size = 2 if "xl" in model_id.lower() else 1
schedulers = dict()
schedulers["PNDM"] = PNDMScheduler.from_pretrained(
model_id,
@@ -84,6 +97,12 @@ def get_schedulers(model_id):
model_id,
subfolder="scheduler",
)
schedulers[
"SharkEulerAncestralDiscrete"
] = SharkEulerAncestralDiscreteScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers[
"DPMSolverSinglestep"
] = DPMSolverSinglestepScheduler.from_pretrained(
@@ -100,5 +119,6 @@ def get_schedulers(model_id):
model_id,
subfolder="scheduler",
)
schedulers["SharkEulerDiscrete"].compile()
schedulers["SharkEulerDiscrete"].compile(batch_size)
schedulers["SharkEulerAncestralDiscrete"].compile(batch_size)
return schedulers

View File

@@ -0,0 +1,251 @@
import sys
import numpy as np
from typing import List, Optional, Tuple, Union
from diffusers import (
EulerAncestralDiscreteScheduler,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.configuration_utils import register_to_config
from apps.stable_diffusion.src.utils import (
compile_through_fx,
get_shark_model,
args,
)
import torch
class SharkEulerAncestralDiscreteScheduler(EulerAncestralDiscreteScheduler):
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
prediction_type: str = "epsilon",
timestep_spacing: str = "linspace",
steps_offset: int = 0,
):
super().__init__(
num_train_timesteps,
beta_start,
beta_end,
beta_schedule,
trained_betas,
prediction_type,
timestep_spacing,
steps_offset,
)
# TODO: make it dynamic so we dont have to worry about batch size
self.batch_size = None
self.init_input_shape = None
def compile(self, batch_size=1):
SCHEDULER_BUCKET = "gs://shark_tank/stable_diffusion/schedulers"
device = args.device.split(":", 1)[0].strip()
self.batch_size = batch_size
model_input = {
"eulera": {
"output": torch.randn(
batch_size, 4, args.height // 8, args.width // 8
),
"latent": torch.randn(
batch_size, 4, args.height // 8, args.width // 8
),
"sigma": torch.tensor(1).to(torch.float32),
"sigma_from": torch.tensor(1).to(torch.float32),
"sigma_to": torch.tensor(1).to(torch.float32),
"noise": torch.randn(
batch_size, 4, args.height // 8, args.width // 8
),
},
}
example_latent = model_input["eulera"]["latent"]
example_output = model_input["eulera"]["output"]
example_noise = model_input["eulera"]["noise"]
if args.precision == "fp16":
example_latent = example_latent.half()
example_output = example_output.half()
example_noise = example_noise.half()
example_sigma = model_input["eulera"]["sigma"]
example_sigma_from = model_input["eulera"]["sigma_from"]
example_sigma_to = model_input["eulera"]["sigma_to"]
class ScalingModel(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, latent, sigma):
return latent / ((sigma**2 + 1) ** 0.5)
class SchedulerStepEpsilonModel(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(
self, noise_pred, latent, sigma, sigma_from, sigma_to, noise
):
sigma_up = (
sigma_to**2
* (sigma_from**2 - sigma_to**2)
/ sigma_from**2
) ** 0.5
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
dt = sigma_down - sigma
pred_original_sample = latent - sigma * noise_pred
derivative = (latent - pred_original_sample) / sigma
prev_sample = latent + derivative * dt
return prev_sample + noise * sigma_up
class SchedulerStepVPredictionModel(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(
self, noise_pred, sigma, sigma_from, sigma_to, latent, noise
):
sigma_up = (
sigma_to**2
* (sigma_from**2 - sigma_to**2)
/ sigma_from**2
) ** 0.5
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
dt = sigma_down - sigma
pred_original_sample = noise_pred * (
-sigma / (sigma**2 + 1) ** 0.5
) + (latent / (sigma**2 + 1))
derivative = (latent - pred_original_sample) / sigma
prev_sample = latent + derivative * dt
return prev_sample + noise * sigma_up
iree_flags = []
if len(args.iree_vulkan_target_triple) > 0:
iree_flags.append(
f"-iree-vulkan-target-triple={args.iree_vulkan_target_triple}"
)
def _import(self):
scaling_model = ScalingModel()
self.scaling_model, _ = compile_through_fx(
model=scaling_model,
inputs=(example_latent, example_sigma),
extended_model_name=f"euler_a_scale_model_input_{self.batch_size}_{args.height}_{args.width}_{device}_"
+ args.precision,
extra_args=iree_flags,
)
pred_type_model_dict = {
"epsilon": SchedulerStepEpsilonModel(),
"v_prediction": SchedulerStepVPredictionModel(),
}
step_model = pred_type_model_dict[self.config.prediction_type]
self.step_model, _ = compile_through_fx(
step_model,
(
example_output,
example_latent,
example_sigma,
example_sigma_from,
example_sigma_to,
example_noise,
),
extended_model_name=f"euler_a_step_{self.config.prediction_type}_{self.batch_size}_{args.height}_{args.width}_{device}_"
+ args.precision,
extra_args=iree_flags,
)
if args.import_mlir:
_import(self)
else:
try:
self.scaling_model = get_shark_model(
SCHEDULER_BUCKET,
"euler_a_scale_model_input_" + args.precision,
iree_flags,
)
self.step_model = get_shark_model(
SCHEDULER_BUCKET,
"euler_a_step_"
+ self.config.prediction_type
+ args.precision,
iree_flags,
)
except:
print(
"failed to download model, falling back and using import_mlir"
)
args.import_mlir = True
_import(self)
def scale_model_input(self, sample, timestep):
if self.step_index is None:
self._init_step_index(timestep)
sigma = self.sigmas[self.step_index]
return self.scaling_model(
"forward",
(
sample,
sigma,
),
send_to_host=False,
)
def step(
self,
noise_pred,
timestep,
latent,
generator: Optional[torch.Generator] = None,
return_dict: Optional[bool] = False,
):
step_inputs = []
if self.step_index is None:
self._init_step_index(timestep)
sigma = self.sigmas[self.step_index]
sigma_from = self.sigmas[self.step_index]
sigma_to = self.sigmas[self.step_index + 1]
noise = randn_tensor(
torch.Size(noise_pred.shape),
dtype=torch.float16,
device="cpu",
generator=generator,
)
step_inputs = [
noise_pred,
latent,
sigma,
sigma_from,
sigma_to,
noise,
]
# TODO: deal with dynamic inputs in turbine flow.
# update step index since we're done with the variable and will return with compiled module output.
self._step_index += 1
if noise_pred.shape[0] < self.batch_size:
for i in [0, 1, 5]:
try:
step_inputs[i] = torch.tensor(step_inputs[i])
except:
step_inputs[i] = torch.tensor(step_inputs[i].to_host())
step_inputs[i] = torch.cat(
(step_inputs[i], step_inputs[i]), axis=0
)
return self.step_model(
"forward",
tuple(step_inputs),
send_to_host=True,
)
return self.step_model(
"forward",
tuple(step_inputs),
send_to_host=False,
)

View File

@@ -2,12 +2,9 @@ import sys
import numpy as np
from typing import List, Optional, Tuple, Union
from diffusers import (
LMSDiscreteScheduler,
PNDMScheduler,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerDiscreteScheduler,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.configuration_utils import register_to_config
from apps.stable_diffusion.src.utils import (
compile_through_fx,
@@ -27,6 +24,13 @@ class SharkEulerDiscreteScheduler(EulerDiscreteScheduler):
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
prediction_type: str = "epsilon",
interpolation_type: str = "linear",
use_karras_sigmas: bool = False,
sigma_min: Optional[float] = None,
sigma_max: Optional[float] = None,
timestep_spacing: str = "linspace",
timestep_type: str = "discrete",
steps_offset: int = 0,
):
super().__init__(
num_train_timesteps,
@@ -35,20 +39,29 @@ class SharkEulerDiscreteScheduler(EulerDiscreteScheduler):
beta_schedule,
trained_betas,
prediction_type,
interpolation_type,
use_karras_sigmas,
sigma_min,
sigma_max,
timestep_spacing,
timestep_type,
steps_offset,
)
# TODO: make it dynamic so we dont have to worry about batch size
self.batch_size = None
def compile(self):
def compile(self, batch_size=1):
SCHEDULER_BUCKET = "gs://shark_tank/stable_diffusion/schedulers"
BATCH_SIZE = args.batch_size
device = args.device.split(":", 1)[0].strip()
self.batch_size = batch_size
model_input = {
"euler": {
"latent": torch.randn(
BATCH_SIZE, 4, args.height // 8, args.width // 8
batch_size, 4, args.height // 8, args.width // 8
),
"output": torch.randn(
BATCH_SIZE, 4, args.height // 8, args.width // 8
batch_size, 4, args.height // 8, args.width // 8
),
"sigma": torch.tensor(1).to(torch.float32),
"dt": torch.tensor(1).to(torch.float32),
@@ -70,12 +83,32 @@ class SharkEulerDiscreteScheduler(EulerDiscreteScheduler):
def forward(self, latent, sigma):
return latent / ((sigma**2 + 1) ** 0.5)
class SchedulerStepModel(torch.nn.Module):
class SchedulerStepEpsilonModel(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, noise_pred, sigma_hat, latent, dt):
pred_original_sample = latent - sigma_hat * noise_pred
derivative = (latent - pred_original_sample) / sigma_hat
return latent + derivative * dt
class SchedulerStepSampleModel(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, noise_pred, sigma_hat, latent, dt):
pred_original_sample = noise_pred
derivative = (latent - pred_original_sample) / sigma_hat
return latent + derivative * dt
class SchedulerStepVPredictionModel(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, noise_pred, sigma, latent, dt):
pred_original_sample = latent - sigma * noise_pred
pred_original_sample = noise_pred * (
-sigma / (sigma**2 + 1) ** 0.5
) + (latent / (sigma**2 + 1))
derivative = (latent - pred_original_sample) / sigma
return latent + derivative * dt
@@ -90,16 +123,22 @@ class SharkEulerDiscreteScheduler(EulerDiscreteScheduler):
self.scaling_model, _ = compile_through_fx(
model=scaling_model,
inputs=(example_latent, example_sigma),
extended_model_name=f"euler_scale_model_input_{BATCH_SIZE}_{args.height}_{args.width}_{device}_"
extended_model_name=f"euler_scale_model_input_{self.batch_size}_{args.height}_{args.width}_{device}_"
+ args.precision,
extra_args=iree_flags,
)
step_model = SchedulerStepModel()
pred_type_model_dict = {
"epsilon": SchedulerStepEpsilonModel(),
"v_prediction": SchedulerStepVPredictionModel(),
"sample": SchedulerStepSampleModel(),
"original_sample": SchedulerStepSampleModel(),
}
step_model = pred_type_model_dict[self.config.prediction_type]
self.step_model, _ = compile_through_fx(
step_model,
(example_output, example_sigma, example_latent, example_dt),
extended_model_name=f"euler_step_{BATCH_SIZE}_{args.height}_{args.width}_{device}_"
extended_model_name=f"euler_step_{self.config.prediction_type}_{self.batch_size}_{args.height}_{args.width}_{device}_"
+ args.precision,
extra_args=iree_flags,
)
@@ -109,6 +148,11 @@ class SharkEulerDiscreteScheduler(EulerDiscreteScheduler):
else:
try:
step_model_type = (
"sample"
if "sample" in self.config.prediction_type
else self.config.prediction_type
)
self.scaling_model = get_shark_model(
SCHEDULER_BUCKET,
"euler_scale_model_input_" + args.precision,
@@ -116,7 +160,7 @@ class SharkEulerDiscreteScheduler(EulerDiscreteScheduler):
)
self.step_model = get_shark_model(
SCHEDULER_BUCKET,
"euler_step_" + args.precision,
"euler_step_" + step_model_type + args.precision,
iree_flags,
)
except:
@@ -138,15 +182,52 @@ class SharkEulerDiscreteScheduler(EulerDiscreteScheduler):
send_to_host=False,
)
def step(self, noise_pred, timestep, latent):
step_index = (self.timesteps == timestep).nonzero().item()
sigma = self.sigmas[step_index]
dt = self.sigmas[step_index + 1] - sigma
def step(
self,
noise_pred,
timestep,
latent,
s_churn: float = 0.0,
s_tmin: float = 0.0,
s_tmax: float = float("inf"),
s_noise: float = 1.0,
generator: Optional[torch.Generator] = None,
return_dict: Optional[bool] = False,
):
if self.step_index is None:
self._init_step_index(timestep)
sigma = self.sigmas[self.step_index]
gamma = (
min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1)
if s_tmin <= sigma <= s_tmax
else 0.0
)
sigma_hat = sigma * (gamma + 1)
noise = randn_tensor(
noise_pred.shape,
dtype=noise_pred.dtype,
device="cpu",
generator=generator,
)
eps = noise * s_noise
if gamma > 0:
latent = latent + eps * (sigma_hat**2 - sigma**2) ** 0.5
if self.config.prediction_type == "v_prediction":
sigma_hat = sigma
dt = self.sigmas[self.step_index + 1] - sigma_hat
return self.step_model(
"forward",
(
noise_pred,
sigma,
sigma_hat,
latent,
dt,
),

View File

@@ -189,6 +189,49 @@
"dtype": "i64"
}
},
"stabilityai/sdxl-turbo": {
"latents": {
"shape": [
"2*batch_size",
4,
"height",
"width"
],
"dtype": "f32"
},
"timesteps": {
"shape": [
1
],
"dtype": "f32"
},
"prompt_embeds": {
"shape": [
"2*batch_size",
"max_len",
2048
],
"dtype": "f32"
},
"text_embeds": {
"shape": [
"2*batch_size",
1280
],
"dtype": "f32"
},
"time_ids": {
"shape": [
"2*batch_size",
6
],
"dtype": "f32"
},
"guidance_scale": {
"shape": 1,
"dtype": "f32"
}
},
"stabilityai/stable-diffusion-xl-base-1.0": {
"latents": {
"shape": [
@@ -449,4 +492,4 @@
}
}
}
}
}

View File

@@ -1,4 +1,5 @@
[["A high tech solarpunk utopia in the Amazon rainforest"],
["Astrophotography, the shark nebula, nebula with a tiny shark-like cloud in the middle in the middle, hubble telescope, vivid colors"],
["A pikachu fine dining with a view to the Eiffel Tower"],
["A mecha robot in a favela in expressionist style"],
["an insect robot preparing a delicious meal"],

View File

@@ -19,6 +19,9 @@ a = Analysis(
win_private_assemblies=False,
cipher=block_cipher,
noarchive=False,
module_collection_mode={
'gradio': 'py', # Collect gradio package as source .py files
},
)
pyz = PYZ(a.pure, a.zipped_data, cipher=block_cipher)

View File

@@ -110,11 +110,15 @@ if __name__ == "__main__":
txt2img_sendto_outpaint,
txt2img_sendto_upscaler,
# SDXL
txt2img_sdxl_inf,
txt2img_sdxl_web,
txt2img_sdxl_custom_model,
txt2img_sdxl_gallery,
txt2img_sdxl_png_info_img,
txt2img_sdxl_status,
txt2img_sdxl_sendto_img2img,
txt2img_sdxl_sendto_inpaint,
txt2img_sdxl_sendto_outpaint,
txt2img_sdxl_sendto_upscaler,
# h2ogpt_upload,
# h2ogpt_web,
img2img_web,
@@ -151,7 +155,7 @@ if __name__ == "__main__":
upscaler_sendto_outpaint,
# lora_train_web,
# model_web,
# model_config_web,
model_config_web,
hf_models,
modelmanager_sendto_txt2img,
modelmanager_sendto_img2img,
@@ -165,6 +169,7 @@ if __name__ == "__main__":
outputgallery_watch,
outputgallery_filename,
outputgallery_sendto_txt2img,
outputgallery_sendto_txt2img_sdxl,
outputgallery_sendto_img2img,
outputgallery_sendto_inpaint,
outputgallery_sendto_outpaint,
@@ -178,7 +183,7 @@ if __name__ == "__main__":
button.click(
lambda x: (
x[0]["name"] if len(x) != 0 else None,
gr.Tabs.update(selected=selectedid),
gr.Tabs(selected=selectedid),
),
inputs,
outputs,
@@ -189,7 +194,7 @@ if __name__ == "__main__":
lambda x: (
"None",
x,
gr.Tabs.update(selected=selectedid),
gr.Tabs(selected=selectedid),
),
inputs,
outputs,
@@ -199,7 +204,7 @@ if __name__ == "__main__":
button.click(
lambda x: (
x,
gr.Tabs.update(selected=selectedid),
gr.Tabs(selected=selectedid),
),
inputs,
outputs,
@@ -241,6 +246,7 @@ if __name__ == "__main__":
inpaint_status,
outpaint_status,
upscaler_status,
txt2img_sdxl_status,
]
)
# with gr.TabItem(label="Model Manager", id=6):
@@ -249,17 +255,17 @@ if __name__ == "__main__":
# lora_train_web.render()
with gr.TabItem(label="Chat Bot", id=8):
stablelm_chat.render()
# with gr.TabItem(
# label="Generate Sharding Config (Experimental)", id=9
# ):
# model_config_web.render()
with gr.TabItem(label="MultiModal (Experimental)", id=10):
minigpt4_web.render()
with gr.TabItem(
label="Generate Sharding Config (Experimental)", id=9
):
model_config_web.render()
# with gr.TabItem(label="MultiModal (Experimental)", id=10):
# minigpt4_web.render()
# with gr.TabItem(label="DocuChat Upload", id=11):
# h2ogpt_upload.render()
# with gr.TabItem(label="DocuChat(Experimental)", id=12):
# h2ogpt_web.render()
with gr.TabItem(label="Text-to-Image-SDXL (Experimental)", id=13):
with gr.TabItem(label="Text-to-Image (SDXL)", id=13):
txt2img_sdxl_web.render()
actual_port = app.usable_port()

View File

@@ -16,6 +16,11 @@ from apps.stable_diffusion.web.ui.txt2img_sdxl_ui import (
txt2img_sdxl_custom_model,
txt2img_sdxl_gallery,
txt2img_sdxl_status,
txt2img_sdxl_png_info_img,
txt2img_sdxl_sendto_img2img,
txt2img_sdxl_sendto_inpaint,
txt2img_sdxl_sendto_outpaint,
txt2img_sdxl_sendto_upscaler,
)
from apps.stable_diffusion.web.ui.img2img_ui import (
img2img_inf,
@@ -83,6 +88,7 @@ from apps.stable_diffusion.web.ui.outputgallery_ui import (
outputgallery_watch,
outputgallery_filename,
outputgallery_sendto_txt2img,
outputgallery_sendto_txt2img_sdxl,
outputgallery_sendto_img2img,
outputgallery_sendto_inpaint,
outputgallery_sendto_outpaint,

View File

@@ -34,6 +34,7 @@ from apps.stable_diffusion.src.utils import (
from apps.stable_diffusion.src.utils.stencils import (
CannyDetector,
OpenposeDetector,
ZoeDetector,
)
from apps.stable_diffusion.web.utils.common_label_calc import status_label
import numpy as np
@@ -97,18 +98,21 @@ def img2img_inf(
for i, stencil in enumerate(stencils):
if images[i] is None and stencil is not None:
return None, "A stencil must have an Image input"
return
if images[i] is not None:
if isinstance(images[i], dict):
images[i] = images[i]["composite"]
images[i] = images[i].convert("RGB")
if image_dict is None:
if image_dict is None and images[0] is None:
return None, "An Initial Image is required"
# if use_stencil == "scribble":
# image = image_dict["mask"].convert("RGB")
if isinstance(image_dict, PIL.Image.Image):
image = image_dict.convert("RGB")
else:
elif image_dict:
image = image_dict["image"].convert("RGB")
else:
# TODO: enable t2i + controlnets
image = None
# set ckpt_loc and hf_model_id.
args.ckpt_loc = ""
@@ -140,9 +144,8 @@ def img2img_inf(
if stencil is not None:
stencil_count += 1
if stencil_count > 0:
args.scheduler = "DDIM"
args.hf_model_id = "runwayml/stable-diffusion-v1-5"
# image, width, height = resize_stencil(image)
image, width, height = resize_stencil(image)
elif "Shark" in args.scheduler:
print(
f"Shark schedulers are not supported. Switching to EulerDiscrete "
@@ -363,71 +366,182 @@ with gr.Blocks(title="Image-to-Image") as img2img_web:
# TODO: make this import image prompt info if it exists
img2img_init_image = gr.Image(
label="Input Image",
source="upload",
tool="sketch",
type="pil",
height=300,
height=512,
interactive=True,
)
with gr.Accordion(label="Multistencil Options", open=False):
choices = ["None", "canny", "openpose", "scribble"]
choices = [
"None",
"canny",
"openpose",
"scribble",
"zoedepth",
]
def cnet_preview(
checked, model, input_image, index, stencils, images
model, input_image, index, stencils, images
):
if not checked:
stencils[index] = None
images[index] = None
return (None, stencils, images)
images[index] = input_image
stencils[index] = model
match model:
case "canny":
canny = CannyDetector()
result = canny(np.array(input_image), 100, 200)
result = canny(
np.array(input_image["composite"]),
100,
200,
)
return (
[Image.fromarray(result), result],
Image.fromarray(result),
stencils,
images,
)
case "openpose":
openpose = OpenposeDetector()
result = openpose(np.array(input_image))
result = openpose(
np.array(input_image["composite"])
)
# TODO: This is just an empty canvas, need to draw the candidates (which are in result[1])
return (
[Image.fromarray(result[0]), result],
Image.fromarray(result[0]),
stencils,
images,
)
case "zoedepth":
zoedepth = ZoeDetector()
result = zoedepth(
np.array(input_image["composite"])
)
return (
Image.fromarray(result[0]),
stencils,
images,
)
case "scribble":
result = input_image["composite"].convert("L")
return (result, stencils, images)
case _:
return (None, stencils, images)
with gr.Row():
cnet_1 = gr.Checkbox(show_label=False)
cnet_1_model = gr.Dropdown(
label="Controlnet 1",
value="None",
choices=choices,
def create_canvas(width, height):
data = (
np.zeros(
shape=(height, width, 3),
dtype=np.uint8,
)
+ 255
)
cnet_1_image = gr.Image(
source="upload",
tool=None,
return data
def update_cn_input(model, width, height):
if model == "scribble":
return [
gr.ImageEditor(
visible=True,
image_mode="RGB",
interactive=True,
show_label=False,
type="pil",
value=create_canvas(width, height),
crop_size=(width, height),
),
gr.Image(
visible=True,
show_label=False,
interactive=False,
),
gr.Slider(visible=True),
gr.Slider(visible=True),
gr.Button(visible=True),
]
else:
return [
gr.ImageEditor(
visible=True,
image_mode="RGB",
type="pil",
interactive=True,
value=None,
),
gr.Image(
visible=True,
show_label=False,
interactive=True,
),
gr.Slider(visible=False),
gr.Slider(visible=False),
gr.Button(visible=False),
]
with gr.Row():
with gr.Column():
cnet_1 = gr.Button(
value="Generate controlnet input"
)
cnet_1_model = gr.Dropdown(
label="Controlnet 1",
value="None",
choices=choices,
)
canvas_width = gr.Slider(
label="Canvas Width",
minimum=256,
maximum=1024,
value=512,
step=1,
visible=False,
)
canvas_height = gr.Slider(
label="Canvas Height",
minimum=256,
maximum=1024,
value=512,
step=1,
visible=False,
)
make_canvas = gr.Button(
value="Make Canvas!",
visible=False,
)
cnet_1_image = gr.ImageEditor(
visible=False,
image_mode="RGB",
interactive=True,
show_label=False,
type="pil",
)
cnet_1_output = gr.Gallery(
show_label=False,
object_fit="scale-down",
rows=1,
columns=1,
cnet_1_output = gr.Image(
visible=True, show_label=False
)
cnet_1.change(
cnet_1_model.input(
update_cn_input,
[cnet_1_model, canvas_width, canvas_height],
[
cnet_1_image,
cnet_1_output,
canvas_width,
canvas_height,
make_canvas,
],
)
make_canvas.click(
update_cn_input,
[cnet_1_model, canvas_width, canvas_height],
[
cnet_1_image,
cnet_1_output,
canvas_width,
canvas_height,
make_canvas,
],
)
cnet_1.click(
fn=(
lambda a, b, c, s, i: cnet_preview(
a, b, c, 0, s, i
)
lambda a, b, s, i: cnet_preview(a, b, 0, s, i)
),
inputs=[
cnet_1,
cnet_1_model,
cnet_1_image,
stencils,
@@ -436,31 +550,72 @@ with gr.Blocks(title="Image-to-Image") as img2img_web:
outputs=[cnet_1_output, stencils, images],
)
with gr.Row():
cnet_2 = gr.Checkbox(show_label=False)
cnet_2_model = gr.Dropdown(
label="Controlnet 2",
value="None",
choices=choices,
)
cnet_2_image = gr.Image(
source="upload",
tool=None,
with gr.Column():
cnet_2 = gr.Button(
value="Generate controlnet input"
)
cnet_2_model = gr.Dropdown(
label="Controlnet 2",
value="None",
choices=choices,
)
canvas_width = gr.Slider(
label="Canvas Width",
minimum=256,
maximum=1024,
value=512,
step=1,
visible=False,
)
canvas_height = gr.Slider(
label="Canvas Height",
minimum=256,
maximum=1024,
value=512,
step=1,
visible=False,
)
make_canvas = gr.Button(
value="Make Canvas!",
visible=False,
)
cnet_2_image = gr.ImageEditor(
visible=False,
image_mode="RGB",
interactive=True,
show_label=False,
type="pil",
)
cnet_2_output = gr.Gallery(
show_label=False,
object_fit="scale-down",
rows=1,
columns=1,
cnet_2_output = gr.Image(
visible=True, show_label=False
)
cnet_2.change(
cnet_2_model.select(
update_cn_input,
[cnet_2_model, canvas_width, canvas_height],
[
cnet_2_image,
cnet_2_output,
canvas_width,
canvas_height,
make_canvas,
],
)
make_canvas.click(
update_cn_input,
[cnet_2_model, canvas_width, canvas_height],
[
cnet_2_image,
cnet_2_output,
canvas_width,
canvas_height,
make_canvas,
],
)
cnet_2.click(
fn=(
lambda a, b, c, s, i: cnet_preview(
a, b, c, 1, s, i
)
lambda a, b, s, i: cnet_preview(a, b, 1, s, i)
),
inputs=[
cnet_2,
cnet_2_model,
cnet_2_image,
stencils,

View File

@@ -290,8 +290,7 @@ with gr.Blocks(title="Inpainting") as inpaint_web:
inpaint_init_image = gr.Image(
label="Masked Image",
source="upload",
tool="sketch",
sources="upload",
type="pil",
height=350,
)

View File

@@ -104,7 +104,6 @@ with gr.Blocks() as model_web:
civit_models = gr.Gallery(
label="Civitai Model Gallery",
value=None,
interactive=True,
visible=False,
)

View File

@@ -95,7 +95,7 @@ with gr.Blocks() as outputgallery_web:
)
with gr.Column(scale=4):
with gr.Box():
with gr.Group():
with gr.Row():
with gr.Column(
scale=15,
@@ -152,6 +152,7 @@ with gr.Blocks() as outputgallery_web:
wrap=True,
elem_classes="output_parameters_dataframe",
value=[["Status", "No image selected"]],
interactive=True,
)
with gr.Accordion(label="Send To", open=True):
@@ -162,6 +163,12 @@ with gr.Blocks() as outputgallery_web:
elem_classes="outputgallery_sendto",
size="sm",
)
outputgallery_sendto_txt2img_sdxl = gr.Button(
value="Txt2Img XL",
interactive=False,
elem_classes="outputgallery_sendto",
size="sm",
)
outputgallery_sendto_img2img = gr.Button(
value="Img2Img",
@@ -195,17 +202,17 @@ with gr.Blocks() as outputgallery_web:
def on_clear_gallery():
return [
gr.Gallery.update(
gr.Gallery(
value=[],
visible=False,
),
gr.Image.update(
gr.Image(
visible=True,
),
]
def on_image_columns_change(columns):
return gr.Gallery.update(columns=columns)
return gr.Gallery(columns=columns)
def on_select_subdir(subdir) -> list:
# evt.value is the subdirectory name
@@ -215,12 +222,12 @@ with gr.Blocks() as outputgallery_web:
)
return [
new_images,
gr.Gallery.update(
gr.Gallery(
value=new_images,
label=new_label,
visible=len(new_images) > 0,
),
gr.Image.update(
gr.Image(
label=new_label,
visible=len(new_images) == 0,
),
@@ -254,16 +261,16 @@ with gr.Blocks() as outputgallery_web:
)
return [
gr.Dropdown.update(
gr.Dropdown(
choices=refreshed_subdirs,
value=new_subdir,
),
refreshed_subdirs,
new_images,
gr.Gallery.update(
gr.Gallery(
value=new_images, label=new_label, visible=len(new_images) > 0
),
gr.Image.update(
gr.Image(
label=new_label,
visible=len(new_images) == 0,
),
@@ -289,12 +296,12 @@ with gr.Blocks() as outputgallery_web:
return [
new_images,
gr.Gallery.update(
gr.Gallery(
value=new_images,
label=new_label,
visible=len(new_images) > 0,
),
gr.Image.update(
gr.Image(
label=new_label,
visible=len(new_images) == 0,
),
@@ -332,12 +339,12 @@ with gr.Blocks() as outputgallery_web:
return [
# disable or enable each of the sendto button based on whether
# an image is selected
gr.Button.update(interactive=exists),
gr.Button.update(interactive=exists),
gr.Button.update(interactive=exists),
gr.Button.update(interactive=exists),
gr.Button.update(interactive=exists),
gr.Button.update(interactive=exists),
gr.Button(interactive=exists),
gr.Button(interactive=exists),
gr.Button(interactive=exists),
gr.Button(interactive=exists),
gr.Button(interactive=exists),
gr.Button(interactive=exists),
]
# The time first our tab is selected we need to do an initial refresh
@@ -414,6 +421,7 @@ with gr.Blocks() as outputgallery_web:
[outputgallery_filename],
[
outputgallery_sendto_txt2img,
outputgallery_sendto_txt2img_sdxl,
outputgallery_sendto_img2img,
outputgallery_sendto_inpaint,
outputgallery_sendto_outpaint,

View File

@@ -431,8 +431,8 @@ with gr.Blocks(title="Chatbot") as stablelm_chat:
config_file = gr.File(
label="Upload sharding configuration", visible=False
)
json_view_button = gr.Button(label="View as JSON", visible=False)
json_view = gr.JSON(interactive=True, visible=False)
json_view_button = gr.Button(value="View as JSON", visible=False)
json_view = gr.JSON(visible=False)
json_view_button.click(
fn=view_json_file, inputs=[config_file], outputs=[json_view]
)

View File

@@ -11,9 +11,11 @@ from apps.stable_diffusion.web.ui.utils import (
get_custom_model_path,
get_custom_model_files,
scheduler_list,
predefined_models,
predefined_sdxl_models,
cancel_sd,
set_model_default_configs,
)
from apps.stable_diffusion.web.ui.common_ui_events import lora_changed
from apps.stable_diffusion.web.utils.metadata import import_png_metadata
from apps.stable_diffusion.web.utils.common_label_calc import status_label
from apps.stable_diffusion.src import (
@@ -50,17 +52,17 @@ def txt2img_sdxl_inf(
batch_size: int,
scheduler: str,
model_id: str,
custom_vae: str,
precision: str,
device: str,
max_length: int,
save_metadata_to_json: bool,
save_metadata_to_png: bool,
lora_weights: str,
lora_hf_id: str,
ondemand: bool,
repeatable_seeds: bool,
):
if precision != "fp16":
print("currently we support fp16 for SDXL")
precision = "fp16"
from apps.stable_diffusion.web.ui.utils import (
get_custom_model_pathfile,
get_custom_vae_or_lora_weights,
@@ -71,6 +73,10 @@ def txt2img_sdxl_inf(
SD_STATE_CANCEL,
)
if precision != "fp16":
print("currently we support fp16 for SDXL")
precision = "fp16"
args.prompts = [prompt]
args.negative_prompts = [negative_prompt]
args.guidance_scale = guidance_scale
@@ -93,13 +99,15 @@ def txt2img_sdxl_inf(
else:
args.hf_model_id = model_id
# if custom_vae != "None":
# args.custom_vae = get_custom_model_pathfile(custom_vae, model="vae")
if custom_vae:
args.custom_vae = get_custom_model_pathfile(custom_vae, model="vae")
args.save_metadata_to_json = save_metadata_to_json
args.write_metadata_to_png = save_metadata_to_png
args.use_lora = ""
args.use_lora = get_custom_vae_or_lora_weights(
lora_weights, lora_hf_id, "lora"
)
dtype = torch.float32 if precision == "fp32" else torch.half
cpu_scheduling = not scheduler.startswith("Shark")
@@ -115,7 +123,7 @@ def txt2img_sdxl_inf(
width,
device,
use_lora=args.use_lora,
use_stencil=None,
stencils=None,
ondemand=ondemand,
)
if (
@@ -144,31 +152,29 @@ def txt2img_sdxl_inf(
)
global_obj.set_schedulers(get_schedulers(model_id))
scheduler_obj = global_obj.get_scheduler(scheduler)
# For SDXL we set max_length as 77.
print("Setting max_length = 77")
max_length = 77
if global_obj.get_cfg_obj().ondemand:
print("Running txt2img in memory efficient mode.")
txt2img_sdxl_obj = Text2ImageSDXLPipeline.from_pretrained(
scheduler=scheduler_obj,
import_mlir=args.import_mlir,
model_id=args.hf_model_id,
ckpt_loc=args.ckpt_loc,
precision=precision,
max_length=max_length,
batch_size=batch_size,
height=height,
width=width,
use_base_vae=args.use_base_vae,
use_tuned=args.use_tuned,
custom_vae=args.custom_vae,
low_cpu_mem_usage=args.low_cpu_mem_usage,
debug=args.import_debug if args.import_mlir else False,
use_lora=args.use_lora,
use_quantize=args.use_quantize,
ondemand=global_obj.get_cfg_obj().ondemand,
global_obj.set_sd_obj(
Text2ImageSDXLPipeline.from_pretrained(
scheduler=scheduler_obj,
import_mlir=args.import_mlir,
model_id=args.hf_model_id,
ckpt_loc=args.ckpt_loc,
precision=precision,
max_length=max_length,
batch_size=batch_size,
height=height,
width=width,
use_base_vae=args.use_base_vae,
use_tuned=args.use_tuned,
custom_vae=args.custom_vae,
low_cpu_mem_usage=args.low_cpu_mem_usage,
debug=args.import_debug if args.import_mlir else False,
use_lora=args.use_lora,
use_quantize=args.use_quantize,
ondemand=global_obj.get_cfg_obj().ondemand,
)
)
global_obj.set_sd_obj(txt2img_sdxl_obj)
global_obj.set_sd_scheduler(scheduler)
@@ -239,7 +245,7 @@ with gr.Blocks(title="Text-to-Image-SDXL") as txt2img_sdxl_web:
with gr.Row():
with gr.Column(scale=10):
with gr.Row():
t2i_model_info = f"Custom Model Path: {str(get_custom_model_path())}"
t2i_sdxl_model_info = f"Custom Model Path: {str(get_custom_model_path())}"
txt2img_sdxl_custom_model = gr.Dropdown(
label=f"Models",
info="Select, or enter HuggingFace Model ID or Civitai model download URL",
@@ -247,12 +253,39 @@ with gr.Blocks(title="Text-to-Image-SDXL") as txt2img_sdxl_web:
value=os.path.basename(args.ckpt_loc)
if args.ckpt_loc
else "stabilityai/stable-diffusion-xl-base-1.0",
choices=[
"stabilityai/stable-diffusion-xl-base-1.0"
],
choices=predefined_sdxl_models
+ get_custom_model_files(
custom_checkpoint_type="sdxl"
),
allow_custom_value=True,
scale=2,
)
t2i_sdxl_vae_info = (
str(get_custom_model_path("vae"))
).replace("\\", "\n\\")
t2i_sdxl_vae_info = (
f"VAE Path: {t2i_sdxl_vae_info}"
)
custom_vae = gr.Dropdown(
label=f"VAE Models",
info=t2i_sdxl_vae_info,
elem_id="custom_model",
value="None",
choices=[
None,
"madebyollin/sdxl-vae-fp16-fix",
]
+ get_custom_model_files("vae"),
allow_custom_value=True,
scale=1,
)
with gr.Column(scale=1, min_width=170):
txt2img_sdxl_png_info_img = gr.Image(
label="Import PNG info",
elem_id="txt2img_prompt_image",
type="pil",
visible=True,
)
with gr.Group(elem_id="prompt_box_outer"):
prompt = gr.Textbox(
@@ -267,16 +300,49 @@ with gr.Blocks(title="Text-to-Image-SDXL") as txt2img_sdxl_web:
lines=2,
elem_id="negative_prompt_box",
)
with gr.Accordion(label="LoRA Options", open=False):
with gr.Row():
# janky fix for overflowing text
t2i_sdxl_lora_info = (
str(get_custom_model_path("lora"))
).replace("\\", "\n\\")
t2i_sdxl_lora_info = f"LoRA Path: {t2i_sdxl_lora_info}"
lora_weights = gr.Dropdown(
label=f"Standalone LoRA Weights",
info=t2i_sdxl_lora_info,
elem_id="lora_weights",
value="None",
choices=["None"] + get_custom_model_files("lora"),
allow_custom_value=True,
)
lora_hf_id = gr.Textbox(
elem_id="lora_hf_id",
placeholder="Select 'None' in the Standalone LoRA "
"weights dropdown on the left if you want to use "
"a standalone HuggingFace model ID for LoRA here "
"e.g: sayakpaul/sd-model-finetuned-lora-t4",
value="",
label="HuggingFace Model ID",
lines=3,
)
with gr.Row():
lora_tags = gr.HTML(
value="<div><i>No LoRA selected</i></div>",
elem_classes="lora-tags",
)
with gr.Accordion(label="Advanced Options", open=False):
with gr.Row():
scheduler = gr.Dropdown(
elem_id="scheduler",
label="Scheduler",
value="DDIM",
choices=["DDIM"],
allow_custom_value=True,
visible=False,
value=args.scheduler,
choices=[
"DDIM",
"EulerAncestralDiscrete",
"EulerDiscrete",
],
allow_custom_value=False,
visible=True,
)
with gr.Column():
save_metadata_to_png = gr.Checkbox(
@@ -291,18 +357,22 @@ with gr.Blocks(title="Text-to-Image-SDXL") as txt2img_sdxl_web:
)
with gr.Row():
height = gr.Slider(
512,
1024,
value=1024,
step=8,
step=512,
label="Height",
visible=False,
visible=True,
interactive=True,
)
width = gr.Slider(
512,
1024,
value=1024,
step=8,
step=512,
label="Width",
visible=False,
visible=True,
interactive=True,
)
precision = gr.Radio(
label="Precision",
@@ -315,7 +385,7 @@ with gr.Blocks(title="Text-to-Image-SDXL") as txt2img_sdxl_web:
)
max_length = gr.Radio(
label="Max Length",
value=args.max_length,
value=77,
choices=[
64,
77,
@@ -333,7 +403,7 @@ with gr.Blocks(title="Text-to-Image-SDXL") as txt2img_sdxl_web:
50,
value=args.guidance_scale,
step=0.1,
label="CFG Scale",
label="Guidance Scale",
)
ondemand = gr.Checkbox(
value=args.ondemand,
@@ -391,10 +461,10 @@ with gr.Blocks(title="Text-to-Image-SDXL") as txt2img_sdxl_web:
show_label=False,
elem_id="gallery",
columns=[2],
object_fit="contain",
object_fit="scale_down",
)
std_output = gr.Textbox(
value=f"{t2i_model_info}\n"
value=f"{t2i_sdxl_model_info}\n"
f"Images will be saved at "
f"{get_generated_imgs_path()}",
lines=1,
@@ -413,7 +483,18 @@ with gr.Blocks(title="Text-to-Image-SDXL") as txt2img_sdxl_web:
)
stop_batch = gr.Button("Stop Batch")
with gr.Row():
blank_thing_for_row = None
txt2img_sdxl_sendto_img2img = gr.Button(
value="Send To Img2Img"
)
txt2img_sdxl_sendto_inpaint = gr.Button(
value="Send To Inpaint"
)
txt2img_sdxl_sendto_outpaint = gr.Button(
value="Send To Outpaint"
)
txt2img_sdxl_sendto_upscaler = gr.Button(
value="Send To Upscaler"
)
kwargs = dict(
fn=txt2img_sdxl_inf,
@@ -429,11 +510,14 @@ with gr.Blocks(title="Text-to-Image-SDXL") as txt2img_sdxl_web:
batch_size,
scheduler,
txt2img_sdxl_custom_model,
custom_vae,
precision,
device,
max_length,
save_metadata_to_json,
save_metadata_to_png,
lora_weights,
lora_hf_id,
ondemand,
repeatable_seeds,
],
@@ -456,3 +540,59 @@ with gr.Blocks(title="Text-to-Image-SDXL") as txt2img_sdxl_web:
fn=cancel_sd,
cancels=[prompt_submit, neg_prompt_submit, generate_click],
)
txt2img_sdxl_png_info_img.change(
fn=import_png_metadata,
inputs=[
txt2img_sdxl_png_info_img,
prompt,
negative_prompt,
steps,
scheduler,
guidance_scale,
seed,
width,
height,
txt2img_sdxl_custom_model,
lora_weights,
lora_hf_id,
custom_vae,
],
outputs=[
txt2img_sdxl_png_info_img,
prompt,
negative_prompt,
steps,
scheduler,
guidance_scale,
seed,
width,
height,
txt2img_sdxl_custom_model,
lora_weights,
lora_hf_id,
custom_vae,
],
)
txt2img_sdxl_custom_model.change(
fn=set_model_default_configs,
inputs=[
txt2img_sdxl_custom_model,
],
outputs=[
prompt,
negative_prompt,
steps,
scheduler,
guidance_scale,
width,
height,
custom_vae,
],
)
lora_weights.change(
fn=lora_changed,
inputs=[lora_weights],
outputs=[lora_tags],
queue=True,
)

View File

@@ -281,6 +281,7 @@ def txt2img_inf(
cpu_scheduling,
args.max_embeddings_multiples,
stencils=[],
control_mode=None,
resample_type=resample_type,
)
total_time = time.time() - start_time
@@ -302,7 +303,17 @@ def txt2img_inf(
return generated_imgs, text_output, ""
with gr.Blocks(title="Text-to-Image") as txt2img_web:
def resource_path(relative_path):
"""Get absolute path to resource, works for dev and for PyInstaller"""
base_path = getattr(
sys, "_MEIPASS", os.path.dirname(os.path.abspath(__file__))
)
return os.path.join(base_path, relative_path)
dark_theme = resource_path("ui/css/sd_dark_theme.css")
with gr.Blocks(title="Text-to-Image", css=dark_theme) as txt2img_web:
with gr.Row(elem_id="ui_title"):
nod_logo = Image.open(nodlogo_loc)
with gr.Row():
@@ -356,7 +367,6 @@ with gr.Blocks(title="Text-to-Image") as txt2img_web:
label="Import PNG info",
elem_id="txt2img_prompt_image",
type="pil",
tool="None",
visible=True,
)
@@ -367,6 +377,11 @@ with gr.Blocks(title="Text-to-Image") as txt2img_web:
lines=2,
elem_id="prompt_box",
)
# TODO: coming soon
autogen = gr.Checkbox(
label="Continuous Generation",
visible=False,
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value=args.negative_prompts[0],
@@ -680,12 +695,12 @@ with gr.Blocks(title="Text-to-Image") as txt2img_web:
# SharkEulerDiscrete doesn't work with img2img which hires_fix uses
def set_compatible_schedulers(hires_fix_selected):
if hires_fix_selected:
return gr.Dropdown.update(
return gr.Dropdown(
choices=scheduler_list_cpu_only,
value="DEISMultistep",
)
else:
return gr.Dropdown.update(
return gr.Dropdown(
choices=scheduler_list,
value="SharkEulerDiscrete",
)

View File

@@ -4,6 +4,7 @@ import glob
import math
import json
import safetensors
import gradio as gr
from pathlib import Path
from apps.stable_diffusion.src import args
@@ -64,9 +65,11 @@ scheduler_list_cpu_only = [
"DPMSolverSinglestep",
"DDPM",
"HeunDiscrete",
"LCMScheduler",
]
scheduler_list = scheduler_list_cpu_only + [
"SharkEulerDiscrete",
"SharkEulerAncestralDiscrete",
]
predefined_models = [
@@ -87,6 +90,10 @@ predefined_paint_models = [
predefined_upscaler_models = [
"stabilityai/stable-diffusion-x4-upscaler",
]
predefined_sdxl_models = [
"stabilityai/sdxl-turbo",
"stabilityai/stable-diffusion-xl-base-1.0",
]
def resource_path(relative_path):
@@ -140,6 +147,12 @@ def get_custom_model_files(model="models", custom_checkpoint_type=""):
)
]
match custom_checkpoint_type:
case "sdxl":
files = [
val
for val in files
if any(x in val for x in ["XL", "xl", "Xl"])
]
case "inpainting":
files = [
val
@@ -247,6 +260,84 @@ def cancel_sd():
pass
def set_model_default_configs(model_ckpt_or_id, jsonconfig=None):
import gradio as gr
config_modelname = default_config_exists(model_ckpt_or_id)
if jsonconfig:
return get_config_from_json(jsonconfig)
elif config_modelname:
return default_configs[config_modelname]
# TODO: Use HF metadata to setup pipeline if available
# elif is_valid_hf_id(model_ckpt_or_id):
# return get_HF_default_configs(model_ckpt_or_id)
else:
# We don't have default metadata to setup a good config. Do not change configs.
return [
gr.Textbox(label="Prompt", interactive=True, visible=True),
gr.Textbox(label="Negative Prompt", interactive=True),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
]
def get_config_from_json(model_ckpt_or_id, jsonconfig):
# TODO: make this work properly. It is currently not user-exposed.
cfgdata = json.load(jsonconfig)
return [
cfgdata["prompt_box_behavior"],
cfgdata["neg_prompt_box_behavior"],
cfgdata["steps"],
cfgdata["scheduler"],
cfgdata["guidance_scale"],
cfgdata["width"],
cfgdata["height"],
cfgdata["custom_vae"],
]
def default_config_exists(model_ckpt_or_id):
if model_ckpt_or_id in [
"stabilityai/sdxl-turbo",
"stabilityai/stable_diffusion-xl-base-1.0",
]:
return model_ckpt_or_id
elif "turbo" in model_ckpt_or_id.lower():
return "stabilityai/sdxl-turbo"
else:
return None
default_configs = {
"stabilityai/sdxl-turbo": [
gr.Textbox(label="", interactive=False, value=None, visible=False),
gr.Textbox(
label="Prompt",
value="role-playing game (RPG) style fantasy, An enchanting image featuring an adorable kitten mage wearing intricate ancient robes, holding an ancient staff, hard at work in her fantastical workshop, magic runes floating in the air",
),
gr.Slider(0, 10, value=2),
gr.Dropdown(value="EulerAncestralDiscrete"),
gr.Slider(0, value=0),
512,
512,
"madebyollin/sdxl-vae-fp16-fix",
],
"stabilityai/stable-diffusion-xl-base-1.0": [
gr.Textbox(label="Prompt", interactive=True, visible=True),
gr.Textbox(label="Negative Prompt", interactive=True),
40,
"EulerDiscrete",
7.5,
gr.Slider(value=1024, interactive=False),
gr.Slider(value=1024, interactive=False),
"madebyollin/sdxl-vae-fp16-fix",
],
}
nodlogo_loc = resource_path("logos/nod-logo.png")
nodicon_loc = resource_path("logos/nod-icon.png")
available_devices = get_available_devices()

View File

@@ -26,7 +26,7 @@ diffusers
accelerate
scipy
ftfy
gradio==3.44.3
gradio==4.7.1
altair
omegaconf
# 0.3.2 doesn't have binaries for arm64

View File

@@ -183,6 +183,9 @@ def get_iree_vulkan_args(device_num=0, extra_args=[]):
# res_vulkan_flag = ["--iree-flow-demote-i64-to-i32"]
res_vulkan_flag = []
res_vulkan_flag += [
"--iree-stream-resource-max-allocation-size=3221225472"
]
vulkan_triple_flag = None
for arg in extra_args:
if "-iree-vulkan-target-triple=" in arg:
@@ -204,7 +207,9 @@ def get_iree_vulkan_args(device_num=0, extra_args=[]):
@functools.cache
def get_iree_vulkan_runtime_flags():
vulkan_runtime_flags = [
f"--vulkan_validation_layers={'true' if shark_args.vulkan_validation_layers else 'false'}",
f"--vulkan_validation_layers={'true' if shark_args.vulkan_debug_utils else 'false'}",
f"--vulkan_debug_verbosity={'4' if shark_args.vulkan_debug_utils else '0'}"
f"--vulkan-robust-buffer-access={'true' if shark_args.vulkan_debug_utils else 'false'}",
]
return vulkan_runtime_flags