mirror of
https://github.com/nod-ai/SHARK-Studio.git
synced 2026-01-12 07:18:27 -05:00
Compare commits
7 Commits
20230214.5
...
github-pag
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d9c62e547c | ||
|
|
d84a86f6d2 | ||
|
|
dadd6640fb | ||
|
|
23501d34a1 | ||
|
|
9b9eef1d22 | ||
|
|
e4b156f3b4 | ||
|
|
ce26492a10 |
2
.github/workflows/gh-pages-releases.yml
vendored
2
.github/workflows/gh-pages-releases.yml
vendored
@@ -23,7 +23,7 @@ jobs:
|
||||
- run: git fetch --all
|
||||
- run: git switch github-pages
|
||||
- run: git config --global user.email "none@none.com"
|
||||
- run: git config --global user.name "nod-ai"
|
||||
- run: git config --global user.name "nod-team"
|
||||
- run: mv /tmp/index.html package-index/index.html
|
||||
- run: git add package-index/index.html
|
||||
|
||||
|
||||
148
.github/workflows/nightly.yml
vendored
148
.github/workflows/nightly.yml
vendored
@@ -9,92 +9,13 @@ on:
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
windows-build:
|
||||
runs-on: 7950X
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version: ["3.11"]
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v3
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
|
||||
- name: Compute version
|
||||
shell: powershell
|
||||
run: |
|
||||
$package_version = $(Get-Date -UFormat "%Y%m%d")+"."+${{ github.run_number }}
|
||||
$package_version_ = $(Get-Date -UFormat "%Y%m%d")+"_"+${{ github.run_number }}
|
||||
$tag_name=$package_version
|
||||
echo "package_version=$package_version" | Out-File -FilePath $Env:GITHUB_ENV -Encoding utf8 -Append
|
||||
echo "package_version_=$package_version_" | Out-File -FilePath $Env:GITHUB_ENV -Encoding utf8 -Append
|
||||
echo "tag_name=$tag_name" | Out-File -FilePath $Env:GITHUB_ENV -Encoding utf8 -Append
|
||||
|
||||
- name: Create Release
|
||||
id: create_release
|
||||
uses: actions/create-release@v1
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.NODAI_INVOCATION_TOKEN }}
|
||||
with:
|
||||
tag_name: ${{ env.tag_name }}
|
||||
release_name: nod.ai SHARK ${{ env.tag_name }}
|
||||
body: |
|
||||
Automatic snapshot release of nod.ai SHARK.
|
||||
draft: true
|
||||
prerelease: false
|
||||
|
||||
- name: Build Package
|
||||
shell: powershell
|
||||
run: |
|
||||
./setup_venv.ps1
|
||||
python process_skipfiles.py
|
||||
pyinstaller .\apps\stable_diffusion\shark_sd.spec
|
||||
mv ./dist/shark_sd.exe ./dist/shark_sd_${{ env.package_version_ }}.exe
|
||||
#signtool sign /f C:\shark_2023.cer /csp "eToken Base Cryptographic Provider" /k "${{ secrets.CI_CERT }}" ./dist/shark_sd_${{ env.package_version_ }}.exe
|
||||
pyinstaller .\apps\stable_diffusion\shark_sd_cli.spec
|
||||
python process_skipfiles.py
|
||||
mv ./dist/shark_sd_cli.exe ./dist/shark_sd_cli_${{ env.package_version_ }}.exe
|
||||
#signtool sign /f C:\shark_2023.cer /csp "eToken Base Cryptographic Provider" /k "${{ secrets.CI_CERT }}" ./dist/shark_sd_cli_${{ env.package_version_ }}.exe
|
||||
|
||||
|
||||
# GHA windows VM OOMs so disable for now
|
||||
#- name: Build and validate the SHARK Runtime package
|
||||
# shell: powershell
|
||||
# run: |
|
||||
# $env:SHARK_PACKAGE_VERSION=${{ env.package_version }}
|
||||
# pip wheel -v -w dist . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html
|
||||
|
||||
- uses: actions/upload-artifact@v2
|
||||
with:
|
||||
path: dist/*
|
||||
|
||||
- name: Upload Release Assets
|
||||
id: upload-release-assets
|
||||
uses: dwenegar/upload-release-assets@v1
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.NODAI_INVOCATION_TOKEN }}
|
||||
with:
|
||||
release_id: ${{ steps.create_release.outputs.id }}
|
||||
assets_path: ./dist/*
|
||||
|
||||
- name: Publish Release
|
||||
id: publish_release
|
||||
uses: eregon/publish-release@v1
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.NODAI_INVOCATION_TOKEN }}
|
||||
with:
|
||||
release_id: ${{ steps.create_release.outputs.id }}
|
||||
|
||||
linux-build:
|
||||
build:
|
||||
|
||||
runs-on: a100
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version: ["3.11"]
|
||||
python-version: ["3.10"]
|
||||
backend: [IREE, SHARK]
|
||||
|
||||
steps:
|
||||
@@ -111,13 +32,40 @@ jobs:
|
||||
key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pip-
|
||||
|
||||
|
||||
- name: Compute version
|
||||
run: |
|
||||
package_version="$(printf '%(%Y%m%d)T.${{ github.run_number }}')"
|
||||
tag_name="${package_version}"
|
||||
echo "package_version=${package_version}" >> $GITHUB_ENV
|
||||
echo "tag_name=${tag_name}" >> $GITHUB_ENV
|
||||
- name: Set Environment Variables
|
||||
run: |
|
||||
echo "SHORT_SHA=`git rev-parse --short=4 HEAD`" >> $GITHUB_ENV
|
||||
echo "DATE=$(date +'%Y-%m-%d')" >> $GITHUB_ENV
|
||||
- name: Create Release
|
||||
id: create_release
|
||||
uses: actions/create-release@v1
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.NODAI_INVOCATION_TOKEN }}
|
||||
with:
|
||||
tag_name: ${{ env.tag_name }}
|
||||
release_name: nod.ai SHARK ${{ env.tag_name }}
|
||||
body: |
|
||||
Automatic snapshot release of nod.ai SHARK.
|
||||
draft: true
|
||||
prerelease: false
|
||||
- name: Find Torch-MLIR Release
|
||||
run: |
|
||||
TM_HTML_URL="$(python3 -c "import urllib.request, json, sys; u=json.loads(urllib.request.urlopen('https://api.github.com/repos/llvm/torch-mlir/releases/latest').read().decode()).get('html_url', False); print(u) if u else sys.exit(1);")"
|
||||
TM_RELEASE_DIR=${TM_HTML_URL/"tag"/"expanded_assets"}
|
||||
echo "TM_RELEASE_DIR=${TM_RELEASE_DIR}" >> $GITHUB_ENV
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
echo "DATE=$(date +'%Y-%m-%d')" >> $GITHUB_ENV
|
||||
echo "Torch-MLIR Release DIR is ${{ env.TM_RELEASE_DIR }}"
|
||||
python -m pip install --upgrade pip
|
||||
python -m pip install flake8 pytest toml
|
||||
if [ -f requirements.txt ]; then pip install -r requirements.txt -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html; fi
|
||||
if [ -f requirements.txt ]; then pip install -r requirements.txt -f ${{ env.TM_RELEASE_DIR }} -f https://github.com/nod-ai/SHARK-Runtime/releases; fi
|
||||
- name: Lint with flake8
|
||||
run: |
|
||||
# stop the build if there are Python syntax errors or undefined names
|
||||
@@ -126,26 +74,25 @@ jobs:
|
||||
flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics --exclude shark.venv,lit.cfg.py
|
||||
- name: Build and validate the IREE package
|
||||
if: ${{ matrix.backend == 'IREE' }}
|
||||
continue-on-error: true
|
||||
run: |
|
||||
cd $GITHUB_WORKSPACE
|
||||
USE_IREE=1 VENV_DIR=iree.venv ./setup_venv.sh
|
||||
source iree.venv/bin/activate
|
||||
package_version="$(printf '%(%Y%m%d)T.${{ github.run_number }}')"
|
||||
SHARK_PACKAGE_VERSION=${package_version} \
|
||||
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://llvm.github.io/torch-mlir/package-index/ -f https://iree-org.github.io/iree/pip-release-links.html
|
||||
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f ${{ env.TM_RELEASE_DIR }} -f https://github.com/iree-org/iree/releases
|
||||
# Install the built wheel
|
||||
pip install ./wheelhouse/nodai*
|
||||
# Validate the Models
|
||||
/bin/bash "$GITHUB_WORKSPACE/build_tools/populate_sharktank_ci.sh"
|
||||
pytest --ci --ci_sha=${SHORT_SHA} --local_tank_cache="./gen_shark_tank/" -k "not metal" |
|
||||
pytest --ci --ci_sha=${SHORT_SHA} --local_tank_cache="./gen_shark_tank/" tank/test_models.py |
|
||||
tail -n 1 |
|
||||
tee -a pytest_results.txt
|
||||
if !(grep -Fxq " failed" pytest_results.txt)
|
||||
then
|
||||
export SHA=$(git log -1 --format='%h')
|
||||
gsutil -m cp -r $GITHUB_WORKSPACE/gen_shark_tank/* gs://shark_tank/${DATE}_$SHA
|
||||
gsutil -m cp -r gs://shark_tank/${DATE}_$SHA/* gs://shark_tank/nightly/
|
||||
gsutil -m cp -r $GITHUB_WORKSPACE/gen_shark_tank/* gs://shark_tank/$SHA
|
||||
gsutil -m cp -r gs://shark_tank/$SHA/* gs://shark_tank/latest/
|
||||
fi
|
||||
rm -rf ./wheelhouse/nodai*
|
||||
|
||||
@@ -157,10 +104,29 @@ jobs:
|
||||
source shark.venv/bin/activate
|
||||
package_version="$(printf '%(%Y%m%d)T.${{ github.run_number }}')"
|
||||
SHARK_PACKAGE_VERSION=${package_version} \
|
||||
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html
|
||||
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f ${{ env.TM_RELEASE_DIR }} -f https://github.com/nod-ai/SHARK-Runtime/releases
|
||||
# Install the built wheel
|
||||
pip install ./wheelhouse/nodai*
|
||||
# Validate the Models
|
||||
pytest --ci --ci_sha=${SHORT_SHA} -k "not metal" |
|
||||
pytest --ci --ci_sha=${SHORT_SHA} --local_tank_cache="./gen_shark_tank/" tank/test_models.py |
|
||||
tail -n 1 |
|
||||
tee -a pytest_results.txt
|
||||
|
||||
- name: Upload Release Assets
|
||||
if: ${{ matrix.backend == 'SHARK' }}
|
||||
id: upload-release-assets
|
||||
uses: dwenegar/upload-release-assets@v1
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.NODAI_INVOCATION_TOKEN }}
|
||||
with:
|
||||
release_id: ${{ steps.create_release.outputs.id }}
|
||||
assets_path: ${GITHUB_WORKSPACE}/wheelhouse/nodai_*.whl
|
||||
|
||||
- name: Publish Release
|
||||
if: ${{ matrix.backend == 'SHARK' }}
|
||||
id: publish_release
|
||||
uses: eregon/publish-release@v1
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.NODAI_INVOCATION_TOKEN }}
|
||||
with:
|
||||
release_id: ${{ steps.create_release.outputs.id }}
|
||||
|
||||
71
.github/workflows/test-models.yml
vendored
71
.github/workflows/test-models.yml
vendored
@@ -6,32 +6,18 @@ name: Validate Models on Shark Runtime
|
||||
on:
|
||||
push:
|
||||
branches: [ main ]
|
||||
paths-ignore:
|
||||
- '**.md'
|
||||
- 'shark/examples/**'
|
||||
pull_request:
|
||||
branches: [ main ]
|
||||
paths-ignore:
|
||||
- '**.md'
|
||||
- 'shark/examples/**'
|
||||
workflow_dispatch:
|
||||
|
||||
# Ensure that only a single job or workflow using the same
|
||||
# concurrency group will run at a time. This would cancel
|
||||
# any in-progress jobs in the same github workflow and github
|
||||
# ref (e.g. refs/heads/main or refs/pull/<pr_number>/merge).
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
build-validate:
|
||||
strategy:
|
||||
fail-fast: true
|
||||
matrix:
|
||||
os: [7950x, icelake, a100, MacStudio, ubuntu-latest]
|
||||
os: [icelake, a100, MacStudio, ubuntu-latest]
|
||||
suite: [cpu,cuda,vulkan]
|
||||
python-version: ["3.11"]
|
||||
python-version: ["3.10"]
|
||||
include:
|
||||
- os: ubuntu-latest
|
||||
suite: lint
|
||||
@@ -46,25 +32,21 @@ jobs:
|
||||
suite: cuda
|
||||
- os: MacStudio
|
||||
suite: cpu
|
||||
- os: MacStudio
|
||||
suite: vulkan
|
||||
- os: icelake
|
||||
suite: vulkan
|
||||
- os: icelake
|
||||
suite: cuda
|
||||
- os: a100
|
||||
suite: cpu
|
||||
- os: 7950x
|
||||
suite: cpu
|
||||
- os: 7950x
|
||||
suite: cuda
|
||||
|
||||
runs-on: ${{ matrix.os }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
if: matrix.os != '7950x'
|
||||
|
||||
- name: Set Environment Variables
|
||||
if: matrix.os != '7950x'
|
||||
run: |
|
||||
echo "SHORT_SHA=`git rev-parse --short=4 HEAD`" >> $GITHUB_ENV
|
||||
echo "DATE=$(date +'%Y-%m-%d')" >> $GITHUB_ENV
|
||||
@@ -84,9 +66,6 @@ jobs:
|
||||
#cache-dependency-path: |
|
||||
# **/requirements-importer.txt
|
||||
# **/requirements.txt
|
||||
|
||||
- uses: actions/checkout@v2
|
||||
if: matrix.os == '7950x'
|
||||
|
||||
- name: Install dependencies
|
||||
if: matrix.suite == 'lint'
|
||||
@@ -109,9 +88,9 @@ jobs:
|
||||
if: matrix.suite == 'cpu'
|
||||
run: |
|
||||
cd $GITHUB_WORKSPACE
|
||||
PYTHON=python${{ matrix.python-version }} IMPORTER=1 ./setup_venv.sh
|
||||
PYTHON=python${{ matrix.python-version }} BENCHMARK=1 IMPORTER=1 ./setup_venv.sh
|
||||
source shark.venv/bin/activate
|
||||
pytest --forked --benchmark --ci --ci_sha=${SHORT_SHA} --update_tank -k cpu
|
||||
pytest --benchmark --ci --ci_sha=${SHORT_SHA} --local_tank_cache="/data/anush" tank/test_models.py -k cpu
|
||||
gsutil cp ./bench_results.csv gs://shark-public/builder/bench_results/${DATE}/bench_results_cpu_${SHORT_SHA}.csv
|
||||
gsutil cp gs://shark-public/builder/bench_results/${DATE}/bench_results_cpu_${SHORT_SHA}.csv gs://shark-public/builder/bench_results/latest/bench_results_cpu_latest.csv
|
||||
|
||||
@@ -121,42 +100,14 @@ jobs:
|
||||
cd $GITHUB_WORKSPACE
|
||||
PYTHON=python${{ matrix.python-version }} BENCHMARK=1 IMPORTER=1 ./setup_venv.sh
|
||||
source shark.venv/bin/activate
|
||||
pytest --forked --benchmark --ci --ci_sha=${SHORT_SHA} --update_tank -k cuda
|
||||
pytest --benchmark --ci --ci_sha=${SHORT_SHA} --local_tank_cache="/data/anush" tank/test_models.py -k cuda
|
||||
gsutil cp ./bench_results.csv gs://shark-public/builder/bench_results/${DATE}/bench_results_cuda_${SHORT_SHA}.csv
|
||||
gsutil cp gs://shark-public/builder/bench_results/${DATE}/bench_results_cuda_${SHORT_SHA}.csv gs://shark-public/builder/bench_results/latest/bench_results_cuda_latest.csv
|
||||
# Disabled due to black image bug
|
||||
# python build_tools/stable_diffusion_testing.py --device=cuda
|
||||
|
||||
- name: Validate Vulkan Models (MacOS)
|
||||
if: matrix.suite == 'vulkan' && matrix.os == 'MacStudio'
|
||||
- name: Validate Vulkan Models
|
||||
if: matrix.suite == 'vulkan'
|
||||
run: |
|
||||
cd $GITHUB_WORKSPACE
|
||||
PYTHON=python${{ matrix.python-version }} ./setup_venv.sh
|
||||
PYTHON=python${{ matrix.python-version }} BENCHMARK=1 IMPORTER=1 ./setup_venv.sh
|
||||
source shark.venv/bin/activate
|
||||
export DYLD_LIBRARY_PATH=/usr/local/lib/
|
||||
echo $PATH
|
||||
pip list | grep -E "torch|iree"
|
||||
pytest --ci --ci_sha=${SHORT_SHA} --local_tank_cache="/Volumes/builder/anush/shark_cache" -k vulkan --update_tank
|
||||
|
||||
- name: Validate Vulkan Models (a100)
|
||||
if: matrix.suite == 'vulkan' && matrix.os == 'a100'
|
||||
run: |
|
||||
cd $GITHUB_WORKSPACE
|
||||
PYTHON=python${{ matrix.python-version }} ./setup_venv.sh
|
||||
source shark.venv/bin/activate
|
||||
pytest --forked --benchmark --ci --ci_sha=${SHORT_SHA} --update_tank -k vulkan
|
||||
python build_tools/stable_diffusion_testing.py --device=vulkan
|
||||
|
||||
- name: Validate Vulkan Models (Windows)
|
||||
if: matrix.suite == 'vulkan' && matrix.os == '7950x'
|
||||
run: |
|
||||
./setup_venv.ps1
|
||||
pytest --benchmark -k vulkan -s
|
||||
type bench_results.csv
|
||||
|
||||
- name: Validate Stable Diffusion Models (Windows)
|
||||
if: matrix.suite == 'vulkan' && matrix.os == '7950x'
|
||||
run: |
|
||||
./setup_venv.ps1
|
||||
./shark.venv/Scripts/activate
|
||||
python build_tools/stable_diffusion_testing.py --device=vulkan
|
||||
pytest --ci --ci_sha=${SHORT_SHA} --local_tank_cache="/data/anush" tank/test_models.py -k vulkan
|
||||
|
||||
17
.gitignore
vendored
17
.gitignore
vendored
@@ -31,6 +31,7 @@ MANIFEST
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
@@ -159,26 +160,10 @@ cython_debug/
|
||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||
#.idea/
|
||||
|
||||
# vscode related
|
||||
.vscode
|
||||
|
||||
# Shark related artefacts
|
||||
*venv/
|
||||
shark_tmp/
|
||||
*.vmfb
|
||||
.use-iree
|
||||
tank/dict_configs.py
|
||||
|
||||
# ORT related artefacts
|
||||
cache_models/
|
||||
onnx_models/
|
||||
|
||||
# Generated images
|
||||
generated_imgs/
|
||||
|
||||
# Custom model related artefacts
|
||||
variants.json
|
||||
models/
|
||||
|
||||
# models folder
|
||||
apps/stable_diffusion/web/models/
|
||||
|
||||
4
.gitmodules
vendored
4
.gitmodules
vendored
@@ -1,4 +0,0 @@
|
||||
[submodule "inference/thirdparty/shark-runtime"]
|
||||
path = inference/thirdparty/shark-runtime
|
||||
url =https://github.com/nod-ai/SHARK-Runtime.git
|
||||
branch = shark-06032022
|
||||
@@ -1,3 +0,0 @@
|
||||
[style]
|
||||
based_on_style = google
|
||||
column_limit = 80
|
||||
218
LICENSE
218
LICENSE
@@ -1,218 +0,0 @@
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
|
||||
|
||||
---- LLVM Exceptions to the Apache 2.0 License ----
|
||||
|
||||
As an exception, if, as a result of your compiling your source code, portions
|
||||
of this Software are embedded into an Object form of such source code, you
|
||||
may redistribute such embedded portions in such Object form without complying
|
||||
with the conditions of Sections 4(a), 4(b) and 4(d) of the License.
|
||||
|
||||
In addition, if you combine or link compiled forms of this Software with
|
||||
software that is licensed under the GPLv2 ("Combined Software") and if a
|
||||
court of competent jurisdiction determines that the patent provision (Section
|
||||
3), the indemnity provision (Section 9) or other Section of the License
|
||||
conflicts with the conditions of the GPLv2, you may retroactively and
|
||||
prospectively choose to deem waived or otherwise exclude such Section(s) of
|
||||
the License, but only in their entirety and only with respect to the Combined
|
||||
Software.
|
||||
357
README.md
357
README.md
@@ -1,357 +0,0 @@
|
||||
# SHARK
|
||||
|
||||
High Performance Machine Learning Distribution
|
||||
|
||||
[](https://github.com/nod-ai/SHARK/actions/workflows/nightly.yml)
|
||||
[](https://github.com/nod-ai/SHARK/actions/workflows/test-models.yml)
|
||||
|
||||
|
||||
<details>
|
||||
<summary>Prerequisites - Drivers </summary>
|
||||
|
||||
#### Install your Windows hardware drivers
|
||||
* [AMD RDNA Users] Download this specific driver [here](https://www.amd.com/en/support/kb/release-notes/rn-rad-win-22-11-1-mril-iree). Latest drivers may not work.
|
||||
* [macOS Users] Download and install the 1.3.216 Vulkan SDK from [here](https://sdk.lunarg.com/sdk/download/1.3.216.0/mac/vulkansdk-macos-1.3.216.0.dmg). Newer versions of the SDK will not work.
|
||||
* [Nvidia Users] Download and install the latest CUDA / Vulkan drivers from [here](https://developer.nvidia.com/cuda-downloads)
|
||||
|
||||
#### Linux Drivers
|
||||
* MESA / RADV drivers wont work with FP16. Please use the latest AMGPU-PRO drivers (non-pro OSS drivers also wont work) or the latest NVidia Linux Drivers.
|
||||
|
||||
Other users please ensure you have your latest vendor drivers and Vulkan SDK from [here](https://vulkan.lunarg.com/sdk/home) and if you are using vulkan check `vulkaninfo` works in a terminal window
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
|
||||
### Quick Start for SHARK Stable Diffusion for Windows 10/11 Users
|
||||
|
||||
Install Driver from [Prerequisites](https://github.com/nod-ai/SHARK#install-your-hardware-drivers) above
|
||||
|
||||
Download the latest .exe https://github.com/nod-ai/SHARK/releases.
|
||||
|
||||
Double click the .exe and you should have the [UI]( http://localhost:8080/?__theme=dark) in the browser.
|
||||
|
||||
If you have custom models (ckpt, safetensors) put in a `models/` directory where the .exe is.
|
||||
|
||||
Enjoy.
|
||||
|
||||
Some known AMD Driver quirks and fixes with cursors are documented [here](https://github.com/nod-ai/SHARK/blob/main/apps/stable_diffusion/stable_diffusion_amd.md ).
|
||||
|
||||
|
||||
<details>
|
||||
<summary>Advanced Installation (Only for developers)</summary>
|
||||
|
||||
## Advanced Installation (Windows, Linux and macOS) for developers
|
||||
|
||||
## Check out the code
|
||||
|
||||
```shell
|
||||
git clone https://github.com/nod-ai/SHARK.git
|
||||
cd SHARK
|
||||
```
|
||||
|
||||
## Setup your Python VirtualEnvironment and Dependencies
|
||||
|
||||
### Windows 10/11 Users
|
||||
|
||||
* Install the latest Python 3.10.x version from [here](https://www.python.org/downloads/windows/)
|
||||
|
||||
* Install Git for Windows from [here](https://git-scm.com/download/win)
|
||||
|
||||
#### Allow the install script to run in Powershell
|
||||
```powershell
|
||||
set-executionpolicy remotesigned
|
||||
```
|
||||
|
||||
#### Setup venv and install necessary packages (torch-mlir, nodLabs/Shark, ...)
|
||||
```powershell
|
||||
./setup_venv.ps1 #You can re-run this script to get the latest version
|
||||
```
|
||||
|
||||
### Linux / macOS Users
|
||||
|
||||
```shell
|
||||
./setup_venv.sh
|
||||
source shark.venv/bin/activate
|
||||
```
|
||||
|
||||
|
||||
### Run Stable Diffusion on your device - WebUI
|
||||
|
||||
#### Windows 10/11 Users
|
||||
```powershell
|
||||
(shark.venv) PS C:\g\shark> cd .\apps\stable_diffusion\web\
|
||||
(shark.venv) PS C:\g\shark\apps\stable_diffusion\web> python .\index.py
|
||||
```
|
||||
#### Linux / macOS Users
|
||||
```shell
|
||||
(shark.venv) > cd apps/stable_diffusion/web
|
||||
(shark.venv) > python index.py
|
||||
```
|
||||
|
||||
#### Access Stable Diffusion on http://localhost:8080/?__theme=dark
|
||||
|
||||
|
||||
<img width="1607" alt="webui" src="https://user-images.githubusercontent.com/74956/204939260-b8308bc2-8dc4-47f6-9ac0-f60b66edab99.png">
|
||||
|
||||
|
||||
|
||||
### Run Stable Diffusion on your device - Commandline
|
||||
|
||||
#### Windows 10/11 Users
|
||||
```powershell
|
||||
(shark.venv) PS C:\g\shark> python .\apps\stable_diffusion\scripts\txt2img.py --precision="fp16" --prompt="tajmahal, snow, sunflowers, oil on canvas" --device="vulkan"
|
||||
```
|
||||
|
||||
#### Linux / macOS Users
|
||||
```shell
|
||||
python3.10 apps/stable_diffusion/scripts/txt2img.py --precision=fp16 --device=vulkan --prompt="tajmahal, oil on canvas, sunflowers, 4k, uhd"
|
||||
```
|
||||
|
||||
You can replace `vulkan` with `cpu` to run on your CPU or with `cuda` to run on CUDA devices. If you have multiple vulkan devices you can address them with `--device=vulkan://1` etc
|
||||
</details>
|
||||
|
||||
The output on a 7900XTX would like:
|
||||
|
||||
```shell
|
||||
Stats for run 0:
|
||||
Average step time: 47.19188690185547ms/it
|
||||
Clip Inference time (ms) = 109.531
|
||||
VAE Inference time (ms): 78.590
|
||||
|
||||
Total image generation time: 2.5788655281066895sec
|
||||
```
|
||||
|
||||
Here are some samples generated:
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
|
||||
Find us on [SHARK Discord server](https://discord.gg/RUqY2h2s9u) if you have any trouble with running it on your hardware.
|
||||
|
||||
|
||||
<details>
|
||||
<summary>Binary Installation</summary>
|
||||
|
||||
### Setup a new pip Virtual Environment
|
||||
|
||||
This step sets up a new VirtualEnv for Python
|
||||
|
||||
```shell
|
||||
python --version #Check you have 3.10 on Linux, macOS or Windows Powershell
|
||||
python -m venv shark_venv
|
||||
source shark_venv/bin/activate # Use shark_venv/Scripts/activate on Windows
|
||||
|
||||
# If you are using conda create and activate a new conda env
|
||||
|
||||
# Some older pip installs may not be able to handle the recent PyTorch deps
|
||||
python -m pip install --upgrade pip
|
||||
```
|
||||
|
||||
*macOS Metal* users please install https://sdk.lunarg.com/sdk/download/latest/mac/vulkan-sdk.dmg and enable "System wide install"
|
||||
|
||||
### Install SHARK
|
||||
|
||||
This step pip installs SHARK and related packages on Linux Python 3.7, 3.8, 3.9, 3.10 and macOS Python 3.10
|
||||
|
||||
```shell
|
||||
pip install nodai-shark -f https://nod-ai.github.io/SHARK/package-index/ -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html --extra-index-url https://download.pytorch.org/whl/nightly/cpu
|
||||
```
|
||||
|
||||
### Run shark tank model tests.
|
||||
```shell
|
||||
pytest tank/test_models.py
|
||||
```
|
||||
See tank/README.md for a more detailed walkthrough of our pytest suite and CLI.
|
||||
|
||||
### Download and run Resnet50 sample
|
||||
|
||||
```shell
|
||||
curl -O https://raw.githubusercontent.com/nod-ai/SHARK/main/shark/examples/shark_inference/resnet50_script.py
|
||||
#Install deps for test script
|
||||
pip install --pre torch torchvision torchaudio tqdm pillow gsutil --extra-index-url https://download.pytorch.org/whl/nightly/cpu
|
||||
python ./resnet50_script.py --device="cpu" #use cuda or vulkan or metal
|
||||
```
|
||||
|
||||
### Download and run BERT (MiniLM) sample
|
||||
```shell
|
||||
curl -O https://raw.githubusercontent.com/nod-ai/SHARK/main/shark/examples/shark_inference/minilm_jit.py
|
||||
#Install deps for test script
|
||||
pip install transformers torch --extra-index-url https://download.pytorch.org/whl/nightly/cpu
|
||||
python ./minilm_jit.py --device="cpu" #use cuda or vulkan or metal
|
||||
```
|
||||
</details>
|
||||
|
||||
|
||||
|
||||
<details>
|
||||
<summary>Development, Testing and Benchmarks</summary>
|
||||
|
||||
If you want to use Python3.10 and with TF Import tools you can use the environment variables like:
|
||||
Set `USE_IREE=1` to use upstream IREE
|
||||
```
|
||||
# PYTHON=python3.10 VENV_DIR=0617_venv IMPORTER=1 ./setup_venv.sh
|
||||
```
|
||||
|
||||
### Run any of the hundreds of SHARK tank models via the test framework
|
||||
```shell
|
||||
python -m shark.examples.shark_inference.resnet50_script --device="cpu" # Use gpu | vulkan
|
||||
# Or a pytest
|
||||
pytest tank/test_models.py -k "MiniLM"
|
||||
```
|
||||
|
||||
|
||||
If you are a *Torch-mlir developer or an IREE developer* and want to test local changes you can uninstall
|
||||
the provided packages with `pip uninstall torch-mlir` and / or `pip uninstall iree-compiler iree-runtime` and build locally
|
||||
with Python bindings and set your PYTHONPATH as mentioned [here](https://github.com/iree-org/iree/tree/main/docs/api_docs/python#install-iree-binaries)
|
||||
for IREE and [here](https://github.com/llvm/torch-mlir/blob/main/development.md#setup-python-environment-to-export-the-built-python-packages)
|
||||
for Torch-MLIR.
|
||||
|
||||
### How to use your locally built Torch-MLIR with SHARK
|
||||
```shell
|
||||
1.) Run `./setup_venv.sh in SHARK` and activate `shark.venv` virtual env.
|
||||
2.) Run `pip uninstall torch-mlir`.
|
||||
3.) Go to your local Torch-MLIR directory.
|
||||
4.) Activate mlir_venv virtual envirnoment.
|
||||
5.) Run `pip uninstall -r requirements.txt`.
|
||||
6.) Run `pip install -r requirements.txt`.
|
||||
7.) Build Torch-MLIR.
|
||||
8.) Activate shark.venv virtual environment from the Torch-MLIR directory.
|
||||
8.) Run `export PYTHONPATH=`pwd`/build/tools/torch-mlir/python_packages/torch_mlir:`pwd`/examples` in the Torch-MLIR directory.
|
||||
9.) Go to the SHARK directory.
|
||||
```
|
||||
Now the SHARK will use your locally build Torch-MLIR repo.
|
||||
|
||||
|
||||
## Benchmarking Dispatches
|
||||
|
||||
To produce benchmarks of individual dispatches, you can add `--dispatch_benchmarks=All --dispatch_benchmarks_dir=<output_dir>` to your command line argument.
|
||||
If you only want to compile specific dispatches, you can specify them with a space seperated string instead of `"All"`. E.G. `--dispatch_benchmarks="0 1 2 10"`
|
||||
|
||||
if you want to instead incorporate this into a python script, you can pass the `dispatch_benchmarks` and `dispatch_benchmarks_dir` commands when initializing `SharkInference`, and the benchmarks will be generated when compiled. E.G:
|
||||
|
||||
```
|
||||
shark_module = SharkInference(
|
||||
mlir_model,
|
||||
func_name,
|
||||
device=args.device,
|
||||
mlir_dialect="tm_tensor",
|
||||
dispatch_benchmarks="all",
|
||||
dispatch_benchmarks_dir="results"
|
||||
)
|
||||
```
|
||||
|
||||
Output will include:
|
||||
- An ordered list ordered-dispatches.txt of all the dispatches with their runtime
|
||||
- Inside the specified directory, there will be a directory for each dispatch (there will be mlir files for all dispatches, but only compiled binaries and benchmark data for the specified dispatches)
|
||||
- An .mlir file containing the dispatch benchmark
|
||||
- A compiled .vmfb file containing the dispatch benchmark
|
||||
- An .mlir file containing just the hal executable
|
||||
- A compiled .vmfb file of the hal executable
|
||||
- A .txt file containing benchmark output
|
||||
|
||||
|
||||
See tank/README.md for instructions on how to run model tests and benchmarks from the SHARK tank.
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>API Reference</summary>
|
||||
|
||||
### Shark Inference API
|
||||
|
||||
```
|
||||
|
||||
from shark.shark_importer import SharkImporter
|
||||
|
||||
# SharkImporter imports mlir file from the torch, tensorflow or tf-lite module.
|
||||
|
||||
mlir_importer = SharkImporter(
|
||||
torch_module,
|
||||
(input),
|
||||
frontend="torch", #tf, #tf-lite
|
||||
)
|
||||
torch_mlir, func_name = mlir_importer.import_mlir(tracing_required=True)
|
||||
|
||||
# SharkInference accepts mlir in linalg, mhlo, and tosa dialect.
|
||||
|
||||
from shark.shark_inference import SharkInference
|
||||
shark_module = SharkInference(torch_mlir, func_name, device="cpu", mlir_dialect="linalg")
|
||||
shark_module.compile()
|
||||
result = shark_module.forward((input))
|
||||
|
||||
```
|
||||
|
||||
|
||||
### Example demonstrating running MHLO IR.
|
||||
|
||||
```
|
||||
from shark.shark_inference import SharkInference
|
||||
import numpy as np
|
||||
|
||||
mhlo_ir = r"""builtin.module {
|
||||
func.func @forward(%arg0: tensor<1x4xf32>, %arg1: tensor<4x1xf32>) -> tensor<4x4xf32> {
|
||||
%0 = chlo.broadcast_add %arg0, %arg1 : (tensor<1x4xf32>, tensor<4x1xf32>) -> tensor<4x4xf32>
|
||||
%1 = "mhlo.abs"(%0) : (tensor<4x4xf32>) -> tensor<4x4xf32>
|
||||
return %1 : tensor<4x4xf32>
|
||||
}
|
||||
}"""
|
||||
|
||||
arg0 = np.ones((1, 4)).astype(np.float32)
|
||||
arg1 = np.ones((4, 1)).astype(np.float32)
|
||||
shark_module = SharkInference(mhlo_ir, func_name="forward", device="cpu", mlir_dialect="mhlo")
|
||||
shark_module.compile()
|
||||
result = shark_module.forward((arg0, arg1))
|
||||
```
|
||||
</details>
|
||||
|
||||
## Supported and Validated Models
|
||||
|
||||
SHARK is maintained to support the latest innovations in ML Models:
|
||||
|
||||
| TF HuggingFace Models | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|
||||
|---------------------|----------|----------|-------------|
|
||||
| BERT | :green_heart: | :green_heart: | :green_heart: |
|
||||
| DistilBERT | :green_heart: | :green_heart: | :green_heart: |
|
||||
| GPT2 | :green_heart: | :green_heart: | :green_heart: |
|
||||
| BLOOM | :green_heart: | :green_heart: | :green_heart: |
|
||||
| Stable Diffusion | :green_heart: | :green_heart: | :green_heart: |
|
||||
| Vision Transformer | :green_heart: | :green_heart: | :green_heart: |
|
||||
| ResNet50 | :green_heart: | :green_heart: | :green_heart: |
|
||||
|
||||
For a complete list of the models supported in SHARK, please refer to [tank/README.md](https://github.com/nod-ai/SHARK/blob/main/tank/README.md).
|
||||
|
||||
## Communication Channels
|
||||
|
||||
* [SHARK Discord server](https://discord.gg/RUqY2h2s9u): Real time discussions with the SHARK team and other users
|
||||
* [GitHub issues](https://github.com/nod-ai/SHARK/issues): Feature requests, bugs etc
|
||||
|
||||
## Related Projects
|
||||
|
||||
<details>
|
||||
<summary>IREE Project Channels</summary>
|
||||
|
||||
* [Upstream IREE issues](https://github.com/google/iree/issues): Feature requests,
|
||||
bugs, and other work tracking
|
||||
* [Upstream IREE Discord server](https://discord.gg/26P4xW4): Daily development
|
||||
discussions with the core team and collaborators
|
||||
* [iree-discuss email list](https://groups.google.com/forum/#!forum/iree-discuss):
|
||||
Announcements, general and low-priority discussion
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>MLIR and Torch-MLIR Project Channels</summary>
|
||||
|
||||
* `#torch-mlir` channel on the LLVM [Discord](https://discord.gg/xS7Z362) - this is the most active communication channel
|
||||
* Torch-MLIR Github issues [here](https://github.com/llvm/torch-mlir/issues)
|
||||
* [`torch-mlir` section](https://llvm.discourse.group/c/projects-that-want-to-become-official-llvm-projects/torch-mlir/41) of LLVM Discourse
|
||||
* Weekly meetings on Mondays 9AM PST. See [here](https://discourse.llvm.org/t/community-meeting-developer-hour-refactoring-recurring-meetings/62575) for more information.
|
||||
* [MLIR topic within LLVM Discourse](https://llvm.discourse.group/c/llvm-project/mlir/31) SHARK and IREE is enabled by and heavily relies on [MLIR](https://mlir.llvm.org).
|
||||
</details>
|
||||
|
||||
## License
|
||||
|
||||
nod.ai SHARK is licensed under the terms of the Apache 2.0 License with LLVM Exceptions.
|
||||
See [LICENSE](LICENSE) for more information.
|
||||
@@ -1,87 +0,0 @@
|
||||
Compile / Run Instructions:
|
||||
|
||||
To compile .vmfb for SD (vae, unet, CLIP), run the following commands with the .mlir in your local shark_tank cache (default location for Linux users is `~/.local/shark_tank`). These will be available once the script from [this README](https://github.com/nod-ai/SHARK/blob/main/shark/examples/shark_inference/stable_diffusion/README.md) is run once.
|
||||
Running the script mentioned above with the `--save_vmfb` flag will also save the .vmfb in your SHARK base directory if you want to skip straight to benchmarks.
|
||||
|
||||
Compile Commands FP32/FP16:
|
||||
|
||||
```shell
|
||||
Vulkan AMD:
|
||||
iree-compile --iree-input-type=none --iree-hal-target-backends=vulkan --iree-vulkan-target-triple=rdna2-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 /path/to/input/mlir -o /path/to/output/vmfb
|
||||
|
||||
# add --mlir-print-debuginfo --mlir-print-op-on-diagnostic=true for debug
|
||||
# use –iree-input-type=mhlo for tf models
|
||||
|
||||
CUDA NVIDIA:
|
||||
iree-compile --iree-input-type=none --iree-hal-target-backends=cuda --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 /path/to/input/mlir -o /path/to/output/vmfb
|
||||
|
||||
CPU:
|
||||
iree-compile --iree-input-type=none --iree-hal-target-backends=llvm-cpu --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 /path/to/input/mlir -o /path/to/output/vmfb
|
||||
```
|
||||
|
||||
|
||||
|
||||
Run / Benchmark Command (FP32 - NCHW):
|
||||
(NEED to use BS=2 since we do two forward passes to unet as a result of classifier free guidance.)
|
||||
|
||||
```shell
|
||||
## Vulkan AMD:
|
||||
iree-benchmark-module --module=/path/to/output/vmfb --function=forward --device=vulkan --input=1x4x64x64xf32 --input=1xf32 --input=2x77x768xf32 --input=f32=1.0 --input=f32=1.0
|
||||
|
||||
## CUDA:
|
||||
iree-benchmark-module --module=/path/to/vmfb --function=forward --device=cuda --input=1x4x64x64xf32 --input=1xf32 --input=2x77x768xf32 --input=f32=1.0 --input=f32=1.0
|
||||
|
||||
## CPU:
|
||||
iree-benchmark-module --module=/path/to/vmfb --function=forward --device=local-task --input=1x4x64x64xf32 --input=1xf32 --input=2x77x768xf32 --input=f32=1.0 --input=f32=1.0
|
||||
|
||||
```
|
||||
|
||||
Run via vulkan_gui for RGP Profiling:
|
||||
|
||||
To build the vulkan app for profiling UNet follow the instructions [here](https://github.com/nod-ai/SHARK/tree/main/cpp) and then run the following command from the cpp directory with your compiled stable_diff.vmfb
|
||||
```shell
|
||||
./build/vulkan_gui/iree-vulkan-gui --module=/path/to/unet.vmfb --input=1x4x64x64xf32 --input=1xf32 --input=2x77x768xf32 --input=f32=1.0 --input=f32=1.0
|
||||
```
|
||||
|
||||
</details>
|
||||
<details>
|
||||
<summary>Debug Commands</summary>
|
||||
|
||||
## Debug commands and other advanced usage follows.
|
||||
|
||||
```shell
|
||||
python txt2img.py --precision="fp32"|"fp16" --device="cpu"|"cuda"|"vulkan" --import_mlir|--no-import_mlir --prompt "enter the text"
|
||||
```
|
||||
|
||||
## dump all dispatch .spv and isa using amdllpc
|
||||
|
||||
```shell
|
||||
python txt2img.py --precision="fp16" --device="vulkan" --iree-vulkan-target-triple=rdna3-unknown-linux --no-load_vmfb --dispatch_benchmarks="all" --dispatch_benchmarks_dir="SD_dispatches" --dump_isa
|
||||
```
|
||||
|
||||
## Compile and save the .vmfb (using vulkan fp16 as an example):
|
||||
|
||||
```shell
|
||||
python txt2img.py --precision=fp16 --device=vulkan --steps=50 --save_vmfb
|
||||
```
|
||||
|
||||
## Capture an RGP trace
|
||||
|
||||
```shell
|
||||
python txt2img.py --precision=fp16 --device=vulkan --steps=50 --save_vmfb --enable_rgp
|
||||
```
|
||||
|
||||
## Run the vae module with iree-benchmark-module (NCHW, fp16, vulkan, for example):
|
||||
|
||||
```shell
|
||||
iree-benchmark-module --module=/path/to/output/vmfb --function=forward --device=vulkan --input=1x4x64x64xf16
|
||||
```
|
||||
|
||||
## Run the unet module with iree-benchmark-module (same config as above):
|
||||
```shell
|
||||
##if you want to use .npz inputs:
|
||||
unzip ~/.local/shark_tank/<your unet>/inputs.npz
|
||||
iree-benchmark-module --module=/path/to/output/vmfb --function=forward --input=@arr_0.npy --input=1xf16 --input=@arr_2.npy --input=@arr_3.npy --input=@arr_4.npy
|
||||
```
|
||||
|
||||
</details>
|
||||
@@ -1,2 +0,0 @@
|
||||
from apps.stable_diffusion.scripts.txt2img import txt2img_inf
|
||||
from apps.stable_diffusion.scripts.img2img import img2img_inf
|
||||
@@ -1,331 +0,0 @@
|
||||
import os
|
||||
|
||||
if "AMD_ENABLE_LLPC" not in os.environ:
|
||||
os.environ["AMD_ENABLE_LLPC"] = "1"
|
||||
|
||||
import sys
|
||||
import json
|
||||
import torch
|
||||
import re
|
||||
import time
|
||||
from pathlib import Path
|
||||
from PIL import Image, PngImagePlugin
|
||||
from datetime import datetime as dt
|
||||
from dataclasses import dataclass
|
||||
from csv import DictWriter
|
||||
from apps.stable_diffusion.src import (
|
||||
args,
|
||||
Image2ImagePipeline,
|
||||
get_schedulers,
|
||||
set_init_device_flags,
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class Config:
|
||||
model_id: str
|
||||
ckpt_loc: str
|
||||
precision: str
|
||||
batch_size: int
|
||||
max_length: int
|
||||
height: int
|
||||
width: int
|
||||
device: str
|
||||
|
||||
|
||||
# This has to come before importing cache objects
|
||||
if args.clear_all:
|
||||
print("CLEARING ALL, EXPECT SEVERAL MINUTES TO RECOMPILE")
|
||||
from glob import glob
|
||||
import shutil
|
||||
|
||||
vmfbs = glob(os.path.join(os.getcwd(), "*.vmfb"))
|
||||
for vmfb in vmfbs:
|
||||
if os.path.exists(vmfb):
|
||||
os.remove(vmfb)
|
||||
# Temporary workaround of deleting yaml files to incorporate diffusers' pipeline.
|
||||
# TODO: Remove this once we have better weight updation logic.
|
||||
inference_yaml = ["v2-inference-v.yaml", "v1-inference.yaml"]
|
||||
for yaml in inference_yaml:
|
||||
if os.path.exists(yaml):
|
||||
os.remove(yaml)
|
||||
home = os.path.expanduser("~")
|
||||
if os.name == "nt": # Windows
|
||||
appdata = os.getenv("LOCALAPPDATA")
|
||||
shutil.rmtree(os.path.join(appdata, "AMD/VkCache"), ignore_errors=True)
|
||||
shutil.rmtree(os.path.join(home, "shark_tank"), ignore_errors=True)
|
||||
elif os.name == "unix":
|
||||
shutil.rmtree(os.path.join(home, ".cache/AMD/VkCache"))
|
||||
shutil.rmtree(os.path.join(home, ".local/shark_tank"))
|
||||
|
||||
|
||||
# save output images and the inputs correspoding to it.
|
||||
def save_output_img(output_img):
|
||||
output_path = args.output_dir if args.output_dir else Path.cwd()
|
||||
generated_imgs_path = Path(output_path, "generated_imgs")
|
||||
generated_imgs_path.mkdir(parents=True, exist_ok=True)
|
||||
csv_path = Path(generated_imgs_path, "imgs_details.csv")
|
||||
|
||||
prompt_slice = re.sub("[^a-zA-Z0-9]", "_", args.prompts[0][:15])
|
||||
out_img_name = (
|
||||
f"{prompt_slice}_{args.seed}_{dt.now().strftime('%y%m%d_%H%M%S')}"
|
||||
)
|
||||
|
||||
if args.output_img_format == "jpg":
|
||||
out_img_path = Path(generated_imgs_path, f"{out_img_name}.jpg")
|
||||
output_img.save(out_img_path, quality=95, subsampling=0)
|
||||
else:
|
||||
out_img_path = Path(generated_imgs_path, f"{out_img_name}.png")
|
||||
pngInfo = PngImagePlugin.PngInfo()
|
||||
|
||||
if args.write_metadata_to_png:
|
||||
pngInfo.add_text(
|
||||
"parameters",
|
||||
f"{args.prompts[0]}\nNegative prompt: {args.negative_prompts[0]}\nSteps:{args.steps}, Sampler: {args.scheduler}, CFG scale: {args.guidance_scale}, Seed: {args.seed}, Size: {args.width}x{args.height}, Model: {args.hf_model_id}",
|
||||
)
|
||||
|
||||
output_img.save(out_img_path, "PNG", pnginfo=pngInfo)
|
||||
|
||||
if args.output_img_format not in ["png", "jpg"]:
|
||||
print(
|
||||
f"[ERROR] Format {args.output_img_format} is not supported yet."
|
||||
"Image saved as png instead. Supported formats: png / jpg"
|
||||
)
|
||||
|
||||
new_entry = {
|
||||
"VARIANT": args.hf_model_id,
|
||||
"SCHEDULER": args.scheduler,
|
||||
"PROMPT": args.prompts[0],
|
||||
"NEG_PROMPT": args.negative_prompts[0],
|
||||
"IMG_INPUT": args.img_path,
|
||||
"SEED": args.seed,
|
||||
"CFG_SCALE": args.guidance_scale,
|
||||
"PRECISION": args.precision,
|
||||
"STEPS": args.steps,
|
||||
"HEIGHT": args.height,
|
||||
"WIDTH": args.width,
|
||||
"MAX_LENGTH": args.max_length,
|
||||
"OUTPUT": out_img_path,
|
||||
}
|
||||
|
||||
with open(csv_path, "a") as csv_obj:
|
||||
dictwriter_obj = DictWriter(csv_obj, fieldnames=list(new_entry.keys()))
|
||||
dictwriter_obj.writerow(new_entry)
|
||||
csv_obj.close()
|
||||
|
||||
if args.save_metadata_to_json:
|
||||
del new_entry["OUTPUT"]
|
||||
json_path = Path(generated_imgs_path, f"{out_img_name}.json")
|
||||
with open(json_path, "w") as f:
|
||||
json.dump(new_entry, f, indent=4)
|
||||
|
||||
|
||||
img2img_obj = None
|
||||
config_obj = None
|
||||
schedulers = None
|
||||
|
||||
|
||||
# Exposed to UI.
|
||||
def img2img_inf(
|
||||
prompt: str,
|
||||
negative_prompt: str,
|
||||
init_image: str,
|
||||
height: int,
|
||||
width: int,
|
||||
steps: int,
|
||||
guidance_scale: float,
|
||||
seed: int,
|
||||
batch_count: int,
|
||||
batch_size: int,
|
||||
scheduler: str,
|
||||
custom_model: str,
|
||||
hf_model_id: str,
|
||||
precision: str,
|
||||
device: str,
|
||||
max_length: int,
|
||||
save_metadata_to_json: bool,
|
||||
save_metadata_to_png: bool,
|
||||
):
|
||||
global img2img_obj
|
||||
global config_obj
|
||||
global schedulers
|
||||
|
||||
args.prompts = [prompt]
|
||||
args.negative_prompts = [negative_prompt]
|
||||
args.guidance_scale = guidance_scale
|
||||
args.seed = seed
|
||||
args.steps = steps
|
||||
args.scheduler = scheduler
|
||||
args.img_path = init_image
|
||||
image = Image.open(args.img_path)
|
||||
|
||||
# set ckpt_loc and hf_model_id.
|
||||
types = (
|
||||
".ckpt",
|
||||
".safetensors",
|
||||
) # the tuple of file types
|
||||
args.ckpt_loc = ""
|
||||
args.hf_model_id = ""
|
||||
if custom_model == "None":
|
||||
if not hf_model_id:
|
||||
return (
|
||||
None,
|
||||
"Please provide either custom model or huggingface model ID, both must not be empty",
|
||||
)
|
||||
args.hf_model_id = hf_model_id
|
||||
elif ".ckpt" in custom_model or ".safetensors" in custom_model:
|
||||
args.ckpt_loc = custom_model
|
||||
else:
|
||||
args.hf_model_id = custom_model
|
||||
|
||||
if image is None:
|
||||
return None, "An Initial Image is required"
|
||||
|
||||
args.save_metadata_to_json = save_metadata_to_json
|
||||
args.write_metadata_to_png = save_metadata_to_png
|
||||
|
||||
dtype = torch.float32 if precision == "fp32" else torch.half
|
||||
cpu_scheduling = not scheduler.startswith("Shark")
|
||||
new_config_obj = Config(
|
||||
args.hf_model_id,
|
||||
args.ckpt_loc,
|
||||
precision,
|
||||
batch_size,
|
||||
max_length,
|
||||
height,
|
||||
width,
|
||||
device,
|
||||
)
|
||||
if config_obj != new_config_obj:
|
||||
config_obj = new_config_obj
|
||||
args.precision = precision
|
||||
args.batch_size = batch_size
|
||||
args.max_length = max_length
|
||||
args.height = height
|
||||
args.width = width
|
||||
args.device = device.split("=>", 1)[1].strip()
|
||||
args.use_tuned = True
|
||||
args.import_mlir = True
|
||||
set_init_device_flags()
|
||||
model_id = (
|
||||
args.hf_model_id
|
||||
if args.hf_model_id
|
||||
else "runwayml/stable-diffusion-inpainting"
|
||||
)
|
||||
schedulers = get_schedulers(model_id)
|
||||
scheduler_obj = schedulers[scheduler]
|
||||
img2img_obj = Image2ImagePipeline.from_pretrained(
|
||||
scheduler_obj,
|
||||
args.import_mlir,
|
||||
args.hf_model_id,
|
||||
args.ckpt_loc,
|
||||
args.custom_vae,
|
||||
args.precision,
|
||||
args.max_length,
|
||||
args.batch_size,
|
||||
args.height,
|
||||
args.width,
|
||||
args.use_base_vae,
|
||||
args.use_tuned,
|
||||
)
|
||||
|
||||
if not img2img_obj:
|
||||
sys.exit("text to image pipeline must not return a null value")
|
||||
|
||||
img2img_obj.scheduler = schedulers[scheduler]
|
||||
|
||||
start_time = time.time()
|
||||
img2img_obj.log = ""
|
||||
generated_imgs = img2img_obj.generate_images(
|
||||
prompt,
|
||||
negative_prompt,
|
||||
image,
|
||||
batch_size,
|
||||
height,
|
||||
width,
|
||||
steps,
|
||||
guidance_scale,
|
||||
seed,
|
||||
args.max_length,
|
||||
dtype,
|
||||
args.use_base_vae,
|
||||
cpu_scheduling,
|
||||
)
|
||||
total_time = time.time() - start_time
|
||||
save_output_img(generated_imgs[0])
|
||||
text_output = f"prompt={args.prompts}"
|
||||
text_output += f"\nnegative prompt={args.negative_prompts}"
|
||||
text_output += f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
|
||||
text_output += f"\nscheduler={args.scheduler}, device={device}"
|
||||
text_output += f"\nsteps={args.steps}, guidance_scale={args.guidance_scale}, seed={args.seed}, size={args.height}x{args.width}"
|
||||
text_output += (
|
||||
f", batch size={args.batch_size}, max_length={args.max_length}"
|
||||
)
|
||||
text_output += img2img_obj.log
|
||||
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
|
||||
|
||||
return generated_imgs, text_output
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if args.img_path is None:
|
||||
print("Flag --img_path is required.")
|
||||
exit()
|
||||
|
||||
# When the models get uploaded, it should be default to False.
|
||||
args.import_mlir = True
|
||||
|
||||
dtype = torch.float32 if args.precision == "fp32" else torch.half
|
||||
cpu_scheduling = not args.scheduler.startswith("Shark")
|
||||
set_init_device_flags()
|
||||
schedulers = get_schedulers(args.hf_model_id)
|
||||
scheduler_obj = schedulers[args.scheduler]
|
||||
image = Image.open(args.img_path)
|
||||
|
||||
# Adjust for height and width based on model
|
||||
|
||||
img2img_obj = Image2ImagePipeline.from_pretrained(
|
||||
scheduler_obj,
|
||||
args.import_mlir,
|
||||
args.hf_model_id,
|
||||
args.ckpt_loc,
|
||||
args.custom_vae,
|
||||
args.precision,
|
||||
args.max_length,
|
||||
args.batch_size,
|
||||
args.height,
|
||||
args.width,
|
||||
args.use_base_vae,
|
||||
args.use_tuned,
|
||||
)
|
||||
|
||||
start_time = time.time()
|
||||
generated_imgs = img2img_obj.generate_images(
|
||||
args.prompts,
|
||||
args.negative_prompts,
|
||||
image,
|
||||
args.batch_size,
|
||||
args.height,
|
||||
args.width,
|
||||
args.steps,
|
||||
args.guidance_scale,
|
||||
args.seed,
|
||||
args.max_length,
|
||||
dtype,
|
||||
args.use_base_vae,
|
||||
cpu_scheduling,
|
||||
)
|
||||
total_time = time.time() - start_time
|
||||
text_output = f"prompt={args.prompts}"
|
||||
text_output += f"\nnegative prompt={args.negative_prompts}"
|
||||
text_output += f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
|
||||
text_output += f"\nscheduler={args.scheduler}, device={args.device}"
|
||||
text_output += f"\nsteps={args.steps}, guidance_scale={args.guidance_scale}, seed={args.seed}, size={args.height}x{args.width}"
|
||||
text_output += (
|
||||
f", batch size={args.batch_size}, max_length={args.max_length}"
|
||||
)
|
||||
text_output += img2img_obj.log
|
||||
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
|
||||
|
||||
save_output_img(generated_imgs[0])
|
||||
print(text_output)
|
||||
@@ -1,352 +0,0 @@
|
||||
import os
|
||||
|
||||
if "AMD_ENABLE_LLPC" not in os.environ:
|
||||
os.environ["AMD_ENABLE_LLPC"] = "1"
|
||||
|
||||
import sys
|
||||
import json
|
||||
import torch
|
||||
import re
|
||||
import time
|
||||
from pathlib import Path
|
||||
from PIL import Image, PngImagePlugin
|
||||
from datetime import datetime as dt
|
||||
from dataclasses import dataclass
|
||||
from csv import DictWriter
|
||||
from apps.stable_diffusion.src import (
|
||||
args,
|
||||
InpaintPipeline,
|
||||
get_schedulers,
|
||||
set_init_device_flags,
|
||||
utils,
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class Config:
|
||||
model_id: str
|
||||
ckpt_loc: str
|
||||
precision: str
|
||||
batch_size: int
|
||||
max_length: int
|
||||
height: int
|
||||
width: int
|
||||
device: str
|
||||
|
||||
|
||||
# This has to come before importing cache objects
|
||||
if args.clear_all:
|
||||
print("CLEARING ALL, EXPECT SEVERAL MINUTES TO RECOMPILE")
|
||||
from glob import glob
|
||||
import shutil
|
||||
|
||||
vmfbs = glob(os.path.join(os.getcwd(), "*.vmfb"))
|
||||
for vmfb in vmfbs:
|
||||
if os.path.exists(vmfb):
|
||||
os.remove(vmfb)
|
||||
# Temporary workaround of deleting yaml files to incorporate diffusers' pipeline.
|
||||
# TODO: Remove this once we have better weight updation logic.
|
||||
inference_yaml = ["v2-inference-v.yaml", "v1-inference.yaml"]
|
||||
for yaml in inference_yaml:
|
||||
if os.path.exists(yaml):
|
||||
os.remove(yaml)
|
||||
home = os.path.expanduser("~")
|
||||
if os.name == "nt": # Windows
|
||||
appdata = os.getenv("LOCALAPPDATA")
|
||||
shutil.rmtree(os.path.join(appdata, "AMD/VkCache"), ignore_errors=True)
|
||||
shutil.rmtree(os.path.join(home, "shark_tank"), ignore_errors=True)
|
||||
elif os.name == "unix":
|
||||
shutil.rmtree(os.path.join(home, ".cache/AMD/VkCache"))
|
||||
shutil.rmtree(os.path.join(home, ".local/shark_tank"))
|
||||
|
||||
|
||||
# save output images and the inputs corresponding to it.
|
||||
def save_output_img(output_img, img_seed):
|
||||
output_path = args.output_dir if args.output_dir else Path.cwd()
|
||||
generated_imgs_path = Path(output_path, "generated_imgs")
|
||||
generated_imgs_path.mkdir(parents=True, exist_ok=True)
|
||||
csv_path = Path(generated_imgs_path, "imgs_details.csv")
|
||||
|
||||
prompt_slice = re.sub("[^a-zA-Z0-9]", "_", args.prompts[0][:15])
|
||||
out_img_name = (
|
||||
f"{prompt_slice}_{img_seed}_{dt.now().strftime('%y%m%d_%H%M%S')}"
|
||||
)
|
||||
|
||||
img_model = args.hf_model_id
|
||||
if args.ckpt_loc:
|
||||
img_model = os.path.basename(args.ckpt_loc)
|
||||
|
||||
if args.output_img_format == "jpg":
|
||||
out_img_path = Path(generated_imgs_path, f"{out_img_name}.jpg")
|
||||
output_img.save(out_img_path, quality=95, subsampling=0)
|
||||
else:
|
||||
out_img_path = Path(generated_imgs_path, f"{out_img_name}.png")
|
||||
pngInfo = PngImagePlugin.PngInfo()
|
||||
|
||||
if args.write_metadata_to_png:
|
||||
pngInfo.add_text(
|
||||
"parameters",
|
||||
f"{args.prompts[0]}\nNegative prompt: {args.negative_prompts[0]}\nSteps:{args.steps}, Sampler: {args.scheduler}, CFG scale: {args.guidance_scale}, Seed: {img_seed}, Size: {args.width}x{args.height}, Model: {img_model}",
|
||||
)
|
||||
|
||||
output_img.save(out_img_path, "PNG", pnginfo=pngInfo)
|
||||
|
||||
if args.output_img_format not in ["png", "jpg"]:
|
||||
print(
|
||||
f"[ERROR] Format {args.output_img_format} is not supported yet."
|
||||
"Image saved as png instead. Supported formats: png / jpg"
|
||||
)
|
||||
|
||||
new_entry = {
|
||||
"VARIANT": img_model,
|
||||
"SCHEDULER": args.scheduler,
|
||||
"PROMPT": args.prompts[0],
|
||||
"NEG_PROMPT": args.negative_prompts[0],
|
||||
"IMG_INPUT": args.img_path,
|
||||
"MASK_INPUT": args.mask_path,
|
||||
"SEED": img_seed,
|
||||
"CFG_SCALE": args.guidance_scale,
|
||||
"PRECISION": args.precision,
|
||||
"STEPS": args.steps,
|
||||
"HEIGHT": args.height,
|
||||
"WIDTH": args.width,
|
||||
"MAX_LENGTH": args.max_length,
|
||||
"OUTPUT": out_img_path,
|
||||
}
|
||||
|
||||
with open(csv_path, "a") as csv_obj:
|
||||
dictwriter_obj = DictWriter(csv_obj, fieldnames=list(new_entry.keys()))
|
||||
dictwriter_obj.writerow(new_entry)
|
||||
csv_obj.close()
|
||||
|
||||
if args.save_metadata_to_json:
|
||||
del new_entry["OUTPUT"]
|
||||
json_path = Path(generated_imgs_path, f"{out_img_name}.json")
|
||||
with open(json_path, "w") as f:
|
||||
json.dump(new_entry, f, indent=4)
|
||||
|
||||
|
||||
inpaint_obj = None
|
||||
config_obj = None
|
||||
schedulers = None
|
||||
|
||||
|
||||
# Exposed to UI.
|
||||
def inpaint_inf(
|
||||
prompt: str,
|
||||
negative_prompt: str,
|
||||
image: Image,
|
||||
mask_image: Image,
|
||||
height: int,
|
||||
width: int,
|
||||
steps: int,
|
||||
guidance_scale: float,
|
||||
seed: int,
|
||||
batch_count: int,
|
||||
batch_size: int,
|
||||
scheduler: str,
|
||||
custom_model: str,
|
||||
hf_model_id: str,
|
||||
precision: str,
|
||||
device: str,
|
||||
max_length: int,
|
||||
save_metadata_to_json: bool,
|
||||
save_metadata_to_png: bool,
|
||||
):
|
||||
global inpaint_obj
|
||||
global config_obj
|
||||
global schedulers
|
||||
|
||||
args.prompts = [prompt]
|
||||
args.negative_prompts = [negative_prompt]
|
||||
args.guidance_scale = guidance_scale
|
||||
args.steps = steps
|
||||
args.scheduler = scheduler
|
||||
|
||||
# set ckpt_loc and hf_model_id.
|
||||
types = (
|
||||
".ckpt",
|
||||
".safetensors",
|
||||
) # the tuple of file types
|
||||
args.ckpt_loc = ""
|
||||
args.hf_model_id = ""
|
||||
if custom_model == "None":
|
||||
if not hf_model_id:
|
||||
return (
|
||||
None,
|
||||
"Please provide either custom model or huggingface model ID, both must not be empty",
|
||||
)
|
||||
args.hf_model_id = hf_model_id
|
||||
elif ".ckpt" in custom_model or ".safetensors" in custom_model:
|
||||
args.ckpt_loc = custom_model
|
||||
else:
|
||||
args.hf_model_id = custom_model
|
||||
|
||||
args.save_metadata_to_json = save_metadata_to_json
|
||||
args.write_metadata_to_png = save_metadata_to_png
|
||||
|
||||
dtype = torch.float32 if precision == "fp32" else torch.half
|
||||
cpu_scheduling = not scheduler.startswith("Shark")
|
||||
new_config_obj = Config(
|
||||
args.hf_model_id,
|
||||
args.ckpt_loc,
|
||||
precision,
|
||||
batch_size,
|
||||
max_length,
|
||||
height,
|
||||
width,
|
||||
device,
|
||||
)
|
||||
if config_obj != new_config_obj:
|
||||
config_obj = new_config_obj
|
||||
args.precision = precision
|
||||
args.batch_size = batch_size
|
||||
args.max_length = max_length
|
||||
args.height = height
|
||||
args.width = width
|
||||
args.device = device.split("=>", 1)[1].strip()
|
||||
args.use_tuned = True
|
||||
args.import_mlir = False
|
||||
set_init_device_flags()
|
||||
model_id = (
|
||||
args.hf_model_id
|
||||
if args.hf_model_id
|
||||
else "stabilityai/stable-diffusion-2-inpainting"
|
||||
)
|
||||
schedulers = get_schedulers(model_id)
|
||||
scheduler_obj = schedulers[scheduler]
|
||||
inpaint_obj = InpaintPipeline.from_pretrained(
|
||||
scheduler_obj,
|
||||
args.import_mlir,
|
||||
args.hf_model_id,
|
||||
args.ckpt_loc,
|
||||
args.custom_vae,
|
||||
args.precision,
|
||||
args.max_length,
|
||||
args.batch_size,
|
||||
args.height,
|
||||
args.width,
|
||||
args.use_base_vae,
|
||||
args.use_tuned,
|
||||
)
|
||||
|
||||
if not inpaint_obj:
|
||||
sys.exit("text to image pipeline must not return a null value")
|
||||
|
||||
inpaint_obj.scheduler = schedulers[scheduler]
|
||||
|
||||
start_time = time.time()
|
||||
inpaint_obj.log = ""
|
||||
generated_imgs = []
|
||||
seeds = []
|
||||
img_seed = utils.sanitize_seed(seed)
|
||||
for i in range(batch_count):
|
||||
if i > 0:
|
||||
img_seed = utils.sanitize_seed(-1)
|
||||
out_imgs = inpaint_obj.generate_images(
|
||||
prompt,
|
||||
negative_prompt,
|
||||
image,
|
||||
mask_image,
|
||||
batch_size,
|
||||
height,
|
||||
width,
|
||||
steps,
|
||||
guidance_scale,
|
||||
img_seed,
|
||||
args.max_length,
|
||||
dtype,
|
||||
args.use_base_vae,
|
||||
cpu_scheduling,
|
||||
)
|
||||
save_output_img(out_imgs[0], img_seed)
|
||||
generated_imgs.extend(out_imgs)
|
||||
seeds.append(img_seed)
|
||||
inpaint_obj.log += "\n"
|
||||
|
||||
total_time = time.time() - start_time
|
||||
text_output = f"prompt={args.prompts}"
|
||||
text_output += f"\nnegative prompt={args.negative_prompts}"
|
||||
text_output += f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
|
||||
text_output += f"\nscheduler={args.scheduler}, device={device}"
|
||||
text_output += f"\nsteps={args.steps}, guidance_scale={args.guidance_scale}, seed={seeds}"
|
||||
text_output += f"\nsize={args.height}x{args.width}, batch-count={batch_count}, batch-size={args.batch_size}, max_length={args.max_length}"
|
||||
text_output += inpaint_obj.log
|
||||
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
|
||||
|
||||
return generated_imgs, text_output
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if args.img_path is None:
|
||||
print("Flag --img_path is required.")
|
||||
exit()
|
||||
if args.mask_path is None:
|
||||
print("Flag --mask_path is required.")
|
||||
exit()
|
||||
if "inpaint" not in args.hf_model_id:
|
||||
print("Please use inpainting model with --hf_model_id.")
|
||||
exit()
|
||||
|
||||
dtype = torch.float32 if args.precision == "fp32" else torch.half
|
||||
cpu_scheduling = not args.scheduler.startswith("Shark")
|
||||
set_init_device_flags()
|
||||
schedulers = get_schedulers(args.hf_model_id)
|
||||
scheduler_obj = schedulers[args.scheduler]
|
||||
seed = args.seed
|
||||
image = Image.open(args.img_path)
|
||||
mask_image = Image.open(args.mask_path)
|
||||
|
||||
inpaint_obj = InpaintPipeline.from_pretrained(
|
||||
scheduler_obj,
|
||||
args.import_mlir,
|
||||
args.hf_model_id,
|
||||
args.ckpt_loc,
|
||||
args.custom_vae,
|
||||
args.precision,
|
||||
args.max_length,
|
||||
args.batch_size,
|
||||
args.height,
|
||||
args.width,
|
||||
args.use_base_vae,
|
||||
args.use_tuned,
|
||||
)
|
||||
|
||||
for current_batch in range(args.batch_count):
|
||||
if current_batch > 0:
|
||||
seed = -1
|
||||
seed = utils.sanitize_seed(seed)
|
||||
|
||||
start_time = time.time()
|
||||
generated_imgs = inpaint_obj.generate_images(
|
||||
args.prompts,
|
||||
args.negative_prompts,
|
||||
image,
|
||||
mask_image,
|
||||
args.batch_size,
|
||||
args.height,
|
||||
args.width,
|
||||
args.steps,
|
||||
args.guidance_scale,
|
||||
seed,
|
||||
args.max_length,
|
||||
dtype,
|
||||
args.use_base_vae,
|
||||
cpu_scheduling,
|
||||
)
|
||||
total_time = time.time() - start_time
|
||||
text_output = f"prompt={args.prompts}"
|
||||
text_output += f"\nnegative prompt={args.negative_prompts}"
|
||||
text_output += (
|
||||
f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
|
||||
)
|
||||
text_output += f"\nscheduler={args.scheduler}, device={args.device}"
|
||||
text_output += f"\nsteps={args.steps}, guidance_scale={args.guidance_scale}, seed={seed}, size={args.height}x{args.width}"
|
||||
text_output += (
|
||||
f", batch size={args.batch_size}, max_length={args.max_length}"
|
||||
)
|
||||
text_output += inpaint_obj.log
|
||||
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
|
||||
|
||||
save_output_img(generated_imgs[0], seed)
|
||||
print(text_output)
|
||||
@@ -1,240 +0,0 @@
|
||||
import logging
|
||||
import os
|
||||
from models.stable_diffusion.main import stable_diff_inf
|
||||
from models.stable_diffusion.utils import get_available_devices
|
||||
from dotenv import load_dotenv
|
||||
from telegram import Update, InlineKeyboardButton, InlineKeyboardMarkup
|
||||
from telegram import BotCommand
|
||||
from telegram.ext import Application, ApplicationBuilder, CallbackQueryHandler
|
||||
from telegram.ext import ContextTypes, MessageHandler, CommandHandler, filters
|
||||
from io import BytesIO
|
||||
import random
|
||||
|
||||
log = logging.getLogger("TG.Bot")
|
||||
logging.basicConfig()
|
||||
log.warning("Start")
|
||||
load_dotenv()
|
||||
os.environ["AMD_ENABLE_LLPC"] = "0"
|
||||
TG_TOKEN = os.getenv("TG_TOKEN")
|
||||
SELECTED_MODEL = "stablediffusion"
|
||||
SELECTED_SCHEDULER = "EulerAncestralDiscrete"
|
||||
STEPS = 30
|
||||
NEGATIVE_PROMPT = (
|
||||
"Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra"
|
||||
" limbs,Gross proportions,Missing arms,Mutated hands,Long"
|
||||
" neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad"
|
||||
" anatomy,Cloned face,Malformed limbs,Missing legs,Too many"
|
||||
" fingers,blurry, lowres, text, error, cropped, worst quality, low"
|
||||
" quality, jpeg artifacts, out of frame, extra fingers, mutated hands,"
|
||||
" poorly drawn hands, poorly drawn face, bad anatomy, extra limbs, cloned"
|
||||
" face, malformed limbs, missing arms, missing legs, extra arms, extra"
|
||||
" legs, fused fingers, too many fingers"
|
||||
)
|
||||
GUIDANCE_SCALE = 6
|
||||
available_devices = get_available_devices()
|
||||
models_list = [
|
||||
"stablediffusion",
|
||||
"anythingv3",
|
||||
"analogdiffusion",
|
||||
"openjourney",
|
||||
"dreamlike",
|
||||
]
|
||||
sheds_list = [
|
||||
"DDIM",
|
||||
"PNDM",
|
||||
"LMSDiscrete",
|
||||
"DPMSolverMultistep",
|
||||
"EulerDiscrete",
|
||||
"EulerAncestralDiscrete",
|
||||
"SharkEulerDiscrete",
|
||||
]
|
||||
|
||||
|
||||
def image_to_bytes(image):
|
||||
bio = BytesIO()
|
||||
bio.name = "image.jpeg"
|
||||
image.save(bio, "JPEG")
|
||||
bio.seek(0)
|
||||
return bio
|
||||
|
||||
|
||||
def get_try_again_markup():
|
||||
keyboard = [[InlineKeyboardButton("Try again", callback_data="TRYAGAIN")]]
|
||||
reply_markup = InlineKeyboardMarkup(keyboard)
|
||||
return reply_markup
|
||||
|
||||
|
||||
def generate_image(prompt):
|
||||
seed = random.randint(1, 10000)
|
||||
log.warning(SELECTED_MODEL)
|
||||
log.warning(STEPS)
|
||||
image, text = stable_diff_inf(
|
||||
prompt=prompt,
|
||||
negative_prompt=NEGATIVE_PROMPT,
|
||||
steps=STEPS,
|
||||
guidance_scale=GUIDANCE_SCALE,
|
||||
seed=seed,
|
||||
scheduler_key=SELECTED_SCHEDULER,
|
||||
variant=SELECTED_MODEL,
|
||||
device_key=available_devices[0],
|
||||
)
|
||||
|
||||
return image, seed
|
||||
|
||||
|
||||
async def generate_and_send_photo(
|
||||
update: Update, context: ContextTypes.DEFAULT_TYPE
|
||||
) -> None:
|
||||
progress_msg = await update.message.reply_text(
|
||||
"Generating image...", reply_to_message_id=update.message.message_id
|
||||
)
|
||||
im, seed = generate_image(prompt=update.message.text)
|
||||
await context.bot.delete_message(
|
||||
chat_id=progress_msg.chat_id, message_id=progress_msg.message_id
|
||||
)
|
||||
await context.bot.send_photo(
|
||||
update.effective_user.id,
|
||||
image_to_bytes(im),
|
||||
caption=f'"{update.message.text}" (Seed: {seed})',
|
||||
reply_markup=get_try_again_markup(),
|
||||
reply_to_message_id=update.message.message_id,
|
||||
)
|
||||
|
||||
|
||||
async def button(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None:
|
||||
query = update.callback_query
|
||||
if query.data in models_list:
|
||||
global SELECTED_MODEL
|
||||
SELECTED_MODEL = query.data
|
||||
await query.answer()
|
||||
await query.edit_message_text(text=f"Selected model: {query.data}")
|
||||
return
|
||||
if query.data in sheds_list:
|
||||
global SELECTED_SCHEDULER
|
||||
SELECTED_SCHEDULER = query.data
|
||||
await query.answer()
|
||||
await query.edit_message_text(text=f"Selected scheduler: {query.data}")
|
||||
return
|
||||
replied_message = query.message.reply_to_message
|
||||
await query.answer()
|
||||
progress_msg = await query.message.reply_text(
|
||||
"Generating image...", reply_to_message_id=replied_message.message_id
|
||||
)
|
||||
|
||||
if query.data == "TRYAGAIN":
|
||||
prompt = replied_message.text
|
||||
im, seed = generate_image(prompt)
|
||||
|
||||
await context.bot.delete_message(
|
||||
chat_id=progress_msg.chat_id, message_id=progress_msg.message_id
|
||||
)
|
||||
await context.bot.send_photo(
|
||||
update.effective_user.id,
|
||||
image_to_bytes(im),
|
||||
caption=f'"{prompt}" (Seed: {seed})',
|
||||
reply_markup=get_try_again_markup(),
|
||||
reply_to_message_id=replied_message.message_id,
|
||||
)
|
||||
|
||||
|
||||
async def select_model_handler(update, context):
|
||||
text = "Select model"
|
||||
keyboard = []
|
||||
for model in models_list:
|
||||
keyboard.append(
|
||||
[
|
||||
InlineKeyboardButton(text=model, callback_data=model),
|
||||
]
|
||||
)
|
||||
markup = InlineKeyboardMarkup(keyboard)
|
||||
await update.message.reply_text(text=text, reply_markup=markup)
|
||||
|
||||
|
||||
async def select_scheduler_handler(update, context):
|
||||
text = "Select schedule"
|
||||
keyboard = []
|
||||
for shed in sheds_list:
|
||||
keyboard.append(
|
||||
[
|
||||
InlineKeyboardButton(text=shed, callback_data=shed),
|
||||
]
|
||||
)
|
||||
markup = InlineKeyboardMarkup(keyboard)
|
||||
await update.message.reply_text(text=text, reply_markup=markup)
|
||||
|
||||
|
||||
async def set_steps_handler(update, context):
|
||||
input_mex = update.message.text
|
||||
log.warning(input_mex)
|
||||
try:
|
||||
input_args = input_mex.split("/set_steps ")[1]
|
||||
global STEPS
|
||||
STEPS = int(input_args)
|
||||
except Exception:
|
||||
input_args = (
|
||||
"Invalid parameter for command. Correct command looks like\n"
|
||||
" /set_steps 30"
|
||||
)
|
||||
await update.message.reply_text(input_args)
|
||||
|
||||
|
||||
async def set_negative_prompt_handler(update, context):
|
||||
input_mex = update.message.text
|
||||
log.warning(input_mex)
|
||||
try:
|
||||
input_args = input_mex.split("/set_negative_prompt ")[1]
|
||||
global NEGATIVE_PROMPT
|
||||
NEGATIVE_PROMPT = input_args
|
||||
except Exception:
|
||||
input_args = (
|
||||
"Invalid parameter for command. Correct command looks like\n"
|
||||
" /set_negative_prompt ugly, bad art, mutated"
|
||||
)
|
||||
await update.message.reply_text(input_args)
|
||||
|
||||
|
||||
async def set_guidance_scale_handler(update, context):
|
||||
input_mex = update.message.text
|
||||
log.warning(input_mex)
|
||||
try:
|
||||
input_args = input_mex.split("/set_guidance_scale ")[1]
|
||||
global GUIDANCE_SCALE
|
||||
GUIDANCE_SCALE = int(input_args)
|
||||
except Exception:
|
||||
input_args = (
|
||||
"Invalid parameter for command. Correct command looks like\n"
|
||||
" /set_guidance_scale 7"
|
||||
)
|
||||
await update.message.reply_text(input_args)
|
||||
|
||||
|
||||
async def setup_bot_commands(application: Application) -> None:
|
||||
await application.bot.set_my_commands(
|
||||
[
|
||||
BotCommand("select_model", "to select model"),
|
||||
BotCommand("select_scheduler", "to select scheduler"),
|
||||
BotCommand("set_steps", "to set steps"),
|
||||
BotCommand("set_guidance_scale", "to set guidance scale"),
|
||||
BotCommand("set_negative_prompt", "to set negative prompt"),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
app = (
|
||||
ApplicationBuilder().token(TG_TOKEN).post_init(setup_bot_commands).build()
|
||||
)
|
||||
app.add_handler(CommandHandler("select_model", select_model_handler))
|
||||
app.add_handler(CommandHandler("select_scheduler", select_scheduler_handler))
|
||||
app.add_handler(CommandHandler("set_steps", set_steps_handler))
|
||||
app.add_handler(
|
||||
CommandHandler("set_guidance_scale", set_guidance_scale_handler)
|
||||
)
|
||||
app.add_handler(
|
||||
CommandHandler("set_negative_prompt", set_negative_prompt_handler)
|
||||
)
|
||||
app.add_handler(
|
||||
MessageHandler(filters.TEXT & ~filters.COMMAND, generate_and_send_photo)
|
||||
)
|
||||
app.add_handler(CallbackQueryHandler(button))
|
||||
log.warning("Start bot")
|
||||
app.run_polling()
|
||||
@@ -1,333 +0,0 @@
|
||||
import os
|
||||
|
||||
if "AMD_ENABLE_LLPC" not in os.environ:
|
||||
os.environ["AMD_ENABLE_LLPC"] = "1"
|
||||
|
||||
import sys
|
||||
import json
|
||||
import torch
|
||||
import re
|
||||
import time
|
||||
from pathlib import Path
|
||||
from PIL import PngImagePlugin
|
||||
from datetime import datetime as dt
|
||||
from dataclasses import dataclass
|
||||
from csv import DictWriter
|
||||
from apps.stable_diffusion.src import (
|
||||
args,
|
||||
Text2ImagePipeline,
|
||||
get_schedulers,
|
||||
set_init_device_flags,
|
||||
utils,
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class Config:
|
||||
model_id: str
|
||||
ckpt_loc: str
|
||||
precision: str
|
||||
batch_size: int
|
||||
max_length: int
|
||||
height: int
|
||||
width: int
|
||||
device: str
|
||||
|
||||
|
||||
# This has to come before importing cache objects
|
||||
if args.clear_all:
|
||||
print("CLEARING ALL, EXPECT SEVERAL MINUTES TO RECOMPILE")
|
||||
from glob import glob
|
||||
import shutil
|
||||
|
||||
vmfbs = glob(os.path.join(os.getcwd(), "*.vmfb"))
|
||||
for vmfb in vmfbs:
|
||||
if os.path.exists(vmfb):
|
||||
os.remove(vmfb)
|
||||
# Temporary workaround of deleting yaml files to incorporate diffusers' pipeline.
|
||||
# TODO: Remove this once we have better weight updation logic.
|
||||
inference_yaml = ["v2-inference-v.yaml", "v1-inference.yaml"]
|
||||
for yaml in inference_yaml:
|
||||
if os.path.exists(yaml):
|
||||
os.remove(yaml)
|
||||
home = os.path.expanduser("~")
|
||||
if os.name == "nt": # Windows
|
||||
appdata = os.getenv("LOCALAPPDATA")
|
||||
shutil.rmtree(os.path.join(appdata, "AMD/VkCache"), ignore_errors=True)
|
||||
shutil.rmtree(os.path.join(home, "shark_tank"), ignore_errors=True)
|
||||
elif os.name == "unix":
|
||||
shutil.rmtree(os.path.join(home, ".cache/AMD/VkCache"))
|
||||
shutil.rmtree(os.path.join(home, ".local/shark_tank"))
|
||||
|
||||
|
||||
# save output images and the inputs corresponding to it.
|
||||
def save_output_img(output_img, img_seed):
|
||||
output_path = args.output_dir if args.output_dir else Path.cwd()
|
||||
generated_imgs_path = Path(output_path, "generated_imgs")
|
||||
generated_imgs_path.mkdir(parents=True, exist_ok=True)
|
||||
csv_path = Path(generated_imgs_path, "imgs_details.csv")
|
||||
|
||||
prompt_slice = re.sub("[^a-zA-Z0-9]", "_", args.prompts[0][:15])
|
||||
out_img_name = (
|
||||
f"{prompt_slice}_{img_seed}_{dt.now().strftime('%y%m%d_%H%M%S')}"
|
||||
)
|
||||
|
||||
img_model = args.hf_model_id
|
||||
if args.ckpt_loc:
|
||||
img_model = os.path.basename(args.ckpt_loc)
|
||||
|
||||
if args.output_img_format == "jpg":
|
||||
out_img_path = Path(generated_imgs_path, f"{out_img_name}.jpg")
|
||||
output_img.save(out_img_path, quality=95, subsampling=0)
|
||||
else:
|
||||
out_img_path = Path(generated_imgs_path, f"{out_img_name}.png")
|
||||
pngInfo = PngImagePlugin.PngInfo()
|
||||
|
||||
if args.write_metadata_to_png:
|
||||
pngInfo.add_text(
|
||||
"parameters",
|
||||
f"{args.prompts[0]}\nNegative prompt: {args.negative_prompts[0]}\nSteps:{args.steps}, Sampler: {args.scheduler}, CFG scale: {args.guidance_scale}, Seed: {img_seed}, Size: {args.width}x{args.height}, Model: {img_model}",
|
||||
)
|
||||
|
||||
output_img.save(out_img_path, "PNG", pnginfo=pngInfo)
|
||||
|
||||
if args.output_img_format not in ["png", "jpg"]:
|
||||
print(
|
||||
f"[ERROR] Format {args.output_img_format} is not supported yet."
|
||||
"Image saved as png instead. Supported formats: png / jpg"
|
||||
)
|
||||
|
||||
new_entry = {
|
||||
"VARIANT": img_model,
|
||||
"SCHEDULER": args.scheduler,
|
||||
"PROMPT": args.prompts[0],
|
||||
"NEG_PROMPT": args.negative_prompts[0],
|
||||
"SEED": img_seed,
|
||||
"CFG_SCALE": args.guidance_scale,
|
||||
"PRECISION": args.precision,
|
||||
"STEPS": args.steps,
|
||||
"HEIGHT": args.height,
|
||||
"WIDTH": args.width,
|
||||
"MAX_LENGTH": args.max_length,
|
||||
"OUTPUT": out_img_path,
|
||||
}
|
||||
|
||||
with open(csv_path, "a") as csv_obj:
|
||||
dictwriter_obj = DictWriter(csv_obj, fieldnames=list(new_entry.keys()))
|
||||
dictwriter_obj.writerow(new_entry)
|
||||
csv_obj.close()
|
||||
|
||||
if args.save_metadata_to_json:
|
||||
del new_entry["OUTPUT"]
|
||||
json_path = Path(generated_imgs_path, f"{out_img_name}.json")
|
||||
with open(json_path, "w") as f:
|
||||
json.dump(new_entry, f, indent=4)
|
||||
|
||||
|
||||
txt2img_obj = None
|
||||
config_obj = None
|
||||
schedulers = None
|
||||
|
||||
|
||||
# Exposed to UI.
|
||||
def txt2img_inf(
|
||||
prompt: str,
|
||||
negative_prompt: str,
|
||||
height: int,
|
||||
width: int,
|
||||
steps: int,
|
||||
guidance_scale: float,
|
||||
seed: int,
|
||||
batch_count: int,
|
||||
batch_size: int,
|
||||
scheduler: str,
|
||||
custom_model: str,
|
||||
hf_model_id: str,
|
||||
precision: str,
|
||||
device: str,
|
||||
max_length: int,
|
||||
save_metadata_to_json: bool,
|
||||
save_metadata_to_png: bool,
|
||||
):
|
||||
global txt2img_obj
|
||||
global config_obj
|
||||
global schedulers
|
||||
|
||||
args.prompts = [prompt]
|
||||
args.negative_prompts = [negative_prompt]
|
||||
args.guidance_scale = guidance_scale
|
||||
args.steps = steps
|
||||
args.scheduler = scheduler
|
||||
|
||||
# set ckpt_loc and hf_model_id.
|
||||
types = (
|
||||
".ckpt",
|
||||
".safetensors",
|
||||
) # the tuple of file types
|
||||
args.ckpt_loc = ""
|
||||
args.hf_model_id = ""
|
||||
if custom_model == "None":
|
||||
if not hf_model_id:
|
||||
return (
|
||||
None,
|
||||
"Please provide either custom model or huggingface model ID, both must not be empty",
|
||||
)
|
||||
args.hf_model_id = hf_model_id
|
||||
elif ".ckpt" in custom_model or ".safetensors" in custom_model:
|
||||
args.ckpt_loc = custom_model
|
||||
else:
|
||||
args.hf_model_id = custom_model
|
||||
|
||||
args.save_metadata_to_json = save_metadata_to_json
|
||||
args.write_metadata_to_png = save_metadata_to_png
|
||||
|
||||
dtype = torch.float32 if precision == "fp32" else torch.half
|
||||
cpu_scheduling = not scheduler.startswith("Shark")
|
||||
new_config_obj = Config(
|
||||
args.hf_model_id,
|
||||
args.ckpt_loc,
|
||||
precision,
|
||||
batch_size,
|
||||
max_length,
|
||||
height,
|
||||
width,
|
||||
device,
|
||||
)
|
||||
if config_obj != new_config_obj:
|
||||
config_obj = new_config_obj
|
||||
args.precision = precision
|
||||
args.batch_size = batch_size
|
||||
args.max_length = max_length
|
||||
args.height = height
|
||||
args.width = width
|
||||
args.device = device.split("=>", 1)[1].strip()
|
||||
args.use_tuned = True
|
||||
args.import_mlir = False
|
||||
set_init_device_flags()
|
||||
model_id = (
|
||||
args.hf_model_id
|
||||
if args.hf_model_id
|
||||
else "stabilityai/stable-diffusion-2-1-base"
|
||||
)
|
||||
schedulers = get_schedulers(model_id)
|
||||
scheduler_obj = schedulers[scheduler]
|
||||
txt2img_obj = Text2ImagePipeline.from_pretrained(
|
||||
scheduler_obj,
|
||||
args.import_mlir,
|
||||
args.hf_model_id,
|
||||
args.ckpt_loc,
|
||||
args.custom_vae,
|
||||
args.precision,
|
||||
args.max_length,
|
||||
args.batch_size,
|
||||
args.height,
|
||||
args.width,
|
||||
args.use_base_vae,
|
||||
args.use_tuned,
|
||||
)
|
||||
|
||||
if not txt2img_obj:
|
||||
sys.exit("text to image pipeline must not return a null value")
|
||||
|
||||
txt2img_obj.scheduler = schedulers[scheduler]
|
||||
|
||||
start_time = time.time()
|
||||
txt2img_obj.log = ""
|
||||
generated_imgs = []
|
||||
seeds = []
|
||||
img_seed = utils.sanitize_seed(seed)
|
||||
for i in range(batch_count):
|
||||
if i > 0:
|
||||
img_seed = utils.sanitize_seed(-1)
|
||||
out_imgs = txt2img_obj.generate_images(
|
||||
prompt,
|
||||
negative_prompt,
|
||||
batch_size,
|
||||
height,
|
||||
width,
|
||||
steps,
|
||||
guidance_scale,
|
||||
img_seed,
|
||||
args.max_length,
|
||||
dtype,
|
||||
args.use_base_vae,
|
||||
cpu_scheduling,
|
||||
)
|
||||
save_output_img(out_imgs[0], img_seed)
|
||||
generated_imgs.extend(out_imgs)
|
||||
seeds.append(img_seed)
|
||||
txt2img_obj.log += "\n"
|
||||
|
||||
total_time = time.time() - start_time
|
||||
text_output = f"prompt={args.prompts}"
|
||||
text_output += f"\nnegative prompt={args.negative_prompts}"
|
||||
text_output += f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
|
||||
text_output += f"\nscheduler={args.scheduler}, device={device}"
|
||||
text_output += f"\nsteps={args.steps}, guidance_scale={args.guidance_scale}, seed={seeds}"
|
||||
text_output += f"\nsize={args.height}x{args.width}, batch-count={batch_count}, batch-size={args.batch_size}, max_length={args.max_length}"
|
||||
text_output += txt2img_obj.log
|
||||
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
|
||||
|
||||
return generated_imgs, text_output
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
dtype = torch.float32 if args.precision == "fp32" else torch.half
|
||||
cpu_scheduling = not args.scheduler.startswith("Shark")
|
||||
set_init_device_flags()
|
||||
schedulers = get_schedulers(args.hf_model_id)
|
||||
scheduler_obj = schedulers[args.scheduler]
|
||||
seed = args.seed
|
||||
|
||||
txt2img_obj = Text2ImagePipeline.from_pretrained(
|
||||
scheduler_obj,
|
||||
args.import_mlir,
|
||||
args.hf_model_id,
|
||||
args.ckpt_loc,
|
||||
args.custom_vae,
|
||||
args.precision,
|
||||
args.max_length,
|
||||
args.batch_size,
|
||||
args.height,
|
||||
args.width,
|
||||
args.use_base_vae,
|
||||
args.use_tuned,
|
||||
)
|
||||
|
||||
for current_batch in range(args.batch_count):
|
||||
if current_batch > 0:
|
||||
seed = -1
|
||||
seed = utils.sanitize_seed(seed)
|
||||
|
||||
start_time = time.time()
|
||||
generated_imgs = txt2img_obj.generate_images(
|
||||
args.prompts,
|
||||
args.negative_prompts,
|
||||
args.batch_size,
|
||||
args.height,
|
||||
args.width,
|
||||
args.steps,
|
||||
args.guidance_scale,
|
||||
seed,
|
||||
args.max_length,
|
||||
dtype,
|
||||
args.use_base_vae,
|
||||
cpu_scheduling,
|
||||
)
|
||||
total_time = time.time() - start_time
|
||||
text_output = f"prompt={args.prompts}"
|
||||
text_output += f"\nnegative prompt={args.negative_prompts}"
|
||||
text_output += (
|
||||
f"\nmodel_id={args.hf_model_id}, ckpt_loc={args.ckpt_loc}"
|
||||
)
|
||||
text_output += f"\nscheduler={args.scheduler}, device={args.device}"
|
||||
text_output += f"\nsteps={args.steps}, guidance_scale={args.guidance_scale}, seed={seed}, size={args.height}x{args.width}"
|
||||
text_output += (
|
||||
f", batch size={args.batch_size}, max_length={args.max_length}"
|
||||
)
|
||||
# TODO: if using --batch_count=x txt2img_obj.log will output on each display every iteration infos from the start
|
||||
text_output += txt2img_obj.log
|
||||
text_output += f"\nTotal image generation time: {total_time:.4f}sec"
|
||||
|
||||
save_output_img(generated_imgs[0], seed)
|
||||
print(text_output)
|
||||
@@ -1,79 +0,0 @@
|
||||
# -*- mode: python ; coding: utf-8 -*-
|
||||
from PyInstaller.utils.hooks import collect_data_files
|
||||
from PyInstaller.utils.hooks import copy_metadata
|
||||
|
||||
import sys ; sys.setrecursionlimit(sys.getrecursionlimit() * 5)
|
||||
|
||||
datas = []
|
||||
datas += collect_data_files('torch')
|
||||
datas += copy_metadata('torch')
|
||||
datas += copy_metadata('tqdm')
|
||||
datas += copy_metadata('regex')
|
||||
datas += copy_metadata('requests')
|
||||
datas += copy_metadata('packaging')
|
||||
datas += copy_metadata('filelock')
|
||||
datas += copy_metadata('numpy')
|
||||
datas += copy_metadata('tokenizers')
|
||||
datas += copy_metadata('importlib_metadata')
|
||||
datas += copy_metadata('torchvision')
|
||||
datas += copy_metadata('torch-mlir')
|
||||
datas += copy_metadata('diffusers')
|
||||
datas += copy_metadata('transformers')
|
||||
datas += copy_metadata('omegaconf')
|
||||
datas += copy_metadata('safetensors')
|
||||
datas += collect_data_files('gradio')
|
||||
datas += collect_data_files('iree')
|
||||
datas += collect_data_files('google-cloud-storage')
|
||||
datas += collect_data_files('shark')
|
||||
datas += [
|
||||
( 'src/utils/resources/prompts.json', 'resources' ),
|
||||
( 'src/utils/resources/model_db.json', 'resources' ),
|
||||
( 'src/utils/resources/opt_flags.json', 'resources' ),
|
||||
( 'src/utils/resources/base_model.json', 'resources' ),
|
||||
( 'web/ui/css/*', 'ui/css' ),
|
||||
( 'web/ui/logos/*', 'ui/logos' )
|
||||
]
|
||||
|
||||
binaries = []
|
||||
|
||||
block_cipher = None
|
||||
|
||||
|
||||
a = Analysis(
|
||||
['web/index.py'],
|
||||
pathex=['.'],
|
||||
binaries=binaries,
|
||||
datas=datas,
|
||||
hiddenimports=['shark', 'shark.*', 'shark.shark_inference', 'shark_inference', 'iree.tools.core', 'gradio', 'apps'],
|
||||
hookspath=[],
|
||||
hooksconfig={},
|
||||
runtime_hooks=[],
|
||||
excludes=[],
|
||||
win_no_prefer_redirects=False,
|
||||
win_private_assemblies=False,
|
||||
cipher=block_cipher,
|
||||
noarchive=False,
|
||||
)
|
||||
pyz = PYZ(a.pure, a.zipped_data, cipher=block_cipher)
|
||||
|
||||
exe = EXE(
|
||||
pyz,
|
||||
a.scripts,
|
||||
a.binaries,
|
||||
a.zipfiles,
|
||||
a.datas,
|
||||
[],
|
||||
name='shark_sd',
|
||||
debug=False,
|
||||
bootloader_ignore_signals=False,
|
||||
strip=False,
|
||||
upx=True,
|
||||
upx_exclude=[],
|
||||
runtime_tmpdir=None,
|
||||
console=True,
|
||||
disable_windowed_traceback=False,
|
||||
argv_emulation=False,
|
||||
target_arch=None,
|
||||
codesign_identity=None,
|
||||
entitlements_file=None,
|
||||
)
|
||||
@@ -1,77 +0,0 @@
|
||||
# -*- mode: python ; coding: utf-8 -*-
|
||||
from PyInstaller.utils.hooks import collect_data_files
|
||||
from PyInstaller.utils.hooks import copy_metadata
|
||||
|
||||
import sys ; sys.setrecursionlimit(sys.getrecursionlimit() * 5)
|
||||
|
||||
datas = []
|
||||
datas += collect_data_files('torch')
|
||||
datas += copy_metadata('torch')
|
||||
datas += copy_metadata('tqdm')
|
||||
datas += copy_metadata('regex')
|
||||
datas += copy_metadata('requests')
|
||||
datas += copy_metadata('packaging')
|
||||
datas += copy_metadata('filelock')
|
||||
datas += copy_metadata('numpy')
|
||||
datas += copy_metadata('tokenizers')
|
||||
datas += copy_metadata('importlib_metadata')
|
||||
datas += copy_metadata('torchvision')
|
||||
datas += copy_metadata('torch-mlir')
|
||||
datas += copy_metadata('diffusers')
|
||||
datas += copy_metadata('transformers')
|
||||
datas += copy_metadata('omegaconf')
|
||||
datas += copy_metadata('safetensors')
|
||||
datas += collect_data_files('gradio')
|
||||
datas += collect_data_files('iree')
|
||||
datas += collect_data_files('google-cloud-storage')
|
||||
datas += collect_data_files('shark')
|
||||
datas += [
|
||||
( 'src/utils/resources/prompts.json', 'resources' ),
|
||||
( 'src/utils/resources/model_db.json', 'resources' ),
|
||||
( 'src/utils/resources/opt_flags.json', 'resources' ),
|
||||
( 'src/utils/resources/base_model.json', 'resources' ),
|
||||
]
|
||||
|
||||
binaries = []
|
||||
|
||||
block_cipher = None
|
||||
|
||||
|
||||
a = Analysis(
|
||||
['scripts/txt2img.py'],
|
||||
pathex=['.'],
|
||||
binaries=binaries,
|
||||
datas=datas,
|
||||
hiddenimports=['shark', 'shark.*', 'shark.shark_inference', 'shark_inference', 'iree.tools.core', 'gradio', 'apps'],
|
||||
hookspath=[],
|
||||
hooksconfig={},
|
||||
runtime_hooks=[],
|
||||
excludes=[],
|
||||
win_no_prefer_redirects=False,
|
||||
win_private_assemblies=False,
|
||||
cipher=block_cipher,
|
||||
noarchive=False,
|
||||
)
|
||||
pyz = PYZ(a.pure, a.zipped_data, cipher=block_cipher)
|
||||
|
||||
exe = EXE(
|
||||
pyz,
|
||||
a.scripts,
|
||||
a.binaries,
|
||||
a.zipfiles,
|
||||
a.datas,
|
||||
[],
|
||||
name='shark_sd_cli',
|
||||
debug=False,
|
||||
bootloader_ignore_signals=False,
|
||||
strip=False,
|
||||
upx=True,
|
||||
upx_exclude=[],
|
||||
runtime_tmpdir=None,
|
||||
console=True,
|
||||
disable_windowed_traceback=False,
|
||||
argv_emulation=False,
|
||||
target_arch=None,
|
||||
codesign_identity=None,
|
||||
entitlements_file=None,
|
||||
)
|
||||
@@ -1,12 +0,0 @@
|
||||
from apps.stable_diffusion.src.utils import (
|
||||
args,
|
||||
set_init_device_flags,
|
||||
prompt_examples,
|
||||
get_available_devices,
|
||||
)
|
||||
from apps.stable_diffusion.src.pipelines import (
|
||||
Text2ImagePipeline,
|
||||
InpaintPipeline,
|
||||
Image2ImagePipeline,
|
||||
)
|
||||
from apps.stable_diffusion.src.schedulers import get_schedulers
|
||||
@@ -1,12 +0,0 @@
|
||||
from apps.stable_diffusion.src.models.model_wrappers import (
|
||||
SharkifyStableDiffusionModel,
|
||||
)
|
||||
from apps.stable_diffusion.src.models.opt_params import (
|
||||
get_vae_encode,
|
||||
get_vae,
|
||||
get_unet,
|
||||
get_clip,
|
||||
get_tokenizer,
|
||||
get_params,
|
||||
get_variant_version,
|
||||
)
|
||||
@@ -1,350 +0,0 @@
|
||||
from diffusers import AutoencoderKL, UNet2DConditionModel
|
||||
from transformers import CLIPTextModel
|
||||
from collections import defaultdict
|
||||
import torch
|
||||
import traceback
|
||||
import re
|
||||
import sys
|
||||
from apps.stable_diffusion.src.utils import (
|
||||
compile_through_fx,
|
||||
get_opt_flags,
|
||||
base_models,
|
||||
args,
|
||||
fetch_or_delete_vmfbs,
|
||||
preprocessCKPT,
|
||||
get_path_to_diffusers_checkpoint,
|
||||
fetch_and_update_base_model_id,
|
||||
get_path_stem,
|
||||
get_extended_name,
|
||||
)
|
||||
|
||||
|
||||
# These shapes are parameter dependent.
|
||||
def replace_shape_str(shape, max_len, width, height, batch_size):
|
||||
new_shape = []
|
||||
for i in range(len(shape)):
|
||||
if shape[i] == "max_len":
|
||||
new_shape.append(max_len)
|
||||
elif shape[i] == "height":
|
||||
new_shape.append(height)
|
||||
elif shape[i] == "width":
|
||||
new_shape.append(width)
|
||||
elif isinstance(shape[i], str):
|
||||
mul_val = int(shape[i].split("*")[0])
|
||||
if "batch_size" in shape[i]:
|
||||
new_shape.append(batch_size * mul_val)
|
||||
elif "height" in shape[i]:
|
||||
new_shape.append(height * mul_val)
|
||||
elif "width" in shape[i]:
|
||||
new_shape.append(width * mul_val)
|
||||
else:
|
||||
new_shape.append(shape[i])
|
||||
return new_shape
|
||||
|
||||
|
||||
# Get the input info for various models i.e. "unet", "clip", "vae", "vae_encode".
|
||||
def get_input_info(model_info, max_len, width, height, batch_size):
|
||||
dtype_config = {"f32": torch.float32, "i64": torch.int64}
|
||||
input_map = defaultdict(list)
|
||||
for k in model_info:
|
||||
for inp in model_info[k]:
|
||||
shape = model_info[k][inp]["shape"]
|
||||
dtype = dtype_config[model_info[k][inp]["dtype"]]
|
||||
tensor = None
|
||||
if isinstance(shape, list):
|
||||
clean_shape = replace_shape_str(
|
||||
shape, max_len, width, height, batch_size
|
||||
)
|
||||
if dtype == torch.int64:
|
||||
tensor = torch.randint(1, 3, tuple(clean_shape))
|
||||
else:
|
||||
tensor = torch.randn(*clean_shape).to(dtype)
|
||||
elif isinstance(shape, int):
|
||||
tensor = torch.tensor(shape).to(dtype)
|
||||
else:
|
||||
sys.exit("shape isn't specified correctly.")
|
||||
input_map[k].append(tensor)
|
||||
return input_map
|
||||
|
||||
|
||||
class SharkifyStableDiffusionModel:
|
||||
def __init__(
|
||||
self,
|
||||
model_id: str,
|
||||
custom_weights: str,
|
||||
custom_vae: str,
|
||||
precision: str,
|
||||
max_len: int = 64,
|
||||
width: int = 512,
|
||||
height: int = 512,
|
||||
batch_size: int = 1,
|
||||
use_base_vae: bool = False,
|
||||
use_tuned: bool = False,
|
||||
):
|
||||
self.check_params(max_len, width, height)
|
||||
self.max_len = max_len
|
||||
self.height = height // 8
|
||||
self.width = width // 8
|
||||
self.batch_size = batch_size
|
||||
self.custom_weights = custom_weights
|
||||
if custom_weights != "":
|
||||
assert custom_weights.lower().endswith(
|
||||
(".ckpt", ".safetensors")
|
||||
), "checkpoint files supported can be any of [.ckpt, .safetensors] type"
|
||||
custom_weights = get_path_to_diffusers_checkpoint(custom_weights)
|
||||
self.model_id = model_id if custom_weights == "" else custom_weights
|
||||
self.custom_vae = custom_vae
|
||||
self.precision = precision
|
||||
self.base_vae = use_base_vae
|
||||
self.model_name = (
|
||||
str(batch_size)
|
||||
+ "_"
|
||||
+ str(max_len)
|
||||
+ "_"
|
||||
+ str(height)
|
||||
+ "_"
|
||||
+ str(width)
|
||||
+ "_"
|
||||
+ precision
|
||||
)
|
||||
self.use_tuned = use_tuned
|
||||
if use_tuned:
|
||||
self.model_name = self.model_name + "_tuned"
|
||||
self.model_name = self.model_name + "_" + get_path_stem(self.model_id)
|
||||
|
||||
def get_extended_name_for_all_model(self):
|
||||
model_name = {}
|
||||
sub_model_list = ["clip", "unet", "vae", "vae_encode"]
|
||||
for model in sub_model_list:
|
||||
sub_model = model
|
||||
model_config = self.model_name
|
||||
if "vae" == model:
|
||||
if self.custom_vae != "":
|
||||
model_config = model_config + get_path_stem(self.custom_vae)
|
||||
if self.base_vae:
|
||||
sub_model = "base_vae"
|
||||
model_name[model] = get_extended_name(sub_model + model_config)
|
||||
return model_name
|
||||
|
||||
def check_params(self, max_len, width, height):
|
||||
if not (max_len >= 32 and max_len <= 77):
|
||||
sys.exit("please specify max_len in the range [32, 77].")
|
||||
if not (width % 8 == 0 and width >= 384):
|
||||
sys.exit("width should be greater than 384 and multiple of 8")
|
||||
if not (height % 8 == 0 and height >= 384):
|
||||
sys.exit("height should be greater than 384 and multiple of 8")
|
||||
|
||||
def get_vae_encode(self):
|
||||
class VaeEncodeModel(torch.nn.Module):
|
||||
def __init__(self, model_id=self.model_id):
|
||||
super().__init__()
|
||||
self.vae = AutoencoderKL.from_pretrained(
|
||||
model_id,
|
||||
subfolder="vae",
|
||||
)
|
||||
|
||||
def forward(self, input):
|
||||
latents = self.vae.encode(input).latent_dist.sample()
|
||||
return 0.18215 * latents
|
||||
|
||||
vae_encode = VaeEncodeModel()
|
||||
inputs = tuple(self.inputs["vae_encode"])
|
||||
is_f16 = True if self.precision == "fp16" else False
|
||||
shark_vae_encode = compile_through_fx(
|
||||
vae_encode,
|
||||
inputs,
|
||||
is_f16=is_f16,
|
||||
use_tuned=self.use_tuned,
|
||||
model_name=self.model_name["vae_encode"],
|
||||
extra_args=get_opt_flags("vae", precision=self.precision),
|
||||
)
|
||||
return shark_vae_encode
|
||||
|
||||
def get_vae(self):
|
||||
class VaeModel(torch.nn.Module):
|
||||
def __init__(self, model_id=self.model_id, base_vae=self.base_vae, custom_vae=self.custom_vae):
|
||||
super().__init__()
|
||||
self.vae = AutoencoderKL.from_pretrained(
|
||||
model_id if custom_vae == "" else custom_vae,
|
||||
subfolder="vae",
|
||||
)
|
||||
self.base_vae = base_vae
|
||||
|
||||
def forward(self, input):
|
||||
if not self.base_vae:
|
||||
input = 1 / 0.18215 * input
|
||||
x = self.vae.decode(input, return_dict=False)[0]
|
||||
x = (x / 2 + 0.5).clamp(0, 1)
|
||||
if self.base_vae:
|
||||
return x
|
||||
x = x * 255.0
|
||||
return x.round()
|
||||
|
||||
vae = VaeModel()
|
||||
inputs = tuple(self.inputs["vae"])
|
||||
is_f16 = True if self.precision == "fp16" else False
|
||||
shark_vae = compile_through_fx(
|
||||
vae,
|
||||
inputs,
|
||||
is_f16=is_f16,
|
||||
use_tuned=self.use_tuned,
|
||||
model_name=self.model_name["vae"],
|
||||
extra_args=get_opt_flags("vae", precision=self.precision),
|
||||
)
|
||||
return shark_vae
|
||||
|
||||
def get_unet(self):
|
||||
class UnetModel(torch.nn.Module):
|
||||
def __init__(self, model_id=self.model_id):
|
||||
super().__init__()
|
||||
self.unet = UNet2DConditionModel.from_pretrained(
|
||||
model_id,
|
||||
subfolder="unet",
|
||||
)
|
||||
self.in_channels = self.unet.in_channels
|
||||
self.train(False)
|
||||
|
||||
def forward(
|
||||
self, latent, timestep, text_embedding, guidance_scale
|
||||
):
|
||||
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
||||
latents = torch.cat([latent] * 2)
|
||||
unet_out = self.unet.forward(
|
||||
latents, timestep, text_embedding, return_dict=False
|
||||
)[0]
|
||||
noise_pred_uncond, noise_pred_text = unet_out.chunk(2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (
|
||||
noise_pred_text - noise_pred_uncond
|
||||
)
|
||||
return noise_pred
|
||||
|
||||
unet = UnetModel()
|
||||
is_f16 = True if self.precision == "fp16" else False
|
||||
inputs = tuple(self.inputs["unet"])
|
||||
input_mask = [True, True, True, False]
|
||||
shark_unet = compile_through_fx(
|
||||
unet,
|
||||
inputs,
|
||||
model_name=self.model_name["unet"],
|
||||
is_f16=is_f16,
|
||||
f16_input_mask=input_mask,
|
||||
use_tuned=self.use_tuned,
|
||||
extra_args=get_opt_flags("unet", precision=self.precision),
|
||||
)
|
||||
return shark_unet
|
||||
|
||||
def get_clip(self):
|
||||
class CLIPText(torch.nn.Module):
|
||||
def __init__(self, model_id=self.model_id):
|
||||
super().__init__()
|
||||
self.text_encoder = CLIPTextModel.from_pretrained(
|
||||
model_id,
|
||||
subfolder="text_encoder",
|
||||
)
|
||||
|
||||
def forward(self, input):
|
||||
return self.text_encoder(input)[0]
|
||||
|
||||
clip_model = CLIPText()
|
||||
shark_clip = compile_through_fx(
|
||||
clip_model,
|
||||
tuple(self.inputs["clip"]),
|
||||
model_name=self.model_name["clip"],
|
||||
extra_args=get_opt_flags("clip", precision="fp32"),
|
||||
)
|
||||
return shark_clip
|
||||
|
||||
# Compiles Clip, Unet and Vae with `base_model_id` as defining their input
|
||||
# configiration.
|
||||
def compile_all(self, base_model_id, need_vae_encode):
|
||||
self.inputs = get_input_info(
|
||||
base_models[base_model_id],
|
||||
self.max_len,
|
||||
self.width,
|
||||
self.height,
|
||||
self.batch_size,
|
||||
)
|
||||
compiled_unet = self.get_unet()
|
||||
if self.custom_vae != "":
|
||||
print("Plugging in custom Vae")
|
||||
compiled_vae = self.get_vae()
|
||||
compiled_clip = self.get_clip()
|
||||
if need_vae_encode:
|
||||
compiled_vae_encode = self.get_vae_encode()
|
||||
return compiled_clip, compiled_unet, compiled_vae, compiled_vae_encode
|
||||
|
||||
return compiled_clip, compiled_unet, compiled_vae
|
||||
|
||||
def __call__(self):
|
||||
# Step 1:
|
||||
# -- Fetch all vmfbs for the model, if present, else delete the lot.
|
||||
need_vae_encode = args.img_path is not None
|
||||
self.model_name = self.get_extended_name_for_all_model()
|
||||
vmfbs = fetch_or_delete_vmfbs(self.model_name, need_vae_encode, self.precision)
|
||||
if vmfbs[0]:
|
||||
# -- If all vmfbs are indeed present, we also try and fetch the base
|
||||
# model configuration for running SD with custom checkpoints.
|
||||
if self.custom_weights != "":
|
||||
args.hf_model_id = fetch_and_update_base_model_id(self.custom_weights)
|
||||
if args.hf_model_id == "":
|
||||
sys.exit("Base model configuration for the custom model is missing. Use `--clear_all` and re-run.")
|
||||
print("Loaded vmfbs from cache and successfully fetched base model configuration.")
|
||||
return vmfbs
|
||||
|
||||
# Step 2:
|
||||
# -- If vmfbs weren't found, we try to see if the base model configuration
|
||||
# for the required SD run is known to us and bypass the retry mechanism.
|
||||
model_to_run = ""
|
||||
if self.custom_weights != "":
|
||||
model_to_run = self.custom_weights
|
||||
assert self.custom_weights.lower().endswith(
|
||||
(".ckpt", ".safetensors")
|
||||
), "checkpoint files supported can be any of [.ckpt, .safetensors] type"
|
||||
preprocessCKPT(self.custom_weights)
|
||||
else:
|
||||
model_to_run = args.hf_model_id
|
||||
# For custom Vae user can provide either the repo-id or a checkpoint file,
|
||||
# and for a checkpoint file we'd need to process it via Diffusers' script.
|
||||
if self.custom_vae.lower().endswith((".ckpt", ".safetensors")):
|
||||
preprocessCKPT(self.custom_vae)
|
||||
self.custom_vae = get_path_to_diffusers_checkpoint(self.custom_vae)
|
||||
base_model_fetched = fetch_and_update_base_model_id(model_to_run)
|
||||
if base_model_fetched != "":
|
||||
print("Compiling all the models with the fetched base model configuration.")
|
||||
if args.ckpt_loc != "":
|
||||
args.hf_model_id = base_model_fetched
|
||||
return self.compile_all(base_model_fetched, need_vae_encode)
|
||||
|
||||
# Step 3:
|
||||
# -- This is the retry mechanism where the base model's configuration is not
|
||||
# known to us and figure that out by trial and error.
|
||||
print("Inferring base model configuration.")
|
||||
for model_id in base_models:
|
||||
try:
|
||||
if need_vae_encode:
|
||||
compiled_clip, compiled_unet, compiled_vae, compiled_vae_encode = self.compile_all(model_id, need_vae_encode)
|
||||
else:
|
||||
compiled_clip, compiled_unet, compiled_vae = self.compile_all(model_id, need_vae_encode)
|
||||
except Exception as e:
|
||||
print("Retrying with a different base model configuration")
|
||||
continue
|
||||
# -- Once a successful compilation has taken place we'd want to store
|
||||
# the base model's configuration inferred.
|
||||
fetch_and_update_base_model_id(model_to_run, model_id)
|
||||
# This is done just because in main.py we are basing the choice of tokenizer and scheduler
|
||||
# on `args.hf_model_id`. Since now, we don't maintain 1:1 mapping of variants and the base
|
||||
# model and rely on retrying method to find the input configuration, we should also update
|
||||
# the knowledge of base model id accordingly into `args.hf_model_id`.
|
||||
if args.ckpt_loc != "":
|
||||
args.hf_model_id = model_id
|
||||
if need_vae_encode:
|
||||
return (
|
||||
compiled_clip,
|
||||
compiled_unet,
|
||||
compiled_vae,
|
||||
compiled_vae_encode,
|
||||
)
|
||||
return compiled_clip, compiled_unet, compiled_vae
|
||||
sys.exit(
|
||||
"Cannot compile the model. Please create an issue with the detailed log at https://github.com/nod-ai/SHARK/issues"
|
||||
)
|
||||
@@ -1,108 +0,0 @@
|
||||
import sys
|
||||
from transformers import CLIPTokenizer
|
||||
from apps.stable_diffusion.src.utils import (
|
||||
models_db,
|
||||
args,
|
||||
get_shark_model,
|
||||
get_opt_flags,
|
||||
)
|
||||
|
||||
|
||||
hf_model_variant_map = {
|
||||
"Linaqruf/anything-v3.0": ["anythingv3", "v2_1base"],
|
||||
"dreamlike-art/dreamlike-diffusion-1.0": ["dreamlike", "v2_1base"],
|
||||
"prompthero/openjourney": ["openjourney", "v2_1base"],
|
||||
"wavymulder/Analog-Diffusion": ["analogdiffusion", "v2_1base"],
|
||||
"stabilityai/stable-diffusion-2-1": ["stablediffusion", "v2_1base"],
|
||||
"stabilityai/stable-diffusion-2-1-base": ["stablediffusion", "v2_1base"],
|
||||
"CompVis/stable-diffusion-v1-4": ["stablediffusion", "v1_4"],
|
||||
"runwayml/stable-diffusion-inpainting": ["stablediffusion", "inpaint_v1"],
|
||||
"stabilityai/stable-diffusion-2-inpainting": ["stablediffusion", "inpaint_v2"],
|
||||
}
|
||||
|
||||
|
||||
def get_variant_version(hf_model_id):
|
||||
return hf_model_variant_map[hf_model_id]
|
||||
|
||||
|
||||
def get_params(bucket_key, model_key, model, is_tuned, precision):
|
||||
try:
|
||||
bucket = models_db[0][bucket_key]
|
||||
model_name = models_db[1][model_key]
|
||||
except KeyError:
|
||||
raise Exception(
|
||||
f"{bucket_key}/{model_key} is not present in the models database"
|
||||
)
|
||||
iree_flags = get_opt_flags(model, precision="fp16")
|
||||
return bucket, model_name, iree_flags
|
||||
|
||||
|
||||
def get_unet():
|
||||
variant, version = get_variant_version(args.hf_model_id)
|
||||
# Tuned model is present only for `fp16` precision.
|
||||
is_tuned = "tuned" if args.use_tuned else "untuned"
|
||||
if "vulkan" not in args.device and args.use_tuned:
|
||||
bucket_key = f"{variant}/{is_tuned}/{args.device}"
|
||||
model_key = f"{variant}/{version}/unet/{args.precision}/length_{args.max_length}/{is_tuned}/{args.device}"
|
||||
else:
|
||||
bucket_key = f"{variant}/{is_tuned}"
|
||||
model_key = f"{variant}/{version}/unet/{args.precision}/length_{args.max_length}/{is_tuned}"
|
||||
|
||||
bucket, model_name, iree_flags = get_params(
|
||||
bucket_key, model_key, "unet", is_tuned, args.precision
|
||||
)
|
||||
return get_shark_model(bucket, model_name, iree_flags)
|
||||
|
||||
|
||||
def get_vae_encode():
|
||||
variant, version = get_variant_version(args.hf_model_id)
|
||||
# Tuned model is present only for `fp16` precision.
|
||||
is_tuned = "tuned" if args.use_tuned else "untuned"
|
||||
if "vulkan" not in args.device and args.use_tuned:
|
||||
bucket_key = f"{variant}/{is_tuned}/{args.device}"
|
||||
model_key = f"{variant}/{version}/vae_encode/{args.precision}/length_77/{is_tuned}/{args.device}"
|
||||
else:
|
||||
bucket_key = f"{variant}/{is_tuned}"
|
||||
model_key = f"{variant}/{version}/vae_encode/{args.precision}/length_77/{is_tuned}"
|
||||
|
||||
bucket, model_name, iree_flags = get_params(
|
||||
bucket_key, model_key, "vae", is_tuned, args.precision
|
||||
)
|
||||
return get_shark_model(bucket, model_name, iree_flags)
|
||||
|
||||
|
||||
def get_vae():
|
||||
variant, version = get_variant_version(args.hf_model_id)
|
||||
# Tuned model is present only for `fp16` precision.
|
||||
is_tuned = "tuned" if args.use_tuned else "untuned"
|
||||
is_base = "/base" if args.use_base_vae else ""
|
||||
if "vulkan" not in args.device and args.use_tuned:
|
||||
bucket_key = f"{variant}/{is_tuned}/{args.device}"
|
||||
model_key = f"{variant}/{version}/vae/{args.precision}/length_77/{is_tuned}{is_base}/{args.device}"
|
||||
else:
|
||||
bucket_key = f"{variant}/{is_tuned}"
|
||||
model_key = f"{variant}/{version}/vae/{args.precision}/length_77/{is_tuned}{is_base}"
|
||||
|
||||
bucket, model_name, iree_flags = get_params(
|
||||
bucket_key, model_key, "vae", is_tuned, args.precision
|
||||
)
|
||||
return get_shark_model(bucket, model_name, iree_flags)
|
||||
|
||||
|
||||
def get_clip():
|
||||
variant, version = get_variant_version(args.hf_model_id)
|
||||
bucket_key = f"{variant}/untuned"
|
||||
model_key = (
|
||||
f"{variant}/{version}/clip/fp32/length_{args.max_length}/untuned"
|
||||
)
|
||||
bucket, model_name, iree_flags = get_params(
|
||||
bucket_key, model_key, "clip", "untuned", "fp32"
|
||||
)
|
||||
return get_shark_model(bucket, model_name, iree_flags)
|
||||
|
||||
|
||||
def get_tokenizer():
|
||||
tokenizer = CLIPTokenizer.from_pretrained(
|
||||
args.hf_model_id, subfolder="tokenizer"
|
||||
)
|
||||
return tokenizer
|
||||
@@ -1,9 +0,0 @@
|
||||
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_txt2img import (
|
||||
Text2ImagePipeline,
|
||||
)
|
||||
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_inpaint import (
|
||||
InpaintPipeline,
|
||||
)
|
||||
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_img2img import (
|
||||
Image2ImagePipeline,
|
||||
)
|
||||
@@ -1,156 +0,0 @@
|
||||
import torch
|
||||
import time
|
||||
import numpy as np
|
||||
from tqdm.auto import tqdm
|
||||
from random import randint
|
||||
from PIL import Image
|
||||
from transformers import CLIPTokenizer
|
||||
from typing import Union
|
||||
from shark.shark_inference import SharkInference
|
||||
from diffusers import (
|
||||
DDIMScheduler,
|
||||
PNDMScheduler,
|
||||
LMSDiscreteScheduler,
|
||||
EulerDiscreteScheduler,
|
||||
EulerAncestralDiscreteScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
)
|
||||
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
|
||||
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
|
||||
StableDiffusionPipeline,
|
||||
)
|
||||
|
||||
|
||||
class Image2ImagePipeline(StableDiffusionPipeline):
|
||||
def __init__(
|
||||
self,
|
||||
vae_encode: SharkInference,
|
||||
vae: SharkInference,
|
||||
text_encoder: SharkInference,
|
||||
tokenizer: CLIPTokenizer,
|
||||
unet: SharkInference,
|
||||
scheduler: Union[
|
||||
DDIMScheduler,
|
||||
PNDMScheduler,
|
||||
LMSDiscreteScheduler,
|
||||
EulerDiscreteScheduler,
|
||||
EulerAncestralDiscreteScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
SharkEulerDiscreteScheduler,
|
||||
],
|
||||
):
|
||||
super().__init__(vae, text_encoder, tokenizer, unet, scheduler)
|
||||
self.vae_encode = vae_encode
|
||||
|
||||
def prepare_image_latents(
|
||||
self,
|
||||
image,
|
||||
batch_size,
|
||||
height,
|
||||
width,
|
||||
generator,
|
||||
num_inference_steps,
|
||||
dtype,
|
||||
):
|
||||
# Pre process image -> get image encoded -> process latents
|
||||
|
||||
# TODO: process with variable HxW combos
|
||||
|
||||
# Pre process image
|
||||
image = image.resize((height, width)) # Current support for 512x512
|
||||
image_arr = np.stack([np.array(i) for i in (image,)], axis=0)
|
||||
image_arr = image_arr / 255.0
|
||||
image_arr = torch.from_numpy(image_arr).permute(0, 3, 1, 2).to(dtype)
|
||||
image_arr = 2 * (image_arr - 0.5)
|
||||
|
||||
# image encode
|
||||
latents = self.encode_image((image_arr,))
|
||||
latents = torch.from_numpy(latents).to(dtype)
|
||||
|
||||
# set scheduler steps
|
||||
self.scheduler.set_timesteps(num_inference_steps)
|
||||
|
||||
# add noise to data
|
||||
latents = latents * self.scheduler.init_noise_sigma
|
||||
|
||||
return latents
|
||||
|
||||
def encode_image(self, input_image):
|
||||
vae_encode_start = time.time()
|
||||
latents = self.vae_encode("forward", input_image)
|
||||
vae_inf_time = (time.time() - vae_encode_start) * 1000
|
||||
self.log += f"\nVAE Encode Inference time (ms): {vae_inf_time:.3f}"
|
||||
|
||||
return latents
|
||||
|
||||
def generate_images(
|
||||
self,
|
||||
prompts,
|
||||
neg_prompts,
|
||||
image,
|
||||
batch_size,
|
||||
height,
|
||||
width,
|
||||
num_inference_steps,
|
||||
guidance_scale,
|
||||
seed,
|
||||
max_length,
|
||||
dtype,
|
||||
use_base_vae,
|
||||
cpu_scheduling,
|
||||
):
|
||||
# prompts and negative prompts must be a list.
|
||||
if isinstance(prompts, str):
|
||||
prompts = [prompts]
|
||||
|
||||
if isinstance(neg_prompts, str):
|
||||
neg_prompts = [neg_prompts]
|
||||
|
||||
prompts = prompts * batch_size
|
||||
neg_prompts = neg_prompts * batch_size
|
||||
|
||||
# seed generator to create the inital latent noise. Also handle out of range seeds.
|
||||
uint32_info = np.iinfo(np.uint32)
|
||||
uint32_min, uint32_max = uint32_info.min, uint32_info.max
|
||||
if seed < uint32_min or seed >= uint32_max:
|
||||
seed = randint(uint32_min, uint32_max)
|
||||
generator = torch.manual_seed(seed)
|
||||
|
||||
# Get text embeddings from prompts
|
||||
text_embeddings = self.encode_prompts(prompts, neg_prompts, max_length)
|
||||
|
||||
# guidance scale as a float32 tensor.
|
||||
guidance_scale = torch.tensor(guidance_scale).to(torch.float32)
|
||||
|
||||
# Prepare input image latent
|
||||
image_latents = self.prepare_image_latents(
|
||||
image=image,
|
||||
batch_size=batch_size,
|
||||
height=height,
|
||||
width=width,
|
||||
generator=generator,
|
||||
num_inference_steps=num_inference_steps,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
# Get Image latents
|
||||
latents = self.produce_img_latents(
|
||||
latents=image_latents,
|
||||
text_embeddings=text_embeddings,
|
||||
guidance_scale=guidance_scale,
|
||||
total_timesteps=self.scheduler.timesteps,
|
||||
dtype=dtype,
|
||||
cpu_scheduling=cpu_scheduling,
|
||||
)
|
||||
|
||||
# Img latents -> PIL images
|
||||
all_imgs = []
|
||||
for i in tqdm(range(0, latents.shape[0], batch_size)):
|
||||
imgs = self.decode_latents(
|
||||
latents=latents[i : i + batch_size],
|
||||
use_base_vae=use_base_vae,
|
||||
cpu_scheduling=cpu_scheduling,
|
||||
)
|
||||
all_imgs.extend(imgs)
|
||||
|
||||
return all_imgs
|
||||
@@ -1,229 +0,0 @@
|
||||
import torch
|
||||
from tqdm.auto import tqdm
|
||||
import numpy as np
|
||||
from random import randint
|
||||
from PIL import Image
|
||||
from transformers import CLIPTokenizer
|
||||
from typing import Union
|
||||
from shark.shark_inference import SharkInference
|
||||
from diffusers import (
|
||||
DDIMScheduler,
|
||||
PNDMScheduler,
|
||||
LMSDiscreteScheduler,
|
||||
EulerDiscreteScheduler,
|
||||
EulerAncestralDiscreteScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
)
|
||||
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
|
||||
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
|
||||
StableDiffusionPipeline,
|
||||
)
|
||||
|
||||
|
||||
class InpaintPipeline(StableDiffusionPipeline):
|
||||
def __init__(
|
||||
self,
|
||||
vae_encode: SharkInference,
|
||||
vae: SharkInference,
|
||||
text_encoder: SharkInference,
|
||||
tokenizer: CLIPTokenizer,
|
||||
unet: SharkInference,
|
||||
scheduler: Union[
|
||||
DDIMScheduler,
|
||||
PNDMScheduler,
|
||||
LMSDiscreteScheduler,
|
||||
EulerDiscreteScheduler,
|
||||
EulerAncestralDiscreteScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
SharkEulerDiscreteScheduler,
|
||||
],
|
||||
):
|
||||
super().__init__(vae, text_encoder, tokenizer, unet, scheduler)
|
||||
self.vae_encode = vae_encode
|
||||
|
||||
def prepare_mask_and_masked_image(self, image, mask):
|
||||
# preprocess image
|
||||
if isinstance(image, (Image.Image, np.ndarray)):
|
||||
image = [image]
|
||||
|
||||
if isinstance(image, list) and isinstance(image[0], Image.Image):
|
||||
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
||||
image = np.concatenate(image, axis=0)
|
||||
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
||||
image = np.concatenate([i[None, :] for i in image], axis=0)
|
||||
|
||||
image = image.transpose(0, 3, 1, 2)
|
||||
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
||||
|
||||
# preprocess mask
|
||||
if isinstance(mask, (Image.Image, np.ndarray)):
|
||||
mask = [mask]
|
||||
|
||||
if isinstance(mask, list) and isinstance(mask[0], Image.Image):
|
||||
mask = np.concatenate(
|
||||
[np.array(m.convert("L"))[None, None, :] for m in mask], axis=0
|
||||
)
|
||||
mask = mask.astype(np.float32) / 255.0
|
||||
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
|
||||
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
|
||||
|
||||
mask[mask < 0.5] = 0
|
||||
mask[mask >= 0.5] = 1
|
||||
mask = torch.from_numpy(mask)
|
||||
|
||||
masked_image = image * (mask < 0.5)
|
||||
|
||||
return mask, masked_image
|
||||
|
||||
def prepare_latents(
|
||||
self,
|
||||
batch_size,
|
||||
height,
|
||||
width,
|
||||
generator,
|
||||
num_inference_steps,
|
||||
dtype,
|
||||
):
|
||||
latents = torch.randn(
|
||||
(
|
||||
batch_size,
|
||||
4,
|
||||
height // 8,
|
||||
width // 8,
|
||||
),
|
||||
generator=generator,
|
||||
dtype=torch.float32,
|
||||
).to(dtype)
|
||||
|
||||
self.scheduler.set_timesteps(num_inference_steps)
|
||||
self.scheduler.is_scale_input_called = True
|
||||
latents = latents * self.scheduler.init_noise_sigma
|
||||
return latents
|
||||
|
||||
def prepare_mask_latents(
|
||||
self,
|
||||
mask,
|
||||
masked_image,
|
||||
batch_size,
|
||||
height,
|
||||
width,
|
||||
dtype,
|
||||
):
|
||||
mask = torch.nn.functional.interpolate(
|
||||
mask, size=(height // 8, width // 8)
|
||||
)
|
||||
mask = mask.to(dtype)
|
||||
|
||||
masked_image = masked_image.to(dtype)
|
||||
masked_image_latents = self.vae_encode("forward", (masked_image,))
|
||||
masked_image_latents = torch.from_numpy(masked_image_latents)
|
||||
|
||||
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
||||
if mask.shape[0] < batch_size:
|
||||
if not batch_size % mask.shape[0] == 0:
|
||||
raise ValueError(
|
||||
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
||||
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
||||
" of masks that you pass is divisible by the total requested batch size."
|
||||
)
|
||||
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
||||
if masked_image_latents.shape[0] < batch_size:
|
||||
if not batch_size % masked_image_latents.shape[0] == 0:
|
||||
raise ValueError(
|
||||
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
||||
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
||||
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
||||
)
|
||||
masked_image_latents = masked_image_latents.repeat(
|
||||
batch_size // masked_image_latents.shape[0], 1, 1, 1
|
||||
)
|
||||
return mask, masked_image_latents
|
||||
|
||||
def generate_images(
|
||||
self,
|
||||
prompts,
|
||||
neg_prompts,
|
||||
image,
|
||||
mask_image,
|
||||
batch_size,
|
||||
height,
|
||||
width,
|
||||
num_inference_steps,
|
||||
guidance_scale,
|
||||
seed,
|
||||
max_length,
|
||||
dtype,
|
||||
use_base_vae,
|
||||
cpu_scheduling,
|
||||
):
|
||||
# prompts and negative prompts must be a list.
|
||||
if isinstance(prompts, str):
|
||||
prompts = [prompts]
|
||||
|
||||
if isinstance(neg_prompts, str):
|
||||
neg_prompts = [neg_prompts]
|
||||
|
||||
prompts = prompts * batch_size
|
||||
neg_prompts = neg_prompts * batch_size
|
||||
|
||||
# seed generator to create the inital latent noise. Also handle out of range seeds.
|
||||
uint32_info = np.iinfo(np.uint32)
|
||||
uint32_min, uint32_max = uint32_info.min, uint32_info.max
|
||||
if seed < uint32_min or seed >= uint32_max:
|
||||
seed = randint(uint32_min, uint32_max)
|
||||
generator = torch.manual_seed(seed)
|
||||
|
||||
# Get initial latents
|
||||
init_latents = self.prepare_latents(
|
||||
batch_size=batch_size,
|
||||
height=height,
|
||||
width=width,
|
||||
generator=generator,
|
||||
num_inference_steps=num_inference_steps,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
# Get text embeddings from prompts
|
||||
text_embeddings = self.encode_prompts(prompts, neg_prompts, max_length)
|
||||
|
||||
# guidance scale as a float32 tensor.
|
||||
guidance_scale = torch.tensor(guidance_scale).to(torch.float32)
|
||||
|
||||
# Preprocess mask and image
|
||||
mask, masked_image = self.prepare_mask_and_masked_image(
|
||||
image, mask_image
|
||||
)
|
||||
|
||||
# Prepare mask latent variables
|
||||
mask, masked_image_latents = self.prepare_mask_latents(
|
||||
mask=mask,
|
||||
masked_image=masked_image,
|
||||
batch_size=batch_size,
|
||||
height=height,
|
||||
width=width,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
# Get Image latents
|
||||
latents = self.produce_img_latents(
|
||||
latents=init_latents,
|
||||
text_embeddings=text_embeddings,
|
||||
guidance_scale=guidance_scale,
|
||||
total_timesteps=self.scheduler.timesteps,
|
||||
dtype=dtype,
|
||||
cpu_scheduling=cpu_scheduling,
|
||||
mask=mask,
|
||||
masked_image_latents=masked_image_latents,
|
||||
)
|
||||
|
||||
# Img latents -> PIL images
|
||||
all_imgs = []
|
||||
for i in tqdm(range(0, latents.shape[0], batch_size)):
|
||||
imgs = self.decode_latents(
|
||||
latents=latents[i : i + batch_size],
|
||||
use_base_vae=use_base_vae,
|
||||
cpu_scheduling=cpu_scheduling,
|
||||
)
|
||||
all_imgs.extend(imgs)
|
||||
|
||||
return all_imgs
|
||||
@@ -1,135 +0,0 @@
|
||||
import torch
|
||||
from tqdm.auto import tqdm
|
||||
import numpy as np
|
||||
from random import randint
|
||||
from transformers import CLIPTokenizer
|
||||
from typing import Union
|
||||
from shark.shark_inference import SharkInference
|
||||
from diffusers import (
|
||||
DDIMScheduler,
|
||||
PNDMScheduler,
|
||||
LMSDiscreteScheduler,
|
||||
EulerDiscreteScheduler,
|
||||
EulerAncestralDiscreteScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
)
|
||||
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
|
||||
from apps.stable_diffusion.src.pipelines.pipeline_shark_stable_diffusion_utils import (
|
||||
StableDiffusionPipeline,
|
||||
)
|
||||
|
||||
|
||||
class Text2ImagePipeline(StableDiffusionPipeline):
|
||||
def __init__(
|
||||
self,
|
||||
vae: SharkInference,
|
||||
text_encoder: SharkInference,
|
||||
tokenizer: CLIPTokenizer,
|
||||
unet: SharkInference,
|
||||
scheduler: Union[
|
||||
DDIMScheduler,
|
||||
PNDMScheduler,
|
||||
LMSDiscreteScheduler,
|
||||
EulerDiscreteScheduler,
|
||||
EulerAncestralDiscreteScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
SharkEulerDiscreteScheduler,
|
||||
],
|
||||
):
|
||||
super().__init__(vae, text_encoder, tokenizer, unet, scheduler)
|
||||
|
||||
def prepare_latents(
|
||||
self,
|
||||
batch_size,
|
||||
height,
|
||||
width,
|
||||
generator,
|
||||
num_inference_steps,
|
||||
dtype,
|
||||
):
|
||||
latents = torch.randn(
|
||||
(
|
||||
batch_size,
|
||||
4,
|
||||
height // 8,
|
||||
width // 8,
|
||||
),
|
||||
generator=generator,
|
||||
dtype=torch.float32,
|
||||
).to(dtype)
|
||||
|
||||
self.scheduler.set_timesteps(num_inference_steps)
|
||||
self.scheduler.is_scale_input_called = True
|
||||
latents = latents * self.scheduler.init_noise_sigma
|
||||
return latents
|
||||
|
||||
def generate_images(
|
||||
self,
|
||||
prompts,
|
||||
neg_prompts,
|
||||
batch_size,
|
||||
height,
|
||||
width,
|
||||
num_inference_steps,
|
||||
guidance_scale,
|
||||
seed,
|
||||
max_length,
|
||||
dtype,
|
||||
use_base_vae,
|
||||
cpu_scheduling,
|
||||
):
|
||||
# prompts and negative prompts must be a list.
|
||||
if isinstance(prompts, str):
|
||||
prompts = [prompts]
|
||||
|
||||
if isinstance(neg_prompts, str):
|
||||
neg_prompts = [neg_prompts]
|
||||
|
||||
prompts = prompts * batch_size
|
||||
neg_prompts = neg_prompts * batch_size
|
||||
|
||||
# seed generator to create the inital latent noise. Also handle out of range seeds.
|
||||
# TODO: Wouldn't it be preferable to just report an error instead of modifying the seed on the fly?
|
||||
uint32_info = np.iinfo(np.uint32)
|
||||
uint32_min, uint32_max = uint32_info.min, uint32_info.max
|
||||
if seed < uint32_min or seed >= uint32_max:
|
||||
seed = randint(uint32_min, uint32_max)
|
||||
generator = torch.manual_seed(seed)
|
||||
|
||||
# Get initial latents
|
||||
init_latents = self.prepare_latents(
|
||||
batch_size=batch_size,
|
||||
height=height,
|
||||
width=width,
|
||||
generator=generator,
|
||||
num_inference_steps=num_inference_steps,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
# Get text embeddings from prompts
|
||||
text_embeddings = self.encode_prompts(prompts, neg_prompts, max_length)
|
||||
|
||||
# guidance scale as a float32 tensor.
|
||||
guidance_scale = torch.tensor(guidance_scale).to(torch.float32)
|
||||
|
||||
# Get Image latents
|
||||
latents = self.produce_img_latents(
|
||||
latents=init_latents,
|
||||
text_embeddings=text_embeddings,
|
||||
guidance_scale=guidance_scale,
|
||||
total_timesteps=self.scheduler.timesteps,
|
||||
dtype=dtype,
|
||||
cpu_scheduling=cpu_scheduling,
|
||||
)
|
||||
|
||||
# Img latents -> PIL images
|
||||
all_imgs = []
|
||||
for i in tqdm(range(0, latents.shape[0], batch_size)):
|
||||
imgs = self.decode_latents(
|
||||
latents=latents[i : i + batch_size],
|
||||
use_base_vae=use_base_vae,
|
||||
cpu_scheduling=cpu_scheduling,
|
||||
)
|
||||
all_imgs.extend(imgs)
|
||||
|
||||
return all_imgs
|
||||
@@ -1,234 +0,0 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
from transformers import CLIPTokenizer
|
||||
from PIL import Image
|
||||
from tqdm.auto import tqdm
|
||||
import time
|
||||
from typing import Union
|
||||
from diffusers import (
|
||||
DDIMScheduler,
|
||||
PNDMScheduler,
|
||||
LMSDiscreteScheduler,
|
||||
EulerDiscreteScheduler,
|
||||
EulerAncestralDiscreteScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
)
|
||||
from shark.shark_inference import SharkInference
|
||||
from apps.stable_diffusion.src.schedulers import SharkEulerDiscreteScheduler
|
||||
from apps.stable_diffusion.src.models import (
|
||||
SharkifyStableDiffusionModel,
|
||||
get_vae_encode,
|
||||
get_vae,
|
||||
get_clip,
|
||||
get_unet,
|
||||
get_tokenizer,
|
||||
)
|
||||
from apps.stable_diffusion.src.utils import (
|
||||
start_profiling,
|
||||
end_profiling,
|
||||
)
|
||||
|
||||
|
||||
class StableDiffusionPipeline:
|
||||
def __init__(
|
||||
self,
|
||||
vae: SharkInference,
|
||||
text_encoder: SharkInference,
|
||||
tokenizer: CLIPTokenizer,
|
||||
unet: SharkInference,
|
||||
scheduler: Union[
|
||||
DDIMScheduler,
|
||||
PNDMScheduler,
|
||||
LMSDiscreteScheduler,
|
||||
EulerDiscreteScheduler,
|
||||
EulerAncestralDiscreteScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
SharkEulerDiscreteScheduler,
|
||||
],
|
||||
):
|
||||
self.vae = vae
|
||||
self.text_encoder = text_encoder
|
||||
self.tokenizer = tokenizer
|
||||
self.unet = unet
|
||||
self.scheduler = scheduler
|
||||
# TODO: Implement using logging python utility.
|
||||
self.log = ""
|
||||
|
||||
def encode_prompts(self, prompts, neg_prompts, max_length):
|
||||
# Tokenize text and get embeddings
|
||||
text_input = self.tokenizer(
|
||||
prompts,
|
||||
padding="max_length",
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
# Get unconditional embeddings as well
|
||||
uncond_input = self.tokenizer(
|
||||
neg_prompts,
|
||||
padding="max_length",
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
text_input = torch.cat([uncond_input.input_ids, text_input.input_ids])
|
||||
|
||||
clip_inf_start = time.time()
|
||||
text_embeddings = self.text_encoder("forward", (text_input,))
|
||||
clip_inf_time = (time.time() - clip_inf_start) * 1000
|
||||
self.log += f"\nClip Inference time (ms) = {clip_inf_time:.3f}"
|
||||
|
||||
return text_embeddings
|
||||
|
||||
def decode_latents(self, latents, use_base_vae, cpu_scheduling):
|
||||
if use_base_vae:
|
||||
latents = 1 / 0.18215 * latents
|
||||
|
||||
latents_numpy = latents
|
||||
if cpu_scheduling:
|
||||
latents_numpy = latents.detach().numpy()
|
||||
|
||||
profile_device = start_profiling(file_path="vae.rdc")
|
||||
vae_start = time.time()
|
||||
images = self.vae("forward", (latents_numpy,))
|
||||
vae_inf_time = (time.time() - vae_start) * 1000
|
||||
end_profiling(profile_device)
|
||||
self.log += f"\nVAE Inference time (ms): {vae_inf_time:.3f}"
|
||||
|
||||
if use_base_vae:
|
||||
images = torch.from_numpy(images)
|
||||
images = (images.detach().cpu() * 255.0).numpy()
|
||||
images = images.round()
|
||||
|
||||
images = torch.from_numpy(images).to(torch.uint8).permute(0, 2, 3, 1)
|
||||
pil_images = [Image.fromarray(image) for image in images.numpy()]
|
||||
return pil_images
|
||||
|
||||
def produce_img_latents(
|
||||
self,
|
||||
latents,
|
||||
text_embeddings,
|
||||
guidance_scale,
|
||||
total_timesteps,
|
||||
dtype,
|
||||
cpu_scheduling,
|
||||
mask=None,
|
||||
masked_image_latents=None,
|
||||
return_all_latents=False,
|
||||
):
|
||||
step_time_sum = 0
|
||||
latent_history = [latents]
|
||||
text_embeddings = torch.from_numpy(text_embeddings).to(dtype)
|
||||
text_embeddings_numpy = text_embeddings.detach().numpy()
|
||||
for i, t in tqdm(enumerate(total_timesteps)):
|
||||
step_start_time = time.time()
|
||||
timestep = torch.tensor([t]).to(dtype).detach().numpy()
|
||||
latent_model_input = self.scheduler.scale_model_input(latents, t)
|
||||
if mask is not None and masked_image_latents is not None:
|
||||
latent_model_input = torch.cat(
|
||||
[
|
||||
torch.from_numpy(np.asarray(latent_model_input)),
|
||||
mask,
|
||||
masked_image_latents,
|
||||
],
|
||||
dim=1,
|
||||
).to(dtype)
|
||||
if cpu_scheduling:
|
||||
latent_model_input = latent_model_input.detach().numpy()
|
||||
|
||||
# Profiling Unet.
|
||||
profile_device = start_profiling(file_path="unet.rdc")
|
||||
noise_pred = self.unet(
|
||||
"forward",
|
||||
(
|
||||
latent_model_input,
|
||||
timestep,
|
||||
text_embeddings_numpy,
|
||||
guidance_scale,
|
||||
),
|
||||
send_to_host=False,
|
||||
)
|
||||
end_profiling(profile_device)
|
||||
|
||||
if cpu_scheduling:
|
||||
noise_pred = torch.from_numpy(noise_pred.to_host())
|
||||
latents = self.scheduler.step(
|
||||
noise_pred, t, latents
|
||||
).prev_sample
|
||||
else:
|
||||
latents = self.scheduler.step(noise_pred, t, latents)
|
||||
|
||||
latent_history.append(latents)
|
||||
step_time = (time.time() - step_start_time) * 1000
|
||||
# self.log += (
|
||||
# f"\nstep = {i} | timestep = {t} | time = {step_time:.2f}ms"
|
||||
# )
|
||||
step_time_sum += step_time
|
||||
|
||||
avg_step_time = step_time_sum / len(total_timesteps)
|
||||
self.log += f"\nAverage step time: {avg_step_time}ms/it"
|
||||
|
||||
if not return_all_latents:
|
||||
return latents
|
||||
all_latents = torch.cat(latent_history, dim=0)
|
||||
return all_latents
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(
|
||||
cls,
|
||||
scheduler: Union[
|
||||
DDIMScheduler,
|
||||
PNDMScheduler,
|
||||
LMSDiscreteScheduler,
|
||||
EulerDiscreteScheduler,
|
||||
EulerAncestralDiscreteScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
SharkEulerDiscreteScheduler,
|
||||
],
|
||||
import_mlir: bool,
|
||||
model_id: str,
|
||||
ckpt_loc: str,
|
||||
custom_vae: str,
|
||||
precision: str,
|
||||
max_length: int,
|
||||
batch_size: int,
|
||||
height: int,
|
||||
width: int,
|
||||
use_base_vae: bool,
|
||||
use_tuned: bool,
|
||||
):
|
||||
if import_mlir:
|
||||
mlir_import = SharkifyStableDiffusionModel(
|
||||
model_id,
|
||||
ckpt_loc,
|
||||
custom_vae,
|
||||
precision,
|
||||
max_len=max_length,
|
||||
batch_size=batch_size,
|
||||
height=height,
|
||||
width=width,
|
||||
use_base_vae=use_base_vae,
|
||||
use_tuned=use_tuned,
|
||||
)
|
||||
if cls.__name__ in ["Image2ImagePipeline", "InpaintPipeline"]:
|
||||
clip, unet, vae, vae_encode = mlir_import()
|
||||
return cls(
|
||||
vae_encode, vae, clip, get_tokenizer(), unet, scheduler
|
||||
)
|
||||
clip, unet, vae = mlir_import()
|
||||
return cls(vae, clip, get_tokenizer(), unet, scheduler)
|
||||
|
||||
if cls.__name__ in ["Image2ImagePipeline", "InpaintPipeline"]:
|
||||
return cls(
|
||||
get_vae_encode(),
|
||||
get_vae(),
|
||||
get_clip(),
|
||||
get_tokenizer(),
|
||||
get_unet(),
|
||||
scheduler,
|
||||
)
|
||||
return cls(
|
||||
get_vae(), get_clip(), get_tokenizer(), get_unet(), scheduler
|
||||
)
|
||||
@@ -1,4 +0,0 @@
|
||||
from apps.stable_diffusion.src.schedulers.sd_schedulers import get_schedulers
|
||||
from apps.stable_diffusion.src.schedulers.shark_eulerdiscrete import (
|
||||
SharkEulerDiscreteScheduler,
|
||||
)
|
||||
@@ -1,51 +0,0 @@
|
||||
from diffusers import (
|
||||
LMSDiscreteScheduler,
|
||||
PNDMScheduler,
|
||||
DDIMScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
EulerDiscreteScheduler,
|
||||
EulerAncestralDiscreteScheduler,
|
||||
)
|
||||
from apps.stable_diffusion.src.schedulers.shark_eulerdiscrete import (
|
||||
SharkEulerDiscreteScheduler,
|
||||
)
|
||||
|
||||
|
||||
def get_schedulers(model_id):
|
||||
schedulers = dict()
|
||||
schedulers["PNDM"] = PNDMScheduler.from_pretrained(
|
||||
model_id,
|
||||
subfolder="scheduler",
|
||||
)
|
||||
schedulers["LMSDiscrete"] = LMSDiscreteScheduler.from_pretrained(
|
||||
model_id,
|
||||
subfolder="scheduler",
|
||||
)
|
||||
schedulers["DDIM"] = DDIMScheduler.from_pretrained(
|
||||
model_id,
|
||||
subfolder="scheduler",
|
||||
)
|
||||
schedulers[
|
||||
"DPMSolverMultistep"
|
||||
] = DPMSolverMultistepScheduler.from_pretrained(
|
||||
model_id,
|
||||
subfolder="scheduler",
|
||||
)
|
||||
schedulers["EulerDiscrete"] = EulerDiscreteScheduler.from_pretrained(
|
||||
model_id,
|
||||
subfolder="scheduler",
|
||||
)
|
||||
schedulers[
|
||||
"EulerAncestralDiscrete"
|
||||
] = EulerAncestralDiscreteScheduler.from_pretrained(
|
||||
model_id,
|
||||
subfolder="scheduler",
|
||||
)
|
||||
schedulers[
|
||||
"SharkEulerDiscrete"
|
||||
] = SharkEulerDiscreteScheduler.from_pretrained(
|
||||
model_id,
|
||||
subfolder="scheduler",
|
||||
)
|
||||
schedulers["SharkEulerDiscrete"].compile()
|
||||
return schedulers
|
||||
@@ -1,143 +0,0 @@
|
||||
import sys
|
||||
import numpy as np
|
||||
from typing import List, Optional, Tuple, Union
|
||||
from diffusers import (
|
||||
LMSDiscreteScheduler,
|
||||
PNDMScheduler,
|
||||
DDIMScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
EulerDiscreteScheduler,
|
||||
)
|
||||
from diffusers.configuration_utils import register_to_config
|
||||
from apps.stable_diffusion.src.utils import (
|
||||
compile_through_fx,
|
||||
get_shark_model,
|
||||
args,
|
||||
)
|
||||
import torch
|
||||
|
||||
|
||||
class SharkEulerDiscreteScheduler(EulerDiscreteScheduler):
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
num_train_timesteps: int = 1000,
|
||||
beta_start: float = 0.0001,
|
||||
beta_end: float = 0.02,
|
||||
beta_schedule: str = "linear",
|
||||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||||
prediction_type: str = "epsilon",
|
||||
):
|
||||
super().__init__(
|
||||
num_train_timesteps,
|
||||
beta_start,
|
||||
beta_end,
|
||||
beta_schedule,
|
||||
trained_betas,
|
||||
prediction_type,
|
||||
)
|
||||
|
||||
def compile(self):
|
||||
SCHEDULER_BUCKET = "gs://shark_tank/stable_diffusion/schedulers"
|
||||
BATCH_SIZE = args.batch_size
|
||||
|
||||
model_input = {
|
||||
"euler": {
|
||||
"latent": torch.randn(
|
||||
BATCH_SIZE, 4, args.height // 8, args.width // 8
|
||||
),
|
||||
"output": torch.randn(
|
||||
BATCH_SIZE, 4, args.height // 8, args.width // 8
|
||||
),
|
||||
"sigma": torch.tensor(1).to(torch.float32),
|
||||
"dt": torch.tensor(1).to(torch.float32),
|
||||
},
|
||||
}
|
||||
|
||||
example_latent = model_input["euler"]["latent"]
|
||||
example_output = model_input["euler"]["output"]
|
||||
if args.precision == "fp16":
|
||||
example_latent = example_latent.half()
|
||||
example_output = example_output.half()
|
||||
example_sigma = model_input["euler"]["sigma"]
|
||||
example_dt = model_input["euler"]["dt"]
|
||||
|
||||
class ScalingModel(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, latent, sigma):
|
||||
return latent / ((sigma**2 + 1) ** 0.5)
|
||||
|
||||
class SchedulerStepModel(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, noise_pred, sigma, latent, dt):
|
||||
pred_original_sample = latent - sigma * noise_pred
|
||||
derivative = (latent - pred_original_sample) / sigma
|
||||
return latent + derivative * dt
|
||||
|
||||
iree_flags = []
|
||||
if len(args.iree_vulkan_target_triple) > 0:
|
||||
iree_flags.append(
|
||||
f"-iree-vulkan-target-triple={args.iree_vulkan_target_triple}"
|
||||
)
|
||||
# Disable bindings fusion to work with moltenVK.
|
||||
if sys.platform == "darwin":
|
||||
iree_flags.append("-iree-stream-fuse-binding=false")
|
||||
|
||||
if args.import_mlir:
|
||||
scaling_model = ScalingModel()
|
||||
self.scaling_model = compile_through_fx(
|
||||
scaling_model,
|
||||
(example_latent, example_sigma),
|
||||
model_name=f"euler_scale_model_input_{BATCH_SIZE}_{args.height}_{args.width}"
|
||||
+ args.precision,
|
||||
extra_args=iree_flags,
|
||||
)
|
||||
|
||||
step_model = SchedulerStepModel()
|
||||
self.step_model = compile_through_fx(
|
||||
step_model,
|
||||
(example_output, example_sigma, example_latent, example_dt),
|
||||
model_name=f"euler_step_{BATCH_SIZE}_{args.height}_{args.width}"
|
||||
+ args.precision,
|
||||
extra_args=iree_flags,
|
||||
)
|
||||
else:
|
||||
self.scaling_model = get_shark_model(
|
||||
SCHEDULER_BUCKET,
|
||||
"euler_scale_model_input_" + args.precision,
|
||||
iree_flags,
|
||||
)
|
||||
self.step_model = get_shark_model(
|
||||
SCHEDULER_BUCKET, "euler_step_" + args.precision, iree_flags
|
||||
)
|
||||
|
||||
def scale_model_input(self, sample, timestep):
|
||||
step_index = (self.timesteps == timestep).nonzero().item()
|
||||
sigma = self.sigmas[step_index]
|
||||
return self.scaling_model(
|
||||
"forward",
|
||||
(
|
||||
sample,
|
||||
sigma,
|
||||
),
|
||||
send_to_host=False,
|
||||
)
|
||||
|
||||
def step(self, noise_pred, timestep, latent):
|
||||
step_index = (self.timesteps == timestep).nonzero().item()
|
||||
sigma = self.sigmas[step_index]
|
||||
dt = self.sigmas[step_index + 1] - sigma
|
||||
return self.step_model(
|
||||
"forward",
|
||||
(
|
||||
noise_pred,
|
||||
sigma,
|
||||
latent,
|
||||
dt,
|
||||
),
|
||||
send_to_host=False,
|
||||
)
|
||||
@@ -1,29 +0,0 @@
|
||||
from apps.stable_diffusion.src.utils.profiler import (
|
||||
start_profiling,
|
||||
end_profiling,
|
||||
)
|
||||
from apps.stable_diffusion.src.utils.resources import (
|
||||
prompt_examples,
|
||||
models_db,
|
||||
base_models,
|
||||
opt_flags,
|
||||
resource_path,
|
||||
)
|
||||
from apps.stable_diffusion.src.utils.sd_annotation import sd_model_annotation
|
||||
from apps.stable_diffusion.src.utils.stable_args import args
|
||||
from apps.stable_diffusion.src.utils.utils import (
|
||||
get_shark_model,
|
||||
compile_through_fx,
|
||||
set_iree_runtime_flags,
|
||||
map_device_to_name_path,
|
||||
set_init_device_flags,
|
||||
get_available_devices,
|
||||
get_opt_flags,
|
||||
preprocessCKPT,
|
||||
fetch_or_delete_vmfbs,
|
||||
fetch_and_update_base_model_id,
|
||||
get_path_to_diffusers_checkpoint,
|
||||
sanitize_seed,
|
||||
get_path_stem,
|
||||
get_extended_name,
|
||||
)
|
||||
@@ -1,18 +0,0 @@
|
||||
from apps.stable_diffusion.src.utils.stable_args import args
|
||||
|
||||
|
||||
# Helper function to profile the vulkan device.
|
||||
def start_profiling(file_path="foo.rdc", profiling_mode="queue"):
|
||||
if args.vulkan_debug_utils and "vulkan" in args.device:
|
||||
import iree
|
||||
|
||||
print(f"Profiling and saving to {file_path}.")
|
||||
vulkan_device = iree.runtime.get_device(args.device)
|
||||
vulkan_device.begin_profiling(mode=profiling_mode, file_path=file_path)
|
||||
return vulkan_device
|
||||
return None
|
||||
|
||||
|
||||
def end_profiling(device):
|
||||
if device:
|
||||
return device.end_profiling()
|
||||
@@ -1,37 +0,0 @@
|
||||
import os
|
||||
import json
|
||||
import sys
|
||||
|
||||
|
||||
def resource_path(relative_path):
|
||||
"""Get absolute path to resource, works for dev and for PyInstaller"""
|
||||
base_path = getattr(
|
||||
sys, "_MEIPASS", os.path.dirname(os.path.abspath(__file__))
|
||||
)
|
||||
return os.path.join(base_path, relative_path)
|
||||
|
||||
|
||||
def get_json_file(path):
|
||||
json_var = []
|
||||
loc_json = resource_path(path)
|
||||
if os.path.exists(loc_json):
|
||||
with open(loc_json, encoding="utf-8") as fopen:
|
||||
json_var = json.load(fopen)
|
||||
|
||||
if not json_var:
|
||||
print(f"Unable to fetch {path}")
|
||||
|
||||
return json_var
|
||||
|
||||
|
||||
# TODO: This shouldn't be called from here, every time the file imports
|
||||
# it will run all the global vars.
|
||||
prompt_examples = get_json_file("resources/prompts.json")
|
||||
models_db = get_json_file("resources/model_db.json")
|
||||
|
||||
# The base_model contains the input configuration for the different
|
||||
# models and also helps in providing information for the variants.
|
||||
base_models = get_json_file("resources/base_model.json")
|
||||
|
||||
# Contains optimization flags for different models.
|
||||
opt_flags = get_json_file("resources/opt_flags.json")
|
||||
@@ -1,226 +0,0 @@
|
||||
{
|
||||
"stabilityai/stable-diffusion-2-1": {
|
||||
"unet": {
|
||||
"latents": {
|
||||
"shape": [
|
||||
"1*batch_size",
|
||||
4,
|
||||
"height",
|
||||
"width"
|
||||
],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"timesteps": {
|
||||
"shape": [
|
||||
1
|
||||
],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"embedding": {
|
||||
"shape": [
|
||||
"2*batch_size",
|
||||
"max_len",
|
||||
1024
|
||||
],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"guidance_scale": {
|
||||
"shape": 2,
|
||||
"dtype": "f32"
|
||||
}
|
||||
},
|
||||
"vae_encode": {
|
||||
"image" : {
|
||||
"shape" : [
|
||||
"1*batch_size",3,"8*height","8*width"
|
||||
],
|
||||
"dtype":"f32"
|
||||
}
|
||||
},
|
||||
"vae": {
|
||||
"latents" : {
|
||||
"shape" : [
|
||||
"1*batch_size",4,"height","width"
|
||||
],
|
||||
"dtype":"f32"
|
||||
}
|
||||
},
|
||||
"clip": {
|
||||
"token" : {
|
||||
"shape" : [
|
||||
"2*batch_size",
|
||||
"max_len"
|
||||
],
|
||||
"dtype":"i64"
|
||||
}
|
||||
}
|
||||
},
|
||||
"CompVis/stable-diffusion-v1-4": {
|
||||
"unet": {
|
||||
"latents": {
|
||||
"shape": [
|
||||
"1*batch_size",
|
||||
4,
|
||||
"height",
|
||||
"width"
|
||||
],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"timesteps": {
|
||||
"shape": [
|
||||
1
|
||||
],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"embedding": {
|
||||
"shape": [
|
||||
"2*batch_size",
|
||||
"max_len",
|
||||
768
|
||||
],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"guidance_scale": {
|
||||
"shape": 2,
|
||||
"dtype": "f32"
|
||||
}
|
||||
},
|
||||
"vae_encode": {
|
||||
"image" : {
|
||||
"shape" : [
|
||||
"1*batch_size",3,"8*height","8*width"
|
||||
],
|
||||
"dtype":"f32"
|
||||
}
|
||||
},
|
||||
"vae": {
|
||||
"latents" : {
|
||||
"shape" : [
|
||||
"1*batch_size",4,"height","width"
|
||||
],
|
||||
"dtype":"f32"
|
||||
}
|
||||
},
|
||||
"clip": {
|
||||
"token" : {
|
||||
"shape" : [
|
||||
"2*batch_size",
|
||||
"max_len"
|
||||
],
|
||||
"dtype":"i64"
|
||||
}
|
||||
}
|
||||
},
|
||||
"runwayml/stable-diffusion-inpainting": {
|
||||
"unet": {
|
||||
"latents": {
|
||||
"shape": [
|
||||
"1*batch_size",
|
||||
9,
|
||||
"height",
|
||||
"width"
|
||||
],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"timesteps": {
|
||||
"shape": [
|
||||
1
|
||||
],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"embedding": {
|
||||
"shape": [
|
||||
"2*batch_size",
|
||||
"max_len",
|
||||
768
|
||||
],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"guidance_scale": {
|
||||
"shape": 2,
|
||||
"dtype": "f32"
|
||||
}
|
||||
},
|
||||
"vae_encode": {
|
||||
"image" : {
|
||||
"shape" : [
|
||||
"1*batch_size",3,"8*height","8*width"
|
||||
],
|
||||
"dtype":"f32"
|
||||
}
|
||||
},
|
||||
"vae": {
|
||||
"latents" : {
|
||||
"shape" : [
|
||||
"1*batch_size",4,"height","width"
|
||||
],
|
||||
"dtype":"f32"
|
||||
}
|
||||
},
|
||||
"clip": {
|
||||
"token" : {
|
||||
"shape" : [
|
||||
"2*batch_size",
|
||||
"max_len"
|
||||
],
|
||||
"dtype":"i64"
|
||||
}
|
||||
}
|
||||
},
|
||||
"stabilityai/stable-diffusion-2-inpainting": {
|
||||
"unet": {
|
||||
"latents": {
|
||||
"shape": [
|
||||
"1*batch_size",
|
||||
9,
|
||||
"height",
|
||||
"width"
|
||||
],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"timesteps": {
|
||||
"shape": [
|
||||
1
|
||||
],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"embedding": {
|
||||
"shape": [
|
||||
"2*batch_size",
|
||||
"max_len",
|
||||
1024
|
||||
],
|
||||
"dtype": "f32"
|
||||
},
|
||||
"guidance_scale": {
|
||||
"shape": 2,
|
||||
"dtype": "f32"
|
||||
}
|
||||
},
|
||||
"vae_encode": {
|
||||
"image" : {
|
||||
"shape" : [
|
||||
"1*batch_size",3,"8*height","8*width"
|
||||
],
|
||||
"dtype":"f32"
|
||||
}
|
||||
},
|
||||
"vae": {
|
||||
"latents" : {
|
||||
"shape" : [
|
||||
"1*batch_size",4,"height","width"
|
||||
],
|
||||
"dtype":"f32"
|
||||
}
|
||||
},
|
||||
"clip": {
|
||||
"token" : {
|
||||
"shape" : [
|
||||
"2*batch_size",
|
||||
"max_len"
|
||||
],
|
||||
"dtype":"i64"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,23 +0,0 @@
|
||||
[
|
||||
{
|
||||
"stablediffusion/v1_4":"CompVis/stable-diffusion-v1-4",
|
||||
"stablediffusion/v2_1base":"stabilityai/stable-diffusion-2-1-base",
|
||||
"stablediffusion/v2_1":"stabilityai/stable-diffusion-2-1",
|
||||
"stablediffusion/inpaint_v1":"runwayml/stable-diffusion-inpainting",
|
||||
"stablediffusion/inpaint_v2":"stabilityai/stable-diffusion-2-inpainting",
|
||||
"anythingv3/v1_4":"Linaqruf/anything-v3.0",
|
||||
"analogdiffusion/v1_4":"wavymulder/Analog-Diffusion",
|
||||
"openjourney/v1_4":"prompthero/openjourney",
|
||||
"dreamlike/v1_4":"dreamlike-art/dreamlike-diffusion-1.0"
|
||||
},
|
||||
{
|
||||
"stablediffusion/fp16":"fp16",
|
||||
"stablediffusion/fp32":"main",
|
||||
"anythingv3/fp16":"diffusers",
|
||||
"anythingv3/fp32":"diffusers",
|
||||
"analogdiffusion/fp16":"main",
|
||||
"analogdiffusion/fp32":"main",
|
||||
"openjourney/fp16":"main",
|
||||
"openjourney/fp32":"main"
|
||||
}
|
||||
]
|
||||
@@ -1,93 +0,0 @@
|
||||
[
|
||||
{
|
||||
"stablediffusion/untuned":"gs://shark_tank/sd_untuned",
|
||||
"stablediffusion/tuned":"gs://shark_tank/sd_tuned",
|
||||
"stablediffusion/tuned/cuda":"gs://shark_tank/sd_tuned/cuda",
|
||||
"anythingv3/untuned":"gs://shark_tank/sd_anythingv3",
|
||||
"anythingv3/tuned":"gs://shark_tank/sd_tuned",
|
||||
"anythingv3/tuned/cuda":"gs://shark_tank/sd_tuned/cuda",
|
||||
"analogdiffusion/untuned":"gs://shark_tank/sd_analog_diffusion",
|
||||
"analogdiffusion/tuned":"gs://shark_tank/sd_tuned",
|
||||
"analogdiffusion/tuned/cuda":"gs://shark_tank/sd_tuned/cuda",
|
||||
"openjourney/untuned":"gs://shark_tank/sd_openjourney",
|
||||
"openjourney/tuned":"gs://shark_tank/sd_tuned",
|
||||
"dreamlike/untuned":"gs://shark_tank/sd_dreamlike_diffusion"
|
||||
},
|
||||
{
|
||||
"stablediffusion/v1_4/unet/fp16/length_77/untuned":"unet_8dec_fp16",
|
||||
"stablediffusion/v1_4/unet/fp16/length_77/tuned":"unet_8dec_fp16_tuned",
|
||||
"stablediffusion/v1_4/unet/fp16/length_77/tuned/cuda":"unet_8dec_fp16_cuda_tuned",
|
||||
"stablediffusion/v1_4/unet/fp32/length_77/untuned":"unet_1dec_fp32",
|
||||
"stablediffusion/v1_4/vae/fp16/length_77/untuned":"vae_19dec_fp16",
|
||||
"stablediffusion/v1_4/vae/fp16/length_77/tuned":"vae_19dec_fp16_tuned",
|
||||
"stablediffusion/v1_4/vae/fp16/length_77/tuned/cuda":"vae_19dec_fp16_cuda_tuned",
|
||||
"stablediffusion/v1_4/vae/fp16/length_77/untuned/base":"vae_8dec_fp16",
|
||||
"stablediffusion/v1_4/vae/fp32/length_77/untuned":"vae_1dec_fp32",
|
||||
"stablediffusion/v1_4/clip/fp32/length_77/untuned":"clip_18dec_fp32",
|
||||
"stablediffusion/v2_1base/unet/fp16/length_77/untuned":"unet77_512_512_fp16_stabilityai_stable_diffusion_2_1_base",
|
||||
"stablediffusion/v2_1base/unet/fp16/length_77/tuned":"unet2base_8dec_fp16_tuned_v2",
|
||||
"stablediffusion/v2_1base/unet/fp16/length_77/tuned/cuda":"unet2base_8dec_fp16_cuda_tuned",
|
||||
"stablediffusion/v2_1base/unet/fp16/length_64/untuned":"unet64_512_512_fp16_stabilityai_stable_diffusion_2_1_base",
|
||||
"stablediffusion/v2_1base/unet/fp16/length_64/tuned":"unet_19dec_v2p1base_fp16_64_tuned",
|
||||
"stablediffusion/v2_1base/unet/fp16/length_64/tuned/cuda":"unet_19dec_v2p1base_fp16_64_cuda_tuned",
|
||||
"stablediffusion/v2_1base/vae/fp16/length_77/untuned":"vae77_512_512_fp16_stabilityai_stable_diffusion_2_1_base",
|
||||
"stablediffusion/v2_1base/vae/fp16/length_77/tuned":"vae2base_19dec_fp16_tuned",
|
||||
"stablediffusion/v2_1base/vae/fp16/length_77/tuned/cuda":"vae2base_19dec_fp16_cuda_tuned",
|
||||
"stablediffusion/v2_1base/vae/fp16/length_77/untuned/base":"vae2base_8dec_fp16",
|
||||
"stablediffusion/v2_1base/vae/fp16/length_77/tuned/base":"vae2base_8dec_fp16_tuned",
|
||||
"stablediffusion/v2_1base/vae/fp16/length_77/tuned/base/cuda":"vae2base_8dec_fp16_cuda_tuned",
|
||||
"stablediffusion/v2_1base/clip/fp32/length_77/untuned":"clip77_512_512_fp16_stabilityai_stable_diffusion_2_1_base",
|
||||
"stablediffusion/v2_1base/clip/fp32/length_64/untuned":"clip64_512_512_fp16_stabilityai_stable_diffusion_2_1_base",
|
||||
"stablediffusion/v2_1/unet/fp16/length_77/untuned":"unet77_512_512_fp16_stabilityai_stable_diffusion_2_1_base",
|
||||
"stablediffusion/v2_1/vae/fp16/length_77/untuned":"vae77_512_512_fp16_stabilityai_stable_diffusion_2_1_base",
|
||||
"stablediffusion/v2_1/vae/fp16/length_77/untuned/base":"vae2_8dec_fp16",
|
||||
"stablediffusion/v2_1/clip/fp32/length_77/untuned":"clip77_512_512_fp16_stabilityai_stable_diffusion_2_1_base",
|
||||
"stablediffusion/inpaint_v1/unet/fp16/length_77/untuned":"unet_inpaint_fp16",
|
||||
"stablediffusion/inpaint_v1/unet/fp32/length_77/untuned":"unet_inpaint_fp32",
|
||||
"stablediffusion/inpaint_v1/vae_encode/fp16/length_77/untuned":"vae_encode_inpaint_fp16",
|
||||
"stablediffusion/inpaint_v1/vae_encode/fp32/length_77/untuned":"vae_encode_inpaint_fp32",
|
||||
"stablediffusion/inpaint_v1/vae/fp16/length_77/untuned":"vae_inpaint_fp16",
|
||||
"stablediffusion/inpaint_v1/vae/fp32/length_77/untuned":"vae_inpaint_fp32",
|
||||
"stablediffusion/inpaint_v1/clip/fp32/length_77/untuned":"clip_inpaint_fp32",
|
||||
"stablediffusion/inpaint_v2/unet/fp16/length_77/untuned":"unet_inpaint_fp16",
|
||||
"stablediffusion/inpaint_v2/vae_encode/fp16/length_77/untuned":"vae_encode_inpaint_fp16",
|
||||
"stablediffusion/inpaint_v2/vae/fp16/length_77/untuned":"vae_inpaint_fp16",
|
||||
"stablediffusion/inpaint_v2/clip/fp32/length_77/untuned":"clip_inpaint_fp32",
|
||||
"anythingv3/v2_1base/unet/fp16/length_77/untuned":"av3_unet_19dec_fp16",
|
||||
"anythingv3/v2_1base/unet/fp16/length_77/tuned":"av3_unet_19dec_fp16_tuned",
|
||||
"anythingv3/v2_1base/unet/fp16/length_77/tuned/cuda":"av3_unet_19dec_fp16_cuda_tuned",
|
||||
"anythingv3/v2_1base/unet/fp32/length_77/untuned":"av3_unet_19dec_fp32",
|
||||
"anythingv3/v2_1base/vae/fp16/length_77/untuned":"av3_vae_19dec_fp16",
|
||||
"anythingv3/v2_1base/vae/fp16/length_77/tuned":"av3_vae_19dec_fp16_tuned",
|
||||
"anythingv3/v2_1base/vae/fp16/length_77/tuned/cuda":"av3_vae_19dec_fp16_cuda_tuned",
|
||||
"anythingv3/v2_1base/vae/fp16/length_77/untuned/base":"av3_vaebase_22dec_fp16",
|
||||
"anythingv3/v2_1base/vae/fp32/length_77/untuned":"av3_vae_19dec_fp32",
|
||||
"anythingv3/v2_1base/vae/fp32/length_77/untuned/base":"av3_vaebase_22dec_fp32",
|
||||
"anythingv3/v2_1base/clip/fp32/length_77/untuned":"av3_clip_19dec_fp32",
|
||||
"analogdiffusion/v2_1base/unet/fp16/length_77/untuned":"ad_unet_19dec_fp16",
|
||||
"analogdiffusion/v2_1base/unet/fp16/length_77/tuned":"ad_unet_19dec_fp16_tuned",
|
||||
"analogdiffusion/v2_1base/unet/fp16/length_77/tuned/cuda":"ad_unet_19dec_fp16_cuda_tuned",
|
||||
"analogdiffusion/v2_1base/unet/fp32/length_77/untuned":"ad_unet_19dec_fp32",
|
||||
"analogdiffusion/v2_1base/vae/fp16/length_77/untuned":"ad_vae_19dec_fp16",
|
||||
"analogdiffusion/v2_1base/vae/fp16/length_77/tuned":"ad_vae_19dec_fp16_tuned",
|
||||
"analogdiffusion/v2_1base/vae/fp16/length_77/tuned/cuda":"ad_vae_19dec_fp16_cuda_tuned",
|
||||
"analogdiffusion/v2_1base/vae/fp16/length_77/untuned/base":"ad_vaebase_22dec_fp16",
|
||||
"analogdiffusion/v2_1base/vae/fp32/length_77/untuned":"ad_vae_19dec_fp32",
|
||||
"analogdiffusion/v2_1base/vae/fp32/length_77/untuned/base":"ad_vaebase_22dec_fp32",
|
||||
"analogdiffusion/v2_1base/clip/fp32/length_77/untuned":"ad_clip_19dec_fp32",
|
||||
"openjourney/v2_1base/unet/fp16/length_64/untuned":"oj_unet_22dec_fp16_64",
|
||||
"openjourney/v2_1base/unet/fp32/length_64/untuned":"oj_unet_22dec_fp32_64",
|
||||
"openjourney/v2_1base/vae/fp16/length_77/untuned":"oj_vae_22dec_fp16",
|
||||
"openjourney/v2_1base/vae/fp16/length_77/untuned/base":"oj_vaebase_22dec_fp16",
|
||||
"openjourney/v2_1base/vae/fp32/length_77/untuned":"oj_vae_22dec_fp32",
|
||||
"openjourney/v2_1base/vae/fp32/length_77/untuned/base":"oj_vaebase_22dec_fp32",
|
||||
"openjourney/v2_1base/clip/fp32/length_64/untuned":"oj_clip_22dec_fp32_64",
|
||||
"dreamlike/v2_1base/unet/fp16/length_77/untuned":"dl_unet_23dec_fp16_77",
|
||||
"dreamlike/v2_1base/unet/fp32/length_77/untuned":"dl_unet_23dec_fp32_77",
|
||||
"dreamlike/v2_1base/vae/fp16/length_77/untuned":"dl_vae_23dec_fp16",
|
||||
"dreamlike/v2_1base/vae/fp16/length_77/untuned/base":"dl_vaebase_23dec_fp16",
|
||||
"dreamlike/v2_1base/vae/fp32/length_77/untuned":"dl_vae_23dec_fp32",
|
||||
"dreamlike/v2_1base/vae/fp32/length_77/untuned/base":"dl_vaebase_23dec_fp32",
|
||||
"dreamlike/v2_1base/clip/fp32/length_77/untuned":"dl_clip_23dec_fp32_77"
|
||||
}
|
||||
]
|
||||
@@ -1,84 +0,0 @@
|
||||
{
|
||||
"unet": {
|
||||
"tuned": {
|
||||
"fp16": {
|
||||
"default_compilation_flags": []
|
||||
},
|
||||
"fp32": {
|
||||
"default_compilation_flags": []
|
||||
}
|
||||
},
|
||||
"untuned": {
|
||||
"fp16": {
|
||||
"default_compilation_flags": [
|
||||
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-flow-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=32}))"
|
||||
]
|
||||
},
|
||||
"fp32": {
|
||||
"default_compilation_flags": [
|
||||
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-flow-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=16}))"
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
"vae": {
|
||||
"tuned": {
|
||||
"fp16": {
|
||||
"default_compilation_flags": [],
|
||||
"specified_compilation_flags": {
|
||||
"cuda": [],
|
||||
"default_device": [
|
||||
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-flow-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=32},iree-linalg-ext-convert-conv2d-to-winograd))"
|
||||
]
|
||||
}
|
||||
},
|
||||
"fp32": {
|
||||
"default_compilation_flags": [],
|
||||
"specified_compilation_flags": {
|
||||
"cuda": [],
|
||||
"default_device": [
|
||||
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-flow-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=16},iree-linalg-ext-convert-conv2d-to-winograd))"
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
"untuned": {
|
||||
"fp16": {
|
||||
"default_compilation_flags": [
|
||||
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-preprocessing-pad-linalg-ops{pad-size=32}))"
|
||||
]
|
||||
},
|
||||
"fp32": {
|
||||
"default_compilation_flags": [
|
||||
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-preprocessing-pad-linalg-ops{pad-size=16}))"
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
"clip": {
|
||||
"tuned": {
|
||||
"fp16": {
|
||||
"default_compilation_flags": [
|
||||
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-preprocessing-pad-linalg-ops{pad-size=16}))"
|
||||
]
|
||||
},
|
||||
"fp32": {
|
||||
"default_compilation_flags": [
|
||||
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-preprocessing-pad-linalg-ops{pad-size=16}))"
|
||||
]
|
||||
}
|
||||
},
|
||||
"untuned": {
|
||||
"fp16": {
|
||||
"default_compilation_flags": [
|
||||
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-preprocessing-pad-linalg-ops{pad-size=16}))"
|
||||
]
|
||||
},
|
||||
"fp32": {
|
||||
"default_compilation_flags": [
|
||||
"--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-preprocessing-pad-linalg-ops{pad-size=16}))"
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,8 +0,0 @@
|
||||
[["A high tech solarpunk utopia in the Amazon rainforest"],
|
||||
["A pikachu fine dining with a view to the Eiffel Tower"],
|
||||
["A mecha robot in a favela in expressionist style"],
|
||||
["an insect robot preparing a delicious meal"],
|
||||
["A digital Illustration of the Babel tower, 4k, detailed, trending in artstation, fantasy vivid colors"],
|
||||
["Cluttered house in the woods, anime, oil painting, high resolution, cottagecore, ghibli inspired, 4k"],
|
||||
["A beautiful mansion beside a waterfall in the woods, by josef thoma, matte painting, trending on artstation HQ"],
|
||||
["portrait photo of a asia old warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes"]]
|
||||
@@ -1,225 +0,0 @@
|
||||
import os
|
||||
import io
|
||||
from shark.model_annotation import model_annotation, create_context
|
||||
from shark.iree_utils._common import iree_target_map, run_cmd
|
||||
from shark.shark_downloader import (
|
||||
download_model,
|
||||
download_public_file,
|
||||
WORKDIR,
|
||||
)
|
||||
from shark.parser import shark_args
|
||||
from apps.stable_diffusion.src.utils.stable_args import args
|
||||
|
||||
|
||||
def get_device():
|
||||
device = (
|
||||
args.device
|
||||
if "://" not in args.device
|
||||
else args.device.split("://")[0]
|
||||
)
|
||||
return device
|
||||
|
||||
|
||||
def get_device_args():
|
||||
device = get_device()
|
||||
device_spec_args = []
|
||||
if device == "cuda":
|
||||
from shark.iree_utils.gpu_utils import get_iree_gpu_args
|
||||
|
||||
gpu_flags = get_iree_gpu_args()
|
||||
for flag in gpu_flags:
|
||||
device_spec_args.append(flag)
|
||||
elif device == "vulkan":
|
||||
device_spec_args.append(
|
||||
f"--iree-vulkan-target-triple={args.iree_vulkan_target_triple} "
|
||||
)
|
||||
return device, device_spec_args
|
||||
|
||||
|
||||
# Download the model (Unet or VAE fp16) from shark_tank
|
||||
def load_model_from_tank():
|
||||
from apps.stable_diffusion.src.models import (
|
||||
get_params,
|
||||
get_variant_version,
|
||||
)
|
||||
|
||||
variant, version = get_variant_version(args.hf_model_id)
|
||||
|
||||
shark_args.local_tank_cache = args.local_tank_cache
|
||||
bucket_key = f"{variant}/untuned"
|
||||
if args.annotation_model == "unet":
|
||||
model_key = f"{variant}/{version}/unet/{args.precision}/length_{args.max_length}/untuned"
|
||||
elif args.annotation_model == "vae":
|
||||
is_base = "/base" if args.use_base_vae else ""
|
||||
model_key = f"{variant}/{version}/vae/{args.precision}/length_77/untuned{is_base}"
|
||||
|
||||
bucket, model_name, iree_flags = get_params(
|
||||
bucket_key, model_key, args.annotation_model, "untuned", args.precision
|
||||
)
|
||||
mlir_model, func_name, inputs, golden_out = download_model(
|
||||
model_name,
|
||||
tank_url=bucket,
|
||||
frontend="torch",
|
||||
)
|
||||
return mlir_model, model_name
|
||||
|
||||
|
||||
# Download the tuned config files from shark_tank
|
||||
def load_winograd_configs():
|
||||
device = get_device()
|
||||
config_bucket = "gs://shark_tank/sd_tuned/configs/"
|
||||
config_name = f"{args.annotation_model}_winograd_{device}.json"
|
||||
full_gs_url = config_bucket + config_name
|
||||
winograd_config_dir = f"{WORKDIR}configs/" + config_name
|
||||
print("Loading Winograd config file from ", winograd_config_dir)
|
||||
download_public_file(full_gs_url, winograd_config_dir, True)
|
||||
return winograd_config_dir
|
||||
|
||||
|
||||
def load_lower_configs():
|
||||
from apps.stable_diffusion.src.models import get_variant_version
|
||||
|
||||
variant, version = get_variant_version(args.hf_model_id)
|
||||
|
||||
config_bucket = "gs://shark_tank/sd_tuned/configs/"
|
||||
config_version = version
|
||||
config_max_length = args.max_length
|
||||
if variant in ["anythingv3", "analogdiffusion"]:
|
||||
config_max_length = 77
|
||||
config_version = "v1_4"
|
||||
if args.annotation_model == "vae":
|
||||
config_max_length = 77
|
||||
|
||||
device, device_spec_args = get_device_args()
|
||||
spec = ""
|
||||
if device_spec_args:
|
||||
spec = device_spec_args[-1].split("=")[-1].strip()
|
||||
if device == "vulkan":
|
||||
spec = spec.split("-")[0]
|
||||
|
||||
if not spec or spec in ["rdna3", "sm_80"]:
|
||||
config_name = f"{args.annotation_model}_{config_version}_{args.precision}_len{config_max_length}_{device}.json"
|
||||
else:
|
||||
config_name = f"{args.annotation_model}_{config_version}_{args.precision}_len{config_max_length}_{device}_{spec}.json"
|
||||
full_gs_url = config_bucket + config_name
|
||||
lowering_config_dir = f"{WORKDIR}configs/" + config_name
|
||||
print("Loading lowering config file from ", lowering_config_dir)
|
||||
download_public_file(full_gs_url, lowering_config_dir, True)
|
||||
return lowering_config_dir
|
||||
|
||||
|
||||
# Annotate the model with Winograd attribute on selected conv ops
|
||||
def annotate_with_winograd(input_mlir, winograd_config_dir, model_name):
|
||||
with create_context() as ctx:
|
||||
winograd_model = model_annotation(
|
||||
ctx,
|
||||
input_contents=input_mlir,
|
||||
config_path=winograd_config_dir,
|
||||
search_op="conv",
|
||||
winograd=True,
|
||||
)
|
||||
|
||||
bytecode_stream = io.BytesIO()
|
||||
winograd_model.operation.write_bytecode(bytecode_stream)
|
||||
bytecode = bytecode_stream.getvalue()
|
||||
|
||||
if args.save_annotation:
|
||||
if model_name.split("_")[-1] != "tuned":
|
||||
out_file_path = (
|
||||
f"{args.annotation_output}/{model_name}_tuned_torch.mlir"
|
||||
)
|
||||
else:
|
||||
out_file_path = f"{args.annotation_output}/{model_name}_torch.mlir"
|
||||
with open(out_file_path, "w") as f:
|
||||
f.write(str(winograd_model))
|
||||
f.close()
|
||||
|
||||
return bytecode
|
||||
|
||||
|
||||
def dump_after_mlir(input_mlir, use_winograd):
|
||||
import iree.compiler as ireec
|
||||
|
||||
device, device_spec_args = get_device_args()
|
||||
if use_winograd:
|
||||
preprocess_flag = "--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-flow-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=32},iree-linalg-ext-convert-conv2d-to-winograd))"
|
||||
else:
|
||||
preprocess_flag = "--iree-preprocessing-pass-pipeline=builtin.module(func.func(iree-flow-detach-elementwise-from-named-ops,iree-flow-convert-1x1-filter-conv2d-to-matmul,iree-preprocessing-convert-conv2d-to-img2col,iree-preprocessing-pad-linalg-ops{pad-size=32}))"
|
||||
|
||||
dump_module = ireec.compile_str(
|
||||
input_mlir,
|
||||
target_backends=[iree_target_map(device)],
|
||||
extra_args=device_spec_args
|
||||
+ [
|
||||
preprocess_flag,
|
||||
"--compile-to=preprocessing",
|
||||
],
|
||||
)
|
||||
return dump_module
|
||||
|
||||
|
||||
# For Unet annotate the model with tuned lowering configs
|
||||
def annotate_with_lower_configs(
|
||||
input_mlir, lowering_config_dir, model_name, use_winograd
|
||||
):
|
||||
# Dump IR after padding/img2col/winograd passes
|
||||
dump_module = dump_after_mlir(input_mlir, use_winograd)
|
||||
print("Applying tuned configs on", model_name)
|
||||
|
||||
# Annotate the model with lowering configs in the config file
|
||||
with create_context() as ctx:
|
||||
tuned_model = model_annotation(
|
||||
ctx,
|
||||
input_contents=dump_module,
|
||||
config_path=lowering_config_dir,
|
||||
search_op="all",
|
||||
)
|
||||
|
||||
bytecode_stream = io.BytesIO()
|
||||
tuned_model.operation.write_bytecode(bytecode_stream)
|
||||
bytecode = bytecode_stream.getvalue()
|
||||
|
||||
if args.save_annotation:
|
||||
if model_name.split("_")[-1] != "tuned":
|
||||
out_file_path = (
|
||||
f"{args.annotation_output}/{model_name}_tuned_torch.mlir"
|
||||
)
|
||||
else:
|
||||
out_file_path = f"{args.annotation_output}/{model_name}_torch.mlir"
|
||||
with open(out_file_path, "w") as f:
|
||||
f.write(str(tuned_model))
|
||||
f.close()
|
||||
|
||||
return bytecode
|
||||
|
||||
|
||||
def sd_model_annotation(mlir_model, model_name, model_from_tank=False):
|
||||
device = get_device()
|
||||
if args.annotation_model == "unet" and device == "vulkan":
|
||||
use_winograd = True
|
||||
winograd_config_dir = load_winograd_configs()
|
||||
winograd_model = annotate_with_winograd(
|
||||
mlir_model, winograd_config_dir, model_name
|
||||
)
|
||||
lowering_config_dir = load_lower_configs()
|
||||
tuned_model = annotate_with_lower_configs(
|
||||
winograd_model, lowering_config_dir, model_name, use_winograd
|
||||
)
|
||||
elif args.annotation_model == "vae" and device == "vulkan":
|
||||
use_winograd = True
|
||||
winograd_config_dir = load_winograd_configs()
|
||||
tuned_model = annotate_with_winograd(
|
||||
mlir_model, winograd_config_dir, model_name
|
||||
)
|
||||
else:
|
||||
use_winograd = False
|
||||
lowering_config_dir = load_lower_configs()
|
||||
tuned_model = annotate_with_lower_configs(
|
||||
mlir_model, lowering_config_dir, model_name, use_winograd
|
||||
)
|
||||
return tuned_model
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
mlir_model, model_name = load_model_from_tank()
|
||||
sd_model_annotation(mlir_model, model_name, model_from_tank=True)
|
||||
@@ -1,357 +0,0 @@
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def path_expand(s):
|
||||
return Path(s).expanduser().resolve()
|
||||
|
||||
|
||||
p = argparse.ArgumentParser(
|
||||
description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
##############################################################################
|
||||
### Stable Diffusion Params
|
||||
##############################################################################
|
||||
|
||||
p.add_argument(
|
||||
"-p",
|
||||
"--prompts",
|
||||
nargs="+",
|
||||
default=["cyberpunk forest by Salvador Dali"],
|
||||
help="text of which images to be generated.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--negative_prompts",
|
||||
nargs="+",
|
||||
default=["trees, green"],
|
||||
help="text you don't want to see in the generated image.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--img_path",
|
||||
type=str,
|
||||
help="Path to the image input for img2img/inpainting",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--mask_path",
|
||||
type=str,
|
||||
help="Path to the mask image input for inpainting",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--steps",
|
||||
type=int,
|
||||
default=50,
|
||||
help="the no. of steps to do the sampling.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--seed",
|
||||
type=int,
|
||||
default=-1,
|
||||
help="the seed to use. -1 for a random one.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--batch_size",
|
||||
type=int,
|
||||
default=1,
|
||||
choices=range(1, 4),
|
||||
help="the number of inferences to be made in a single `batch_count`.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--height",
|
||||
type=int,
|
||||
default=512,
|
||||
help="the height of the output image.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--width",
|
||||
type=int,
|
||||
default=512,
|
||||
help="the width of the output image.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--guidance_scale",
|
||||
type=float,
|
||||
default=7.5,
|
||||
help="the value to be used for guidance scaling.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--max_length",
|
||||
type=int,
|
||||
default=64,
|
||||
help="max length of the tokenizer output, options are 64 and 77.",
|
||||
)
|
||||
|
||||
##############################################################################
|
||||
### Model Config and Usage Params
|
||||
##############################################################################
|
||||
|
||||
p.add_argument(
|
||||
"--device", type=str, default="vulkan", help="device to run the model."
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--precision", type=str, default="fp16", help="precision to run the model."
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--import_mlir",
|
||||
default=False,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="imports the model from torch module to shark_module otherwise downloads the model from shark_tank.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--load_vmfb",
|
||||
default=True,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="attempts to load the model from a precompiled flatbuffer and compiles + saves it if not found.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--save_vmfb",
|
||||
default=False,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="saves the compiled flatbuffer to the local directory",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--use_tuned",
|
||||
default=True,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="Download and use the tuned version of the model if available",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--use_base_vae",
|
||||
default=False,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="Do conversion from the VAE output to pixel space on cpu.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--scheduler",
|
||||
type=str,
|
||||
default="SharkEulerDiscrete",
|
||||
help="other supported schedulers are [PNDM, DDIM, LMSDiscrete, EulerDiscrete, DPMSolverMultistep]",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--output_img_format",
|
||||
type=str,
|
||||
default="png",
|
||||
help="specify the format in which output image is save. Supported options: jpg / png",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--output_dir",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Directory path to save the output images and json",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--batch_count",
|
||||
type=int,
|
||||
default=1,
|
||||
help="number of batch to be generated with random seeds in single execution",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--ckpt_loc",
|
||||
type=str,
|
||||
default="",
|
||||
help="Path to SD's .ckpt file.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--custom_vae",
|
||||
type=str,
|
||||
default="",
|
||||
help="HuggingFace repo-id or path to SD model's checkpoint whose Vae needs to be plugged in.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--hf_model_id",
|
||||
type=str,
|
||||
default="stabilityai/stable-diffusion-2-1-base",
|
||||
help="The repo-id of hugging face.",
|
||||
)
|
||||
|
||||
##############################################################################
|
||||
### IREE - Vulkan supported flags
|
||||
##############################################################################
|
||||
|
||||
p.add_argument(
|
||||
"--iree-vulkan-target-triple",
|
||||
type=str,
|
||||
default="",
|
||||
help="Specify target triple for vulkan",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--vulkan_debug_utils",
|
||||
default=False,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="Profiles vulkan device and collects the .rdc info",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--vulkan_large_heap_block_size",
|
||||
default="4147483648",
|
||||
help="flag for setting VMA preferredLargeHeapBlockSize for vulkan device, default is 4G",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--vulkan_validation_layers",
|
||||
default=False,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="flag for disabling vulkan validation layers when benchmarking",
|
||||
)
|
||||
|
||||
##############################################################################
|
||||
### Misc. Debug and Optimization flags
|
||||
##############################################################################
|
||||
|
||||
p.add_argument(
|
||||
"--use_compiled_scheduler",
|
||||
default=True,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="use the default scheduler precompiled into the model if available",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--local_tank_cache",
|
||||
default="",
|
||||
help="Specify where to save downloaded shark_tank artifacts. If this is not set, the default is ~/.local/shark_tank/.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--dump_isa",
|
||||
default=False,
|
||||
action="store_true",
|
||||
help="When enabled call amdllpc to get ISA dumps. use with dispatch benchmarks.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--dispatch_benchmarks",
|
||||
default=None,
|
||||
help='dispatches to return benchamrk data on. use "All" for all, and None for none.',
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--dispatch_benchmarks_dir",
|
||||
default="temp_dispatch_benchmarks",
|
||||
help='directory where you want to store dispatch data generated with "--dispatch_benchmarks"',
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--enable_rgp",
|
||||
default=False,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="flag for inserting debug frames between iterations for use with rgp.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--hide_steps",
|
||||
default=True,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="flag for hiding the details of iteration/sec for each step.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--warmup_count",
|
||||
type=int,
|
||||
default=0,
|
||||
help="flag setting warmup count for clip and vae [>= 0].",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--clear_all",
|
||||
default=False,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="flag to clear all mlir and vmfb from common locations. Recompiling will take several minutes",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--save_metadata_to_json",
|
||||
default=False,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="flag for whether or not to save a generation information json file with the image.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--write_metadata_to_png",
|
||||
default=True,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="flag for whether or not to save generation information in PNG chunk text to generated images.",
|
||||
)
|
||||
|
||||
##############################################################################
|
||||
### Web UI flags
|
||||
##############################################################################
|
||||
|
||||
p.add_argument(
|
||||
"--progress_bar",
|
||||
default=True,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="flag for removing the progress bar animation during image generation",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--ckpt_dir",
|
||||
type=str,
|
||||
default="",
|
||||
help="Path to directory where all .ckpts are stored in order to populate them in the web UI",
|
||||
)
|
||||
|
||||
|
||||
p.add_argument(
|
||||
"--share",
|
||||
default=False,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="flag for generating a public URL",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--server_port",
|
||||
type=int,
|
||||
default=8080,
|
||||
help="flag for setting server port",
|
||||
)
|
||||
|
||||
##############################################################################
|
||||
### SD model auto-annotation flags
|
||||
##############################################################################
|
||||
|
||||
p.add_argument(
|
||||
"--annotation_output",
|
||||
type=path_expand,
|
||||
default="./",
|
||||
help="Directory to save the annotated mlir file",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--annotation_model",
|
||||
type=str,
|
||||
default="unet",
|
||||
help="Options are unet and vae.",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--save_annotation",
|
||||
default=False,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="Save annotated mlir file",
|
||||
)
|
||||
|
||||
args, unknown = p.parse_known_args()
|
||||
@@ -1,488 +0,0 @@
|
||||
import os
|
||||
import gc
|
||||
import json
|
||||
from pathlib import Path
|
||||
import numpy as np
|
||||
from random import randint
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.shark_importer import import_with_fx
|
||||
from shark.iree_utils.vulkan_utils import (
|
||||
set_iree_vulkan_runtime_flags,
|
||||
get_vulkan_target_triple,
|
||||
)
|
||||
from shark.iree_utils.gpu_utils import get_cuda_sm_cc
|
||||
from apps.stable_diffusion.src.utils.stable_args import args
|
||||
from apps.stable_diffusion.src.utils.resources import opt_flags
|
||||
from apps.stable_diffusion.src.utils.sd_annotation import sd_model_annotation
|
||||
import sys
|
||||
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
|
||||
load_pipeline_from_original_stable_diffusion_ckpt,
|
||||
)
|
||||
|
||||
|
||||
def get_extended_name(model_name):
|
||||
device = (
|
||||
args.device
|
||||
if "://" not in args.device
|
||||
else "-".join(args.device.split("://"))
|
||||
)
|
||||
extended_name = "{}_{}".format(model_name, device)
|
||||
return extended_name
|
||||
|
||||
|
||||
def get_vmfb_path_name(model_name):
|
||||
vmfb_path = os.path.join(os.getcwd(), model_name + ".vmfb")
|
||||
return vmfb_path
|
||||
|
||||
|
||||
def _compile_module(shark_module, model_name, extra_args=[]):
|
||||
if args.load_vmfb or args.save_vmfb:
|
||||
vmfb_path = get_vmfb_path_name(model_name)
|
||||
if args.load_vmfb and os.path.isfile(vmfb_path) and not args.save_vmfb:
|
||||
print(f"loading existing vmfb from: {vmfb_path}")
|
||||
shark_module.load_module(vmfb_path, extra_args=extra_args)
|
||||
else:
|
||||
if args.save_vmfb:
|
||||
print("Saving to {}".format(vmfb_path))
|
||||
else:
|
||||
print(
|
||||
"No vmfb found. Compiling and saving to {}".format(
|
||||
vmfb_path
|
||||
)
|
||||
)
|
||||
path = shark_module.save_module(
|
||||
os.getcwd(), model_name, extra_args
|
||||
)
|
||||
shark_module.load_module(path, extra_args=extra_args)
|
||||
else:
|
||||
shark_module.compile(extra_args)
|
||||
return shark_module
|
||||
|
||||
|
||||
# Downloads the model from shark_tank and returns the shark_module.
|
||||
def get_shark_model(tank_url, model_name, extra_args=[]):
|
||||
from shark.parser import shark_args
|
||||
|
||||
# Set local shark_tank cache directory.
|
||||
shark_args.local_tank_cache = args.local_tank_cache
|
||||
|
||||
from shark.shark_downloader import download_model
|
||||
|
||||
if "cuda" in args.device:
|
||||
shark_args.enable_tf32 = True
|
||||
|
||||
mlir_model, func_name, inputs, golden_out = download_model(
|
||||
model_name,
|
||||
tank_url=tank_url,
|
||||
frontend="torch",
|
||||
)
|
||||
shark_module = SharkInference(
|
||||
mlir_model, device=args.device, mlir_dialect="linalg"
|
||||
)
|
||||
return _compile_module(shark_module, model_name, extra_args)
|
||||
|
||||
|
||||
# Converts the torch-module into a shark_module.
|
||||
def compile_through_fx(
|
||||
model,
|
||||
inputs,
|
||||
model_name,
|
||||
is_f16=False,
|
||||
f16_input_mask=None,
|
||||
use_tuned=False,
|
||||
extra_args=[],
|
||||
):
|
||||
from shark.parser import shark_args
|
||||
|
||||
if "cuda" in args.device:
|
||||
shark_args.enable_tf32 = True
|
||||
|
||||
mlir_module, func_name = import_with_fx(
|
||||
model, inputs, is_f16, f16_input_mask
|
||||
)
|
||||
|
||||
if use_tuned:
|
||||
if "vae" in model_name.split("_")[0]:
|
||||
args.annotation_model = "vae"
|
||||
mlir_module = sd_model_annotation(mlir_module, model_name)
|
||||
|
||||
shark_module = SharkInference(
|
||||
mlir_module,
|
||||
device=args.device,
|
||||
mlir_dialect="linalg",
|
||||
)
|
||||
|
||||
del mlir_module
|
||||
gc.collect()
|
||||
|
||||
return _compile_module(shark_module, model_name, extra_args)
|
||||
|
||||
|
||||
def set_iree_runtime_flags():
|
||||
vulkan_runtime_flags = [
|
||||
f"--vulkan_large_heap_block_size={args.vulkan_large_heap_block_size}",
|
||||
f"--vulkan_validation_layers={'true' if args.vulkan_validation_layers else 'false'}",
|
||||
]
|
||||
if args.enable_rgp:
|
||||
vulkan_runtime_flags += [
|
||||
f"--enable_rgp=true",
|
||||
f"--vulkan_debug_utils=true",
|
||||
]
|
||||
set_iree_vulkan_runtime_flags(flags=vulkan_runtime_flags)
|
||||
|
||||
|
||||
def get_all_devices(driver_name):
|
||||
"""
|
||||
Inputs: driver_name
|
||||
Returns a list of all the available devices for a given driver sorted by
|
||||
the iree path names of the device as in --list_devices option in iree.
|
||||
"""
|
||||
from iree.runtime import get_driver
|
||||
|
||||
driver = get_driver(driver_name)
|
||||
device_list_src = driver.query_available_devices()
|
||||
device_list_src.sort(key=lambda d: d["path"])
|
||||
return device_list_src
|
||||
|
||||
|
||||
def get_device_mapping(driver, key_combination=3):
|
||||
"""This method ensures consistent device ordering when choosing
|
||||
specific devices for execution
|
||||
Args:
|
||||
driver (str): execution driver (vulkan, cuda, rocm, etc)
|
||||
key_combination (int, optional): choice for mapping value for device name.
|
||||
1 : path
|
||||
2 : name
|
||||
3 : (name, path)
|
||||
Defaults to 3.
|
||||
Returns:
|
||||
dict: map to possible device names user can input mapped to desired combination of name/path.
|
||||
"""
|
||||
from shark.iree_utils._common import iree_device_map
|
||||
|
||||
driver = iree_device_map(driver)
|
||||
device_list = get_all_devices(driver)
|
||||
device_map = dict()
|
||||
|
||||
def get_output_value(dev_dict):
|
||||
if key_combination == 1:
|
||||
return f"{driver}://{dev_dict['path']}"
|
||||
if key_combination == 2:
|
||||
return dev_dict["name"]
|
||||
if key_combination == 3:
|
||||
return (dev_dict["name"], f"{driver}://{dev_dict['path']}")
|
||||
|
||||
# mapping driver name to default device (driver://0)
|
||||
device_map[f"{driver}"] = get_output_value(device_list[0])
|
||||
for i, device in enumerate(device_list):
|
||||
# mapping with index
|
||||
device_map[f"{driver}://{i}"] = get_output_value(device)
|
||||
# mapping with full path
|
||||
device_map[f"{driver}://{device['path']}"] = get_output_value(device)
|
||||
return device_map
|
||||
|
||||
|
||||
def map_device_to_name_path(device, key_combination=3):
|
||||
"""Gives the appropriate device data (supported name/path) for user selected execution device
|
||||
Args:
|
||||
device (str): user
|
||||
key_combination (int, optional): choice for mapping value for device name.
|
||||
1 : path
|
||||
2 : name
|
||||
3 : (name, path)
|
||||
Defaults to 3.
|
||||
Raises:
|
||||
ValueError:
|
||||
Returns:
|
||||
str / tuple: returns the mapping str or tuple of mapping str for the device depending on key_combination value
|
||||
"""
|
||||
driver = device.split("://")[0]
|
||||
device_map = get_device_mapping(driver, key_combination)
|
||||
try:
|
||||
device_mapping = device_map[device]
|
||||
except KeyError:
|
||||
raise ValueError(f"Device '{device}' is not a valid device.")
|
||||
return device_mapping
|
||||
|
||||
|
||||
def set_init_device_flags():
|
||||
if "vulkan" in args.device:
|
||||
# set runtime flags for vulkan.
|
||||
set_iree_runtime_flags()
|
||||
|
||||
# set triple flag to avoid multiple calls to get_vulkan_triple_flag
|
||||
device_name, args.device = map_device_to_name_path(args.device)
|
||||
if not args.iree_vulkan_target_triple:
|
||||
triple = get_vulkan_target_triple(device_name)
|
||||
if triple is not None:
|
||||
args.iree_vulkan_target_triple = triple
|
||||
print(
|
||||
f"Found device {device_name}. Using target triple {args.iree_vulkan_target_triple}."
|
||||
)
|
||||
elif "cuda" in args.device:
|
||||
args.device = "cuda"
|
||||
elif "cpu" in args.device:
|
||||
args.device = "cpu"
|
||||
|
||||
# set max_length based on availability.
|
||||
if args.hf_model_id in [
|
||||
"Linaqruf/anything-v3.0",
|
||||
"wavymulder/Analog-Diffusion",
|
||||
"dreamlike-art/dreamlike-diffusion-1.0",
|
||||
]:
|
||||
args.max_length = 77
|
||||
elif args.hf_model_id == "prompthero/openjourney":
|
||||
args.max_length = 64
|
||||
|
||||
# Use tuned models in the case of fp16, vulkan rdna3 or cuda sm devices.
|
||||
if (
|
||||
args.hf_model_id == "prompthero/openjourney"
|
||||
or args.ckpt_loc != ""
|
||||
or args.precision != "fp16"
|
||||
or args.height != 512
|
||||
or args.width != 512
|
||||
or args.batch_size != 1
|
||||
or ("vulkan" not in args.device and "cuda" not in args.device)
|
||||
):
|
||||
args.use_tuned = False
|
||||
|
||||
elif (
|
||||
"vulkan" in args.device
|
||||
and "rdna3" not in args.iree_vulkan_target_triple
|
||||
):
|
||||
args.use_tuned = False
|
||||
|
||||
elif "cuda" in args.device and get_cuda_sm_cc() not in ["sm_80", "sm_89"]:
|
||||
args.use_tuned = False
|
||||
|
||||
elif (
|
||||
"cuda" in args.device
|
||||
and get_cuda_sm_cc() == "sm_89"
|
||||
and args.hf_model_id != "stabilityai/stable-diffusion-2-1-base"
|
||||
):
|
||||
args.use_tuned = False
|
||||
|
||||
elif args.use_base_vae and args.hf_model_id not in [
|
||||
"stabilityai/stable-diffusion-2-1-base",
|
||||
"CompVis/stable-diffusion-v1-4",
|
||||
]:
|
||||
args.use_tuned = False
|
||||
|
||||
if args.use_tuned:
|
||||
print(f"Using tuned models for {args.hf_model_id}/fp16/{args.device}.")
|
||||
else:
|
||||
print("Tuned models are currently not supported for this setting.")
|
||||
|
||||
# set import_mlir to True for unuploaded models.
|
||||
if args.ckpt_loc != "":
|
||||
args.import_mlir = True
|
||||
|
||||
elif args.hf_model_id not in [
|
||||
"Linaqruf/anything-v3.0",
|
||||
"dreamlike-art/dreamlike-diffusion-1.0",
|
||||
"prompthero/openjourney",
|
||||
"wavymulder/Analog-Diffusion",
|
||||
"stabilityai/stable-diffusion-2-1",
|
||||
"stabilityai/stable-diffusion-2-1-base",
|
||||
"CompVis/stable-diffusion-v1-4",
|
||||
"runwayml/stable-diffusion-inpainting",
|
||||
"stabilityai/stable-diffusion-2-inpainting",
|
||||
]:
|
||||
args.import_mlir = True
|
||||
|
||||
elif args.height != 512 or args.width != 512 or args.batch_size != 1:
|
||||
args.import_mlir = True
|
||||
|
||||
|
||||
# Utility to get list of devices available.
|
||||
def get_available_devices():
|
||||
def get_devices_by_name(driver_name):
|
||||
from shark.iree_utils._common import iree_device_map
|
||||
|
||||
device_list = []
|
||||
try:
|
||||
driver_name = iree_device_map(driver_name)
|
||||
device_list_dict = get_all_devices(driver_name)
|
||||
print(f"{driver_name} devices are available.")
|
||||
except:
|
||||
print(f"{driver_name} devices are not available.")
|
||||
else:
|
||||
for i, device in enumerate(device_list_dict):
|
||||
device_list.append(f"{device['name']} => {driver_name}://{i}")
|
||||
return device_list
|
||||
|
||||
set_iree_runtime_flags()
|
||||
|
||||
available_devices = []
|
||||
vulkan_devices = get_devices_by_name("vulkan")
|
||||
available_devices.extend(vulkan_devices)
|
||||
cuda_devices = get_devices_by_name("cuda")
|
||||
available_devices.extend(cuda_devices)
|
||||
available_devices.append("cpu")
|
||||
return available_devices
|
||||
|
||||
|
||||
def disk_space_check(path, lim=20):
|
||||
from shutil import disk_usage
|
||||
|
||||
du = disk_usage(path)
|
||||
free = du.free / (1024 * 1024 * 1024)
|
||||
if free <= lim:
|
||||
print(f"[WARNING] Only {free:.2f}GB space available in {path}.")
|
||||
|
||||
|
||||
def get_opt_flags(model, precision="fp16"):
|
||||
iree_flags = []
|
||||
is_tuned = "tuned" if args.use_tuned else "untuned"
|
||||
if len(args.iree_vulkan_target_triple) > 0:
|
||||
iree_flags.append(
|
||||
f"-iree-vulkan-target-triple={args.iree_vulkan_target_triple}"
|
||||
)
|
||||
|
||||
# Disable bindings fusion to work with moltenVK.
|
||||
if sys.platform == "darwin":
|
||||
iree_flags.append("-iree-stream-fuse-binding=false")
|
||||
|
||||
if "default_compilation_flags" in opt_flags[model][is_tuned][precision]:
|
||||
iree_flags += opt_flags[model][is_tuned][precision][
|
||||
"default_compilation_flags"
|
||||
]
|
||||
|
||||
if "specified_compilation_flags" in opt_flags[model][is_tuned][precision]:
|
||||
device = (
|
||||
args.device
|
||||
if "://" not in args.device
|
||||
else args.device.split("://")[0]
|
||||
)
|
||||
if (
|
||||
device
|
||||
not in opt_flags[model][is_tuned][precision][
|
||||
"specified_compilation_flags"
|
||||
]
|
||||
):
|
||||
device = "default_device"
|
||||
iree_flags += opt_flags[model][is_tuned][precision][
|
||||
"specified_compilation_flags"
|
||||
][device]
|
||||
return iree_flags
|
||||
|
||||
|
||||
def get_path_stem(path):
|
||||
path = Path(path)
|
||||
return path.stem
|
||||
|
||||
|
||||
def get_path_to_diffusers_checkpoint(custom_weights):
|
||||
path = Path(custom_weights)
|
||||
diffusers_path = path.parent.absolute()
|
||||
diffusers_directory_name = path.stem
|
||||
complete_path_to_diffusers = diffusers_path / diffusers_directory_name
|
||||
complete_path_to_diffusers.mkdir(parents=True, exist_ok=True)
|
||||
path_to_diffusers = complete_path_to_diffusers.as_posix()
|
||||
return path_to_diffusers
|
||||
|
||||
|
||||
def preprocessCKPT(custom_weights):
|
||||
path_to_diffusers = get_path_to_diffusers_checkpoint(custom_weights)
|
||||
if next(Path(path_to_diffusers).iterdir(), None):
|
||||
print("Checkpoint already loaded at : ", path_to_diffusers)
|
||||
return
|
||||
else:
|
||||
print(
|
||||
"Diffusers' checkpoint will be identified here : ",
|
||||
path_to_diffusers,
|
||||
)
|
||||
from_safetensors = (
|
||||
True if custom_weights.lower().endswith(".safetensors") else False
|
||||
)
|
||||
# EMA weights usually yield higher quality images for inference but non-EMA weights have
|
||||
# been yielding better results in our case.
|
||||
# TODO: Add an option `--ema` (`--no-ema`) for users to specify if they want to go for EMA
|
||||
# weight extraction or not.
|
||||
extract_ema = False
|
||||
print(
|
||||
"Loading diffusers' pipeline from original stable diffusion checkpoint"
|
||||
)
|
||||
pipe = load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
checkpoint_path=custom_weights,
|
||||
extract_ema=extract_ema,
|
||||
from_safetensors=from_safetensors,
|
||||
)
|
||||
pipe.save_pretrained(path_to_diffusers)
|
||||
print("Loading complete")
|
||||
|
||||
|
||||
def load_vmfb(vmfb_path, model, precision):
|
||||
model = "vae" if "base_vae" in model or "vae_encode" in model else model
|
||||
precision = "fp32" if "clip" in model else precision
|
||||
extra_args = get_opt_flags(model, precision)
|
||||
shark_module = SharkInference(mlir_module=None, device=args.device)
|
||||
shark_module.load_module(vmfb_path, extra_args=extra_args)
|
||||
return shark_module
|
||||
|
||||
|
||||
# This utility returns vmfbs of Clip, Unet, Vae and Vae_encode, in case all of them
|
||||
# are present; deletes them otherwise.
|
||||
def fetch_or_delete_vmfbs(
|
||||
extended_model_name, need_vae_encode, precision="fp32"
|
||||
):
|
||||
vmfb_path = [
|
||||
get_vmfb_path_name(extended_model_name[model])
|
||||
for model in extended_model_name
|
||||
]
|
||||
vmfb_present = [os.path.isfile(vmfb) for vmfb in vmfb_path]
|
||||
all_vmfb_present = True
|
||||
compiled_models = []
|
||||
for i in range(3):
|
||||
all_vmfb_present = all_vmfb_present and vmfb_present[i]
|
||||
compiled_models.append(None)
|
||||
if need_vae_encode:
|
||||
all_vmfb_present = all_vmfb_present and vmfb_present[3]
|
||||
compiled_models.append(None)
|
||||
|
||||
# We need to delete vmfbs only if some of the models were compiled.
|
||||
if not all_vmfb_present:
|
||||
for i in range(len(compiled_models)):
|
||||
if vmfb_present[i]:
|
||||
os.remove(vmfb_path[i])
|
||||
print("Deleted: ", vmfb_path[i])
|
||||
else:
|
||||
model_name = [model for model in extended_model_name.keys()]
|
||||
for i in range(len(compiled_models)):
|
||||
compiled_models[i] = load_vmfb(
|
||||
vmfb_path[i], model_name[i], precision
|
||||
)
|
||||
return compiled_models
|
||||
|
||||
|
||||
# `fetch_and_update_base_model_id` is a resource utility function which
|
||||
# helps maintaining mapping of the model to run with its base model.
|
||||
# If `base_model` is "", then this function tries to fetch the base model
|
||||
# info for the `model_to_run`.
|
||||
def fetch_and_update_base_model_id(model_to_run, base_model=""):
|
||||
variants_path = os.path.join(os.getcwd(), "variants.json")
|
||||
data = {model_to_run: base_model}
|
||||
json_data = {}
|
||||
if os.path.exists(variants_path):
|
||||
with open(variants_path, "r", encoding="utf-8") as jsonFile:
|
||||
json_data = json.load(jsonFile)
|
||||
# Return with base_model's info if base_model is "".
|
||||
if base_model == "":
|
||||
if model_to_run in json_data:
|
||||
base_model = json_data[model_to_run]
|
||||
return base_model
|
||||
elif base_model == "":
|
||||
return base_model
|
||||
# Update JSON data to contain an entry mapping model_to_run with base_model.
|
||||
json_data.update(data)
|
||||
with open(variants_path, "w", encoding="utf-8") as jsonFile:
|
||||
json.dump(json_data, jsonFile)
|
||||
|
||||
|
||||
# Generate and return a new seed if the provided one is not in the supported range (including -1)
|
||||
def sanitize_seed(seed):
|
||||
uint32_info = np.iinfo(np.uint32)
|
||||
uint32_min, uint32_max = uint32_info.min, uint32_info.max
|
||||
if seed < uint32_min or seed >= uint32_max:
|
||||
seed = randint(uint32_min, uint32_max)
|
||||
return seed
|
||||
@@ -1,70 +0,0 @@
|
||||
# Stable Diffusion optimized for AMD RDNA2/RDNA3 GPUs
|
||||
|
||||
Before you start, please be aware that this is beta software that relies on a special AMD driver. Like all StableDiffusion GUIs published so far, you need some technical expertise to set it up. We apologize in advance if you bump into issues. If that happens, please don't hesitate to ask our Discord community for help! Please be assured that we (Nod and AMD) are working hard to improve the user experience in coming months.
|
||||
If it works well for you, please "star" the following GitHub projects... this is one of the best ways to help and spread the word!
|
||||
|
||||
* https://github.com/nod-ai/SHARK
|
||||
* https://github.com/iree-org/iree
|
||||
|
||||
## Install this specific AMD Drivers (AMD latest may not have all the fixes).
|
||||
|
||||
### AMD KB Drivers for RDNA2 and RDNA3:
|
||||
|
||||
*AMD Software: Adrenalin Edition 22.11.1 for MLIR/IREE Driver Version 22.20.29.09 for Windows® 10 and Windows® 11 (Windows Driver Store Version 31.0.12029.9003)*
|
||||
|
||||
First, for RDNA2 users, download this special driver in a folder of your choice. We recommend you keep the installation files around, since you may need to re-install it later, if Windows Update decides to overwrite it:
|
||||
https://www.amd.com/en/support/kb/release-notes/rn-rad-win-22-11-1-mlir-iree
|
||||
|
||||
For RDNA3, the latest driver 23.1.2 supports MLIR/IREE as well: https://www.amd.com/en/support/kb/release-notes/rn-rad-win-23-1-2-kb
|
||||
|
||||
KNOWN ISSUES with this special AMD driver:
|
||||
* `Windows Update` may (depending how it's configured) automatically install a new official AMD driver that overwrites this IREE-specific driver. If Stable Diffusion used to work, then a few days later, it slows down a lot or produces incorrect results (e.g. black images), this may be the cause. To fix this problem, please check the installed driver version, and re-install the special driver if needed. (TODO: document how to prevent this `Windows Update` behavior!)
|
||||
* Some people using this special driver experience mouse pointer accuracy issues, especially if using a larger-than-default mouse pointer. The clicked point isn't centered properly. One possible work-around is to reset the pointer size to "1" in "Change pointer size and color".
|
||||
|
||||
## Installation
|
||||
|
||||
Download the latest Windows SHARK SD binary [492 here](https://github.com/nod-ai/SHARK/releases/download/20230203.492/shark_sd_20230203_492.exe) in a folder of your choice. If you want nighly builds, you can look for them on the GitHub releases page.
|
||||
|
||||
Notes:
|
||||
* We recommend that you download this EXE in a new folder, whenever you download a new EXE version. If you download it in the same folder as a previous install, you must delete the old `*.vmfb` files. Those contain Vulkan dispatches compiled from MLIR which can be outdated if you run a new EXE from the same folder. You can use `--clear_all` flag once to clean all the old files.
|
||||
* If you recently updated the driver or this binary (EXE file), we recommend you:
|
||||
* clear all the local artifacts with `--clear_all` OR
|
||||
* clear the Vulkan shader cache: For Windows users this can be done by clearing the contents of `C:\Users\%username%\AppData\Local\AMD\VkCache\`. On Linux the same cache is typically located at `~/.cache/AMD/VkCache/`.
|
||||
* clear the `huggingface` cache. In Windows, this is `C:\Users\%username%\.cache\huggingface`.
|
||||
|
||||
## Running
|
||||
|
||||
* Open a Command Prompt or Powershell terminal, change folder (`cd`) to the .exe folder. Then run the EXE from the command prompt. That way, if an error occurs, you'll be able to cut-and-paste it to ask for help. (if it always works for you without error, you may simply double-click the EXE to start the web browser)
|
||||
* The first run may take about 10-15 minutes when the models are downloaded and compiled. Your patience is appreciated. The download could be about 5GB.
|
||||
* If successful, you will likely see a Windows Defender message asking you to give permission to open a web server port. Accept it.
|
||||
* Open a browser to access the Stable Diffusion web server. By default, the port is 8080, so you can go to http://localhost:8080/?__theme=dark.
|
||||
|
||||
## Stopping
|
||||
|
||||
* Select the command prompt that's running the EXE. Press CTRL-C and wait a moment. The application should stop.
|
||||
* Please make sure to do the above step before you attempt to update the EXE to a new version.
|
||||
|
||||
# Results
|
||||
|
||||
<img width="1607" alt="webui" src="https://user-images.githubusercontent.com/74956/204939260-b8308bc2-8dc4-47f6-9ac0-f60b66edab99.png">
|
||||
|
||||
|
||||
Here are some samples generated:
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
|
||||
The output on a 7900XTX would like:
|
||||
|
||||
```shell
|
||||
Stats for run 0:
|
||||
Average step time: 47.19188690185547ms/it
|
||||
Clip Inference time (ms) = 109.531
|
||||
VAE Inference time (ms): 78.590
|
||||
|
||||
Total image generation time: 2.5788655281066895sec
|
||||
```
|
||||
|
||||
Find us on [SHARK Discord server](https://discord.gg/RUqY2h2s9u) if you have any trouble with running it on your hardware.
|
||||
@@ -1,15 +0,0 @@
|
||||
You need to pre-create your bot (https://core.telegram.org/bots#how-do-i-create-a-bot)
|
||||
Then create in the directory web file .env
|
||||
In it the record:
|
||||
TG_TOKEN="your_token"
|
||||
specifying your bot's token from previous step.
|
||||
Then run telegram_bot.py with the same parameters that you use when running index.py, for example:
|
||||
python telegram_bot.py --max_length=77 --vulkan_large_heap_block_size=0 --use_base_vae --local_tank_cache h:\shark\TEMP
|
||||
|
||||
Bot commands:
|
||||
/select_model
|
||||
/select_scheduler
|
||||
/set_steps "integer number of steps"
|
||||
/set_guidance_scale "integer number"
|
||||
/set_negative_prompt "negative text"
|
||||
Any other text triggers the creation of an image based on it.
|
||||
@@ -1,39 +0,0 @@
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
||||
if "AMD_ENABLE_LLPC" not in os.environ:
|
||||
os.environ["AMD_ENABLE_LLPC"] = "1"
|
||||
|
||||
if sys.platform == "darwin":
|
||||
os.environ["DYLD_LIBRARY_PATH"] = "/usr/local/lib"
|
||||
|
||||
|
||||
import gradio as gr
|
||||
from apps.stable_diffusion.src import args
|
||||
from apps.stable_diffusion.web.ui import txt2img_web, img2img_web
|
||||
|
||||
|
||||
def resource_path(relative_path):
|
||||
"""Get absolute path to resource, works for dev and for PyInstaller"""
|
||||
base_path = getattr(
|
||||
sys, "_MEIPASS", os.path.dirname(os.path.abspath(__file__))
|
||||
)
|
||||
return os.path.join(base_path, relative_path)
|
||||
|
||||
|
||||
dark_theme = resource_path("ui/css/sd_dark_theme.css")
|
||||
|
||||
sd_web = gr.TabbedInterface(
|
||||
[txt2img_web, img2img_web],
|
||||
["Text-to-Image", "Image-to-Image"],
|
||||
css=dark_theme,
|
||||
)
|
||||
|
||||
sd_web.queue()
|
||||
sd_web.launch(
|
||||
share=args.share,
|
||||
inbrowser=True,
|
||||
server_name="0.0.0.0",
|
||||
server_port=args.server_port,
|
||||
)
|
||||
@@ -1,2 +0,0 @@
|
||||
from apps.stable_diffusion.web.ui.txt2img_ui import txt2img_web
|
||||
from apps.stable_diffusion.web.ui.img2img_ui import img2img_web
|
||||
@@ -1,209 +0,0 @@
|
||||
|
||||
/* Overwrite the Gradio default theme with their .dark theme declarations */
|
||||
|
||||
:root {
|
||||
--color-focus-primary: var(--color-grey-700);
|
||||
--color-focus-secondary: var(--color-grey-600);
|
||||
--color-focus-ring: rgb(55 65 81);
|
||||
--color-background-primary: var(--color-grey-950);
|
||||
--color-background-secondary: var(--color-grey-900);
|
||||
--color-background-tertiary: var(--color-grey-800);
|
||||
--color-text-body: var(--color-grey-100);
|
||||
--color-text-label: var(--color-grey-200);
|
||||
--color-text-placeholder: var(--color-grey);
|
||||
--color-text-subdued: var(--color-grey-400);
|
||||
--color-text-link-base: var(--color-blue-500);
|
||||
--color-text-link-hover: var(--color-blue-400);
|
||||
--color-text-link-visited: var(--color-blue-600);
|
||||
--color-text-link-active: var(--color-blue-500);
|
||||
--color-text-code-background: var(--color-grey-800);
|
||||
--color-text-code-border: color.border-primary;
|
||||
--color-border-primary: var(--color-grey-700);
|
||||
--color-border-secondary: var(--color-grey-600);
|
||||
--color-border-highlight: var(--color-accent-base);
|
||||
--color-accent-base: var(--color-orange-500);
|
||||
--color-accent-light: var(--color-orange-300);
|
||||
--color-accent-dark: var(--color-orange-700);
|
||||
--color-functional-error-base: var(--color-red-400);
|
||||
--color-functional-error-subdued: var(--color-red-300);
|
||||
--color-functional-error-background: var(--color-background-primary);
|
||||
--color-functional-info-base: var(--color-yellow);
|
||||
--color-functional-info-subdued: var(--color-yellow-300);
|
||||
--color-functional-success-base: var(--color-green);
|
||||
--color-functional-success-subdued: var(--color-green-300);
|
||||
--shadow-spread: 2px;
|
||||
--api-background: linear-gradient(to bottom, rgba(255, 216, 180, .05), transparent);
|
||||
--api-pill-background: var(--color-orange-400);
|
||||
--api-pill-border: var(--color-orange-600);
|
||||
--api-pill-text: var(--color-orange-900);
|
||||
--block-border-color: var(--color-border-primary);
|
||||
--block-background: var(--color-background-tertiary);
|
||||
--uploadable-border-color-hover: var(--color-border-primary);
|
||||
--uploadable-border-color-loaded: var(--color-functional-success);
|
||||
--uploadable-text-color: var(--color-text-subdued);
|
||||
--block_label-border-color: var(--color-border-primary);
|
||||
--block_label-icon-color: var(--color-text-label);
|
||||
--block_label-shadow: var(--shadow-drop);
|
||||
--block_label-background: var(--color-background-secondary);
|
||||
--icon_button-icon-color-base: var(--color-text-label);
|
||||
--icon_button-icon-color-hover: var(--color-text-label);
|
||||
--icon_button-background-base: var(--color-background-primary);
|
||||
--icon_button-background-hover: var(--color-background-primary);
|
||||
--icon_button-border-color-base: var(--color-background-primary);
|
||||
--icon_button-border-color-hover: var(--color-border-secondary);
|
||||
--input-text-color: var(--color-text-body);
|
||||
--input-border-color-base: var(--color-border-primary);
|
||||
--input-border-color-hover: var(--color-border-primary);
|
||||
--input-border-color-focus: var(--color-border-primary);
|
||||
--input-background-base: var(--color-background-tertiary);
|
||||
--input-background-hover: var(--color-background-tertiary);
|
||||
--input-background-focus: var(--color-background-tertiary);
|
||||
--input-shadow: var(--shadow-inset);
|
||||
--checkbox-border-color-base: var(--color-border-primary);
|
||||
--checkbox-border-color-hover: var(--color-focus-primary);
|
||||
--checkbox-border-color-focus: var(--color-blue-500);
|
||||
--checkbox-background-base: var(--color-background-primary);
|
||||
--checkbox-background-hover: var(--color-background-primary);
|
||||
--checkbox-background-focus: var(--color-background-primary);
|
||||
--checkbox-background-selected: var(--color-blue-600);
|
||||
--checkbox-label-border-color-base: var(--color-border-primary);
|
||||
--checkbox-label-border-color-hover: var(--color-border-primary);
|
||||
--checkbox-label-border-color-focus: var(--color-border-secondary);
|
||||
--checkbox-label-background-base: linear-gradient(to top, var(--color-grey-900), var(--color-grey-800));
|
||||
--checkbox-label-background-hover: linear-gradient(to top, var(--color-grey-900), var(--color-grey-800));
|
||||
--checkbox-label-background-focus: linear-gradient(to top, var(--color-grey-900), var(--color-grey-800));
|
||||
--form-seperator-color: var(--color-border-primary);
|
||||
--button-primary-border-color-base: var(--color-orange-600);
|
||||
--button-primary-border-color-hover: var(--color-orange-600);
|
||||
--button-primary-border-color-focus: var(--color-orange-600);
|
||||
--button-primary-text-color-base: white;
|
||||
--button-primary-text-color-hover: white;
|
||||
--button-primary-text-color-focus: white;
|
||||
--button-primary-background-base: linear-gradient(to bottom right, var(--color-orange-700), var(--color-orange-700));
|
||||
--button-primary-background-hover: linear-gradient(to bottom right, var(--color-orange-700), var(--color-orange-500));
|
||||
--button-primary-background-focus: linear-gradient(to bottom right, var(--color-orange-700), var(--color-orange-500));
|
||||
--button-secondary-border-color-base: var(--color-grey-600);
|
||||
--button-secondary-border-color-hover: var(--color-grey-600);
|
||||
--button-secondary-border-color-focus: var(--color-grey-600);
|
||||
--button-secondary-text-color-base: white;
|
||||
--button-secondary-text-color-hover: white;
|
||||
--button-secondary-text-color-focus: white;
|
||||
--button-secondary-background-base: linear-gradient(to bottom right, var(--color-grey-600), var(--color-grey-700));
|
||||
--button-secondary-background-hover: linear-gradient(to bottom right, var(--color-grey-600), var(--color-grey-600));
|
||||
--button-secondary-background-focus: linear-gradient(to bottom right, var(--color-grey-600), var(--color-grey-600));
|
||||
--button-cancel-border-color-base: var(--color-red-600);
|
||||
--button-cancel-border-color-hover: var(--color-red-600);
|
||||
--button-cancel-border-color-focus: var(--color-red-600);
|
||||
--button-cancel-text-color-base: white;
|
||||
--button-cancel-text-color-hover: white;
|
||||
--button-cancel-text-color-focus: white;
|
||||
--button-cancel-background-base: linear-gradient(to bottom right, var(--color-red-700), var(--color-red-700));
|
||||
--button-cancel-background-focus: linear-gradient(to bottom right, var(--color-red-700), var(--color-red-500));
|
||||
--button-cancel-background-hover: linear-gradient(to bottom right, var(--color-red-700), var(--color-red-500));
|
||||
--button-plain-border-color-base: var(--color-grey-600);
|
||||
--button-plain-border-color-hover: var(--color-grey-500);
|
||||
--button-plain-border-color-focus: var(--color-grey-500);
|
||||
--button-plain-text-color-base: var(--color-text-body);
|
||||
--button-plain-text-color-hover: var(--color-text-body);
|
||||
--button-plain-text-color-focus: var(--color-text-body);
|
||||
--button-plain-background-base: var(--color-grey-700);
|
||||
--button-plain-background-hover: var(--color-grey-700);
|
||||
--button-plain-background-focus: var(--color-grey-700);
|
||||
--gallery-label-background-base: var(--color-grey-50);
|
||||
--gallery-label-background-hover: var(--color-grey-50);
|
||||
--gallery-label-border-color-base: var(--color-border-primary);
|
||||
--gallery-label-border-color-hover: var(--color-border-primary);
|
||||
--gallery-thumb-background-base: var(--color-grey-900);
|
||||
--gallery-thumb-background-hover: var(--color-grey-900);
|
||||
--gallery-thumb-border-color-base: var(--color-border-primary);
|
||||
--gallery-thumb-border-color-hover: var(--color-accent-base);
|
||||
--gallery-thumb-border-color-focus: var(--color-blue-500);
|
||||
--gallery-thumb-border-color-selected: var(--color-accent-base);
|
||||
--chatbot-border-border-color-base: transparent;
|
||||
--chatbot-border-border-color-latest: transparent;
|
||||
--chatbot-user-background-base: ;
|
||||
--chatbot-user-background-latest: ;
|
||||
--chatbot-user-text-color-base: white;
|
||||
--chatbot-user-text-color-latest: white;
|
||||
--chatbot-bot-background-base: ;
|
||||
--chatbot-bot-background-latest: ;
|
||||
--chatbot-bot-text-color-base: white;
|
||||
--chatbot-bot-text-color-latest: white;
|
||||
--label-gradient-from: var(--color-orange-400);
|
||||
--label-gradient-to: var(--color-orange-600);
|
||||
--table-odd-background: var(--color-grey-900);
|
||||
--table-even-background: var(--color-grey-950);
|
||||
--table-background-edit: transparent;
|
||||
--dataset-gallery-background-base: var(--color-background-primary);
|
||||
--dataset-gallery-background-hover: var(--color-grey-800);
|
||||
--dataset-dataframe-border-base: var(--color-border-primary);
|
||||
--dataset-dataframe-border-hover: var(--color-border-secondary);
|
||||
--dataset-table-background-base: transparent;
|
||||
--dataset-table-background-hover: var(--color-grey-700);
|
||||
--dataset-table-border-base: var(--color-grey-800);
|
||||
--dataset-table-border-hover: var(--color-grey-800);
|
||||
}
|
||||
|
||||
/* SHARK theme customization */
|
||||
|
||||
.gradio-container {
|
||||
background-color: var(--color-background-primary);
|
||||
}
|
||||
|
||||
.container {
|
||||
background-color: black !important;
|
||||
padding-top: 20px !important;
|
||||
}
|
||||
|
||||
#ui_title {
|
||||
padding: 10px !important;
|
||||
}
|
||||
|
||||
#top_logo {
|
||||
background-color: transparent;
|
||||
border-radius: 0 !important;
|
||||
border: 0;
|
||||
}
|
||||
|
||||
#demo_title {
|
||||
background-color: var(--color-background-primary);
|
||||
border-radius: 0 !important;
|
||||
border: 0;
|
||||
padding-top: 15px;
|
||||
padding-bottom: 0px;
|
||||
width: 350px !important;
|
||||
}
|
||||
|
||||
#demo_title_outer {
|
||||
border-radius: 0;
|
||||
}
|
||||
|
||||
#prompt_box_outer div:first-child {
|
||||
border-radius: 0 !important
|
||||
}
|
||||
|
||||
#prompt_box textarea {
|
||||
background-color: var(--color-background-primary) !important;
|
||||
}
|
||||
|
||||
#prompt_examples {
|
||||
margin: 0 !important;
|
||||
}
|
||||
|
||||
#prompt_examples svg {
|
||||
display: none !important;
|
||||
}
|
||||
|
||||
#ui_body {
|
||||
background-color: var(--color-background-secondary) !important;
|
||||
padding: 10px !important;
|
||||
border-radius: 0.5em !important;
|
||||
}
|
||||
|
||||
#img_result+div {
|
||||
display: none !important;
|
||||
}
|
||||
|
||||
footer {
|
||||
display: none !important;
|
||||
}
|
||||
@@ -1,233 +0,0 @@
|
||||
import os
|
||||
import sys
|
||||
import glob
|
||||
from pathlib import Path
|
||||
import gradio as gr
|
||||
from PIL import Image
|
||||
from apps.stable_diffusion.scripts import img2img_inf
|
||||
from apps.stable_diffusion.src import args
|
||||
from apps.stable_diffusion.web.ui.utils import (
|
||||
available_devices,
|
||||
nodlogo_loc,
|
||||
sdlogo_loc,
|
||||
)
|
||||
|
||||
|
||||
with gr.Blocks(title="Image-to-Image") as img2img_web:
|
||||
with gr.Row(elem_id="ui_title"):
|
||||
nod_logo = Image.open(nodlogo_loc)
|
||||
logo2 = Image.open(sdlogo_loc)
|
||||
with gr.Row():
|
||||
with gr.Column(scale=1, elem_id="demo_title_outer"):
|
||||
gr.Image(
|
||||
value=nod_logo,
|
||||
show_label=False,
|
||||
interactive=False,
|
||||
elem_id="top_logo",
|
||||
).style(width=150, height=100)
|
||||
with gr.Column(scale=5, elem_id="demo_title_outer"):
|
||||
gr.Image(
|
||||
value=logo2,
|
||||
show_label=False,
|
||||
interactive=False,
|
||||
elem_id="demo_title",
|
||||
).style(width=150, height=100)
|
||||
with gr.Row(elem_id="ui_body"):
|
||||
with gr.Row():
|
||||
with gr.Column(scale=1, min_width=600):
|
||||
with gr.Row():
|
||||
ckpt_path = (
|
||||
Path(args.ckpt_dir)
|
||||
if args.ckpt_dir
|
||||
else Path(Path.cwd(), "models")
|
||||
)
|
||||
ckpt_path.mkdir(parents=True, exist_ok=True)
|
||||
types = (
|
||||
"*.ckpt",
|
||||
"*.safetensors",
|
||||
) # the tuple of file types
|
||||
ckpt_files = ["None"]
|
||||
for extn in types:
|
||||
files = glob.glob(os.path.join(ckpt_path, extn))
|
||||
ckpt_files.extend(files)
|
||||
custom_model = gr.Dropdown(
|
||||
label=f"Models (Custom Model path: {ckpt_path})",
|
||||
value=args.ckpt_loc if args.ckpt_loc else "None",
|
||||
choices=ckpt_files
|
||||
+ [
|
||||
"Linaqruf/anything-v3.0",
|
||||
"prompthero/openjourney",
|
||||
"wavymulder/Analog-Diffusion",
|
||||
"stabilityai/stable-diffusion-2-1",
|
||||
"stabilityai/stable-diffusion-2-1-base",
|
||||
"CompVis/stable-diffusion-v1-4",
|
||||
],
|
||||
)
|
||||
hf_model_id = gr.Textbox(
|
||||
placeholder="Select 'None' in the Models dropdown on the left and enter model ID here e.g: SG161222/Realistic_Vision_V1.3",
|
||||
value="",
|
||||
label="HuggingFace Model ID",
|
||||
lines=3,
|
||||
)
|
||||
|
||||
with gr.Group(elem_id="prompt_box_outer"):
|
||||
prompt = gr.Textbox(
|
||||
label="Prompt",
|
||||
value=args.prompts[0],
|
||||
lines=1,
|
||||
elem_id="prompt_box",
|
||||
)
|
||||
negative_prompt = gr.Textbox(
|
||||
label="Negative Prompt",
|
||||
value=args.negative_prompts[0],
|
||||
lines=1,
|
||||
elem_id="negative_prompt_box",
|
||||
)
|
||||
|
||||
init_image = gr.Image(label="Input Image", type="filepath")
|
||||
|
||||
with gr.Accordion(label="Advanced Options", open=False):
|
||||
with gr.Row():
|
||||
scheduler = gr.Dropdown(
|
||||
label="Scheduler",
|
||||
value=args.scheduler,
|
||||
choices=[
|
||||
"DDIM",
|
||||
"PNDM",
|
||||
"LMSDiscrete",
|
||||
"DPMSolverMultistep",
|
||||
"EulerDiscrete",
|
||||
"EulerAncestralDiscrete",
|
||||
"SharkEulerDiscrete",
|
||||
],
|
||||
)
|
||||
with gr.Group():
|
||||
save_metadata_to_png = gr.Checkbox(
|
||||
label="Save prompt information to PNG",
|
||||
value=args.write_metadata_to_png,
|
||||
interactive=True,
|
||||
)
|
||||
save_metadata_to_json = gr.Checkbox(
|
||||
label="Save prompt information to JSON file",
|
||||
value=args.save_metadata_to_json,
|
||||
interactive=True,
|
||||
)
|
||||
with gr.Row():
|
||||
height = gr.Slider(
|
||||
384, 786, value=args.height, step=8, label="Height"
|
||||
)
|
||||
width = gr.Slider(
|
||||
384, 786, value=args.width, step=8, label="Width"
|
||||
)
|
||||
precision = gr.Radio(
|
||||
label="Precision",
|
||||
value=args.precision,
|
||||
choices=[
|
||||
"fp16",
|
||||
"fp32",
|
||||
],
|
||||
visible=False,
|
||||
)
|
||||
max_length = gr.Radio(
|
||||
label="Max Length",
|
||||
value=args.max_length,
|
||||
choices=[
|
||||
64,
|
||||
77,
|
||||
],
|
||||
visible=False,
|
||||
)
|
||||
with gr.Row():
|
||||
steps = gr.Slider(
|
||||
1, 100, value=args.steps, step=1, label="Steps"
|
||||
)
|
||||
guidance_scale = gr.Slider(
|
||||
0,
|
||||
50,
|
||||
value=args.guidance_scale,
|
||||
step=0.1,
|
||||
label="CFG Scale",
|
||||
)
|
||||
with gr.Row():
|
||||
batch_count = gr.Slider(
|
||||
1,
|
||||
100,
|
||||
value=args.batch_count,
|
||||
step=1,
|
||||
label="Batch Count",
|
||||
interactive=False,
|
||||
)
|
||||
batch_size = gr.Slider(
|
||||
1,
|
||||
4,
|
||||
value=args.batch_size,
|
||||
step=1,
|
||||
label="Batch Size",
|
||||
interactive=False,
|
||||
)
|
||||
with gr.Row():
|
||||
seed = gr.Number(
|
||||
value=args.seed, precision=0, label="Seed"
|
||||
)
|
||||
device = gr.Dropdown(
|
||||
label="Device",
|
||||
value=available_devices[0],
|
||||
choices=available_devices,
|
||||
)
|
||||
with gr.Row():
|
||||
random_seed = gr.Button("Randomize Seed")
|
||||
random_seed.click(
|
||||
None,
|
||||
inputs=[],
|
||||
outputs=[seed],
|
||||
_js="() => Math.floor(Math.random() * 4294967295)",
|
||||
)
|
||||
stable_diffusion = gr.Button("Generate Image")
|
||||
|
||||
with gr.Column(scale=1, min_width=600):
|
||||
with gr.Group():
|
||||
gallery = gr.Gallery(
|
||||
label="Generated images",
|
||||
show_label=False,
|
||||
elem_id="gallery",
|
||||
).style(grid=[2], height="auto")
|
||||
std_output = gr.Textbox(
|
||||
value="Nothing to show.",
|
||||
lines=4,
|
||||
show_label=False,
|
||||
)
|
||||
output_dir = args.output_dir if args.output_dir else Path.cwd()
|
||||
output_dir = Path(output_dir, "generated_imgs")
|
||||
output_loc = gr.Textbox(
|
||||
label="Saving Images at",
|
||||
value=output_dir,
|
||||
interactive=False,
|
||||
)
|
||||
kwargs = dict(
|
||||
fn=img2img_inf,
|
||||
inputs=[
|
||||
prompt,
|
||||
negative_prompt,
|
||||
init_image,
|
||||
height,
|
||||
width,
|
||||
steps,
|
||||
guidance_scale,
|
||||
seed,
|
||||
batch_count,
|
||||
batch_size,
|
||||
scheduler,
|
||||
custom_model,
|
||||
hf_model_id,
|
||||
precision,
|
||||
device,
|
||||
max_length,
|
||||
save_metadata_to_json,
|
||||
save_metadata_to_png,
|
||||
],
|
||||
outputs=[gallery, std_output],
|
||||
show_progress=args.progress_bar,
|
||||
)
|
||||
|
||||
prompt.submit(**kwargs)
|
||||
stable_diffusion.click(**kwargs)
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 10 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 5.0 KiB |
@@ -1,237 +0,0 @@
|
||||
import os
|
||||
import sys
|
||||
import glob
|
||||
from pathlib import Path
|
||||
import gradio as gr
|
||||
from PIL import Image
|
||||
from apps.stable_diffusion.scripts import txt2img_inf
|
||||
from apps.stable_diffusion.src import prompt_examples, args
|
||||
from apps.stable_diffusion.web.ui.utils import (
|
||||
available_devices,
|
||||
nodlogo_loc,
|
||||
sdlogo_loc,
|
||||
)
|
||||
|
||||
|
||||
with gr.Blocks(title="Text-to-Image") as txt2img_web:
|
||||
with gr.Row(elem_id="ui_title"):
|
||||
nod_logo = Image.open(nodlogo_loc)
|
||||
logo2 = Image.open(sdlogo_loc)
|
||||
with gr.Row():
|
||||
with gr.Column(scale=1, elem_id="demo_title_outer"):
|
||||
gr.Image(
|
||||
value=nod_logo,
|
||||
show_label=False,
|
||||
interactive=False,
|
||||
elem_id="top_logo",
|
||||
).style(width=150, height=100)
|
||||
with gr.Column(scale=5, elem_id="demo_title_outer"):
|
||||
gr.Image(
|
||||
value=logo2,
|
||||
show_label=False,
|
||||
interactive=False,
|
||||
elem_id="demo_title",
|
||||
).style(width=150, height=100)
|
||||
|
||||
with gr.Row(elem_id="ui_body"):
|
||||
with gr.Row():
|
||||
with gr.Column(scale=1, min_width=600):
|
||||
with gr.Row():
|
||||
ckpt_path = (
|
||||
Path(args.ckpt_dir)
|
||||
if args.ckpt_dir
|
||||
else Path(Path.cwd(), "models")
|
||||
)
|
||||
ckpt_path.mkdir(parents=True, exist_ok=True)
|
||||
types = (
|
||||
"*.ckpt",
|
||||
"*.safetensors",
|
||||
) # the tuple of file types
|
||||
ckpt_files = ["None"]
|
||||
for extn in types:
|
||||
files = glob.glob(os.path.join(ckpt_path, extn))
|
||||
ckpt_files.extend(files)
|
||||
custom_model = gr.Dropdown(
|
||||
label=f"Models (Custom Model path: {ckpt_path})",
|
||||
value=args.ckpt_loc if args.ckpt_loc else "None",
|
||||
choices=ckpt_files
|
||||
+ [
|
||||
"Linaqruf/anything-v3.0",
|
||||
"prompthero/openjourney",
|
||||
"wavymulder/Analog-Diffusion",
|
||||
"stabilityai/stable-diffusion-2-1",
|
||||
"stabilityai/stable-diffusion-2-1-base",
|
||||
"CompVis/stable-diffusion-v1-4",
|
||||
],
|
||||
)
|
||||
hf_model_id = gr.Textbox(
|
||||
placeholder="Select 'None' in the Models dropdown on the left and enter model ID here e.g: SG161222/Realistic_Vision_V1.3",
|
||||
value="",
|
||||
label="HuggingFace Model ID",
|
||||
lines=3,
|
||||
)
|
||||
|
||||
with gr.Group(elem_id="prompt_box_outer"):
|
||||
prompt = gr.Textbox(
|
||||
label="Prompt",
|
||||
value=args.prompts[0],
|
||||
lines=1,
|
||||
elem_id="prompt_box",
|
||||
)
|
||||
negative_prompt = gr.Textbox(
|
||||
label="Negative Prompt",
|
||||
value=args.negative_prompts[0],
|
||||
lines=1,
|
||||
elem_id="negative_prompt_box",
|
||||
)
|
||||
with gr.Accordion(label="Advanced Options", open=False):
|
||||
with gr.Row():
|
||||
scheduler = gr.Dropdown(
|
||||
label="Scheduler",
|
||||
value=args.scheduler,
|
||||
choices=[
|
||||
"DDIM",
|
||||
"PNDM",
|
||||
"LMSDiscrete",
|
||||
"DPMSolverMultistep",
|
||||
"EulerDiscrete",
|
||||
"EulerAncestralDiscrete",
|
||||
"SharkEulerDiscrete",
|
||||
],
|
||||
)
|
||||
with gr.Group():
|
||||
save_metadata_to_png = gr.Checkbox(
|
||||
label="Save prompt information to PNG",
|
||||
value=args.write_metadata_to_png,
|
||||
interactive=True,
|
||||
)
|
||||
save_metadata_to_json = gr.Checkbox(
|
||||
label="Save prompt information to JSON file",
|
||||
value=args.save_metadata_to_json,
|
||||
interactive=True,
|
||||
)
|
||||
with gr.Row():
|
||||
height = gr.Slider(
|
||||
384, 786, value=args.height, step=8, label="Height"
|
||||
)
|
||||
width = gr.Slider(
|
||||
384, 786, value=args.width, step=8, label="Width"
|
||||
)
|
||||
precision = gr.Radio(
|
||||
label="Precision",
|
||||
value=args.precision,
|
||||
choices=[
|
||||
"fp16",
|
||||
"fp32",
|
||||
],
|
||||
visible=False,
|
||||
)
|
||||
max_length = gr.Radio(
|
||||
label="Max Length",
|
||||
value=args.max_length,
|
||||
choices=[
|
||||
64,
|
||||
77,
|
||||
],
|
||||
visible=False,
|
||||
)
|
||||
with gr.Row():
|
||||
steps = gr.Slider(
|
||||
1, 100, value=args.steps, step=1, label="Steps"
|
||||
)
|
||||
guidance_scale = gr.Slider(
|
||||
0,
|
||||
50,
|
||||
value=args.guidance_scale,
|
||||
step=0.1,
|
||||
label="CFG Scale",
|
||||
)
|
||||
with gr.Row():
|
||||
batch_count = gr.Slider(
|
||||
1,
|
||||
100,
|
||||
value=args.batch_count,
|
||||
step=1,
|
||||
label="Batch Count",
|
||||
interactive=True,
|
||||
)
|
||||
batch_size = gr.Slider(
|
||||
1,
|
||||
4,
|
||||
value=args.batch_size,
|
||||
step=1,
|
||||
label="Batch Size",
|
||||
interactive=True,
|
||||
)
|
||||
with gr.Row():
|
||||
seed = gr.Number(
|
||||
value=args.seed, precision=0, label="Seed"
|
||||
)
|
||||
device = gr.Dropdown(
|
||||
label="Device",
|
||||
value=available_devices[0],
|
||||
choices=available_devices,
|
||||
)
|
||||
with gr.Row():
|
||||
random_seed = gr.Button("Randomize Seed")
|
||||
random_seed.click(
|
||||
None,
|
||||
inputs=[],
|
||||
outputs=[seed],
|
||||
_js="() => Math.floor(Math.random() * 4294967295)",
|
||||
)
|
||||
stable_diffusion = gr.Button("Generate Image")
|
||||
with gr.Accordion(label="Prompt Examples!", open=False):
|
||||
ex = gr.Examples(
|
||||
examples=prompt_examples,
|
||||
inputs=prompt,
|
||||
cache_examples=False,
|
||||
elem_id="prompt_examples",
|
||||
)
|
||||
|
||||
with gr.Column(scale=1, min_width=600):
|
||||
with gr.Group():
|
||||
gallery = gr.Gallery(
|
||||
label="Generated images",
|
||||
show_label=False,
|
||||
elem_id="gallery",
|
||||
).style(grid=[2], height="auto")
|
||||
std_output = gr.Textbox(
|
||||
value="Nothing to show.",
|
||||
lines=4,
|
||||
show_label=False,
|
||||
)
|
||||
output_dir = args.output_dir if args.output_dir else Path.cwd()
|
||||
output_dir = Path(output_dir, "generated_imgs")
|
||||
output_loc = gr.Textbox(
|
||||
label="Saving Images at",
|
||||
value=output_dir,
|
||||
interactive=False,
|
||||
)
|
||||
kwargs = dict(
|
||||
fn=txt2img_inf,
|
||||
inputs=[
|
||||
prompt,
|
||||
negative_prompt,
|
||||
height,
|
||||
width,
|
||||
steps,
|
||||
guidance_scale,
|
||||
seed,
|
||||
batch_count,
|
||||
batch_size,
|
||||
scheduler,
|
||||
custom_model,
|
||||
hf_model_id,
|
||||
precision,
|
||||
device,
|
||||
max_length,
|
||||
save_metadata_to_json,
|
||||
save_metadata_to_png,
|
||||
],
|
||||
outputs=[gallery, std_output],
|
||||
show_progress=args.progress_bar,
|
||||
)
|
||||
|
||||
prompt.submit(**kwargs)
|
||||
stable_diffusion.click(**kwargs)
|
||||
@@ -1,16 +0,0 @@
|
||||
import os
|
||||
import sys
|
||||
from apps.stable_diffusion.src import get_available_devices
|
||||
|
||||
|
||||
def resource_path(relative_path):
|
||||
"""Get absolute path to resource, works for dev and for PyInstaller"""
|
||||
base_path = getattr(
|
||||
sys, "_MEIPASS", os.path.dirname(os.path.abspath(__file__))
|
||||
)
|
||||
return os.path.join(base_path, relative_path)
|
||||
|
||||
|
||||
nodlogo_loc = resource_path("logos/nod-logo.png")
|
||||
sdlogo_loc = resource_path("logos/sd-demo-logo.png")
|
||||
available_devices = get_available_devices()
|
||||
@@ -1,22 +0,0 @@
|
||||
import torch
|
||||
from shark.parser import parser
|
||||
from benchmarks.hf_transformer import SharkHFBenchmarkRunner
|
||||
|
||||
parser.add_argument(
|
||||
"--model_name",
|
||||
type=str,
|
||||
required=True,
|
||||
help='Specifies name of HF model to benchmark. (For exmaple "microsoft/MiniLM-L12-H384-uncased"',
|
||||
)
|
||||
load_args, unknown = parser.parse_known_args()
|
||||
|
||||
if __name__ == "__main__":
|
||||
model_name = load_args.model_name
|
||||
test_input = torch.randint(2, (1, 128))
|
||||
shark_module = SharkHFBenchmarkRunner(
|
||||
model_name, (test_input,), jit_trace=True
|
||||
)
|
||||
shark_module.benchmark_c()
|
||||
shark_module.benchmark_python((test_input,))
|
||||
shark_module.benchmark_torch(test_input)
|
||||
shark_module.benchmark_onnx(test_input)
|
||||
@@ -1,181 +0,0 @@
|
||||
import torch
|
||||
from shark.shark_benchmark_runner import SharkBenchmarkRunner
|
||||
from shark.parser import shark_args
|
||||
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
||||
from onnxruntime.transformers.benchmark import (
|
||||
run_pytorch,
|
||||
run_tensorflow,
|
||||
run_onnxruntime,
|
||||
)
|
||||
from onnxruntime.transformers.huggingface_models import MODELS
|
||||
from onnxruntime.transformers.benchmark_helper import ConfigModifier, Precision
|
||||
import os
|
||||
import psutil
|
||||
|
||||
|
||||
class OnnxFusionOptions(object):
|
||||
def __init__(self):
|
||||
self.disable_gelu = False
|
||||
self.disable_layer_norm = False
|
||||
self.disable_attention = False
|
||||
self.disable_skip_layer_norm = False
|
||||
self.disable_embed_layer_norm = False
|
||||
self.disable_bias_skip_layer_norm = False
|
||||
self.disable_bias_gelu = False
|
||||
self.enable_gelu_approximation = False
|
||||
self.use_mask_index = False
|
||||
self.no_attention_mask = False
|
||||
|
||||
|
||||
class HuggingFaceLanguage(torch.nn.Module):
|
||||
def __init__(self, hf_model_name):
|
||||
super().__init__()
|
||||
self.model = AutoModelForSequenceClassification.from_pretrained(
|
||||
hf_model_name, # The pretrained model.
|
||||
num_labels=2, # The number of output labels--2 for binary classification.
|
||||
output_attentions=False, # Whether the model returns attentions weights.
|
||||
output_hidden_states=False, # Whether the model returns all hidden-states.
|
||||
torchscript=True,
|
||||
)
|
||||
|
||||
def forward(self, tokens):
|
||||
return self.model.forward(tokens)[0]
|
||||
|
||||
|
||||
class SharkHFBenchmarkRunner(SharkBenchmarkRunner):
|
||||
# SharkRunner derived class with Benchmarking capabilities.
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
input: tuple,
|
||||
dynamic: bool = False,
|
||||
device: str = None,
|
||||
jit_trace: bool = False,
|
||||
from_aot: bool = False,
|
||||
frontend: str = "torch",
|
||||
):
|
||||
self.device = device if device is not None else shark_args.device
|
||||
if self.device == "gpu":
|
||||
raise ValueError(
|
||||
"Currently GPU Benchmarking is not supported due to OOM from ORT."
|
||||
)
|
||||
self.model_name = model_name
|
||||
model = HuggingFaceLanguage(model_name)
|
||||
SharkBenchmarkRunner.__init__(
|
||||
self,
|
||||
model,
|
||||
input,
|
||||
dynamic,
|
||||
self.device,
|
||||
jit_trace,
|
||||
from_aot,
|
||||
frontend,
|
||||
)
|
||||
|
||||
def benchmark_torch(self, inputs):
|
||||
use_gpu = self.device == "gpu"
|
||||
# Set set the model's layer number to automatic.
|
||||
config_modifier = ConfigModifier(None)
|
||||
num_threads = psutil.cpu_count(logical=False)
|
||||
batch_sizes = [inputs.shape[0]]
|
||||
sequence_lengths = [inputs.shape[-1]]
|
||||
cache_dir = os.path.join(".", "cache_models")
|
||||
verbose = False
|
||||
result = run_pytorch(
|
||||
use_gpu,
|
||||
[self.model_name],
|
||||
None,
|
||||
config_modifier,
|
||||
Precision.FLOAT32,
|
||||
num_threads,
|
||||
batch_sizes,
|
||||
sequence_lengths,
|
||||
shark_args.num_iterations,
|
||||
False,
|
||||
cache_dir,
|
||||
verbose,
|
||||
)
|
||||
print(
|
||||
f"ONNX Pytorch-benchmark:{result[0]['QPS']} iter/second, Total Iterations:{shark_args.num_iterations}"
|
||||
)
|
||||
|
||||
# TODO: Currently non-functional due to TF runtime error. There might be some issue with, initializing TF.
|
||||
def benchmark_tf(self, inputs):
|
||||
use_gpu = self.device == "gpu"
|
||||
# Set set the model's layer number to automatic.
|
||||
config_modifier = ConfigModifier(None)
|
||||
num_threads = psutil.cpu_count(logical=False)
|
||||
batch_sizes = [inputs.shape[0]]
|
||||
sequence_lengths = [inputs.shape[-1]]
|
||||
cache_dir = os.path.join(".", "cache_models")
|
||||
verbose = False
|
||||
result = run_tensorflow(
|
||||
use_gpu,
|
||||
[self.model_name],
|
||||
None,
|
||||
config_modifier,
|
||||
Precision.FLOAT32,
|
||||
num_threads,
|
||||
batch_sizes,
|
||||
sequence_lengths,
|
||||
shark_args.num_iterations,
|
||||
cache_dir,
|
||||
verbose,
|
||||
)
|
||||
print(
|
||||
f"ONNX TF-benchmark:{result[0]['QPS']} iter/second, Total Iterations:{shark_args.num_iterations}"
|
||||
)
|
||||
|
||||
def benchmark_onnx(self, inputs):
|
||||
if self.model_name not in MODELS:
|
||||
print(
|
||||
f"{self.model_name} is currently not supported in ORT's HF. Check \
|
||||
https://github.com/microsoft/onnxruntime/blob/master/onnxruntime/python/tools/transformers/huggingface_models.py \
|
||||
for currently supported models. Exiting benchmark ONNX."
|
||||
)
|
||||
return
|
||||
use_gpu = self.device == "gpu"
|
||||
num_threads = psutil.cpu_count(logical=False)
|
||||
batch_sizes = [inputs.shape[0]]
|
||||
sequence_lengths = [inputs.shape[-1]]
|
||||
cache_dir = os.path.join(".", "cache_models")
|
||||
onnx_dir = os.path.join(".", "onnx_models")
|
||||
verbose = False
|
||||
input_counts = [1]
|
||||
optimize_onnx = True
|
||||
validate_onnx = False
|
||||
disable_ort_io_binding = False
|
||||
use_raw_attention_mask = True
|
||||
model_fusion_statistics = {}
|
||||
overwrite = False
|
||||
model_source = "pt" # Either "pt" or "tf"
|
||||
provider = None
|
||||
config_modifier = ConfigModifier(None)
|
||||
onnx_args = OnnxFusionOptions()
|
||||
result = run_onnxruntime(
|
||||
use_gpu,
|
||||
provider,
|
||||
[self.model_name],
|
||||
None,
|
||||
config_modifier,
|
||||
Precision.FLOAT32,
|
||||
num_threads,
|
||||
batch_sizes,
|
||||
sequence_lengths,
|
||||
shark_args.num_iterations,
|
||||
input_counts,
|
||||
optimize_onnx,
|
||||
validate_onnx,
|
||||
cache_dir,
|
||||
onnx_dir,
|
||||
verbose,
|
||||
overwrite,
|
||||
disable_ort_io_binding,
|
||||
use_raw_attention_mask,
|
||||
model_fusion_statistics,
|
||||
model_source,
|
||||
onnx_args,
|
||||
)
|
||||
print(
|
||||
f"ONNX ORT-benchmark:{result[0]['QPS']} iter/second, Total Iterations:{shark_args.num_iterations}"
|
||||
)
|
||||
@@ -1,231 +0,0 @@
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.iree_utils._common import check_device_drivers
|
||||
|
||||
import torch
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
import torchvision.models as models
|
||||
from transformers import (
|
||||
AutoModelForSequenceClassification,
|
||||
BertTokenizer,
|
||||
TFBertModel,
|
||||
)
|
||||
import importlib
|
||||
import pytest
|
||||
import unittest
|
||||
|
||||
torch.manual_seed(0)
|
||||
gpus = tf.config.experimental.list_physical_devices("GPU")
|
||||
for gpu in gpus:
|
||||
tf.config.experimental.set_memory_growth(gpu, True)
|
||||
|
||||
##################### Tensorflow Hugging Face LM Models ###################################
|
||||
MAX_SEQUENCE_LENGTH = 512
|
||||
BATCH_SIZE = 1
|
||||
|
||||
# Create a set of 2-dimensional inputs
|
||||
tf_bert_input = [
|
||||
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
|
||||
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
|
||||
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
|
||||
]
|
||||
|
||||
|
||||
class TFHuggingFaceLanguage(tf.Module):
|
||||
def __init__(self, hf_model_name):
|
||||
super(TFHuggingFaceLanguage, self).__init__()
|
||||
# Create a BERT trainer with the created network.
|
||||
self.m = TFBertModel.from_pretrained(hf_model_name, from_pt=True)
|
||||
|
||||
# Invoke the trainer model on the inputs. This causes the layer to be built.
|
||||
self.m.predict = lambda x, y, z: self.m.call(
|
||||
input_ids=x, attention_mask=y, token_type_ids=z, training=False
|
||||
)
|
||||
|
||||
@tf.function(input_signature=tf_bert_input, jit_compile=True)
|
||||
def forward(self, input_ids, attention_mask, token_type_ids):
|
||||
return self.m.predict(input_ids, attention_mask, token_type_ids)
|
||||
|
||||
|
||||
def get_TFhf_model(name):
|
||||
model = TFHuggingFaceLanguage(name)
|
||||
tokenizer = BertTokenizer.from_pretrained(name)
|
||||
text = "Replace me by any text you'd like."
|
||||
encoded_input = tokenizer(
|
||||
text,
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=MAX_SEQUENCE_LENGTH,
|
||||
)
|
||||
for key in encoded_input:
|
||||
encoded_input[key] = tf.expand_dims(
|
||||
tf.convert_to_tensor(encoded_input[key]), 0
|
||||
)
|
||||
test_input = (
|
||||
encoded_input["input_ids"],
|
||||
encoded_input["attention_mask"],
|
||||
encoded_input["token_type_ids"],
|
||||
)
|
||||
actual_out = model.forward(*test_input)
|
||||
return model, test_input, actual_out
|
||||
|
||||
|
||||
##################### Hugging Face LM Models ###################################
|
||||
|
||||
|
||||
class HuggingFaceLanguage(torch.nn.Module):
|
||||
def __init__(self, hf_model_name):
|
||||
super().__init__()
|
||||
self.model = AutoModelForSequenceClassification.from_pretrained(
|
||||
hf_model_name, # The pretrained model.
|
||||
num_labels=2, # The number of output labels--2 for binary classification.
|
||||
output_attentions=False, # Whether the model returns attentions weights.
|
||||
output_hidden_states=False, # Whether the model returns all hidden-states.
|
||||
torchscript=True,
|
||||
)
|
||||
|
||||
def forward(self, tokens):
|
||||
return self.model.forward(tokens)[0]
|
||||
|
||||
|
||||
def get_hf_model(name):
|
||||
model = HuggingFaceLanguage(name)
|
||||
# TODO: Currently the test input is set to (1,128)
|
||||
test_input = torch.randint(2, (1, 128))
|
||||
actual_out = model(test_input)
|
||||
return model, test_input, actual_out
|
||||
|
||||
|
||||
################################################################################
|
||||
|
||||
##################### Torch Vision Models ###################################
|
||||
|
||||
|
||||
class VisionModule(torch.nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.train(False)
|
||||
|
||||
def forward(self, input):
|
||||
return self.model.forward(input)
|
||||
|
||||
|
||||
def get_vision_model(torch_model):
|
||||
model = VisionModule(torch_model)
|
||||
# TODO: Currently the test input is set to (1,128)
|
||||
test_input = torch.randn(1, 3, 224, 224)
|
||||
actual_out = model(test_input)
|
||||
return model, test_input, actual_out
|
||||
|
||||
|
||||
############################# Benchmark Tests ####################################
|
||||
|
||||
pytest_benchmark_param = pytest.mark.parametrize(
|
||||
("dynamic", "device"),
|
||||
[
|
||||
pytest.param(False, "cpu"),
|
||||
# TODO: Language models are failing for dynamic case..
|
||||
pytest.param(True, "cpu", marks=pytest.mark.skip),
|
||||
pytest.param(
|
||||
False,
|
||||
"gpu",
|
||||
marks=pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason="nvidia-smi not found"
|
||||
),
|
||||
),
|
||||
pytest.param(True, "gpu", marks=pytest.mark.skip),
|
||||
pytest.param(
|
||||
False,
|
||||
"vulkan",
|
||||
marks=pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"),
|
||||
reason="vulkaninfo not found, install from https://github.com/KhronosGroup/MoltenVK/releases",
|
||||
),
|
||||
),
|
||||
pytest.param(
|
||||
True,
|
||||
"vulkan",
|
||||
marks=pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"),
|
||||
reason="vulkaninfo not found, install from https://github.com/KhronosGroup/MoltenVK/releases",
|
||||
),
|
||||
),
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
importlib.util.find_spec("iree.tools") is None,
|
||||
reason="Cannot find tools to import TF",
|
||||
)
|
||||
@pytest_benchmark_param
|
||||
def test_bench_minilm_torch(dynamic, device):
|
||||
model, test_input, act_out = get_hf_model(
|
||||
"microsoft/MiniLM-L12-H384-uncased"
|
||||
)
|
||||
shark_module = SharkInference(
|
||||
model,
|
||||
(test_input,),
|
||||
device=device,
|
||||
dynamic=dynamic,
|
||||
jit_trace=True,
|
||||
benchmark_mode=True,
|
||||
)
|
||||
try:
|
||||
# If becnhmarking succesful, assert success/True.
|
||||
shark_module.compile()
|
||||
shark_module.benchmark_all((test_input,))
|
||||
assert True
|
||||
except Exception as e:
|
||||
# If anything happen during benchmarking, assert False/failure.
|
||||
assert False
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
importlib.util.find_spec("iree.tools") is None,
|
||||
reason="Cannot find tools to import TF",
|
||||
)
|
||||
@pytest_benchmark_param
|
||||
def test_bench_distilbert(dynamic, device):
|
||||
model, test_input, act_out = get_TFhf_model("distilbert-base-uncased")
|
||||
shark_module = SharkInference(
|
||||
model,
|
||||
test_input,
|
||||
device=device,
|
||||
dynamic=dynamic,
|
||||
jit_trace=True,
|
||||
benchmark_mode=True,
|
||||
)
|
||||
try:
|
||||
# If becnhmarking succesful, assert success/True.
|
||||
shark_module.set_frontend("tensorflow")
|
||||
shark_module.compile()
|
||||
shark_module.benchmark_all(test_input)
|
||||
assert True
|
||||
except Exception as e:
|
||||
# If anything happen during benchmarking, assert False/failure.
|
||||
assert False
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="XLM Roberta too large to test.")
|
||||
@pytest_benchmark_param
|
||||
def test_bench_xlm_roberta(dynamic, device):
|
||||
model, test_input, act_out = get_TFhf_model("xlm-roberta-base")
|
||||
shark_module = SharkInference(
|
||||
model,
|
||||
test_input,
|
||||
device=device,
|
||||
dynamic=dynamic,
|
||||
jit_trace=True,
|
||||
benchmark_mode=True,
|
||||
)
|
||||
try:
|
||||
# If becnhmarking succesful, assert success/True.
|
||||
shark_module.set_frontend("tensorflow")
|
||||
shark_module.compile()
|
||||
shark_module.benchmark_all(test_input)
|
||||
assert True
|
||||
except Exception as e:
|
||||
# If anything happen during benchmarking, assert False/failure.
|
||||
assert False
|
||||
@@ -1,45 +0,0 @@
|
||||
import torch
|
||||
from benchmarks.hf_transformer import SharkHFBenchmarkRunner
|
||||
import importlib
|
||||
import pytest
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
############################# HF Benchmark Tests ####################################
|
||||
|
||||
# Test running benchmark module without failing.
|
||||
pytest_benchmark_param = pytest.mark.parametrize(
|
||||
("dynamic", "device"),
|
||||
[
|
||||
pytest.param(False, "cpu"),
|
||||
# TODO: Language models are failing for dynamic case..
|
||||
pytest.param(True, "cpu", marks=pytest.mark.skip),
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
importlib.util.find_spec("onnxruntime") is None,
|
||||
reason="Cannot find ONNXRUNTIME.",
|
||||
)
|
||||
@pytest_benchmark_param
|
||||
def test_HFbench_minilm_torch(dynamic, device):
|
||||
model_name = "bert-base-uncased"
|
||||
test_input = torch.randint(2, (1, 128))
|
||||
try:
|
||||
shark_module = SharkHFBenchmarkRunner(
|
||||
model_name,
|
||||
(test_input,),
|
||||
jit_trace=True,
|
||||
dynamic=dynamic,
|
||||
device=device,
|
||||
)
|
||||
shark_module.benchmark_c()
|
||||
shark_module.benchmark_python((test_input,))
|
||||
shark_module.benchmark_torch(test_input)
|
||||
shark_module.benchmark_onnx(test_input)
|
||||
# If becnhmarking succesful, assert success/True.
|
||||
assert True
|
||||
except Exception as e:
|
||||
# If anything happen during benchmarking, assert False/failure.
|
||||
assert False
|
||||
@@ -1,45 +0,0 @@
|
||||
import argparse
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
|
||||
import requests
|
||||
import shutil
|
||||
import os
|
||||
import subprocess
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument("-n", "--newfile")
|
||||
parser.add_argument(
|
||||
"-g",
|
||||
"--golden_url",
|
||||
default="https://storage.googleapis.com/shark_tank/testdata/cyberpunk_fores_42_0_230119_021148.png",
|
||||
)
|
||||
|
||||
|
||||
def get_image(url, local_filename):
|
||||
res = requests.get(url, stream=True)
|
||||
if res.status_code == 200:
|
||||
with open(local_filename, "wb") as f:
|
||||
shutil.copyfileobj(res.raw, f)
|
||||
|
||||
|
||||
def compare_images(new_filename, golden_filename):
|
||||
new = np.array(Image.open(new_filename)) / 255.0
|
||||
golden = np.array(Image.open(golden_filename)) / 255.0
|
||||
diff = np.abs(new - golden)
|
||||
mean = np.mean(diff)
|
||||
if mean > 0.1:
|
||||
subprocess.run(
|
||||
["gsutil", "cp", new_filename, "gs://shark_tank/testdata/builder/"]
|
||||
)
|
||||
raise SystemExit("new and golden not close")
|
||||
else:
|
||||
print("SUCCESS")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parser.parse_args()
|
||||
tempfile_name = os.path.join(os.getcwd(), "golden.png")
|
||||
get_image(args.golden_url, tempfile_name)
|
||||
compare_images(args.newfile, tempfile_name)
|
||||
@@ -1,5 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
IMPORTER=1 BENCHMARK=1 ./setup_venv.sh
|
||||
source $GITHUB_WORKSPACE/shark.venv/bin/activate
|
||||
python generate_sharktank.py
|
||||
@@ -1,37 +0,0 @@
|
||||
"""Scrapes the github releases API to generate a static pip-install-able releases page.
|
||||
|
||||
See https://github.com/llvm/torch-mlir/issues/1374
|
||||
"""
|
||||
import argparse
|
||||
import json
|
||||
|
||||
import requests
|
||||
|
||||
# Parse arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("owner", type=str)
|
||||
parser.add_argument("repo", type=str)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Get releases
|
||||
response = requests.get(
|
||||
f"https://api.github.com/repos/{args.owner}/{args.repo}/releases"
|
||||
)
|
||||
body = json.loads(response.content)
|
||||
|
||||
# Parse releases
|
||||
releases = []
|
||||
for row in body:
|
||||
for asset in row["assets"]:
|
||||
releases.append((asset["name"], asset["browser_download_url"]))
|
||||
|
||||
# Output HTML
|
||||
html = """<!DOCTYPE html>
|
||||
<html>
|
||||
<body>
|
||||
"""
|
||||
for name, url in releases:
|
||||
html += f" <a href='{url}'>{name}</a><br />\n"
|
||||
html += """ </body>
|
||||
</html>"""
|
||||
print(html)
|
||||
@@ -1,78 +0,0 @@
|
||||
import os
|
||||
import subprocess
|
||||
from apps.stable_diffusion.src.utils.resources import (
|
||||
get_json_file,
|
||||
)
|
||||
from shark.shark_downloader import download_public_file
|
||||
from image_comparison import compare_images
|
||||
import argparse
|
||||
from glob import glob
|
||||
import shutil
|
||||
|
||||
model_config_dicts = get_json_file(
|
||||
os.path.join(
|
||||
os.getcwd(),
|
||||
"apps/stable_diffusion/src/utils/resources/model_config.json",
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def test_loop(device="vulkan", beta=False, extra_flags=[]):
|
||||
# Get golden values from tank
|
||||
shutil.rmtree("./test_images", ignore_errors=True)
|
||||
os.mkdir("./test_images")
|
||||
os.mkdir("./test_images/golden")
|
||||
hf_model_names = model_config_dicts[0].values()
|
||||
tuned_options = ["--no-use_tuned", "use_tuned"]
|
||||
if beta:
|
||||
extra_flags.append("--beta_models=True")
|
||||
for model_name in hf_model_names:
|
||||
for use_tune in tuned_options:
|
||||
command = [
|
||||
"python",
|
||||
"apps/stable_diffusion/scripts/txt2img.py",
|
||||
"--device=" + device,
|
||||
"--prompt=cyberpunk forest by Salvador Dali",
|
||||
"--output_dir="
|
||||
+ os.path.join(os.getcwd(), "test_images", model_name),
|
||||
"--hf_model_id=" + model_name,
|
||||
use_tune,
|
||||
]
|
||||
command += extra_flags
|
||||
generated_image = not subprocess.call(
|
||||
command, stdout=subprocess.DEVNULL
|
||||
)
|
||||
if generated_image:
|
||||
print(" ".join(command))
|
||||
print("Successfully generated image")
|
||||
os.makedirs(
|
||||
"./test_images/golden/" + model_name, exist_ok=True
|
||||
)
|
||||
download_public_file(
|
||||
"gs://shark_tank/testdata/golden/" + model_name,
|
||||
"./test_images/golden/" + model_name,
|
||||
)
|
||||
test_file_path = os.path.join(
|
||||
os.getcwd(), "test_images", model_name, "generated_imgs"
|
||||
)
|
||||
test_file = glob(test_file_path + "/*.png")[0]
|
||||
golden_path = "./test_images/golden/" + model_name + "/*.png"
|
||||
golden_file = glob(golden_path)[0]
|
||||
compare_images(test_file, golden_file)
|
||||
else:
|
||||
print(" ".join(command))
|
||||
print("failed to generate image for this configuration")
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument("-d", "--device", default="vulkan")
|
||||
parser.add_argument(
|
||||
"-b", "--beta", action=argparse.BooleanOptionalAction, default=False
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parser.parse_args()
|
||||
print(args)
|
||||
test_loop(args.device, args.beta, [])
|
||||
62
conftest.py
62
conftest.py
@@ -1,62 +0,0 @@
|
||||
def pytest_addoption(parser):
|
||||
# Attaches SHARK command-line arguments to the pytest machinery.
|
||||
parser.addoption(
|
||||
"--benchmark",
|
||||
action="store_true",
|
||||
default="False",
|
||||
help="Pass option to benchmark and write results.csv",
|
||||
)
|
||||
parser.addoption(
|
||||
"--onnx_bench",
|
||||
action="store_true",
|
||||
default="False",
|
||||
help="Add ONNX benchmark results to pytest benchmarks.",
|
||||
)
|
||||
parser.addoption(
|
||||
"--tf32",
|
||||
action="store_true",
|
||||
default="False",
|
||||
help="Use TensorFloat-32 calculations.",
|
||||
)
|
||||
parser.addoption(
|
||||
"--save_repro",
|
||||
action="store_true",
|
||||
default="False",
|
||||
help="Pass option to save reproduction artifacts to SHARK/shark_tmp/test_case/",
|
||||
)
|
||||
parser.addoption(
|
||||
"--save_fails",
|
||||
action="store_true",
|
||||
default="False",
|
||||
help="Save reproduction artifacts for a test case only if it fails. Default is False.",
|
||||
)
|
||||
parser.addoption(
|
||||
"--ci",
|
||||
action="store_true",
|
||||
default="False",
|
||||
help="Enables uploading of reproduction artifacts upon test case failure during iree-compile or validation. Must be passed with --ci_sha option ",
|
||||
)
|
||||
parser.addoption(
|
||||
"--update_tank",
|
||||
action="store_true",
|
||||
default="False",
|
||||
help="Update local shark tank with latest artifacts.",
|
||||
)
|
||||
parser.addoption(
|
||||
"--ci_sha",
|
||||
action="store",
|
||||
default="None",
|
||||
help="Passes the github SHA of the CI workflow to include in google storage directory for reproduction artifacts.",
|
||||
)
|
||||
parser.addoption(
|
||||
"--local_tank_cache",
|
||||
action="store",
|
||||
default="",
|
||||
help="Specify the directory in which all downloaded shark_tank artifacts will be cached.",
|
||||
)
|
||||
parser.addoption(
|
||||
"--tank_url",
|
||||
type=str,
|
||||
default="gs://shark_tank/latest",
|
||||
help="URL to bucket from which to download SHARK tank artifacts. Default is gs://shark_tank/latest",
|
||||
)
|
||||
3
cpp/.gitignore
vendored
3
cpp/.gitignore
vendored
@@ -1,3 +0,0 @@
|
||||
*.mlir
|
||||
*.vmfb
|
||||
*.ini
|
||||
@@ -1,52 +0,0 @@
|
||||
# Copyright 2022 The IREE Authors
|
||||
#
|
||||
# Licensed under the Apache License v2.0 with LLVM Exceptions.
|
||||
# See https://llvm.org/LICENSE.txt for license information.
|
||||
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
|
||||
cmake_minimum_required(VERSION 3.21...3.23)
|
||||
|
||||
#-------------------------------------------------------------------------------
|
||||
# Project configuration
|
||||
#-------------------------------------------------------------------------------
|
||||
|
||||
project(iree-samples C CXX)
|
||||
set(CMAKE_C_STANDARD 11)
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
set_property(GLOBAL PROPERTY USE_FOLDERS ON)
|
||||
|
||||
#-------------------------------------------------------------------------------
|
||||
# Core project dependency
|
||||
#-------------------------------------------------------------------------------
|
||||
|
||||
message(STATUS "Fetching core IREE repo (this may take a few minutes)...")
|
||||
# Note: for log output, set -DFETCHCONTENT_QUIET=OFF,
|
||||
# see https://gitlab.kitware.com/cmake/cmake/-/issues/18238#note_440475
|
||||
|
||||
include(FetchContent)
|
||||
|
||||
FetchContent_Declare(
|
||||
iree
|
||||
GIT_REPOSITORY https://github.com/nod-ai/shark-runtime.git
|
||||
GIT_TAG shark
|
||||
GIT_SUBMODULES_RECURSE OFF
|
||||
GIT_SHALLOW OFF
|
||||
GIT_PROGRESS ON
|
||||
USES_TERMINAL_DOWNLOAD ON
|
||||
)
|
||||
|
||||
# Extend module path to find MLIR CMake modules.
|
||||
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_BINARY_DIR}/lib/cmake/mlir")
|
||||
|
||||
# Disable core project features not needed for these out of tree samples.
|
||||
set(IREE_BUILD_TESTS OFF CACHE BOOL "" FORCE)
|
||||
set(IREE_BUILD_SAMPLES OFF CACHE BOOL "" FORCE)
|
||||
|
||||
FetchContent_MakeAvailable(iree)
|
||||
FetchContent_GetProperties(iree SOURCE_DIR IREE_SOURCE_DIR)
|
||||
|
||||
#-------------------------------------------------------------------------------
|
||||
# Individual samples
|
||||
#-------------------------------------------------------------------------------
|
||||
|
||||
add_subdirectory(vulkan_gui)
|
||||
@@ -1,82 +0,0 @@
|
||||
# SHARK C/C++ Samples
|
||||
|
||||
These C/C++ samples can be built using CMake. The samples depend on the main
|
||||
SHARK-Runtime project's C/C++ sources, including both the runtime and the compiler.
|
||||
|
||||
Individual samples may require additional dependencies. Watch CMake's output
|
||||
for information about which you are missing for individual samples.
|
||||
|
||||
On Windows we recommend using https://github.com/microsoft/vcpkg to download packages for
|
||||
your system. The general setup flow looks like
|
||||
|
||||
*Install and activate SHARK*
|
||||
|
||||
```bash
|
||||
source shark.venv/bin/activate #follow main repo instructions to setup your venv
|
||||
```
|
||||
|
||||
*Install Dependencies*
|
||||
|
||||
```bash
|
||||
vcpkg install [library] --triplet [your platform]
|
||||
vcpkg integrate install
|
||||
|
||||
# Then pass `-DCMAKE_TOOLCHAIN_FILE=[check logs for path]` when configuring CMake
|
||||
```
|
||||
|
||||
In Ubuntu Linux you can install
|
||||
|
||||
```bash
|
||||
sudo apt install libsdl2-dev
|
||||
```
|
||||
|
||||
*Build*
|
||||
```bash
|
||||
cd cpp
|
||||
cmake -GNinja -B build/
|
||||
cmake --build build/
|
||||
```
|
||||
|
||||
*Prepare the model*
|
||||
```bash
|
||||
wget https://storage.googleapis.com/shark_tank/latest/resnet50_tf/resnet50_tf.mlir
|
||||
iree-compile --iree-input-type=mhlo --iree-vm-bytecode-module-output-format=flatbuffer-binary --iree-hal-target-backends=vulkan --iree-llvm-embedded-linker-path=`python3 -c 'import sysconfig; print(sysconfig.get_paths()["purelib"])'`/iree/compiler/tools/../_mlir_libs/iree-lld --mlir-print-debuginfo --mlir-print-op-on-diagnostic=false --mlir-pass-pipeline-crash-reproducer=ist/core-reproducer.mlir --iree-llvm-target-cpu-features=host -iree-vulkan-target-triple=rdna2-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 resnet50_tf.mlir -o resnet50_tf.vmfb
|
||||
```
|
||||
*Prepare the input*
|
||||
|
||||
```bash
|
||||
python save_img.py
|
||||
```
|
||||
Note that this requires tensorflow, e.g.
|
||||
```bash
|
||||
python -m pip install tensorflow
|
||||
```
|
||||
|
||||
*Run the vulkan_gui*
|
||||
```bash
|
||||
./build/vulkan_gui/iree-samples-resnet-vulkan-gui
|
||||
```
|
||||
|
||||
## Other models
|
||||
A tool for benchmarking other models is built and can be invoked with a command like the following
|
||||
```bash
|
||||
./build/vulkan_gui/iree-vulkan-gui --module-file=path/to/.vmfb --function_input=...
|
||||
```
|
||||
see `./build/vulkan_gui/iree-vulkan-gui --help` for an explanation on the function input. For example, stable diffusion unet can be tested with the following commands:
|
||||
```bash
|
||||
wget https://storage.googleapis.com/shark_tank/quinn/stable_diff_tf/stable_diff_tf.mlir
|
||||
iree-compile --iree-input-type=mhlo --iree-vm-bytecode-module-output-format=flatbuffer-binary --iree-hal-target-backends=vulkan --mlir-print-debuginfo --mlir-print-op-on-diagnostic=false --iree-llvm-target-cpu-features=host -iree-vulkan-target-triple=rdna2-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 stable_diff_tf.mlir -o stable_diff_tf.vmfb
|
||||
./build/vulkan_gui/iree-vulkan-gui --module-file=stable_diff_tf.vmfb --function_input=2x4x64x64xf32 --function_input=1xf32 --function_input=2x77x768xf32
|
||||
```
|
||||
VAE and Autoencoder are also available
|
||||
```bash
|
||||
# VAE
|
||||
wget https://storage.googleapis.com/shark_tank/quinn/stable_diff_tf/vae_tf/vae.mlir
|
||||
iree-compile --iree-input-type=mhlo --iree-vm-bytecode-module-output-format=flatbuffer-binary --iree-hal-target-backends=vulkan --mlir-print-debuginfo --mlir-print-op-on-diagnostic=false --iree-llvm-target-cpu-features=host -iree-vulkan-target-triple=rdna2-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 vae.mlir -o vae.vmfb
|
||||
./build/vulkan_gui/iree-vulkan-gui --module-file=stable_diff_tf.vmfb --function_input=1x4x64x64xf32
|
||||
|
||||
# CLIP Autoencoder
|
||||
wget https://storage.googleapis.com/shark_tank/quinn/stable_diff_tf/clip_tf/clip_autoencoder.mlir
|
||||
iree-compile --iree-input-type=mhlo --iree-vm-bytecode-module-output-format=flatbuffer-binary --iree-hal-target-backends=vulkan --mlir-print-debuginfo --mlir-print-op-on-diagnostic=false --iree-llvm-target-cpu-features=host -iree-vulkan-target-triple=rdna2-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 clip_autoencoder.mlir -o clip_autoencoder.vmfb
|
||||
./build/vulkan_gui/iree-vulkan-gui --module-file=stable_diff_tf.vmfb --function_input=1x77xi32 --function_input=1x77xi32
|
||||
```
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 26 KiB |
@@ -1,18 +0,0 @@
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from shark.shark_inference import SharkInference
|
||||
|
||||
|
||||
def load_and_preprocess_image(fname: str):
|
||||
image = tf.io.read_file(fname)
|
||||
image = tf.image.decode_image(image, channels=3)
|
||||
image = tf.image.resize(image, (224, 224))
|
||||
image = image[tf.newaxis, :]
|
||||
# preprocessing pipeline
|
||||
input_tensor = tf.keras.applications.resnet50.preprocess_input(image)
|
||||
return input_tensor
|
||||
|
||||
|
||||
data = load_and_preprocess_image("dog_imagenet.jpg").numpy()
|
||||
|
||||
data.tofile("dog.bin")
|
||||
@@ -1,84 +0,0 @@
|
||||
# Copyright 2022 The IREE Authors
|
||||
#
|
||||
# Licensed under the Apache License v2.0 with LLVM Exceptions.
|
||||
# See https://llvm.org/LICENSE.txt for license information.
|
||||
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
|
||||
if(NOT IREE_TARGET_BACKEND_LLVM_CPU OR
|
||||
NOT IREE_HAL_EXECUTABLE_LOADER_EMBEDDED_ELF)
|
||||
message(STATUS "Missing LLVM backend and/or embeddded elf loader, skipping vision_inference sample")
|
||||
return()
|
||||
endif()
|
||||
|
||||
# vcpkg install stb
|
||||
# tested with version 2021-09-10
|
||||
find_package(Stb)
|
||||
if(NOT Stb_FOUND)
|
||||
message(STATUS "Could not find Stb, skipping vision inference sample")
|
||||
return()
|
||||
endif()
|
||||
|
||||
# Compile mnist.mlir to mnist.vmfb.
|
||||
set(_COMPILE_TOOL_EXECUTABLE $<TARGET_FILE:iree-compile>)
|
||||
set(_COMPILE_ARGS)
|
||||
list(APPEND _COMPILE_ARGS "--iree-input-type=mhlo")
|
||||
list(APPEND _COMPILE_ARGS "--iree-hal-target-backends=llvm-cpu")
|
||||
list(APPEND _COMPILE_ARGS "${IREE_SOURCE_DIR}/samples/models/mnist.mlir")
|
||||
list(APPEND _COMPILE_ARGS "-o")
|
||||
list(APPEND _COMPILE_ARGS "mnist.vmfb")
|
||||
add_custom_command(
|
||||
OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/mnist.vmfb
|
||||
COMMAND ${_COMPILE_TOOL_EXECUTABLE} ${_COMPILE_ARGS}
|
||||
DEPENDS ${_COMPILE_TOOL_EXECUTABLE} "${IREE_SOURCE_DIR}/samples/models/mnist.mlir"
|
||||
)
|
||||
# Embed mnist.vmfb into a C file as mnist_bytecode_module_c.[h/c]
|
||||
set(_EMBED_DATA_EXECUTABLE $<TARGET_FILE:generate_embed_data>)
|
||||
set(_EMBED_ARGS)
|
||||
list(APPEND _EMBED_ARGS "--output_header=mnist_bytecode_module_c.h")
|
||||
list(APPEND _EMBED_ARGS "--output_impl=mnist_bytecode_module_c.c")
|
||||
list(APPEND _EMBED_ARGS "--identifier=iree_samples_vision_inference_mnist_bytecode_module")
|
||||
list(APPEND _EMBED_ARGS "--flatten")
|
||||
list(APPEND _EMBED_ARGS "${CMAKE_CURRENT_BINARY_DIR}/mnist.vmfb")
|
||||
add_custom_command(
|
||||
OUTPUT "mnist_bytecode_module_c.h" "mnist_bytecode_module_c.c"
|
||||
COMMAND ${_EMBED_DATA_EXECUTABLE} ${_EMBED_ARGS}
|
||||
DEPENDS ${_EMBED_DATA_EXECUTABLE} ${CMAKE_CURRENT_BINARY_DIR}/mnist.vmfb
|
||||
)
|
||||
# Define a library target for mnist_bytecode_module_c.
|
||||
add_library(iree_samples_vision_inference_mnist_bytecode_module_c OBJECT)
|
||||
target_sources(iree_samples_vision_inference_mnist_bytecode_module_c
|
||||
PRIVATE
|
||||
mnist_bytecode_module_c.h
|
||||
mnist_bytecode_module_c.c
|
||||
)
|
||||
|
||||
# Define the sample executable.
|
||||
set(_NAME "iree-run-mnist-module")
|
||||
add_executable(${_NAME} "")
|
||||
target_sources(${_NAME}
|
||||
PRIVATE
|
||||
"image_util.h"
|
||||
"image_util.c"
|
||||
"iree-run-mnist-module.c"
|
||||
)
|
||||
set_target_properties(${_NAME} PROPERTIES OUTPUT_NAME "iree-run-mnist-module")
|
||||
target_include_directories(${_NAME} PUBLIC
|
||||
$<BUILD_INTERFACE:${CMAKE_CURRENT_BINARY_DIR}>
|
||||
)
|
||||
target_include_directories(${_NAME} PRIVATE
|
||||
${Stb_INCLUDE_DIR}
|
||||
)
|
||||
target_link_libraries(${_NAME}
|
||||
iree_base_base
|
||||
iree_base_tracing
|
||||
iree_hal_hal
|
||||
iree_runtime_runtime
|
||||
iree_samples_vision_inference_mnist_bytecode_module_c
|
||||
)
|
||||
|
||||
# Define a target that copies the test image into the build directory.
|
||||
add_custom_target(iree_samples_vision_inference_test_image
|
||||
COMMAND ${CMAKE_COMMAND} -E copy "${CMAKE_CURRENT_SOURCE_DIR}/mnist_test.png" "${CMAKE_CURRENT_BINARY_DIR}/mnist_test.png")
|
||||
add_dependencies(${_NAME} iree_samples_vision_inference_test_image)
|
||||
|
||||
message(STATUS "Configured vision_inference sample successfully")
|
||||
@@ -1,8 +0,0 @@
|
||||
# Vision Inference Sample (C code)
|
||||
|
||||
This sample demonstrates how to run a MNIST handwritten digit detection vision
|
||||
model on an image using IREE's C API.
|
||||
|
||||
A similar sample is implemented using a Python script and IREE's command line
|
||||
tools over in the primary iree repository at
|
||||
https://github.com/iree-org/iree/tree/main/samples/vision_inference
|
||||
@@ -1,224 +0,0 @@
|
||||
// Copyright 2021 The IREE Authors
|
||||
//
|
||||
// Licensed under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
|
||||
#include "image_util.h"
|
||||
|
||||
#include <math.h>
|
||||
|
||||
#include "iree/base/internal/flags.h"
|
||||
#include "iree/base/tracing.h"
|
||||
|
||||
#define STB_IMAGE_IMPLEMENTATION
|
||||
#include "stb_image.h"
|
||||
|
||||
iree_status_t iree_tools_utils_pixel_rescaled_to_buffer(
|
||||
const uint8_t* pixel_data, iree_host_size_t buffer_length,
|
||||
const float* input_range, iree_host_size_t range_length,
|
||||
float* out_buffer) {
|
||||
IREE_TRACE_ZONE_BEGIN(z0);
|
||||
if (range_length != 2) {
|
||||
IREE_TRACE_ZONE_END(z0);
|
||||
return iree_make_status(IREE_STATUS_INVALID_ARGUMENT,
|
||||
"range defined as 2-element [min, max] array.");
|
||||
}
|
||||
float input_scale = fabsf(input_range[1] - input_range[0]) / 2.0f;
|
||||
float input_offset = (input_range[0] + input_range[1]) / 2.0f;
|
||||
const float kUint8Mean = 127.5f;
|
||||
for (int i = 0; i < buffer_length; ++i) {
|
||||
out_buffer[i] =
|
||||
(((float)(pixel_data[i])) - kUint8Mean) / kUint8Mean * input_scale +
|
||||
input_offset;
|
||||
}
|
||||
IREE_TRACE_ZONE_END(z0);
|
||||
return iree_ok_status();
|
||||
}
|
||||
|
||||
iree_status_t iree_tools_utils_load_pixel_data_impl(
|
||||
const iree_string_view_t filename, const iree_hal_dim_t* shape,
|
||||
iree_host_size_t shape_rank, iree_hal_element_type_t element_type,
|
||||
uint8_t** out_pixel_data, iree_host_size_t* out_buffer_length) {
|
||||
int img_dims[3];
|
||||
if (stbi_info(filename.data, img_dims, &(img_dims[1]), &(img_dims[2])) == 0) {
|
||||
return iree_make_status(IREE_STATUS_NOT_FOUND, "can't load image %.*s",
|
||||
(int)filename.size, filename.data);
|
||||
}
|
||||
if (!(element_type == IREE_HAL_ELEMENT_TYPE_FLOAT_32 ||
|
||||
element_type == IREE_HAL_ELEMENT_TYPE_SINT_8 ||
|
||||
element_type == IREE_HAL_ELEMENT_TYPE_UINT_8)) {
|
||||
char element_type_str[16];
|
||||
IREE_RETURN_IF_ERROR(iree_hal_format_element_type(
|
||||
element_type, sizeof(element_type_str), element_type_str, NULL));
|
||||
return iree_make_status(IREE_STATUS_UNIMPLEMENTED,
|
||||
"element type %s not supported", element_type_str);
|
||||
}
|
||||
switch (shape_rank) {
|
||||
case 2: { // Assume tensor <height x width>
|
||||
if (img_dims[2] != 1 || (shape[0] != img_dims[1]) ||
|
||||
(shape[1] != img_dims[0])) {
|
||||
return iree_make_status(
|
||||
IREE_STATUS_INVALID_ARGUMENT,
|
||||
"image size: %dx%dx%d, expected: %" PRIdim "x%" PRIdim, img_dims[0],
|
||||
img_dims[1], img_dims[2], shape[1], shape[0]);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case 3: { // Assume tensor <height x width x channel>
|
||||
if (shape[0] != img_dims[1] || shape[1] != img_dims[0] ||
|
||||
shape[2] != img_dims[2]) {
|
||||
return iree_make_status(IREE_STATUS_INVALID_ARGUMENT,
|
||||
"image size: %dx%dx%d, expected: %" PRIdim
|
||||
"x%" PRIdim "x%" PRIdim,
|
||||
img_dims[0], img_dims[1], img_dims[2], shape[1],
|
||||
shape[0], shape[2]);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case 4: { // Assume tensor <batch x height x width x channel>
|
||||
if (shape[1] != img_dims[1] || shape[2] != img_dims[0] ||
|
||||
shape[3] != img_dims[2]) {
|
||||
return iree_make_status(IREE_STATUS_INVALID_ARGUMENT,
|
||||
"image size: %dx%dx%d, expected: %" PRIdim
|
||||
"x%" PRIdim "x%" PRIdim,
|
||||
img_dims[0], img_dims[1], img_dims[2], shape[2],
|
||||
shape[1], shape[3]);
|
||||
}
|
||||
break;
|
||||
}
|
||||
default:
|
||||
return iree_make_status(
|
||||
IREE_STATUS_INVALID_ARGUMENT,
|
||||
"Input buffer shape rank %" PRIhsz " not supported", shape_rank);
|
||||
}
|
||||
// Drop the alpha channel if present.
|
||||
int req_ch = (img_dims[2] >= 3) ? 3 : 0;
|
||||
*out_pixel_data = stbi_load(filename.data, img_dims, &(img_dims[1]),
|
||||
&(img_dims[2]), req_ch);
|
||||
if (*out_pixel_data == NULL) {
|
||||
return iree_make_status(IREE_STATUS_NOT_FOUND, "can't load image %.*s",
|
||||
(int)filename.size, filename.data);
|
||||
}
|
||||
*out_buffer_length =
|
||||
img_dims[0] * img_dims[1] * (img_dims[2] > 3 ? 3 : img_dims[2]);
|
||||
return iree_ok_status();
|
||||
}
|
||||
|
||||
iree_status_t iree_tools_utils_load_pixel_data(
|
||||
const iree_string_view_t filename, const iree_hal_dim_t* shape,
|
||||
iree_host_size_t shape_rank, iree_hal_element_type_t element_type,
|
||||
uint8_t** out_pixel_data, iree_host_size_t* out_buffer_length) {
|
||||
IREE_TRACE_ZONE_BEGIN(z0);
|
||||
iree_status_t result = iree_tools_utils_load_pixel_data_impl(
|
||||
filename, shape, shape_rank, element_type, out_pixel_data,
|
||||
out_buffer_length);
|
||||
IREE_TRACE_ZONE_END(z0);
|
||||
return result;
|
||||
}
|
||||
|
||||
iree_status_t iree_tools_utils_buffer_view_from_image(
|
||||
const iree_string_view_t filename, const iree_hal_dim_t* shape,
|
||||
iree_host_size_t shape_rank, iree_hal_element_type_t element_type,
|
||||
iree_hal_allocator_t* allocator, iree_hal_buffer_view_t** out_buffer_view) {
|
||||
IREE_TRACE_ZONE_BEGIN(z0);
|
||||
*out_buffer_view = NULL;
|
||||
if (element_type != IREE_HAL_ELEMENT_TYPE_SINT_8 &&
|
||||
element_type != IREE_HAL_ELEMENT_TYPE_UINT_8) {
|
||||
IREE_TRACE_ZONE_END(z0);
|
||||
return iree_make_status(IREE_STATUS_INVALID_ARGUMENT,
|
||||
"element type should be i8 or u8");
|
||||
}
|
||||
|
||||
iree_status_t result;
|
||||
uint8_t* pixel_data = NULL;
|
||||
iree_host_size_t buffer_length;
|
||||
result = iree_tools_utils_load_pixel_data(
|
||||
filename, shape, shape_rank, element_type, &pixel_data, &buffer_length);
|
||||
if (iree_status_is_ok(result)) {
|
||||
iree_host_size_t element_byte =
|
||||
iree_hal_element_dense_byte_count(element_type);
|
||||
// SINT_8 and UINT_8 perform direct buffer wrap.
|
||||
result = iree_hal_buffer_view_allocate_buffer(
|
||||
allocator, shape_rank, shape, element_type,
|
||||
IREE_HAL_ENCODING_TYPE_DENSE_ROW_MAJOR,
|
||||
(iree_hal_buffer_params_t){
|
||||
.type = IREE_HAL_MEMORY_TYPE_DEVICE_LOCAL,
|
||||
.access = IREE_HAL_MEMORY_ACCESS_READ,
|
||||
.usage = IREE_HAL_BUFFER_USAGE_DISPATCH_STORAGE |
|
||||
IREE_HAL_BUFFER_USAGE_TRANSFER,
|
||||
},
|
||||
iree_make_const_byte_span(pixel_data, element_byte * buffer_length),
|
||||
out_buffer_view);
|
||||
}
|
||||
stbi_image_free(pixel_data);
|
||||
IREE_TRACE_ZONE_END(z0);
|
||||
return result;
|
||||
}
|
||||
|
||||
typedef struct iree_tools_utils_buffer_view_load_params_t {
|
||||
const uint8_t* pixel_data;
|
||||
iree_host_size_t pixel_data_length;
|
||||
const float* input_range;
|
||||
iree_host_size_t input_range_length;
|
||||
} iree_tools_utils_buffer_view_load_params_t;
|
||||
static iree_status_t iree_tools_utils_buffer_view_load_image_rescaled(
|
||||
iree_hal_buffer_mapping_t* mapping, void* user_data) {
|
||||
iree_tools_utils_buffer_view_load_params_t* params =
|
||||
(iree_tools_utils_buffer_view_load_params_t*)user_data;
|
||||
return iree_tools_utils_pixel_rescaled_to_buffer(
|
||||
params->pixel_data, params->pixel_data_length, params->input_range,
|
||||
params->input_range_length, (float*)mapping->contents.data);
|
||||
}
|
||||
|
||||
iree_status_t iree_tools_utils_buffer_view_from_image_rescaled(
|
||||
const iree_string_view_t filename, const iree_hal_dim_t* shape,
|
||||
iree_host_size_t shape_rank, iree_hal_element_type_t element_type,
|
||||
iree_hal_allocator_t* allocator, const float* input_range,
|
||||
iree_host_size_t input_range_length,
|
||||
iree_hal_buffer_view_t** out_buffer_view) {
|
||||
IREE_TRACE_ZONE_BEGIN(z0);
|
||||
*out_buffer_view = NULL;
|
||||
if (element_type != IREE_HAL_ELEMENT_TYPE_FLOAT_32) {
|
||||
IREE_TRACE_ZONE_END(z0);
|
||||
return iree_make_status(IREE_STATUS_INVALID_ARGUMENT,
|
||||
"element type should be f32");
|
||||
}
|
||||
|
||||
// Classic row-major image layout.
|
||||
iree_hal_encoding_type_t encoding_type =
|
||||
IREE_HAL_ENCODING_TYPE_DENSE_ROW_MAJOR;
|
||||
|
||||
// Load pixel data from the file into a new host memory allocation (the only
|
||||
// interface stb_image provides). A real application would want to use the
|
||||
// generation callback to directly decode the image into the target mapped
|
||||
// device buffer.
|
||||
uint8_t* pixel_data = NULL;
|
||||
iree_host_size_t buffer_length = 0;
|
||||
IREE_RETURN_AND_END_ZONE_IF_ERROR(
|
||||
z0, iree_tools_utils_load_pixel_data(filename, shape, shape_rank,
|
||||
element_type, &pixel_data,
|
||||
&buffer_length));
|
||||
|
||||
iree_tools_utils_buffer_view_load_params_t params = {
|
||||
.pixel_data = pixel_data,
|
||||
.pixel_data_length = buffer_length,
|
||||
.input_range = input_range,
|
||||
.input_range_length = input_range_length,
|
||||
};
|
||||
iree_status_t status = iree_hal_buffer_view_generate_buffer(
|
||||
allocator, shape_rank, shape, element_type, encoding_type,
|
||||
(iree_hal_buffer_params_t){
|
||||
.type = IREE_HAL_MEMORY_TYPE_DEVICE_LOCAL |
|
||||
IREE_HAL_MEMORY_TYPE_HOST_VISIBLE,
|
||||
.usage = IREE_HAL_BUFFER_USAGE_DISPATCH_STORAGE |
|
||||
IREE_HAL_BUFFER_USAGE_TRANSFER |
|
||||
IREE_HAL_BUFFER_USAGE_MAPPING,
|
||||
},
|
||||
iree_tools_utils_buffer_view_load_image_rescaled, ¶ms,
|
||||
out_buffer_view);
|
||||
|
||||
stbi_image_free(pixel_data);
|
||||
IREE_TRACE_ZONE_END(z0);
|
||||
return status;
|
||||
}
|
||||
@@ -1,77 +0,0 @@
|
||||
// Copyright 2021 The IREE Authors
|
||||
//
|
||||
// Licensed under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
|
||||
#ifndef IREE_SAMPLES_VISION_INFERENCE_IMAGE_UTIL_H_
|
||||
#define IREE_SAMPLES_VISION_INFERENCE_IMAGE_UTIL_H_
|
||||
|
||||
#include "iree/base/api.h"
|
||||
#include "iree/hal/api.h"
|
||||
#include "iree/hal/buffer_view.h"
|
||||
|
||||
#if __cplusplus
|
||||
extern "C" {
|
||||
#endif // __cplusplus
|
||||
|
||||
// Loads the image at |filename| into |out_pixel_data| and sets
|
||||
// |out_buffer_length| to its length.
|
||||
//
|
||||
// The image dimension must match the width, height, and channel in|shape|,
|
||||
// while 2 <= |shape_rank| <= 4 to match the image tensor format.
|
||||
//
|
||||
// The file must be in a format supported by stb_image.h.
|
||||
// The returned |out_pixel_data| buffer must be released by the caller.
|
||||
iree_status_t iree_tools_utils_load_pixel_data(
|
||||
const iree_string_view_t filename, const iree_hal_dim_t* shape,
|
||||
iree_host_size_t shape_rank, iree_hal_element_type_t element_type,
|
||||
uint8_t** out_pixel_data, iree_host_size_t* out_buffer_length);
|
||||
|
||||
// Parse the content in an image file in |filename| into a HAL buffer view
|
||||
// |out_buffer_view|. |out_buffer_view| properties are defined by |shape|,
|
||||
// |shape_rank|, and |element_type|, while being allocated by |allocator|.
|
||||
//
|
||||
// The |element_type| has to be SINT_8 or UINT_8. For FLOAT_32, use
|
||||
// |iree_tools_utils_buffer_view_from_image_rescaled| instead.
|
||||
//
|
||||
// The returned |out_buffer_view| must be released by the caller.
|
||||
iree_status_t iree_tools_utils_buffer_view_from_image(
|
||||
const iree_string_view_t filename, const iree_hal_dim_t* shape,
|
||||
iree_host_size_t shape_rank, iree_hal_element_type_t element_type,
|
||||
iree_hal_allocator_t* allocator, iree_hal_buffer_view_t** out_buffer_view);
|
||||
|
||||
// Parse the content in an image file in |filename| into a HAL buffer view
|
||||
// |out_buffer_view|. |out_buffer_view| properties are defined by |shape|,
|
||||
// |shape_rank|, and |element_type|, while being allocated by |allocator|.
|
||||
// The value in |out_buffer_view| is rescaled with |input_range|.
|
||||
//
|
||||
// The |element_type| has to be FLOAT_32, For SINT_8 or UINT_8, use
|
||||
// |iree_tools_utils_buffer_view_from_image| instead.
|
||||
//
|
||||
// The returned |out_buffer_view| must be released by the caller.
|
||||
iree_status_t iree_tools_utils_buffer_view_from_image_rescaled(
|
||||
const iree_string_view_t filename, const iree_hal_dim_t* shape,
|
||||
iree_host_size_t shape_rank, iree_hal_element_type_t element_type,
|
||||
iree_hal_allocator_t* allocator, const float* input_range,
|
||||
iree_host_size_t input_range_length,
|
||||
iree_hal_buffer_view_t** out_buffer_view);
|
||||
|
||||
// Normalize uint8_t |pixel_data| of the size |buffer_length| to float buffer
|
||||
// |out_buffer| with the range |input_range|.
|
||||
//
|
||||
// float32_x = (uint8_x - 127.5) / 127.5 * input_scale + input_offset, where
|
||||
// input_scale = abs(|input_range[0]| - |input_range[1]| / 2
|
||||
// input_offset = |input_range[0]| + |input_range[1]| / 2
|
||||
//
|
||||
// |out_buffer| needs to be allocated before the call.
|
||||
iree_status_t iree_tools_utils_pixel_rescaled_to_buffer(
|
||||
const uint8_t* pixel_data, iree_host_size_t pixel_count,
|
||||
const float* input_range, iree_host_size_t input_range_length,
|
||||
float* out_buffer);
|
||||
|
||||
#if __cplusplus
|
||||
}
|
||||
#endif // __cplusplus
|
||||
|
||||
#endif // IREE_SAMPLES_VISION_INFERENCE_IMAGE_UTIL_H_
|
||||
@@ -1,121 +0,0 @@
|
||||
// Copyright 2021 The IREE Authors
|
||||
//
|
||||
// Licensed under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
|
||||
// This sample uses image_util to load a hand-written image as an
|
||||
// iree_hal_buffer_view_t then passes it to the bytecode module built from
|
||||
// mnist.mlir on the CPU backend with the local-task driver.
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "image_util.h"
|
||||
#include "iree/runtime/api.h"
|
||||
#include "mnist_bytecode_module_c.h"
|
||||
|
||||
iree_status_t Run(const iree_string_view_t image_path) {
|
||||
iree_runtime_instance_options_t instance_options;
|
||||
iree_runtime_instance_options_initialize(IREE_API_VERSION_LATEST,
|
||||
&instance_options);
|
||||
iree_runtime_instance_options_use_all_available_drivers(&instance_options);
|
||||
iree_runtime_instance_t* instance = NULL;
|
||||
IREE_RETURN_IF_ERROR(iree_runtime_instance_create(
|
||||
&instance_options, iree_allocator_system(), &instance));
|
||||
|
||||
// TODO(#5724): move device selection into the compiled modules.
|
||||
iree_hal_device_t* device = NULL;
|
||||
IREE_RETURN_IF_ERROR(iree_runtime_instance_try_create_default_device(
|
||||
instance, iree_make_cstring_view("local-task"), &device));
|
||||
|
||||
// Create one session per loaded module to hold the module state.
|
||||
iree_runtime_session_options_t session_options;
|
||||
iree_runtime_session_options_initialize(&session_options);
|
||||
iree_runtime_session_t* session = NULL;
|
||||
IREE_RETURN_IF_ERROR(iree_runtime_session_create_with_device(
|
||||
instance, &session_options, device,
|
||||
iree_runtime_instance_host_allocator(instance), &session));
|
||||
iree_hal_device_release(device);
|
||||
|
||||
const struct iree_file_toc_t* module_file =
|
||||
iree_samples_vision_inference_mnist_bytecode_module_create();
|
||||
|
||||
IREE_RETURN_IF_ERROR(iree_runtime_session_append_bytecode_module_from_memory(
|
||||
session, iree_make_const_byte_span(module_file->data, module_file->size),
|
||||
iree_allocator_null()));
|
||||
|
||||
iree_runtime_call_t call;
|
||||
IREE_RETURN_IF_ERROR(iree_runtime_call_initialize_by_name(
|
||||
session, iree_make_cstring_view("module.predict"), &call));
|
||||
|
||||
// Prepare the input hal buffer view with image_util library.
|
||||
// The input of the mmist model is single 28x28 pixel image as a
|
||||
// tensor<1x28x28x1xf32>, with pixels in [0.0, 1.0].
|
||||
iree_hal_buffer_view_t* buffer_view = NULL;
|
||||
iree_hal_dim_t buffer_shape[] = {1, 28, 28, 1};
|
||||
iree_hal_element_type_t hal_element_type = IREE_HAL_ELEMENT_TYPE_FLOAT_32;
|
||||
float input_range[2] = {0.0f, 1.0f};
|
||||
IREE_RETURN_IF_ERROR(
|
||||
iree_tools_utils_buffer_view_from_image_rescaled(
|
||||
image_path, buffer_shape, IREE_ARRAYSIZE(buffer_shape),
|
||||
hal_element_type, iree_hal_device_allocator(device), input_range,
|
||||
IREE_ARRAYSIZE(input_range), &buffer_view),
|
||||
"load image");
|
||||
IREE_RETURN_IF_ERROR(
|
||||
iree_runtime_call_inputs_push_back_buffer_view(&call, buffer_view));
|
||||
iree_hal_buffer_view_release(buffer_view);
|
||||
|
||||
IREE_RETURN_IF_ERROR(iree_runtime_call_invoke(&call, /*flags=*/0));
|
||||
|
||||
// Get the result buffers from the invocation.
|
||||
iree_hal_buffer_view_t* ret_buffer_view = NULL;
|
||||
IREE_RETURN_IF_ERROR(
|
||||
iree_runtime_call_outputs_pop_front_buffer_view(&call, &ret_buffer_view));
|
||||
|
||||
// Read back the results. The output of the mnist model is a 1x10 prediction
|
||||
// confidence values for each digit in [0, 9].
|
||||
float predictions[1 * 10] = {0.0f};
|
||||
IREE_RETURN_IF_ERROR(iree_hal_device_transfer_d2h(
|
||||
iree_runtime_session_device(session),
|
||||
iree_hal_buffer_view_buffer(ret_buffer_view), 0, predictions,
|
||||
sizeof(predictions), IREE_HAL_TRANSFER_BUFFER_FLAG_DEFAULT,
|
||||
iree_infinite_timeout()));
|
||||
iree_hal_buffer_view_release(ret_buffer_view);
|
||||
|
||||
// Get the highest index from the output.
|
||||
float result_val = FLT_MIN;
|
||||
int result_idx = 0;
|
||||
for (iree_host_size_t i = 0; i < IREE_ARRAYSIZE(predictions); ++i) {
|
||||
if (predictions[i] > result_val) {
|
||||
result_val = predictions[i];
|
||||
result_idx = i;
|
||||
}
|
||||
}
|
||||
fprintf(stdout, "Detected number: %d\n", result_idx);
|
||||
|
||||
iree_runtime_call_deinitialize(&call);
|
||||
iree_runtime_session_release(session);
|
||||
iree_runtime_instance_release(instance);
|
||||
return iree_ok_status();
|
||||
}
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
if (argc > 2) {
|
||||
fprintf(stderr, "Usage: iree-run-mnist-module <image file>\n");
|
||||
return -1;
|
||||
}
|
||||
iree_string_view_t image_path;
|
||||
if (argc == 1) {
|
||||
image_path = iree_make_cstring_view("mnist_test.png");
|
||||
} else {
|
||||
image_path = iree_make_cstring_view(argv[1]);
|
||||
}
|
||||
iree_status_t result = Run(image_path);
|
||||
if (!iree_status_is_ok(result)) {
|
||||
iree_status_fprint(stderr, result);
|
||||
iree_status_ignore(result);
|
||||
return -1;
|
||||
}
|
||||
iree_status_ignore(result);
|
||||
return 0;
|
||||
}
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 261 B |
@@ -1,116 +0,0 @@
|
||||
# Copyright 2022 The IREE Authors
|
||||
#
|
||||
# Licensed under the Apache License v2.0 with LLVM Exceptions.
|
||||
# See https://llvm.org/LICENSE.txt for license information.
|
||||
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
|
||||
if(NOT IREE_TARGET_BACKEND_VULKAN_SPIRV OR
|
||||
NOT IREE_HAL_DRIVER_VULKAN)
|
||||
message(STATUS "Missing Vulkan backend and/or driver, skipping vulkan_gui sample")
|
||||
return()
|
||||
endif()
|
||||
|
||||
# This target statically links against Vulkan.
|
||||
# One way to achieve this is by installing the Vulkan SDK from
|
||||
# https://vulkan.lunarg.com/.
|
||||
include(FindVulkan)
|
||||
if(NOT Vulkan_FOUND)
|
||||
message(STATUS "Could not find Vulkan, skipping vulkan_gui sample")
|
||||
return()
|
||||
endif()
|
||||
|
||||
# vcpkg install sdl2[vulkan]
|
||||
# tested with versions 2.0.14#4 - 2.0.22#1
|
||||
find_package(SDL2)
|
||||
if(NOT SDL2_FOUND)
|
||||
message(STATUS "Could not find SDL2, skipping vulkan_gui sample")
|
||||
return()
|
||||
endif()
|
||||
|
||||
FetchContent_Declare(
|
||||
imgui
|
||||
GIT_REPOSITORY https://github.com/ocornut/imgui
|
||||
GIT_TAG master
|
||||
)
|
||||
|
||||
FetchContent_MakeAvailable(imgui)
|
||||
|
||||
# Dear ImGui
|
||||
set(IMGUI_DIR ${CMAKE_BINARY_DIR}/_deps/imgui-src)
|
||||
message("Looking for Imgui in ${IMGUI_DIR}")
|
||||
include_directories(${IMGUI_DIR} ${IMGUI_DIR}/backends ..)
|
||||
|
||||
|
||||
function(iree_vulkan_sample)
|
||||
|
||||
cmake_parse_arguments(
|
||||
_RULE
|
||||
""
|
||||
"NAME"
|
||||
"SRCS"
|
||||
${ARGN}
|
||||
)
|
||||
|
||||
|
||||
# Define the sample executable.
|
||||
set(_NAME "${_RULE_NAME}")
|
||||
set(SRCS "${_RULE_SRCS}")
|
||||
add_executable(${_NAME} "")
|
||||
target_sources(${_NAME}
|
||||
PRIVATE
|
||||
${SRCS}
|
||||
"${IMGUI_DIR}/backends/imgui_impl_sdl.cpp"
|
||||
"${IMGUI_DIR}/backends/imgui_impl_vulkan.cpp"
|
||||
"${IMGUI_DIR}/imgui.cpp"
|
||||
"${IMGUI_DIR}/imgui_draw.cpp"
|
||||
"${IMGUI_DIR}/imgui_demo.cpp"
|
||||
"${IMGUI_DIR}/imgui_tables.cpp"
|
||||
"${IMGUI_DIR}/imgui_widgets.cpp"
|
||||
)
|
||||
set_target_properties(${_NAME} PROPERTIES OUTPUT_NAME "${_NAME}")
|
||||
target_include_directories(${_NAME} PUBLIC
|
||||
$<BUILD_INTERFACE:${CMAKE_CURRENT_BINARY_DIR}>
|
||||
)
|
||||
target_link_libraries(${_NAME}
|
||||
SDL2::SDL2
|
||||
Vulkan::Vulkan
|
||||
iree_runtime_runtime
|
||||
iree_base_internal_main
|
||||
iree_hal_drivers_vulkan_registration_registration
|
||||
iree_modules_hal_hal
|
||||
iree_vm_vm
|
||||
iree_vm_bytecode_module
|
||||
iree_vm_cc
|
||||
iree_tooling_vm_util_cc
|
||||
iree_tooling_context_util
|
||||
)
|
||||
|
||||
if(${CMAKE_SYSTEM_NAME} STREQUAL "Windows")
|
||||
set(_GUI_LINKOPTS "-SUBSYSTEM:CONSOLE")
|
||||
else()
|
||||
set(_GUI_LINKOPTS "")
|
||||
endif()
|
||||
|
||||
target_link_options(${_NAME}
|
||||
PRIVATE
|
||||
${_GUI_LINKOPTS}
|
||||
)
|
||||
endfunction()
|
||||
|
||||
iree_vulkan_sample(
|
||||
NAME
|
||||
iree-samples-resnet-vulkan-gui
|
||||
|
||||
SRCS
|
||||
vulkan_resnet_inference_gui.cc
|
||||
)
|
||||
|
||||
iree_vulkan_sample(
|
||||
NAME
|
||||
iree-vulkan-gui
|
||||
|
||||
SRCS
|
||||
vulkan_inference_gui.cc
|
||||
)
|
||||
|
||||
message(STATUS "Configured vulkan_gui sample successfully")
|
||||
@@ -1,4 +0,0 @@
|
||||
func.func @simple_mul(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> {
|
||||
%0 = "arith.mulf"(%arg0, %arg1) : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32>
|
||||
return %0 : tensor<4xf32>
|
||||
}
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 14 KiB |
File diff suppressed because it is too large
Load Diff
@@ -1,957 +0,0 @@
|
||||
// Copyright 2019 The IREE Authors
|
||||
//
|
||||
// Licensed under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
|
||||
// Vulkan Graphics + IREE API Integration Sample.
|
||||
|
||||
#include <SDL.h>
|
||||
#include <SDL_vulkan.h>
|
||||
#include <imgui.h>
|
||||
#include <imgui_impl_sdl.h>
|
||||
#include <imgui_impl_vulkan.h>
|
||||
#include <vulkan/vulkan.h>
|
||||
|
||||
|
||||
#include <cstring>
|
||||
#include <set>
|
||||
#include <vector>
|
||||
#include <fstream>
|
||||
#include <array>
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <iterator>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
|
||||
#include "iree/hal/drivers/vulkan/api.h"
|
||||
|
||||
// IREE's C API:
|
||||
#include "iree/base/api.h"
|
||||
#include "iree/hal/api.h"
|
||||
#include "iree/hal/drivers/vulkan/registration/driver_module.h"
|
||||
#include "iree/modules/hal/module.h"
|
||||
#include "iree/vm/api.h"
|
||||
#include "iree/vm/bytecode_module.h"
|
||||
#include "iree/vm/ref_cc.h"
|
||||
|
||||
// iree-run-module
|
||||
#include "iree/base/internal/flags.h"
|
||||
#include "iree/base/status_cc.h"
|
||||
#include "iree/base/tracing.h"
|
||||
#include "iree/modules/hal/types.h"
|
||||
#include "iree/tooling/comparison.h"
|
||||
#include "iree/tooling/context_util.h"
|
||||
#include "iree/tooling/vm_util_cc.h"
|
||||
|
||||
// Other dependencies (helpers, etc.)
|
||||
#include "iree/base/internal/main.h"
|
||||
|
||||
#define IMGUI_UNLIMITED_FRAME_RATE
|
||||
|
||||
#define STB_IMAGE_IMPLEMENTATION
|
||||
#include "stb_image.h"
|
||||
|
||||
IREE_FLAG(string, entry_function, "",
|
||||
"Name of a function contained in the module specified by module_file "
|
||||
"to run.");
|
||||
|
||||
// TODO(benvanik): move --function_input= flag into a util.
|
||||
static iree_status_t parse_function_io(iree_string_view_t flag_name,
|
||||
void* storage,
|
||||
iree_string_view_t value) {
|
||||
auto* list = (std::vector<std::string>*)storage;
|
||||
list->push_back(std::string(value.data, value.size));
|
||||
return iree_ok_status();
|
||||
}
|
||||
static void print_function_io(iree_string_view_t flag_name, void* storage,
|
||||
FILE* file) {
|
||||
auto* list = (std::vector<std::string>*)storage;
|
||||
if (list->empty()) {
|
||||
fprintf(file, "# --%.*s=\n", (int)flag_name.size, flag_name.data);
|
||||
} else {
|
||||
for (size_t i = 0; i < list->size(); ++i) {
|
||||
fprintf(file, "--%.*s=\"%s\"\n", (int)flag_name.size, flag_name.data,
|
||||
list->at(i).c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
static std::vector<std::string> FLAG_function_inputs;
|
||||
IREE_FLAG_CALLBACK(
|
||||
parse_function_io, print_function_io, &FLAG_function_inputs, function_input,
|
||||
"An input (a) value or (b) buffer of the format:\n"
|
||||
" (a) scalar value\n"
|
||||
" value\n"
|
||||
" e.g.: --function_input=\"3.14\"\n"
|
||||
" (b) buffer:\n"
|
||||
" [shape]xtype=[value]\n"
|
||||
" e.g.: --function_input=\"2x2xi32=1 2 3 4\"\n"
|
||||
"Optionally, brackets may be used to separate the element values:\n"
|
||||
" 2x2xi32=[[1 2][3 4]]\n"
|
||||
"Raw binary files can be read to provide buffer contents:\n"
|
||||
" 2x2xi32=@some/file.bin\n"
|
||||
"numpy npy files (from numpy.save) can be read to provide 1+ values:\n"
|
||||
" @some.npy\n"
|
||||
"Each occurrence of the flag indicates an input in the order they were\n"
|
||||
"specified on the command line.");
|
||||
|
||||
typedef struct iree_file_toc_t {
|
||||
const char* name; // the file's original name
|
||||
char* data; // beginning of the file
|
||||
size_t size; // length of the file
|
||||
} iree_file_toc_t;
|
||||
|
||||
bool load_file(const char* filename, char** pOut, size_t* pSize)
|
||||
{
|
||||
FILE* f = fopen(filename, "rb");
|
||||
if (f == NULL)
|
||||
{
|
||||
fprintf(stderr, "Can't open %s\n", filename);
|
||||
return false;
|
||||
}
|
||||
|
||||
fseek(f, 0L, SEEK_END);
|
||||
*pSize = ftell(f);
|
||||
fseek(f, 0L, SEEK_SET);
|
||||
|
||||
*pOut = (char*)malloc(*pSize);
|
||||
|
||||
size_t size = fread(*pOut, *pSize, 1, f);
|
||||
|
||||
fclose(f);
|
||||
|
||||
return size != 0;
|
||||
}
|
||||
|
||||
static VkAllocationCallbacks* g_Allocator = NULL;
|
||||
static VkInstance g_Instance = VK_NULL_HANDLE;
|
||||
static VkPhysicalDevice g_PhysicalDevice = VK_NULL_HANDLE;
|
||||
static VkDevice g_Device = VK_NULL_HANDLE;
|
||||
static uint32_t g_QueueFamily = (uint32_t)-1;
|
||||
static VkQueue g_Queue = VK_NULL_HANDLE;
|
||||
static VkPipelineCache g_PipelineCache = VK_NULL_HANDLE;
|
||||
static VkDescriptorPool g_DescriptorPool = VK_NULL_HANDLE;
|
||||
|
||||
static ImGui_ImplVulkanH_Window g_MainWindowData;
|
||||
static uint32_t g_MinImageCount = 2;
|
||||
static bool g_SwapChainRebuild = false;
|
||||
static int g_SwapChainResizeWidth = 0;
|
||||
static int g_SwapChainResizeHeight = 0;
|
||||
|
||||
static void check_vk_result(VkResult err) {
|
||||
if (err == 0) return;
|
||||
fprintf(stderr, "VkResult: %d\n", err);
|
||||
abort();
|
||||
}
|
||||
|
||||
// Returns the names of the Vulkan layers used for the given IREE
|
||||
// |extensibility_set| and |features|.
|
||||
std::vector<const char*> GetIreeLayers(
|
||||
iree_hal_vulkan_extensibility_set_t extensibility_set,
|
||||
iree_hal_vulkan_features_t features) {
|
||||
iree_host_size_t required_count;
|
||||
iree_hal_vulkan_query_extensibility_set(
|
||||
features, extensibility_set, /*string_capacity=*/0, &required_count,
|
||||
/*out_string_values=*/NULL);
|
||||
std::vector<const char*> layers(required_count);
|
||||
iree_hal_vulkan_query_extensibility_set(features, extensibility_set,
|
||||
layers.size(), &required_count,
|
||||
layers.data());
|
||||
return layers;
|
||||
}
|
||||
|
||||
// Returns the names of the Vulkan extensions used for the given IREE
|
||||
// |extensibility_set| and |features|.
|
||||
std::vector<const char*> GetIreeExtensions(
|
||||
iree_hal_vulkan_extensibility_set_t extensibility_set,
|
||||
iree_hal_vulkan_features_t features) {
|
||||
iree_host_size_t required_count;
|
||||
iree_hal_vulkan_query_extensibility_set(
|
||||
features, extensibility_set, /*string_capacity=*/0, &required_count,
|
||||
/*out_string_values=*/NULL);
|
||||
std::vector<const char*> extensions(required_count);
|
||||
iree_hal_vulkan_query_extensibility_set(features, extensibility_set,
|
||||
extensions.size(), &required_count,
|
||||
extensions.data());
|
||||
return extensions;
|
||||
}
|
||||
|
||||
// Returns the names of the Vulkan extensions used for the given IREE
|
||||
// |vulkan_features|.
|
||||
std::vector<const char*> GetDeviceExtensions(
|
||||
VkPhysicalDevice physical_device,
|
||||
iree_hal_vulkan_features_t vulkan_features) {
|
||||
std::vector<const char*> iree_required_extensions = GetIreeExtensions(
|
||||
IREE_HAL_VULKAN_EXTENSIBILITY_DEVICE_EXTENSIONS_REQUIRED,
|
||||
vulkan_features);
|
||||
std::vector<const char*> iree_optional_extensions = GetIreeExtensions(
|
||||
IREE_HAL_VULKAN_EXTENSIBILITY_DEVICE_EXTENSIONS_OPTIONAL,
|
||||
vulkan_features);
|
||||
|
||||
uint32_t extension_count = 0;
|
||||
check_vk_result(vkEnumerateDeviceExtensionProperties(
|
||||
physical_device, nullptr, &extension_count, nullptr));
|
||||
std::vector<VkExtensionProperties> extension_properties(extension_count);
|
||||
check_vk_result(vkEnumerateDeviceExtensionProperties(
|
||||
physical_device, nullptr, &extension_count, extension_properties.data()));
|
||||
|
||||
// Merge extensions lists, including optional and required for simplicity.
|
||||
std::set<const char*> ext_set;
|
||||
ext_set.insert("VK_KHR_swapchain");
|
||||
ext_set.insert(iree_required_extensions.begin(),
|
||||
iree_required_extensions.end());
|
||||
for (int i = 0; i < iree_optional_extensions.size(); ++i) {
|
||||
const char* optional_extension = iree_optional_extensions[i];
|
||||
for (int j = 0; j < extension_count; ++j) {
|
||||
if (strcmp(optional_extension, extension_properties[j].extensionName) ==
|
||||
0) {
|
||||
ext_set.insert(optional_extension);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
std::vector<const char*> extensions(ext_set.begin(), ext_set.end());
|
||||
return extensions;
|
||||
}
|
||||
|
||||
std::vector<const char*> GetInstanceLayers(
|
||||
iree_hal_vulkan_features_t vulkan_features) {
|
||||
// Query the layers that IREE wants / needs.
|
||||
std::vector<const char*> required_layers = GetIreeLayers(
|
||||
IREE_HAL_VULKAN_EXTENSIBILITY_INSTANCE_LAYERS_REQUIRED, vulkan_features);
|
||||
std::vector<const char*> optional_layers = GetIreeLayers(
|
||||
IREE_HAL_VULKAN_EXTENSIBILITY_INSTANCE_LAYERS_OPTIONAL, vulkan_features);
|
||||
|
||||
// Query the layers that are available on the Vulkan ICD.
|
||||
uint32_t layer_property_count = 0;
|
||||
check_vk_result(
|
||||
vkEnumerateInstanceLayerProperties(&layer_property_count, NULL));
|
||||
std::vector<VkLayerProperties> layer_properties(layer_property_count);
|
||||
check_vk_result(vkEnumerateInstanceLayerProperties(&layer_property_count,
|
||||
layer_properties.data()));
|
||||
|
||||
// Match between optional/required and available layers.
|
||||
std::vector<const char*> layers;
|
||||
for (const char* layer_name : required_layers) {
|
||||
bool found = false;
|
||||
for (const auto& layer_property : layer_properties) {
|
||||
if (std::strcmp(layer_name, layer_property.layerName) == 0) {
|
||||
found = true;
|
||||
layers.push_back(layer_name);
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!found) {
|
||||
fprintf(stderr, "Required layer %s not available\n", layer_name);
|
||||
abort();
|
||||
}
|
||||
}
|
||||
for (const char* layer_name : optional_layers) {
|
||||
for (const auto& layer_property : layer_properties) {
|
||||
if (std::strcmp(layer_name, layer_property.layerName) == 0) {
|
||||
layers.push_back(layer_name);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return layers;
|
||||
}
|
||||
|
||||
std::vector<const char*> GetInstanceExtensions(
|
||||
SDL_Window* window, iree_hal_vulkan_features_t vulkan_features) {
|
||||
// Ask SDL for its list of required instance extensions.
|
||||
uint32_t sdl_extensions_count = 0;
|
||||
SDL_Vulkan_GetInstanceExtensions(window, &sdl_extensions_count, NULL);
|
||||
std::vector<const char*> sdl_extensions(sdl_extensions_count);
|
||||
SDL_Vulkan_GetInstanceExtensions(window, &sdl_extensions_count,
|
||||
sdl_extensions.data());
|
||||
|
||||
std::vector<const char*> iree_required_extensions = GetIreeExtensions(
|
||||
IREE_HAL_VULKAN_EXTENSIBILITY_INSTANCE_EXTENSIONS_REQUIRED,
|
||||
vulkan_features);
|
||||
std::vector<const char*> iree_optional_extensions = GetIreeExtensions(
|
||||
IREE_HAL_VULKAN_EXTENSIBILITY_INSTANCE_EXTENSIONS_OPTIONAL,
|
||||
vulkan_features);
|
||||
|
||||
// Merge extensions lists, including optional and required for simplicity.
|
||||
std::set<const char*> ext_set;
|
||||
ext_set.insert(sdl_extensions.begin(), sdl_extensions.end());
|
||||
ext_set.insert(iree_required_extensions.begin(),
|
||||
iree_required_extensions.end());
|
||||
ext_set.insert(iree_optional_extensions.begin(),
|
||||
iree_optional_extensions.end());
|
||||
std::vector<const char*> extensions(ext_set.begin(), ext_set.end());
|
||||
return extensions;
|
||||
}
|
||||
|
||||
void SetupVulkan(iree_hal_vulkan_features_t vulkan_features,
|
||||
const char** instance_layers, uint32_t instance_layers_count,
|
||||
const char** instance_extensions,
|
||||
uint32_t instance_extensions_count,
|
||||
const VkAllocationCallbacks* allocator, VkInstance* instance,
|
||||
uint32_t* queue_family_index,
|
||||
VkPhysicalDevice* physical_device, VkQueue* queue,
|
||||
VkDevice* device, VkDescriptorPool* descriptor_pool) {
|
||||
VkResult err;
|
||||
|
||||
// Create Vulkan Instance
|
||||
{
|
||||
VkInstanceCreateInfo create_info = {};
|
||||
create_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
|
||||
create_info.enabledLayerCount = instance_layers_count;
|
||||
create_info.ppEnabledLayerNames = instance_layers;
|
||||
create_info.enabledExtensionCount = instance_extensions_count;
|
||||
create_info.ppEnabledExtensionNames = instance_extensions;
|
||||
err = vkCreateInstance(&create_info, allocator, instance);
|
||||
check_vk_result(err);
|
||||
}
|
||||
|
||||
// Select GPU
|
||||
{
|
||||
uint32_t gpu_count;
|
||||
err = vkEnumeratePhysicalDevices(*instance, &gpu_count, NULL);
|
||||
check_vk_result(err);
|
||||
IM_ASSERT(gpu_count > 0);
|
||||
|
||||
VkPhysicalDevice* gpus =
|
||||
(VkPhysicalDevice*)malloc(sizeof(VkPhysicalDevice) * gpu_count);
|
||||
err = vkEnumeratePhysicalDevices(*instance, &gpu_count, gpus);
|
||||
check_vk_result(err);
|
||||
|
||||
// Use the first reported GPU for simplicity.
|
||||
*physical_device = gpus[0];
|
||||
|
||||
VkPhysicalDeviceProperties properties;
|
||||
vkGetPhysicalDeviceProperties(*physical_device, &properties);
|
||||
fprintf(stdout, "Selected Vulkan device: '%s'\n", properties.deviceName);
|
||||
free(gpus);
|
||||
}
|
||||
|
||||
// Select queue family. We want a single queue with graphics and compute for
|
||||
// simplicity, but we could also discover and use separate queues for each.
|
||||
{
|
||||
uint32_t count;
|
||||
vkGetPhysicalDeviceQueueFamilyProperties(*physical_device, &count, NULL);
|
||||
VkQueueFamilyProperties* queues = (VkQueueFamilyProperties*)malloc(
|
||||
sizeof(VkQueueFamilyProperties) * count);
|
||||
vkGetPhysicalDeviceQueueFamilyProperties(*physical_device, &count, queues);
|
||||
for (uint32_t i = 0; i < count; i++) {
|
||||
if (queues[i].queueFlags &
|
||||
(VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT)) {
|
||||
*queue_family_index = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
free(queues);
|
||||
IM_ASSERT(*queue_family_index != (uint32_t)-1);
|
||||
}
|
||||
|
||||
// Create Logical Device (with 1 queue)
|
||||
{
|
||||
std::vector<const char*> device_extensions =
|
||||
GetDeviceExtensions(*physical_device, vulkan_features);
|
||||
const float queue_priority[] = {1.0f};
|
||||
VkDeviceQueueCreateInfo queue_info = {};
|
||||
queue_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
|
||||
queue_info.queueFamilyIndex = *queue_family_index;
|
||||
queue_info.queueCount = 1;
|
||||
queue_info.pQueuePriorities = queue_priority;
|
||||
VkDeviceCreateInfo create_info = {};
|
||||
create_info.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
|
||||
create_info.queueCreateInfoCount = 1;
|
||||
create_info.pQueueCreateInfos = &queue_info;
|
||||
create_info.enabledExtensionCount =
|
||||
static_cast<uint32_t>(device_extensions.size());
|
||||
create_info.ppEnabledExtensionNames = device_extensions.data();
|
||||
|
||||
// Enable timeline semaphores.
|
||||
VkPhysicalDeviceFeatures2 features2;
|
||||
memset(&features2, 0, sizeof(features2));
|
||||
features2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
|
||||
create_info.pNext = &features2;
|
||||
VkPhysicalDeviceTimelineSemaphoreFeatures semaphore_features;
|
||||
memset(&semaphore_features, 0, sizeof(semaphore_features));
|
||||
semaphore_features.sType =
|
||||
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES;
|
||||
semaphore_features.pNext = features2.pNext;
|
||||
features2.pNext = &semaphore_features;
|
||||
semaphore_features.timelineSemaphore = VK_TRUE;
|
||||
|
||||
err = vkCreateDevice(*physical_device, &create_info, allocator, device);
|
||||
check_vk_result(err);
|
||||
vkGetDeviceQueue(*device, *queue_family_index, 0, queue);
|
||||
}
|
||||
|
||||
// Create Descriptor Pool
|
||||
{
|
||||
VkDescriptorPoolSize pool_sizes[] = {
|
||||
{VK_DESCRIPTOR_TYPE_SAMPLER, 1000},
|
||||
{VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1000},
|
||||
{VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, 1000},
|
||||
{VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1000},
|
||||
{VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, 1000},
|
||||
{VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, 1000},
|
||||
{VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1000},
|
||||
{VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1000},
|
||||
{VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1000},
|
||||
{VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, 1000},
|
||||
{VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 1000}};
|
||||
VkDescriptorPoolCreateInfo pool_info = {};
|
||||
pool_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
|
||||
pool_info.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT;
|
||||
pool_info.maxSets = 1000 * IREE_ARRAYSIZE(pool_sizes);
|
||||
pool_info.poolSizeCount = (uint32_t)IREE_ARRAYSIZE(pool_sizes);
|
||||
pool_info.pPoolSizes = pool_sizes;
|
||||
err =
|
||||
vkCreateDescriptorPool(*device, &pool_info, allocator, descriptor_pool);
|
||||
check_vk_result(err);
|
||||
}
|
||||
}
|
||||
|
||||
void SetupVulkanWindow(ImGui_ImplVulkanH_Window* wd,
|
||||
const VkAllocationCallbacks* allocator,
|
||||
VkInstance instance, uint32_t queue_family_index,
|
||||
VkPhysicalDevice physical_device, VkDevice device,
|
||||
VkSurfaceKHR surface, int width, int height,
|
||||
uint32_t min_image_count) {
|
||||
wd->Surface = surface;
|
||||
|
||||
// Check for WSI support
|
||||
VkBool32 res;
|
||||
vkGetPhysicalDeviceSurfaceSupportKHR(physical_device, queue_family_index,
|
||||
wd->Surface, &res);
|
||||
if (res != VK_TRUE) {
|
||||
fprintf(stderr, "Error no WSI support on physical device 0\n");
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
// Select Surface Format
|
||||
const VkFormat requestSurfaceImageFormat[] = {
|
||||
VK_FORMAT_B8G8R8A8_UNORM, VK_FORMAT_R8G8B8A8_UNORM,
|
||||
VK_FORMAT_B8G8R8_UNORM, VK_FORMAT_R8G8B8_UNORM};
|
||||
const VkColorSpaceKHR requestSurfaceColorSpace =
|
||||
VK_COLORSPACE_SRGB_NONLINEAR_KHR;
|
||||
wd->SurfaceFormat = ImGui_ImplVulkanH_SelectSurfaceFormat(
|
||||
physical_device, wd->Surface, requestSurfaceImageFormat,
|
||||
(size_t)IREE_ARRAYSIZE(requestSurfaceImageFormat),
|
||||
requestSurfaceColorSpace);
|
||||
|
||||
// Select Present Mode
|
||||
#ifdef IMGUI_UNLIMITED_FRAME_RATE
|
||||
VkPresentModeKHR present_modes[] = {VK_PRESENT_MODE_MAILBOX_KHR,
|
||||
VK_PRESENT_MODE_IMMEDIATE_KHR,
|
||||
VK_PRESENT_MODE_FIFO_KHR};
|
||||
#else
|
||||
VkPresentModeKHR present_modes[] = {VK_PRESENT_MODE_FIFO_KHR};
|
||||
#endif
|
||||
wd->PresentMode = ImGui_ImplVulkanH_SelectPresentMode(
|
||||
physical_device, wd->Surface, &present_modes[0],
|
||||
IREE_ARRAYSIZE(present_modes));
|
||||
|
||||
// Create SwapChain, RenderPass, Framebuffer, etc.
|
||||
IM_ASSERT(min_image_count >= 2);
|
||||
ImGui_ImplVulkanH_CreateOrResizeWindow(instance, physical_device, device, wd,
|
||||
queue_family_index, allocator, width,
|
||||
height, min_image_count);
|
||||
|
||||
// Set clear color.
|
||||
ImVec4 clear_color = ImVec4(0.45f, 0.55f, 0.60f, 1.00f);
|
||||
memcpy(&wd->ClearValue.color.float32[0], &clear_color, 4 * sizeof(float));
|
||||
}
|
||||
|
||||
void RenderFrame(ImGui_ImplVulkanH_Window* wd, VkDevice device, VkQueue queue) {
|
||||
VkResult err;
|
||||
|
||||
VkSemaphore image_acquired_semaphore =
|
||||
wd->FrameSemaphores[wd->SemaphoreIndex].ImageAcquiredSemaphore;
|
||||
VkSemaphore render_complete_semaphore =
|
||||
wd->FrameSemaphores[wd->SemaphoreIndex].RenderCompleteSemaphore;
|
||||
err = vkAcquireNextImageKHR(device, wd->Swapchain, UINT64_MAX,
|
||||
image_acquired_semaphore, VK_NULL_HANDLE,
|
||||
&wd->FrameIndex);
|
||||
check_vk_result(err);
|
||||
|
||||
ImGui_ImplVulkanH_Frame* fd = &wd->Frames[wd->FrameIndex];
|
||||
{
|
||||
err = vkWaitForFences(
|
||||
device, 1, &fd->Fence, VK_TRUE,
|
||||
UINT64_MAX); // wait indefinitely instead of periodically checking
|
||||
check_vk_result(err);
|
||||
|
||||
err = vkResetFences(device, 1, &fd->Fence);
|
||||
check_vk_result(err);
|
||||
}
|
||||
{
|
||||
err = vkResetCommandPool(device, fd->CommandPool, 0);
|
||||
check_vk_result(err);
|
||||
VkCommandBufferBeginInfo info = {};
|
||||
info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
|
||||
info.flags |= VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
|
||||
err = vkBeginCommandBuffer(fd->CommandBuffer, &info);
|
||||
check_vk_result(err);
|
||||
}
|
||||
{
|
||||
VkRenderPassBeginInfo info = {};
|
||||
info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
|
||||
info.renderPass = wd->RenderPass;
|
||||
info.framebuffer = fd->Framebuffer;
|
||||
info.renderArea.extent.width = wd->Width;
|
||||
info.renderArea.extent.height = wd->Height;
|
||||
info.clearValueCount = 1;
|
||||
info.pClearValues = &wd->ClearValue;
|
||||
vkCmdBeginRenderPass(fd->CommandBuffer, &info, VK_SUBPASS_CONTENTS_INLINE);
|
||||
}
|
||||
|
||||
// Record Imgui Draw Data and draw funcs into command buffer
|
||||
ImGui_ImplVulkan_RenderDrawData(ImGui::GetDrawData(), fd->CommandBuffer);
|
||||
|
||||
// Submit command buffer
|
||||
vkCmdEndRenderPass(fd->CommandBuffer);
|
||||
{
|
||||
VkPipelineStageFlags wait_stage =
|
||||
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
|
||||
VkSubmitInfo info = {};
|
||||
info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
||||
info.waitSemaphoreCount = 1;
|
||||
info.pWaitSemaphores = &image_acquired_semaphore;
|
||||
info.pWaitDstStageMask = &wait_stage;
|
||||
info.commandBufferCount = 1;
|
||||
info.pCommandBuffers = &fd->CommandBuffer;
|
||||
info.signalSemaphoreCount = 1;
|
||||
info.pSignalSemaphores = &render_complete_semaphore;
|
||||
|
||||
err = vkEndCommandBuffer(fd->CommandBuffer);
|
||||
check_vk_result(err);
|
||||
err = vkQueueSubmit(queue, 1, &info, fd->Fence);
|
||||
check_vk_result(err);
|
||||
}
|
||||
}
|
||||
|
||||
void PresentFrame(ImGui_ImplVulkanH_Window* wd, VkQueue queue) {
|
||||
VkSemaphore render_complete_semaphore =
|
||||
wd->FrameSemaphores[wd->SemaphoreIndex].RenderCompleteSemaphore;
|
||||
VkPresentInfoKHR info = {};
|
||||
info.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
|
||||
info.waitSemaphoreCount = 1;
|
||||
info.pWaitSemaphores = &render_complete_semaphore;
|
||||
info.swapchainCount = 1;
|
||||
info.pSwapchains = &wd->Swapchain;
|
||||
info.pImageIndices = &wd->FrameIndex;
|
||||
VkResult err = vkQueuePresentKHR(queue, &info);
|
||||
check_vk_result(err);
|
||||
wd->SemaphoreIndex =
|
||||
(wd->SemaphoreIndex + 1) %
|
||||
wd->ImageCount; // Now we can use the next set of semaphores
|
||||
}
|
||||
|
||||
static void CleanupVulkan() {
|
||||
vkDestroyDescriptorPool(g_Device, g_DescriptorPool, g_Allocator);
|
||||
|
||||
vkDestroyDevice(g_Device, g_Allocator);
|
||||
vkDestroyInstance(g_Instance, g_Allocator);
|
||||
}
|
||||
|
||||
static void CleanupVulkanWindow() {
|
||||
ImGui_ImplVulkanH_DestroyWindow(g_Instance, g_Device, &g_MainWindowData,
|
||||
g_Allocator);
|
||||
}
|
||||
|
||||
namespace iree {
|
||||
|
||||
extern "C" int iree_main(int argc, char** argv) {
|
||||
|
||||
iree_flags_parse_checked(IREE_FLAGS_PARSE_MODE_DEFAULT, &argc, &argv);
|
||||
if (argc > 1) {
|
||||
// Avoid iree-run-module spinning endlessly on stdin if the user uses single
|
||||
// dashes for flags.
|
||||
printf(
|
||||
"[ERROR] unexpected positional argument (expected none)."
|
||||
" Did you use pass a flag with a single dash ('-')?"
|
||||
" Use '--' instead.\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Create a window.
|
||||
if (SDL_Init(SDL_INIT_VIDEO | SDL_INIT_TIMER) != 0) {
|
||||
fprintf(stderr, "Failed to initialize SDL\n");
|
||||
abort();
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Setup window
|
||||
// clang-format off
|
||||
SDL_WindowFlags window_flags = (SDL_WindowFlags)(
|
||||
SDL_WINDOW_VULKAN | SDL_WINDOW_RESIZABLE | SDL_WINDOW_ALLOW_HIGHDPI);
|
||||
// clang-format on
|
||||
SDL_Window* window = SDL_CreateWindow(
|
||||
"IREE Samples - Vulkan Inference GUI", SDL_WINDOWPOS_CENTERED,
|
||||
SDL_WINDOWPOS_CENTERED, 1280, 720, window_flags);
|
||||
if (window == nullptr)
|
||||
{
|
||||
const char* sdl_err = SDL_GetError();
|
||||
fprintf(stderr, "Error, SDL_CreateWindow returned: %s\n", sdl_err);
|
||||
abort();
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Setup Vulkan
|
||||
iree_hal_vulkan_features_t iree_vulkan_features =
|
||||
static_cast<iree_hal_vulkan_features_t>(
|
||||
IREE_HAL_VULKAN_FEATURE_ENABLE_VALIDATION_LAYERS |
|
||||
IREE_HAL_VULKAN_FEATURE_ENABLE_DEBUG_UTILS);
|
||||
std::vector<const char*> layers = GetInstanceLayers(iree_vulkan_features);
|
||||
std::vector<const char*> extensions =
|
||||
GetInstanceExtensions(window, iree_vulkan_features);
|
||||
SetupVulkan(iree_vulkan_features, layers.data(),
|
||||
static_cast<uint32_t>(layers.size()), extensions.data(),
|
||||
static_cast<uint32_t>(extensions.size()), g_Allocator,
|
||||
&g_Instance, &g_QueueFamily, &g_PhysicalDevice, &g_Queue,
|
||||
&g_Device, &g_DescriptorPool);
|
||||
|
||||
// Create Window Surface
|
||||
VkSurfaceKHR surface;
|
||||
VkResult err;
|
||||
if (SDL_Vulkan_CreateSurface(window, g_Instance, &surface) == 0) {
|
||||
fprintf(stderr, "Failed to create Vulkan surface.\n");
|
||||
abort();
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Create Framebuffers
|
||||
int w, h;
|
||||
SDL_GetWindowSize(window, &w, &h);
|
||||
ImGui_ImplVulkanH_Window* wd = &g_MainWindowData;
|
||||
SetupVulkanWindow(wd, g_Allocator, g_Instance, g_QueueFamily,
|
||||
g_PhysicalDevice, g_Device, surface, w, h, g_MinImageCount);
|
||||
|
||||
// Setup Dear ImGui context
|
||||
IMGUI_CHECKVERSION();
|
||||
ImGui::CreateContext();
|
||||
ImGuiIO& io = ImGui::GetIO();
|
||||
(void)io;
|
||||
|
||||
ImGui::StyleColorsDark();
|
||||
|
||||
// Setup Platform/Renderer bindings
|
||||
ImGui_ImplSDL2_InitForVulkan(window);
|
||||
ImGui_ImplVulkan_InitInfo init_info = {};
|
||||
init_info.Instance = g_Instance;
|
||||
init_info.PhysicalDevice = g_PhysicalDevice;
|
||||
init_info.Device = g_Device;
|
||||
init_info.QueueFamily = g_QueueFamily;
|
||||
init_info.Queue = g_Queue;
|
||||
init_info.PipelineCache = g_PipelineCache;
|
||||
init_info.DescriptorPool = g_DescriptorPool;
|
||||
init_info.Allocator = g_Allocator;
|
||||
init_info.MinImageCount = g_MinImageCount;
|
||||
init_info.ImageCount = wd->ImageCount;
|
||||
init_info.CheckVkResultFn = check_vk_result;
|
||||
ImGui_ImplVulkan_Init(&init_info, wd->RenderPass);
|
||||
|
||||
// Upload Fonts
|
||||
{
|
||||
// Use any command queue
|
||||
VkCommandPool command_pool = wd->Frames[wd->FrameIndex].CommandPool;
|
||||
VkCommandBuffer command_buffer = wd->Frames[wd->FrameIndex].CommandBuffer;
|
||||
|
||||
err = vkResetCommandPool(g_Device, command_pool, 0);
|
||||
check_vk_result(err);
|
||||
VkCommandBufferBeginInfo begin_info = {};
|
||||
begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
|
||||
begin_info.flags |= VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
|
||||
err = vkBeginCommandBuffer(command_buffer, &begin_info);
|
||||
check_vk_result(err);
|
||||
|
||||
ImGui_ImplVulkan_CreateFontsTexture(command_buffer);
|
||||
|
||||
VkSubmitInfo end_info = {};
|
||||
end_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
|
||||
end_info.commandBufferCount = 1;
|
||||
end_info.pCommandBuffers = &command_buffer;
|
||||
err = vkEndCommandBuffer(command_buffer);
|
||||
check_vk_result(err);
|
||||
err = vkQueueSubmit(g_Queue, 1, &end_info, VK_NULL_HANDLE);
|
||||
check_vk_result(err);
|
||||
|
||||
err = vkDeviceWaitIdle(g_Device);
|
||||
check_vk_result(err);
|
||||
ImGui_ImplVulkan_DestroyFontUploadObjects();
|
||||
}
|
||||
|
||||
// Demo state.
|
||||
bool show_iree_window = true;
|
||||
// --------------------------------------------------------------------------
|
||||
// Setup IREE.
|
||||
|
||||
// Check API version.
|
||||
iree_api_version_t actual_version;
|
||||
iree_status_t status =
|
||||
iree_api_version_check(IREE_API_VERSION_LATEST, &actual_version);
|
||||
if (iree_status_is_ok(status)) {
|
||||
fprintf(stdout, "IREE runtime API version: %d\n", actual_version);
|
||||
} else {
|
||||
fprintf(stderr, "Unsupported runtime API version: %d\n", actual_version);
|
||||
abort();
|
||||
}
|
||||
|
||||
// Create a runtime Instance.
|
||||
iree_vm_instance_t* iree_instance = nullptr;
|
||||
IREE_CHECK_OK(
|
||||
iree_vm_instance_create(iree_allocator_system(), &iree_instance));
|
||||
|
||||
// Register HAL drivers and VM module types.
|
||||
IREE_CHECK_OK(iree_hal_vulkan_driver_module_register(
|
||||
iree_hal_driver_registry_default()));
|
||||
IREE_CHECK_OK(iree_hal_module_register_all_types(iree_instance));
|
||||
|
||||
// Create IREE Vulkan Driver and Device, sharing our VkInstance/VkDevice.
|
||||
fprintf(stdout, "Creating Vulkan driver/device\n");
|
||||
// Load symbols from our static `vkGetInstanceProcAddr` for IREE to use.
|
||||
iree_hal_vulkan_syms_t* iree_vk_syms = nullptr;
|
||||
IREE_CHECK_OK(iree_hal_vulkan_syms_create(
|
||||
reinterpret_cast<void*>(&vkGetInstanceProcAddr), iree_allocator_system(),
|
||||
&iree_vk_syms));
|
||||
// Create the driver sharing our VkInstance.
|
||||
iree_hal_driver_t* iree_vk_driver = nullptr;
|
||||
iree_string_view_t driver_identifier = iree_make_cstring_view("vulkan");
|
||||
iree_hal_vulkan_driver_options_t driver_options;
|
||||
driver_options.api_version = VK_API_VERSION_1_0;
|
||||
driver_options.requested_features = static_cast<iree_hal_vulkan_features_t>(
|
||||
IREE_HAL_VULKAN_FEATURE_ENABLE_DEBUG_UTILS);
|
||||
IREE_CHECK_OK(iree_hal_vulkan_driver_create_using_instance(
|
||||
driver_identifier, &driver_options, iree_vk_syms, g_Instance,
|
||||
iree_allocator_system(), &iree_vk_driver));
|
||||
// Create a device sharing our VkDevice and queue.
|
||||
// We could also create a separate (possibly low priority) compute queue for
|
||||
// IREE, and/or provide a dedicated transfer queue.
|
||||
iree_string_view_t device_identifier = iree_make_cstring_view("vulkan");
|
||||
iree_hal_vulkan_queue_set_t compute_queue_set;
|
||||
compute_queue_set.queue_family_index = g_QueueFamily;
|
||||
compute_queue_set.queue_indices = 1 << 0;
|
||||
iree_hal_vulkan_queue_set_t transfer_queue_set;
|
||||
transfer_queue_set.queue_indices = 0;
|
||||
iree_hal_device_t* iree_vk_device = nullptr;
|
||||
IREE_CHECK_OK(iree_hal_vulkan_wrap_device(
|
||||
device_identifier, &driver_options.device_options, iree_vk_syms,
|
||||
g_Instance, g_PhysicalDevice, g_Device, &compute_queue_set,
|
||||
&transfer_queue_set, iree_allocator_system(), &iree_vk_device));
|
||||
// Create a HAL module using the HAL device.
|
||||
iree_vm_module_t* hal_module = nullptr;
|
||||
IREE_CHECK_OK(iree_hal_module_create(iree_instance, iree_vk_device,
|
||||
IREE_HAL_MODULE_FLAG_NONE,
|
||||
iree_allocator_system(), &hal_module));
|
||||
|
||||
|
||||
// Load bytecode module
|
||||
//iree_file_toc_t module_file_toc;
|
||||
//const char network_model[] = "resnet50_tf.vmfb";
|
||||
//fprintf(stdout, "Loading: %s\n", network_model);
|
||||
//if (load_file(network_model, &module_file_toc.data, &module_file_toc.size) == false)
|
||||
//{
|
||||
// abort();
|
||||
// return 1;
|
||||
//}
|
||||
//fprintf(stdout, "module size: %zu\n", module_file_toc.size);
|
||||
|
||||
iree_vm_module_t* bytecode_module = nullptr;
|
||||
iree_status_t module_status = iree_tooling_load_module_from_flags(
|
||||
iree_instance, iree_allocator_system(), &bytecode_module);
|
||||
if (!iree_status_is_ok(module_status))
|
||||
return -1;
|
||||
//IREE_CHECK_OK(iree_vm_bytecode_module_create(
|
||||
// iree_instance,
|
||||
// iree_const_byte_span_t{
|
||||
// reinterpret_cast<const uint8_t*>(module_file_toc.data),
|
||||
// module_file_toc.size},
|
||||
// iree_allocator_null(), iree_allocator_system(), &bytecode_module));
|
||||
//// Query for details about what is in the loaded module.
|
||||
//iree_vm_module_signature_t bytecode_module_signature =
|
||||
// iree_vm_module_signature(bytecode_module);
|
||||
//fprintf(stdout, "Module loaded, have <%" PRIhsz "> exported functions:\n",
|
||||
// bytecode_module_signature.export_function_count);
|
||||
//for (int i = 0; i < bytecode_module_signature.export_function_count; ++i) {
|
||||
// iree_vm_function_t function;
|
||||
// IREE_CHECK_OK(iree_vm_module_lookup_function_by_ordinal(
|
||||
// bytecode_module, IREE_VM_FUNCTION_LINKAGE_EXPORT, i, &function));
|
||||
// auto function_name = iree_vm_function_name(&function);
|
||||
// auto function_signature = iree_vm_function_signature(&function);
|
||||
|
||||
// fprintf(stdout, " %d: '%.*s' with calling convention '%.*s'\n", i,
|
||||
// (int)function_name.size, function_name.data,
|
||||
// (int)function_signature.calling_convention.size,
|
||||
// function_signature.calling_convention.data);
|
||||
//}
|
||||
|
||||
// Allocate a context that will hold the module state across invocations.
|
||||
iree_vm_context_t* iree_context = nullptr;
|
||||
std::vector<iree_vm_module_t*> modules = {hal_module, bytecode_module};
|
||||
IREE_CHECK_OK(iree_vm_context_create_with_modules(
|
||||
iree_instance, IREE_VM_CONTEXT_FLAG_NONE, modules.size(), modules.data(),
|
||||
iree_allocator_system(), &iree_context));
|
||||
fprintf(stdout, "Context with modules is ready for use\n");
|
||||
|
||||
// Lookup the entry point function.
|
||||
iree_vm_function_t main_function;
|
||||
const char kMainFunctionName[] = "module.forward";
|
||||
IREE_CHECK_OK(iree_vm_context_resolve_function(
|
||||
iree_context,
|
||||
iree_string_view_t{kMainFunctionName, sizeof(kMainFunctionName) - 1},
|
||||
&main_function));
|
||||
iree_string_view_t main_function_name = iree_vm_function_name(&main_function);
|
||||
fprintf(stdout, "Resolved main function named '%.*s'\n",
|
||||
(int)main_function_name.size, main_function_name.data);
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
|
||||
// Write inputs into mappable buffers.
|
||||
iree_hal_allocator_t* allocator =
|
||||
iree_hal_device_allocator(iree_vk_device);
|
||||
//iree_hal_memory_type_t input_memory_type =
|
||||
// static_cast<iree_hal_memory_type_t>(
|
||||
// IREE_HAL_MEMORY_TYPE_HOST_LOCAL |
|
||||
// IREE_HAL_MEMORY_TYPE_DEVICE_VISIBLE);
|
||||
//iree_hal_buffer_usage_t input_buffer_usage =
|
||||
// static_cast<iree_hal_buffer_usage_t>(IREE_HAL_BUFFER_USAGE_DEFAULT);
|
||||
//iree_hal_buffer_params_t buffer_params;
|
||||
//buffer_params.type = input_memory_type;
|
||||
//buffer_params.usage = input_buffer_usage;
|
||||
//buffer_params.access = IREE_HAL_MEMORY_ACCESS_READ | IREE_HAL_MEMORY_ACCESS_WRITE;
|
||||
|
||||
// Wrap input buffers in buffer views.
|
||||
|
||||
vm::ref<iree_vm_list_t> inputs;
|
||||
iree_status_t input_status = ParseToVariantList(
|
||||
allocator,
|
||||
iree::span<const std::string>{FLAG_function_inputs.data(),
|
||||
FLAG_function_inputs.size()},
|
||||
iree_allocator_system(), &inputs);
|
||||
if (!iree_status_is_ok(input_status))
|
||||
return -1;
|
||||
//vm::ref<iree_vm_list_t> inputs;
|
||||
//IREE_CHECK_OK(iree_vm_list_create(/*element_type=*/nullptr, 6, iree_allocator_system(), &inputs));
|
||||
|
||||
//iree_hal_buffer_view_t* input0_buffer_view = nullptr;
|
||||
//constexpr iree_hal_dim_t input_buffer_shape[] = {1, 224, 224, 3};
|
||||
//IREE_CHECK_OK(iree_hal_buffer_view_allocate_buffer(
|
||||
// allocator,
|
||||
// /*shape_rank=*/4, /*shape=*/input_buffer_shape,
|
||||
// IREE_HAL_ELEMENT_TYPE_FLOAT_32,
|
||||
// IREE_HAL_ENCODING_TYPE_DENSE_ROW_MAJOR, buffer_params,
|
||||
// iree_make_const_byte_span(&input_res50, sizeof(input_res50)),
|
||||
// &input0_buffer_view));
|
||||
|
||||
//auto input0_buffer_view_ref = iree_hal_buffer_view_move_ref(input0_buffer_view);
|
||||
//IREE_CHECK_OK(iree_vm_list_push_ref_move(inputs.get(), &input0_buffer_view_ref));
|
||||
|
||||
// Prepare outputs list to accept results from the invocation.
|
||||
|
||||
vm::ref<iree_vm_list_t> outputs;
|
||||
constexpr iree_hal_dim_t kOutputCount = 1000;
|
||||
IREE_CHECK_OK(iree_vm_list_create(/*element_type=*/nullptr, kOutputCount * sizeof(float), iree_allocator_system(), &outputs));
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
|
||||
// Main loop.
|
||||
bool done = false;
|
||||
while (!done) {
|
||||
SDL_Event event;
|
||||
|
||||
while (SDL_PollEvent(&event)) {
|
||||
if (event.type == SDL_QUIT) {
|
||||
done = true;
|
||||
}
|
||||
|
||||
ImGui_ImplSDL2_ProcessEvent(&event);
|
||||
if (event.type == SDL_QUIT) done = true;
|
||||
if (event.type == SDL_WINDOWEVENT &&
|
||||
event.window.event == SDL_WINDOWEVENT_RESIZED &&
|
||||
event.window.windowID == SDL_GetWindowID(window)) {
|
||||
g_SwapChainResizeWidth = (int)event.window.data1;
|
||||
g_SwapChainResizeHeight = (int)event.window.data2;
|
||||
g_SwapChainRebuild = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (g_SwapChainRebuild) {
|
||||
g_SwapChainRebuild = false;
|
||||
ImGui_ImplVulkan_SetMinImageCount(g_MinImageCount);
|
||||
ImGui_ImplVulkanH_CreateOrResizeWindow(
|
||||
g_Instance, g_PhysicalDevice, g_Device, &g_MainWindowData,
|
||||
g_QueueFamily, g_Allocator, g_SwapChainResizeWidth,
|
||||
g_SwapChainResizeHeight, g_MinImageCount);
|
||||
g_MainWindowData.FrameIndex = 0;
|
||||
}
|
||||
|
||||
// Start the Dear ImGui frame
|
||||
ImGui_ImplVulkan_NewFrame();
|
||||
ImGui_ImplSDL2_NewFrame(window);
|
||||
ImGui::NewFrame();
|
||||
|
||||
// Custom window.
|
||||
{
|
||||
ImGui::Begin("IREE Vulkan Integration Demo", &show_iree_window);
|
||||
|
||||
ImGui::Separator();
|
||||
|
||||
// ImGui Inputs for two input tensors.
|
||||
// Run computation whenever any of the values changes.
|
||||
static bool dirty = true;
|
||||
if (dirty) {
|
||||
|
||||
// Synchronously invoke the function.
|
||||
IREE_CHECK_OK(iree_vm_invoke(iree_context, main_function,
|
||||
IREE_VM_INVOCATION_FLAG_NONE,
|
||||
/*policy=*/nullptr, inputs.get(),
|
||||
outputs.get(), iree_allocator_system()));
|
||||
|
||||
|
||||
// we want to run continuously so we can use tools like RenderDoc, RGP, etc...
|
||||
dirty = true;
|
||||
}
|
||||
|
||||
// Framerate counter.
|
||||
ImGui::Text("Application average %.3f ms/frame (%.1f FPS)",
|
||||
1000.0f / ImGui::GetIO().Framerate, ImGui::GetIO().Framerate);
|
||||
|
||||
ImGui::End();
|
||||
}
|
||||
|
||||
// Rendering
|
||||
ImGui::Render();
|
||||
RenderFrame(wd, g_Device, g_Queue);
|
||||
|
||||
PresentFrame(wd, g_Queue);
|
||||
}
|
||||
// --------------------------------------------------------------------------
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Cleanup
|
||||
iree_vm_module_release(hal_module);
|
||||
iree_vm_module_release(bytecode_module);
|
||||
iree_vm_context_release(iree_context);
|
||||
iree_hal_device_release(iree_vk_device);
|
||||
iree_hal_allocator_release(allocator);
|
||||
iree_hal_driver_release(iree_vk_driver);
|
||||
iree_hal_vulkan_syms_release(iree_vk_syms);
|
||||
iree_vm_instance_release(iree_instance);
|
||||
|
||||
err = vkDeviceWaitIdle(g_Device);
|
||||
check_vk_result(err);
|
||||
ImGui_ImplVulkan_Shutdown();
|
||||
ImGui_ImplSDL2_Shutdown();
|
||||
ImGui::DestroyContext();
|
||||
|
||||
CleanupVulkanWindow();
|
||||
CleanupVulkan();
|
||||
|
||||
SDL_DestroyWindow(window);
|
||||
SDL_Quit();
|
||||
// --------------------------------------------------------------------------
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
} // namespace iree
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,27 +0,0 @@
|
||||
# Dataset annotation tool
|
||||
|
||||
SHARK annotator for adding or modifying prompts of dataset images
|
||||
|
||||
## Set up
|
||||
|
||||
Activate SHARK Python virtual environment and install additional packages
|
||||
```shell
|
||||
source ../shark.venv/bin/activate
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
## Run annotator
|
||||
|
||||
```shell
|
||||
python annotation_tool.py
|
||||
```
|
||||
|
||||
<img width="1280" alt="annotator" src="https://user-images.githubusercontent.com/49575973/214521137-7ef6ae10-7cd8-46e6-b270-b6c0445157f1.png">
|
||||
|
||||
* Select a dataset from `Dataset` dropdown list
|
||||
* Select an image from `Image` dropdown list
|
||||
* Image and the existing prompt will be loaded
|
||||
* Select a prompt from `Prompt` dropdown list to modify or "Add new" to add a prompt
|
||||
* Click `Save` to save changes, click `Delete` to delete prompt
|
||||
* Click `Back` or `Next` to switch image, you could also select other images from `Image`
|
||||
* Click `Finish` when finishing annotation or before switching dataset
|
||||
@@ -1,247 +0,0 @@
|
||||
import gradio as gr
|
||||
import json
|
||||
import jsonlines
|
||||
import os
|
||||
from args import args
|
||||
from pathlib import Path
|
||||
from PIL import Image
|
||||
from utils import get_datasets
|
||||
|
||||
|
||||
shark_root = Path(__file__).parent.parent
|
||||
demo_css = shark_root.joinpath("web/demo.css").resolve()
|
||||
nodlogo_loc = shark_root.joinpath(
|
||||
"web/models/stable_diffusion/logos/nod-logo.png"
|
||||
)
|
||||
|
||||
|
||||
with gr.Blocks(title="Dataset Annotation Tool", css=demo_css) as shark_web:
|
||||
with gr.Row(elem_id="ui_title"):
|
||||
nod_logo = Image.open(nodlogo_loc)
|
||||
with gr.Column(scale=1, elem_id="demo_title_outer"):
|
||||
gr.Image(
|
||||
value=nod_logo,
|
||||
show_label=False,
|
||||
interactive=False,
|
||||
elem_id="top_logo",
|
||||
).style(width=150, height=100)
|
||||
|
||||
datasets, images, ds_w_prompts = get_datasets(args.gs_url)
|
||||
prompt_data = dict()
|
||||
|
||||
with gr.Row(elem_id="ui_body"):
|
||||
# TODO: add multiselect dataset, there is a gradio version conflict
|
||||
dataset = gr.Dropdown(label="Dataset", choices=datasets)
|
||||
image_name = gr.Dropdown(label="Image", choices=[])
|
||||
|
||||
with gr.Row(elem_id="ui_body"):
|
||||
# TODO: add ability to search image by typing
|
||||
with gr.Column(scale=1, min_width=600):
|
||||
image = gr.Image(type="filepath").style(height=512)
|
||||
|
||||
with gr.Column(scale=1, min_width=600):
|
||||
prompts = gr.Dropdown(
|
||||
label="Prompts",
|
||||
choices=[],
|
||||
)
|
||||
prompt = gr.Textbox(
|
||||
label="Editor",
|
||||
lines=3,
|
||||
)
|
||||
with gr.Row():
|
||||
save = gr.Button("Save")
|
||||
delete = gr.Button("Delete")
|
||||
with gr.Row():
|
||||
back_image = gr.Button("Back")
|
||||
next_image = gr.Button("Next")
|
||||
finish = gr.Button("Finish")
|
||||
|
||||
def filter_datasets(dataset):
|
||||
if dataset is None:
|
||||
return gr.Dropdown.update(value=None, choices=[])
|
||||
|
||||
# create the dataset dir if doesn't exist and download prompt file
|
||||
dataset_path = str(shark_root) + "/dataset/" + dataset
|
||||
if not os.path.exists(dataset_path):
|
||||
os.mkdir(dataset_path)
|
||||
|
||||
# read prompt jsonlines file
|
||||
prompt_data.clear()
|
||||
if dataset in ds_w_prompts:
|
||||
prompt_gs_path = args.gs_url + "/" + dataset + "/metadata.jsonl"
|
||||
os.system(f'gsutil cp "{prompt_gs_path}" "{dataset_path}"/')
|
||||
with jsonlines.open(dataset_path + "/metadata.jsonl") as reader:
|
||||
for line in reader.iter(type=dict, skip_invalid=True):
|
||||
prompt_data[line["file_name"]] = (
|
||||
[line["text"]]
|
||||
if type(line["text"]) is str
|
||||
else line["text"]
|
||||
)
|
||||
|
||||
return gr.Dropdown.update(choices=images[dataset])
|
||||
|
||||
dataset.change(fn=filter_datasets, inputs=dataset, outputs=image_name)
|
||||
|
||||
def display_image(dataset, image_name):
|
||||
if dataset is None or image_name is None:
|
||||
return gr.Image.update(value=None), gr.Dropdown.update(value=None)
|
||||
|
||||
# download and load the image
|
||||
img_gs_path = args.gs_url + "/" + dataset + "/" + image_name
|
||||
img_sub_path = "/".join(image_name.split("/")[:-1])
|
||||
img_dst_path = (
|
||||
str(shark_root) + "/dataset/" + dataset + "/" + img_sub_path + "/"
|
||||
)
|
||||
if not os.path.exists(img_dst_path):
|
||||
os.mkdir(img_dst_path)
|
||||
os.system(f'gsutil cp "{img_gs_path}" "{img_dst_path}"')
|
||||
img = Image.open(img_dst_path + image_name.split("/")[-1])
|
||||
|
||||
if image_name not in prompt_data.keys():
|
||||
prompt_data[image_name] = []
|
||||
prompt_choices = ["Add new"]
|
||||
prompt_choices += prompt_data[image_name]
|
||||
return gr.Image.update(value=img), gr.Dropdown.update(
|
||||
choices=prompt_choices
|
||||
)
|
||||
|
||||
image_name.change(
|
||||
fn=display_image,
|
||||
inputs=[dataset, image_name],
|
||||
outputs=[image, prompts],
|
||||
)
|
||||
|
||||
def edit_prompt(prompts):
|
||||
if prompts == "Add new":
|
||||
return gr.Textbox.update(value=None)
|
||||
|
||||
return gr.Textbox.update(value=prompts)
|
||||
|
||||
prompts.change(fn=edit_prompt, inputs=prompts, outputs=prompt)
|
||||
|
||||
def save_prompt(dataset, image_name, prompts, prompt):
|
||||
if (
|
||||
dataset is None
|
||||
or image_name is None
|
||||
or prompts is None
|
||||
or prompt is None
|
||||
):
|
||||
return
|
||||
|
||||
if prompts == "Add new":
|
||||
prompt_data[image_name].append(prompt)
|
||||
else:
|
||||
idx = prompt_data[image_name].index(prompts)
|
||||
prompt_data[image_name][idx] = prompt
|
||||
|
||||
prompt_path = (
|
||||
str(shark_root) + "/dataset/" + dataset + "/metadata.jsonl"
|
||||
)
|
||||
# write prompt jsonlines file
|
||||
with open(prompt_path, "w") as f:
|
||||
for key, value in prompt_data.items():
|
||||
if not value:
|
||||
continue
|
||||
v = value if len(value) > 1 else value[0]
|
||||
f.write(json.dumps({"file_name": key, "text": v}))
|
||||
f.write("\n")
|
||||
|
||||
prompt_choices = ["Add new"]
|
||||
prompt_choices += prompt_data[image_name]
|
||||
return gr.Dropdown.update(choices=prompt_choices, value=None)
|
||||
|
||||
save.click(
|
||||
fn=save_prompt,
|
||||
inputs=[dataset, image_name, prompts, prompt],
|
||||
outputs=prompts,
|
||||
)
|
||||
|
||||
def delete_prompt(dataset, image_name, prompts):
|
||||
if dataset is None or image_name is None or prompts is None:
|
||||
return
|
||||
if prompts == "Add new":
|
||||
return
|
||||
|
||||
prompt_data[image_name].remove(prompts)
|
||||
prompt_path = (
|
||||
str(shark_root) + "/dataset/" + dataset + "/metadata.jsonl"
|
||||
)
|
||||
# write prompt jsonlines file
|
||||
with open(prompt_path, "w") as f:
|
||||
for key, value in prompt_data.items():
|
||||
if not value:
|
||||
continue
|
||||
v = value if len(value) > 1 else value[0]
|
||||
f.write(json.dumps({"file_name": key, "text": v}))
|
||||
f.write("\n")
|
||||
|
||||
prompt_choices = ["Add new"]
|
||||
prompt_choices += prompt_data[image_name]
|
||||
return gr.Dropdown.update(choices=prompt_choices, value=None)
|
||||
|
||||
delete.click(
|
||||
fn=delete_prompt,
|
||||
inputs=[dataset, image_name, prompts],
|
||||
outputs=prompts,
|
||||
)
|
||||
|
||||
def get_back_image(dataset, image_name):
|
||||
if dataset is None or image_name is None:
|
||||
return
|
||||
|
||||
# remove local image
|
||||
img_path = str(shark_root) + "/dataset/" + dataset + "/" + image_name
|
||||
os.system(f'rm "{img_path}"')
|
||||
# get the index for the back image
|
||||
idx = images[dataset].index(image_name)
|
||||
if idx == 0:
|
||||
return gr.Dropdown.update(value=None)
|
||||
|
||||
return gr.Dropdown.update(value=images[dataset][idx - 1])
|
||||
|
||||
back_image.click(
|
||||
fn=get_back_image, inputs=[dataset, image_name], outputs=image_name
|
||||
)
|
||||
|
||||
def get_next_image(dataset, image_name):
|
||||
if dataset is None or image_name is None:
|
||||
return
|
||||
|
||||
# remove local image
|
||||
img_path = str(shark_root) + "/dataset/" + dataset + "/" + image_name
|
||||
os.system(f'rm "{img_path}"')
|
||||
# get the index for the next image
|
||||
idx = images[dataset].index(image_name)
|
||||
if idx == len(images[dataset]) - 1:
|
||||
return gr.Dropdown.update(value=None)
|
||||
|
||||
return gr.Dropdown.update(value=images[dataset][idx + 1])
|
||||
|
||||
next_image.click(
|
||||
fn=get_next_image, inputs=[dataset, image_name], outputs=image_name
|
||||
)
|
||||
|
||||
def finish_annotation(dataset):
|
||||
if dataset is None:
|
||||
return
|
||||
|
||||
# upload prompt and remove local data
|
||||
dataset_path = str(shark_root) + "/dataset/" + dataset
|
||||
dataset_gs_path = args.gs_url + "/" + dataset + "/"
|
||||
os.system(
|
||||
f'gsutil cp "{dataset_path}/metadata.jsonl" "{dataset_gs_path}"'
|
||||
)
|
||||
os.system(f'rm -rf "{dataset_path}"')
|
||||
|
||||
return gr.Dropdown.update(value=None)
|
||||
|
||||
finish.click(fn=finish_annotation, inputs=dataset, outputs=dataset)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
shark_web.launch(
|
||||
share=args.share,
|
||||
inbrowser=True,
|
||||
server_name="0.0.0.0",
|
||||
server_port=args.server_port,
|
||||
)
|
||||
@@ -1,34 +0,0 @@
|
||||
import argparse
|
||||
|
||||
p = argparse.ArgumentParser(
|
||||
description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
##############################################################################
|
||||
### Dataset Annotator flags
|
||||
##############################################################################
|
||||
|
||||
p.add_argument(
|
||||
"--gs_url",
|
||||
type=str,
|
||||
required=True,
|
||||
help="URL to datasets in GS bucket",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--share",
|
||||
default=False,
|
||||
action=argparse.BooleanOptionalAction,
|
||||
help="flag for generating a public URL",
|
||||
)
|
||||
|
||||
p.add_argument(
|
||||
"--server_port",
|
||||
type=int,
|
||||
default=8080,
|
||||
help="flag for setting server port",
|
||||
)
|
||||
|
||||
##############################################################################
|
||||
|
||||
args = p.parse_args()
|
||||
@@ -1,3 +0,0 @@
|
||||
# SHARK Annotator
|
||||
gradio==3.15.0
|
||||
jsonlines
|
||||
@@ -1,29 +0,0 @@
|
||||
from google.cloud import storage
|
||||
|
||||
|
||||
def get_datasets(gs_url):
|
||||
datasets = set()
|
||||
images = dict()
|
||||
ds_w_prompts = []
|
||||
|
||||
storage_client = storage.Client()
|
||||
bucket_name = gs_url.split("/")[2]
|
||||
source_blob_name = "/".join(gs_url.split("/")[3:])
|
||||
blobs = storage_client.list_blobs(bucket_name, prefix=source_blob_name)
|
||||
|
||||
for blob in blobs:
|
||||
dataset_name = blob.name.split("/")[1]
|
||||
if dataset_name == "":
|
||||
continue
|
||||
datasets.add(dataset_name)
|
||||
if dataset_name not in images.keys():
|
||||
images[dataset_name] = []
|
||||
|
||||
# check if image or jsonl
|
||||
file_sub_path = "/".join(blob.name.split("/")[2:])
|
||||
if "/" in file_sub_path:
|
||||
images[dataset_name] += [file_sub_path]
|
||||
elif "metadata.jsonl" in file_sub_path:
|
||||
ds_w_prompts.append(dataset_name)
|
||||
|
||||
return list(datasets), images, ds_w_prompts
|
||||
@@ -1,281 +0,0 @@
|
||||
# Lint as: python3
|
||||
"""SHARK Tank"""
|
||||
# python generate_sharktank.py, you have to give a csv tile with [model_name, model_download_url]
|
||||
# will generate local shark tank folder like this:
|
||||
# /SHARK
|
||||
# /gen_shark_tank
|
||||
# /albert_lite_base
|
||||
# /...model_name...
|
||||
#
|
||||
|
||||
import os
|
||||
import csv
|
||||
import argparse
|
||||
from shark.shark_importer import SharkImporter
|
||||
import subprocess as sp
|
||||
import hashlib
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
from apps.stable_diffusion.src.models import (
|
||||
model_wrappers as mw,
|
||||
)
|
||||
from apps.stable_diffusion.src.utils.stable_args import (
|
||||
args,
|
||||
)
|
||||
|
||||
|
||||
def create_hash(file_name):
|
||||
with open(file_name, "rb") as f:
|
||||
file_hash = hashlib.blake2b()
|
||||
while chunk := f.read(2**20):
|
||||
file_hash.update(chunk)
|
||||
|
||||
return file_hash.hexdigest()
|
||||
|
||||
|
||||
def save_torch_model(torch_model_list):
|
||||
from tank.model_utils import (
|
||||
get_hf_model,
|
||||
get_vision_model,
|
||||
get_hf_img_cls_model,
|
||||
get_fp16_model,
|
||||
)
|
||||
|
||||
with open(torch_model_list) as csvfile:
|
||||
torch_reader = csv.reader(csvfile, delimiter=",")
|
||||
fields = next(torch_reader)
|
||||
for row in torch_reader:
|
||||
torch_model_name = row[0]
|
||||
tracing_required = row[1]
|
||||
model_type = row[2]
|
||||
is_dynamic = row[3]
|
||||
|
||||
tracing_required = False if tracing_required == "False" else True
|
||||
is_dynamic = False if is_dynamic == "False" else True
|
||||
|
||||
model = None
|
||||
input = None
|
||||
if model_type == "stable_diffusion":
|
||||
args.use_tuned = False
|
||||
args.import_mlir = True
|
||||
args.use_tuned = False
|
||||
args.local_tank_cache = WORKDIR
|
||||
|
||||
precision_values = ["fp16"]
|
||||
seq_lengths = [64, 77]
|
||||
for precision_value in precision_values:
|
||||
args.precision = precision_value
|
||||
for length in seq_lengths:
|
||||
model = mw.SharkifyStableDiffusionModel(
|
||||
model_id=torch_model_name,
|
||||
custom_weights="",
|
||||
precision=precision_value,
|
||||
max_len=length,
|
||||
width=512,
|
||||
height=512,
|
||||
use_base_vae=False,
|
||||
debug=True,
|
||||
sharktank_dir=WORKDIR,
|
||||
generate_vmfb=False,
|
||||
)
|
||||
model()
|
||||
continue
|
||||
if model_type == "vision":
|
||||
model, input, _ = get_vision_model(torch_model_name)
|
||||
elif model_type == "hf":
|
||||
model, input, _ = get_hf_model(torch_model_name)
|
||||
elif model_type == "hf_img_cls":
|
||||
model, input, _ = get_hf_img_cls_model(torch_model_name)
|
||||
elif model_type == "fp16":
|
||||
model, input, _ = get_fp16_model(torch_model_name)
|
||||
torch_model_name = torch_model_name.replace("/", "_")
|
||||
torch_model_dir = os.path.join(
|
||||
WORKDIR, str(torch_model_name) + "_torch"
|
||||
)
|
||||
os.makedirs(torch_model_dir, exist_ok=True)
|
||||
|
||||
mlir_importer = SharkImporter(
|
||||
model,
|
||||
(input,),
|
||||
frontend="torch",
|
||||
)
|
||||
mlir_importer.import_debug(
|
||||
is_dynamic=False,
|
||||
tracing_required=tracing_required,
|
||||
dir=torch_model_dir,
|
||||
model_name=torch_model_name,
|
||||
)
|
||||
mlir_hash = create_hash(
|
||||
os.path.join(
|
||||
torch_model_dir, torch_model_name + "_torch" + ".mlir"
|
||||
)
|
||||
)
|
||||
np.save(os.path.join(torch_model_dir, "hash"), np.array(mlir_hash))
|
||||
# Generate torch dynamic models.
|
||||
if is_dynamic:
|
||||
mlir_importer.import_debug(
|
||||
is_dynamic=True,
|
||||
tracing_required=tracing_required,
|
||||
dir=torch_model_dir,
|
||||
model_name=torch_model_name + "_dynamic",
|
||||
)
|
||||
|
||||
|
||||
def save_tf_model(tf_model_list):
|
||||
from tank.model_utils_tf import (
|
||||
get_causal_image_model,
|
||||
get_causal_lm_model,
|
||||
get_keras_model,
|
||||
get_TFhf_model,
|
||||
)
|
||||
import tensorflow as tf
|
||||
|
||||
visible_default = tf.config.list_physical_devices("GPU")
|
||||
try:
|
||||
tf.config.set_visible_devices([], "GPU")
|
||||
visible_devices = tf.config.get_visible_devices()
|
||||
for device in visible_devices:
|
||||
assert device.device_type != "GPU"
|
||||
except:
|
||||
# Invalid device or cannot modify virtual devices once initialized.
|
||||
pass
|
||||
|
||||
with open(tf_model_list) as csvfile:
|
||||
tf_reader = csv.reader(csvfile, delimiter=",")
|
||||
fields = next(tf_reader)
|
||||
for row in tf_reader:
|
||||
tf_model_name = row[0]
|
||||
model_type = row[1]
|
||||
|
||||
model = None
|
||||
input = None
|
||||
print(f"Generating artifacts for model {tf_model_name}")
|
||||
if model_type == "hf":
|
||||
model, input, _ = get_causal_lm_model(tf_model_name)
|
||||
if model_type == "img":
|
||||
model, input, _ = get_causal_image_model(tf_model_name)
|
||||
if model_type == "keras":
|
||||
model, input, _ = get_keras_model(tf_model_name)
|
||||
if model_type == "TFhf":
|
||||
model, input, _ = get_TFhf_model(tf_model_name)
|
||||
|
||||
tf_model_name = tf_model_name.replace("/", "_")
|
||||
tf_model_dir = os.path.join(WORKDIR, str(tf_model_name) + "_tf")
|
||||
os.makedirs(tf_model_dir, exist_ok=True)
|
||||
|
||||
mlir_importer = SharkImporter(
|
||||
model,
|
||||
input,
|
||||
frontend="tf",
|
||||
)
|
||||
mlir_importer.import_debug(
|
||||
dir=tf_model_dir,
|
||||
model_name=tf_model_name,
|
||||
)
|
||||
mlir_hash = create_hash(
|
||||
os.path.join(tf_model_dir, tf_model_name + "_tf" + ".mlir")
|
||||
)
|
||||
np.save(os.path.join(tf_model_dir, "hash"), np.array(mlir_hash))
|
||||
|
||||
|
||||
def save_tflite_model(tflite_model_list):
|
||||
from shark.tflite_utils import TFLitePreprocessor
|
||||
|
||||
with open(tflite_model_list) as csvfile:
|
||||
tflite_reader = csv.reader(csvfile, delimiter=",")
|
||||
for row in tflite_reader:
|
||||
print("\n")
|
||||
tflite_model_name = row[0]
|
||||
tflite_model_link = row[1]
|
||||
print("tflite_model_name", tflite_model_name)
|
||||
print("tflite_model_link", tflite_model_link)
|
||||
tflite_model_name_dir = os.path.join(
|
||||
WORKDIR, str(tflite_model_name) + "_tflite"
|
||||
)
|
||||
os.makedirs(tflite_model_name_dir, exist_ok=True)
|
||||
print(f"TMP_TFLITE_MODELNAME_DIR = {tflite_model_name_dir}")
|
||||
|
||||
# Preprocess to get SharkImporter input args
|
||||
tflite_preprocessor = TFLitePreprocessor(str(tflite_model_name))
|
||||
raw_model_file_path = tflite_preprocessor.get_raw_model_file()
|
||||
inputs = tflite_preprocessor.get_inputs()
|
||||
tflite_interpreter = tflite_preprocessor.get_interpreter()
|
||||
|
||||
# Use SharkImporter to get SharkInference input args
|
||||
my_shark_importer = SharkImporter(
|
||||
module=tflite_interpreter,
|
||||
inputs=inputs,
|
||||
frontend="tflite",
|
||||
raw_model_file=raw_model_file_path,
|
||||
)
|
||||
my_shark_importer.import_debug(
|
||||
dir=tflite_model_name_dir,
|
||||
model_name=tflite_model_name,
|
||||
func_name="main",
|
||||
)
|
||||
mlir_hash = create_hash(
|
||||
os.path.join(
|
||||
tflite_model_name_dir,
|
||||
tflite_model_name + "_tflite" + ".mlir",
|
||||
)
|
||||
)
|
||||
np.save(
|
||||
os.path.join(tflite_model_name_dir, "hash"),
|
||||
np.array(mlir_hash),
|
||||
)
|
||||
|
||||
|
||||
# Validates whether the file is present or not.
|
||||
def is_valid_file(arg):
|
||||
if not os.path.exists(arg):
|
||||
return None
|
||||
else:
|
||||
return arg
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Note, all of these flags are overridden by the import of args from stable_args.py, flags are duplicated temporarily to preserve functionality
|
||||
# parser = argparse.ArgumentParser()
|
||||
# parser.add_argument(
|
||||
# "--torch_model_csv",
|
||||
# type=lambda x: is_valid_file(x),
|
||||
# default="./tank/torch_model_list.csv",
|
||||
# help="""Contains the file with torch_model name and args.
|
||||
# Please see: https://github.com/nod-ai/SHARK/blob/main/tank/torch_model_list.csv""",
|
||||
# )
|
||||
# parser.add_argument(
|
||||
# "--tf_model_csv",
|
||||
# type=lambda x: is_valid_file(x),
|
||||
# default="./tank/tf_model_list.csv",
|
||||
# help="Contains the file with tf model name and args.",
|
||||
# )
|
||||
# parser.add_argument(
|
||||
# "--tflite_model_csv",
|
||||
# type=lambda x: is_valid_file(x),
|
||||
# default="./tank/tflite/tflite_model_list.csv",
|
||||
# help="Contains the file with tf model name and args.",
|
||||
# )
|
||||
# parser.add_argument(
|
||||
# "--ci_tank_dir",
|
||||
# type=bool,
|
||||
# default=False,
|
||||
# )
|
||||
# parser.add_argument("--upload", type=bool, default=False)
|
||||
|
||||
# old_args = parser.parse_args()
|
||||
|
||||
home = str(Path.home())
|
||||
WORKDIR = os.path.join(os.path.dirname(__file__), "gen_shark_tank")
|
||||
torch_model_csv = os.path.join(
|
||||
os.path.dirname(__file__), "tank", "torch_model_list.csv"
|
||||
)
|
||||
tf_model_csv = os.path.join(
|
||||
os.path.dirname(__file__), "tank", "tf_model_list.csv"
|
||||
)
|
||||
tflite_model_csv = os.path.join(
|
||||
os.path.dirname(__file__), "tank", "tflite", "tflite_model_list.csv"
|
||||
)
|
||||
|
||||
save_torch_model(torch_model_csv)
|
||||
save_tf_model(tf_model_csv)
|
||||
save_tflite_model(tflite_model_csv)
|
||||
@@ -1,192 +0,0 @@
|
||||
# Copyright 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions
|
||||
# are met:
|
||||
# * Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright
|
||||
# notice, this list of conditions and the following disclaimer in the
|
||||
# documentation and/or other materials provided with the distribution.
|
||||
# * Neither the name of NVIDIA CORPORATION nor the names of its
|
||||
# contributors may be used to endorse or promote products derived
|
||||
# from this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||||
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||||
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
cmake_minimum_required(VERSION 3.17)
|
||||
|
||||
project(sharkbackend LANGUAGES C CXX)
|
||||
|
||||
#
|
||||
# Options
|
||||
#
|
||||
|
||||
option(TRITON_ENABLE_GPU "Enable GPU support in backend" ON)
|
||||
option(TRITON_ENABLE_STATS "Include statistics collections in backend" ON)
|
||||
|
||||
set(TRITON_COMMON_REPO_TAG "main" CACHE STRING "Tag for triton-inference-server/common repo")
|
||||
set(TRITON_CORE_REPO_TAG "main" CACHE STRING "Tag for triton-inference-server/core repo")
|
||||
set(TRITON_BACKEND_REPO_TAG "main" CACHE STRING "Tag for triton-inference-server/backend repo")
|
||||
|
||||
if(NOT CMAKE_BUILD_TYPE)
|
||||
set(CMAKE_BUILD_TYPE Release)
|
||||
endif()
|
||||
|
||||
#
|
||||
# Dependencies
|
||||
#
|
||||
# FetchContent requires us to include the transitive closure of all
|
||||
# repos that we depend on so that we can override the tags.
|
||||
#
|
||||
include(FetchContent)
|
||||
|
||||
FetchContent_Declare(
|
||||
repo-common
|
||||
GIT_REPOSITORY https://github.com/triton-inference-server/common.git
|
||||
GIT_TAG ${TRITON_COMMON_REPO_TAG}
|
||||
GIT_SHALLOW ON
|
||||
)
|
||||
FetchContent_Declare(
|
||||
repo-core
|
||||
GIT_REPOSITORY https://github.com/triton-inference-server/core.git
|
||||
GIT_TAG ${TRITON_CORE_REPO_TAG}
|
||||
GIT_SHALLOW ON
|
||||
)
|
||||
FetchContent_Declare(
|
||||
repo-backend
|
||||
GIT_REPOSITORY https://github.com/triton-inference-server/backend.git
|
||||
GIT_TAG ${TRITON_BACKEND_REPO_TAG}
|
||||
GIT_SHALLOW ON
|
||||
)
|
||||
FetchContent_MakeAvailable(repo-common repo-core repo-backend)
|
||||
|
||||
#
|
||||
# The backend must be built into a shared library. Use an ldscript to
|
||||
# hide all symbols except for the TRITONBACKEND API.
|
||||
#
|
||||
configure_file(src/libtriton_dshark.ldscript libtriton_dshark.ldscript COPYONLY)
|
||||
|
||||
add_library(
|
||||
triton-dshark-backend SHARED
|
||||
src/dshark.cc
|
||||
#src/dshark_driver_module.c
|
||||
)
|
||||
|
||||
add_library(
|
||||
SharkBackend::triton-dshark-backend ALIAS triton-dshark-backend
|
||||
)
|
||||
|
||||
target_include_directories(
|
||||
triton-dshark-backend
|
||||
PRIVATE
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src
|
||||
)
|
||||
|
||||
list(APPEND CMAKE_MODULE_PATH "${PROJECT_BINARY_DIR}/lib/cmake/mlir")
|
||||
|
||||
add_subdirectory(thirdparty/shark-runtime EXCLUDE_FROM_ALL)
|
||||
|
||||
target_link_libraries(triton-dshark-backend PRIVATE iree_base_base
|
||||
iree_hal_hal
|
||||
iree_hal_cuda_cuda
|
||||
iree_hal_cuda_registration_registration
|
||||
iree_hal_vmvx_registration_registration
|
||||
iree_hal_dylib_registration_registration
|
||||
iree_modules_hal_hal
|
||||
iree_vm_vm
|
||||
iree_vm_bytecode_module
|
||||
iree_hal_local_loaders_system_library_loader
|
||||
iree_hal_local_loaders_vmvx_module_loader
|
||||
)
|
||||
|
||||
target_compile_features(triton-dshark-backend PRIVATE cxx_std_11)
|
||||
|
||||
|
||||
target_link_libraries(
|
||||
triton-dshark-backend
|
||||
PRIVATE
|
||||
triton-core-serverapi # from repo-core
|
||||
triton-core-backendapi # from repo-core
|
||||
triton-core-serverstub # from repo-core
|
||||
triton-backend-utils # from repo-backend
|
||||
)
|
||||
|
||||
if(WIN32)
|
||||
set_target_properties(
|
||||
triton-dshark-backend PROPERTIES
|
||||
POSITION_INDEPENDENT_CODE ON
|
||||
OUTPUT_NAME triton_dshark
|
||||
)
|
||||
else()
|
||||
set_target_properties(
|
||||
triton-dshark-backend PROPERTIES
|
||||
POSITION_INDEPENDENT_CODE ON
|
||||
OUTPUT_NAME triton_dshark
|
||||
LINK_DEPENDS ${CMAKE_CURRENT_BINARY_DIR}/libtriton_dshark.ldscript
|
||||
LINK_FLAGS "-Wl,--version-script libtriton_dshark.ldscript"
|
||||
)
|
||||
endif()
|
||||
|
||||
|
||||
|
||||
#
|
||||
# Install
|
||||
#
|
||||
include(GNUInstallDirs)
|
||||
set(INSTALL_CONFIGDIR ${CMAKE_INSTALL_LIBDIR}/cmake/SharkBackend)
|
||||
|
||||
install(
|
||||
TARGETS
|
||||
triton-dshark-backend
|
||||
EXPORT
|
||||
triton-dshark-backend-targets
|
||||
LIBRARY DESTINATION ${CMAKE_INSTALL_PREFIX}/backends/dshark
|
||||
RUNTIME DESTINATION ${CMAKE_INSTALL_PREFIX}/backends/dshark
|
||||
)
|
||||
|
||||
install(
|
||||
EXPORT
|
||||
triton-dshark-backend-targets
|
||||
FILE
|
||||
SharkBackendTargets.cmake
|
||||
NAMESPACE
|
||||
SharkBackend::
|
||||
DESTINATION
|
||||
${INSTALL_CONFIGDIR}
|
||||
)
|
||||
|
||||
include(CMakePackageConfigHelpers)
|
||||
configure_package_config_file(
|
||||
${CMAKE_CURRENT_LIST_DIR}/cmake/SharkBackendConfig.cmake.in
|
||||
${CMAKE_CURRENT_BINARY_DIR}/SharkBackendConfig.cmake
|
||||
INSTALL_DESTINATION ${INSTALL_CONFIGDIR}
|
||||
)
|
||||
|
||||
install(
|
||||
FILES
|
||||
${CMAKE_CURRENT_BINARY_DIR}/SharkBackendConfig.cmake
|
||||
DESTINATION ${INSTALL_CONFIGDIR}
|
||||
)
|
||||
|
||||
#
|
||||
# Export from build tree
|
||||
#
|
||||
export(
|
||||
EXPORT triton-dshark-backend-targets
|
||||
FILE ${CMAKE_CURRENT_BINARY_DIR}/SharkBackendTargets.cmake
|
||||
NAMESPACE SharkBackend::
|
||||
)
|
||||
|
||||
export(PACKAGE SharkBackend)
|
||||
|
||||
@@ -1,100 +0,0 @@
|
||||
# SHARK Triton Backend
|
||||
|
||||
The triton backend for shark.
|
||||
|
||||
# Build
|
||||
|
||||
Install SHARK
|
||||
|
||||
```
|
||||
git clone https://github.com/nod-ai/SHARK.git
|
||||
# skip above step if dshark is already installed
|
||||
cd SHARK/inference
|
||||
```
|
||||
|
||||
install dependancies
|
||||
|
||||
```
|
||||
apt-get install patchelf rapidjson-dev python3-dev
|
||||
git submodule update --init
|
||||
```
|
||||
|
||||
update the submodules of iree
|
||||
|
||||
```
|
||||
cd thirdparty/shark-runtime
|
||||
git submodule update --init
|
||||
```
|
||||
|
||||
Next, make the backend and install it
|
||||
|
||||
```
|
||||
cd ../..
|
||||
mkdir build && cd build
|
||||
cmake -DTRITON_ENABLE_GPU=ON \
|
||||
-DIREE_HAL_DRIVER_CUDA=ON \
|
||||
-DIREE_TARGET_BACKEND_CUDA=ON \
|
||||
-DMLIR_ENABLE_CUDA_RUNNER=ON \
|
||||
-DCMAKE_INSTALL_PREFIX:PATH=`pwd`/install \
|
||||
-DTRITON_BACKEND_REPO_TAG=r22.02 \
|
||||
-DTRITON_CORE_REPO_TAG=r22.02 \
|
||||
-DTRITON_COMMON_REPO_TAG=r22.02 ..
|
||||
make install
|
||||
```
|
||||
|
||||
# Incorporating into Triton
|
||||
|
||||
There are much more in depth explenations for the following steps in triton's documentation:
|
||||
https://github.com/triton-inference-server/server/blob/main/docs/compose.md#triton-with-unsupported-and-custom-backends
|
||||
|
||||
There should be a file at /build/install/backends/dshark/libtriton_dshark.so. You will need to copy it into your triton server image.
|
||||
More documentation is in the link above, but to create the docker image, you need to run the compose.py command in the triton-backend server repo
|
||||
|
||||
|
||||
To first build your image, clone the tritonserver repo.
|
||||
|
||||
```
|
||||
git clone https://github.com/triton-inference-server/server.git
|
||||
```
|
||||
|
||||
then run `compose.py` to build a docker compose file
|
||||
```
|
||||
cd server
|
||||
python3 compose.py --repoagent checksum --dry-run
|
||||
```
|
||||
|
||||
Because dshark is a third party backend, you will need to manually modify the `Dockerfile.compose` to include the dshark backend. To do this, in the Dockerfile.compose file produced, copy this line.
|
||||
the dshark backend will be located in the build folder from earlier under `/build/install/backends`
|
||||
|
||||
```
|
||||
COPY /path/to/build/install/backends/dshark /opt/tritonserver/backends/dshark
|
||||
```
|
||||
|
||||
Next run
|
||||
```
|
||||
docker build -t tritonserver_custom -f Dockerfile.compose .
|
||||
docker run -it --gpus=1 --net=host -v/path/to/model_repos:/models tritonserver_custom:latest tritonserver --model-repository=/models
|
||||
```
|
||||
|
||||
where `path/to/model_repos` is where you are storing the models you want to run
|
||||
|
||||
if your not using gpus, omit `--gpus=1`
|
||||
|
||||
```
|
||||
docker run -it --net=host -v/path/to/model_repos:/models tritonserver_custom:latest tritonserver --model-repository=/models
|
||||
```
|
||||
|
||||
# Setting up a model
|
||||
|
||||
to include a model in your backend, add a directory with your model name to your model repository directory. examples of models can be seen here: https://github.com/triton-inference-server/backend/tree/main/examples/model_repos/minimal_models
|
||||
|
||||
make sure to adjust the input correctly in the config.pbtxt file, and save a vmfb file under 1/model.vmfb
|
||||
|
||||
# CUDA
|
||||
|
||||
if you're having issues with cuda, make sure your correct drivers are installed, and that `nvidia-smi` works, and also make sure that the nvcc compiler is on the path.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -1,39 +0,0 @@
|
||||
# Copyright 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions
|
||||
# are met:
|
||||
# * Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright
|
||||
# notice, this list of conditions and the following disclaimer in the
|
||||
# documentation and/or other materials provided with the distribution.
|
||||
# * Neither the name of NVIDIA CORPORATION nor the names of its
|
||||
# contributors may be used to endorse or promote products derived
|
||||
# from this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||||
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||||
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
include(CMakeFindDependencyMacro)
|
||||
|
||||
get_filename_component(
|
||||
SHARKBACKEND_CMAKE_DIR "${CMAKE_CURRENT_LIST_FILE}" PATH
|
||||
)
|
||||
|
||||
list(APPEND CMAKE_MODULE_PATH ${SHARKBACKEND_CMAKE_DIR})
|
||||
|
||||
if(NOT TARGET SharkBackend::triton-dshark-backend)
|
||||
include("${SHARKBACKEND_CMAKE_DIR}/SharkBackendTargets.cmake")
|
||||
endif()
|
||||
|
||||
set(SHARKBACKEND_LIBRARIES SharkBackend::triton-dshark-backend)
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,30 +0,0 @@
|
||||
# Copyright 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions
|
||||
# are met:
|
||||
# * Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright
|
||||
# notice, this list of conditions and the following disclaimer in the
|
||||
# documentation and/or other materials provided with the distribution.
|
||||
# * Neither the name of NVIDIA CORPORATION nor the names of its
|
||||
# contributors may be used to endorse or promote products derived
|
||||
# from this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||||
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||||
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
{
|
||||
global:
|
||||
TRITONBACKEND_*;
|
||||
local: *;
|
||||
};
|
||||
1
inference/thirdparty/shark-runtime
vendored
1
inference/thirdparty/shark-runtime
vendored
Submodule inference/thirdparty/shark-runtime deleted from 7b82d90c72
45
package-index/index.html
Normal file
45
package-index/index.html
Normal file
@@ -0,0 +1,45 @@
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<body>
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230130.481/shark_sd_20230130_481.exe'>shark_sd_20230130_481.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230130.481/shark_sd_cli_20230130_481.exe'>shark_sd_cli_20230130_481.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230129.479/shark_sd_20230129_479.exe'>shark_sd_20230129_479.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230129.479/shark_sd_cli_20230129_479.exe'>shark_sd_cli_20230129_479.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230129.480/shark_sd_20230129_480.exe'>shark_sd_20230129_480.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230129.480/shark_sd_cli_20230129_480.exe'>shark_sd_cli_20230129_480.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230129.478/shark_sd_20230129_478.exe'>shark_sd_20230129_478.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230129.478/shark_sd_cli_20230129_478.exe'>shark_sd_cli_20230129_478.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230128.477/shark_sd_20230128_477.exe'>shark_sd_20230128_477.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230128.477/shark_sd_cli_20230128_477.exe'>shark_sd_cli_20230128_477.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230127.476/shark_sd_20230127_476.exe'>shark_sd_20230127_476.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230127.476/shark_sd_cli_20230127_476.exe'>shark_sd_cli_20230127_476.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230126.475/shark_sd_20230126_475.exe'>shark_sd_20230126_475.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230126.475/shark_sd_cli_20230126_475.exe'>shark_sd_cli_20230126_475.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230125.474/shark_sd_20230125_474.exe'>shark_sd_20230125_474.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230125.474/shark_sd_cli_20230125_474.exe'>shark_sd_cli_20230125_474.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230125.473/shark_sd_20230125_473.exe'>shark_sd_20230125_473.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230125.473/shark_sd_cli_20230125_473.exe'>shark_sd_cli_20230125_473.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230125.472/shark_sd_20230125_472.exe'>shark_sd_20230125_472.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230125.471/shark_sd_20230125_471.exe'>shark_sd_20230125_471.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230125.468/shark_sd_20230125_468.exe'>shark_sd_20230125_468.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230124.470/shark_sd_20230124_470.exe'>shark_sd_20230124_470.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230124.470/shark_sd_cli_20230124_470.exe'>shark_sd_cli_20230124_470.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230124.469/shark_sd_20230124_469.exe'>shark_sd_20230124_469.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230124.467/shark_sd_20230124_467.exe'>shark_sd_20230124_467.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230124.466/shark_sd_20230124_466.exe'>shark_sd_20230124_466.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230124.462/shark_sd_20230124_462.exe'>shark_sd_20230124_462.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230123.461/shark_sd_20230123_461.exe'>shark_sd_20230123_461.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230123.460/shark_sd_20230123_460.exe'>shark_sd_20230123_460.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230122.459/shark_sd_20230122_459.exe'>shark_sd_20230122_459.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230122.458/shark_sd_20230122_458.exe'>shark_sd_20230122_458.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230122.457/shark_sd_20230122_457.exe'>shark_sd_20230122_457.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230121.456/shark_sd_20230121_456.exe'>shark_sd_20230121_456.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230120.455/shark_sd_20230120_455.exe'>shark_sd_20230120_455.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230119.454/shark_sd_20230119_454.exe'>shark_sd_20230119_454.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230118.453/shark_sd_20230118_453.exe'>shark_sd_20230118_453.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230117.452/shark_sd_20230117_452.exe'>shark_sd_20230117_452.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230116.451/shark_sd_20230116_451.exe'>shark_sd_20230116_451.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230115.450/shark_sd_20230115_450.exe'>shark_sd_20230115_450.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230114.449/shark_sd_20230114_449.exe'>shark_sd_20230114_449.exe</a><br />
|
||||
</body>
|
||||
</html>
|
||||
@@ -1,34 +0,0 @@
|
||||
# This script will toggle the comment/uncommenting aspect for dealing
|
||||
# with __file__ AttributeError arising in case of a few modules in
|
||||
# `torch/_dynamo/skipfiles.py` (within shark.venv)
|
||||
|
||||
from distutils.sysconfig import get_python_lib
|
||||
import fileinput
|
||||
from pathlib import Path
|
||||
|
||||
path_to_skipfiles = Path(get_python_lib() + "/torch/_dynamo/skipfiles.py")
|
||||
|
||||
modules_to_comment = ["abc,", "os,", "posixpath,", "_collections_abc,"]
|
||||
startMonitoring = 0
|
||||
for line in fileinput.input(path_to_skipfiles, inplace=True):
|
||||
if "SKIP_DIRS = " in line:
|
||||
startMonitoring = 1
|
||||
print(line, end="")
|
||||
elif startMonitoring in [1, 2]:
|
||||
if "]" in line:
|
||||
startMonitoring += 1
|
||||
print(line, end="")
|
||||
else:
|
||||
flag = True
|
||||
for module in modules_to_comment:
|
||||
if module in line:
|
||||
if not line.startswith("#"):
|
||||
print(f"#{line}", end="")
|
||||
else:
|
||||
print(f"{line[1:]}", end="")
|
||||
flag = False
|
||||
break
|
||||
if flag:
|
||||
print(line, end="")
|
||||
else:
|
||||
print(line, end="")
|
||||
@@ -1,12 +0,0 @@
|
||||
[build-system]
|
||||
requires = [
|
||||
"setuptools>=42",
|
||||
"wheel",
|
||||
"packaging",
|
||||
|
||||
"numpy>=1.22.4",
|
||||
"torch-mlir>=20221021.633",
|
||||
"iree-compiler>=20221022.190",
|
||||
"iree-runtime>=20221022.190",
|
||||
]
|
||||
build-backend = "setuptools.build_meta"
|
||||
@@ -1,3 +0,0 @@
|
||||
[pytest]
|
||||
addopts = --verbose -p no:warnings
|
||||
norecursedirs = inference tank/tflite examples benchmarks shark
|
||||
@@ -1,45 +0,0 @@
|
||||
-f https://download.pytorch.org/whl/nightly/cpu/
|
||||
--pre
|
||||
|
||||
numpy
|
||||
torch
|
||||
torchvision
|
||||
|
||||
tqdm
|
||||
|
||||
#iree-compiler | iree-runtime should already be installed
|
||||
#these dont work ok osx
|
||||
#iree-tools-tflite
|
||||
#iree-tools-xla
|
||||
#iree-tools-tf
|
||||
|
||||
# TensorFlow and JAX.
|
||||
gin-config
|
||||
tensorflow-macos
|
||||
tensorflow-metal
|
||||
#tf-models-nightly
|
||||
#tensorflow-text-nightly
|
||||
transformers
|
||||
tensorflow-probability
|
||||
#jax[cpu]
|
||||
|
||||
# tflitehub dependencies.
|
||||
Pillow
|
||||
|
||||
# web dependecies.
|
||||
gradio
|
||||
altair
|
||||
|
||||
# Testing and support.
|
||||
#lit
|
||||
#pyyaml
|
||||
|
||||
#ONNX and ORT for benchmarking
|
||||
#--extra-index-url https://test.pypi.org/simple/
|
||||
#protobuf
|
||||
#coloredlogs
|
||||
#flatbuffers
|
||||
#sympy
|
||||
#psutil
|
||||
#onnx-weekly
|
||||
#ort-nightly
|
||||
@@ -1,50 +0,0 @@
|
||||
-f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html
|
||||
--pre
|
||||
|
||||
numpy==1.22.4
|
||||
torchvision
|
||||
pytorch-triton
|
||||
tabulate
|
||||
|
||||
tqdm
|
||||
|
||||
#iree-compiler | iree-runtime should already be installed
|
||||
iree-tools-tflite
|
||||
iree-tools-xla
|
||||
iree-tools-tf
|
||||
|
||||
# TensorFlow and JAX.
|
||||
gin-config
|
||||
tensorflow==2.10.1
|
||||
keras==2.10
|
||||
#tf-models-nightly
|
||||
#tensorflow-text-nightly
|
||||
transformers
|
||||
diffusers
|
||||
#tensorflow-probability
|
||||
#jax[cpu]
|
||||
|
||||
|
||||
# tflitehub dependencies.
|
||||
Pillow
|
||||
|
||||
# Testing and support.
|
||||
lit
|
||||
pyyaml
|
||||
python-dateutil
|
||||
sacremoses
|
||||
|
||||
# web dependecies.
|
||||
gradio
|
||||
altair
|
||||
scipy
|
||||
|
||||
#ONNX and ORT for benchmarking
|
||||
#--extra-index-url https://test.pypi.org/simple/
|
||||
#protobuf
|
||||
#coloredlogs
|
||||
#flatbuffers
|
||||
#sympy
|
||||
#psutil
|
||||
#onnx-weekly
|
||||
#ort-nightly
|
||||
@@ -1,29 +0,0 @@
|
||||
setuptools
|
||||
wheel
|
||||
|
||||
# SHARK Runner
|
||||
tqdm
|
||||
|
||||
# SHARK Downloader
|
||||
google-cloud-storage
|
||||
|
||||
# Testing
|
||||
pytest
|
||||
pytest-xdist
|
||||
pytest-forked
|
||||
Pillow
|
||||
parameterized
|
||||
|
||||
# Add transformers, diffusers and scipy since it most commonly used
|
||||
transformers
|
||||
diffusers
|
||||
scipy
|
||||
ftfy
|
||||
gradio
|
||||
altair
|
||||
omegaconf
|
||||
safetensors
|
||||
|
||||
# Keep PyInstaller at the end. Sometimes Windows Defender flags it but most folks can continue even if it errors
|
||||
pefile
|
||||
pyinstaller
|
||||
45
setup.py
45
setup.py
@@ -1,45 +0,0 @@
|
||||
from setuptools import find_packages
|
||||
from setuptools import setup
|
||||
|
||||
import os
|
||||
import glob
|
||||
|
||||
with open("README.md", "r", encoding="utf-8") as fh:
|
||||
long_description = fh.read()
|
||||
|
||||
PACKAGE_VERSION = os.environ.get("SHARK_PACKAGE_VERSION") or "0.0.5"
|
||||
backend_deps = []
|
||||
if "NO_BACKEND" in os.environ.keys():
|
||||
backend_deps = [
|
||||
"iree-compiler>=20221022.190",
|
||||
"iree-runtime>=20221022.190",
|
||||
]
|
||||
|
||||
setup(
|
||||
name="nodai-SHARK",
|
||||
version=f"{PACKAGE_VERSION}",
|
||||
description="SHARK provides a High Performance Machine Learning Framework",
|
||||
author="nod.ai",
|
||||
author_email="stdin@nod.ai",
|
||||
url="https://nod.ai",
|
||||
long_description=long_description,
|
||||
long_description_content_type="text/markdown",
|
||||
project_urls={
|
||||
"Code": "https://github.com/nod-ai/SHARK",
|
||||
"Bug Tracker": "https://github.com/nod-ai/SHARK/issues",
|
||||
},
|
||||
classifiers=[
|
||||
"Programming Language :: Python :: 3",
|
||||
"License :: OSI Approved :: MIT License",
|
||||
"Operating System :: OS Independent",
|
||||
],
|
||||
packages=find_packages(exclude=("examples")),
|
||||
python_requires=">=3.9",
|
||||
data_files=glob.glob("apps/stable_diffusion/resources/**"),
|
||||
install_requires=[
|
||||
"numpy",
|
||||
"PyYAML",
|
||||
"torch-mlir>=20221021.633",
|
||||
]
|
||||
+ backend_deps,
|
||||
)
|
||||
@@ -1,45 +0,0 @@
|
||||
param([string]$arguments)
|
||||
|
||||
if ($arguments -eq "--update-src"){
|
||||
git pull
|
||||
}
|
||||
|
||||
#Write-Host "Installing python"
|
||||
|
||||
#Start-Process winget install Python.Python.3.10 '/quiet InstallAllUsers=1 PrependPath=1' -wait -NoNewWindow
|
||||
|
||||
#Write-Host "python installation completed successfully"
|
||||
|
||||
#Write-Host "Reload environment variables"
|
||||
#$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
|
||||
#Write-Host "Reloaded environment variables"
|
||||
|
||||
|
||||
# redirect stderr into stdout
|
||||
$p = &{python -V} 2>&1
|
||||
# check if an ErrorRecord was returned
|
||||
$version = if($p -is [System.Management.Automation.ErrorRecord])
|
||||
{
|
||||
# grab the version string from the error message
|
||||
$p.Exception.Message
|
||||
}
|
||||
else
|
||||
{
|
||||
# otherwise return as is
|
||||
$p
|
||||
}
|
||||
|
||||
Write-Host "Python version found is"
|
||||
Write-Host $p
|
||||
|
||||
|
||||
Write-Host "Installing Build Dependencies"
|
||||
python -m venv .\shark.venv\
|
||||
.\shark.venv\Scripts\activate
|
||||
pip install -r requirements.txt
|
||||
pip install --pre torch-mlir torch torchvision --extra-index-url https://download.pytorch.org/whl/nightly/cpu -f https://llvm.github.io/torch-mlir/package-index/
|
||||
pip install --upgrade -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html iree-compiler iree-runtime
|
||||
Write-Host "Building SHARK..."
|
||||
pip install -e . -f https://llvm.github.io/torch-mlir/package-index/ -f https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html
|
||||
Write-Host "Build and installation completed successfully"
|
||||
Write-Host "Source your venv with ./shark.venv/Scripts/activate"
|
||||
154
setup_venv.sh
154
setup_venv.sh
@@ -1,154 +0,0 @@
|
||||
#!/bin/bash
|
||||
# Sets up a venv suitable for running samples.
|
||||
# e.g:
|
||||
# ./setup_venv.sh #setup a default $PYTHON3 shark.venv
|
||||
# Environment Variables by the script.
|
||||
# PYTHON=$PYTHON3.10 ./setup_venv.sh #pass a version of $PYTHON to use
|
||||
# VENV_DIR=myshark.venv #create a venv called myshark.venv
|
||||
# USE_IREE=1 #use stock IREE instead of Nod.ai's SHARK build
|
||||
# IMPORTER=1 #Install importer deps
|
||||
# BENCHMARK=1 #Install benchmark deps
|
||||
# NO_BACKEND=1 #Don't install iree or shark backend
|
||||
# if you run the script from a conda env it will install in your conda env
|
||||
|
||||
TD="$(cd $(dirname $0) && pwd)"
|
||||
if [ -z "$PYTHON" ]; then
|
||||
PYTHON="$(which python3)"
|
||||
fi
|
||||
|
||||
function die() {
|
||||
echo "Error executing command: $*"
|
||||
exit 1
|
||||
}
|
||||
|
||||
PYTHON_VERSION_X_Y=`${PYTHON} -c 'import sys; version=sys.version_info[:2]; print("{0}.{1}".format(*version))'`
|
||||
|
||||
echo "Python: $PYTHON"
|
||||
echo "Python version: $PYTHON_VERSION_X_Y"
|
||||
|
||||
if [[ -z "${CONDA_PREFIX}" ]]; then
|
||||
# Not a conda env. So create a new VENV dir
|
||||
VENV_DIR=${VENV_DIR:-shark.venv}
|
||||
echo "Using pip venv.. Setting up venv dir: $VENV_DIR"
|
||||
$PYTHON -m venv "$VENV_DIR" || die "Could not create venv."
|
||||
source "$VENV_DIR/bin/activate" || die "Could not activate venv"
|
||||
PYTHON="$(which python3)"
|
||||
else
|
||||
echo "Found conda env $CONDA_DEFAULT_ENV. Running pip install inside the conda env"
|
||||
fi
|
||||
|
||||
Red=`tput setaf 1`
|
||||
Green=`tput setaf 2`
|
||||
Yellow=`tput setaf 3`
|
||||
|
||||
# Assume no binary torch-mlir.
|
||||
# Currently available for macOS m1&intel (3.11) and Linux(3.8,3.10,3.11)
|
||||
torch_mlir_bin=false
|
||||
if [[ $(uname -s) = 'Darwin' ]]; then
|
||||
echo "${Yellow}Apple macOS detected"
|
||||
if [[ $(uname -m) == 'arm64' ]]; then
|
||||
echo "${Yellow}Apple M1 Detected"
|
||||
hash rustc 2>/dev/null
|
||||
if [ $? -eq 0 ];then
|
||||
echo "${Green}rustc found to compile HF tokenizers"
|
||||
else
|
||||
echo "${Red}Could not find rustc" >&2
|
||||
echo "${Red}Please run:"
|
||||
echo "${Red}curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
echo "${Yellow}Run the following commands to setup your SSL certs for your Python version if you see SSL errors with tests"
|
||||
echo "${Yellow}/Applications/Python\ 3.XX/Install\ Certificates.command"
|
||||
if [ "$PYTHON_VERSION_X_Y" == "3.11" ]; then
|
||||
torch_mlir_bin=true
|
||||
fi
|
||||
elif [[ $(uname -s) = 'Linux' ]]; then
|
||||
echo "${Yellow}Linux detected"
|
||||
if [ "$PYTHON_VERSION_X_Y" == "3.8" ] || [ "$PYTHON_VERSION_X_Y" == "3.10" ] || [ "$PYTHON_VERSION_X_Y" == "3.11" ] ; then
|
||||
torch_mlir_bin=true
|
||||
fi
|
||||
else
|
||||
echo "${Red}OS not detected. Pray and Play"
|
||||
fi
|
||||
|
||||
# Upgrade pip and install requirements.
|
||||
$PYTHON -m pip install --upgrade pip || die "Could not upgrade pip"
|
||||
$PYTHON -m pip install --upgrade -r "$TD/requirements.txt"
|
||||
if [ "$torch_mlir_bin" = true ]; then
|
||||
if [[ $(uname -s) = 'Darwin' ]]; then
|
||||
echo "MacOS detected. Installing torch-mlir from .whl, to avoid dependency problems with torch."
|
||||
$PYTHON -m pip install --pre --no-cache-dir torch-mlir -f https://llvm.github.io/torch-mlir/package-index/ -f https://download.pytorch.org/whl/nightly/torch/
|
||||
else
|
||||
$PYTHON -m pip install --pre torch-mlir -f https://llvm.github.io/torch-mlir/package-index/
|
||||
if [ $? -eq 0 ];then
|
||||
echo "Successfully Installed torch-mlir"
|
||||
else
|
||||
echo "Could not install torch-mlir" >&2
|
||||
fi
|
||||
fi
|
||||
else
|
||||
echo "${Red}No binaries found for Python $PYTHON_VERSION_X_Y on $(uname -s)"
|
||||
echo "${Yello}Python 3.11 supported on macOS and 3.8,3.10 and 3.11 on Linux"
|
||||
echo "${Red}Please build torch-mlir from source in your environment"
|
||||
exit 1
|
||||
fi
|
||||
if [[ -z "${USE_IREE}" ]]; then
|
||||
rm .use-iree
|
||||
RUNTIME="https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html"
|
||||
else
|
||||
touch ./.use-iree
|
||||
RUNTIME="https://iree-org.github.io/iree/pip-release-links.html"
|
||||
fi
|
||||
if [[ -z "${NO_BACKEND}" ]]; then
|
||||
echo "Installing ${RUNTIME}..."
|
||||
$PYTHON -m pip install --upgrade --find-links ${RUNTIME} iree-compiler iree-runtime
|
||||
else
|
||||
echo "Not installing a backend, please make sure to add your backend to PYTHONPATH"
|
||||
fi
|
||||
|
||||
if [[ ! -z "${IMPORTER}" ]]; then
|
||||
echo "${Yellow}Installing importer tools.."
|
||||
if [[ $(uname -s) = 'Linux' ]]; then
|
||||
echo "${Yellow}Linux detected.. installing Linux importer tools"
|
||||
#Always get the importer tools from upstream IREE
|
||||
$PYTHON -m pip install --no-warn-conflicts --upgrade -r "$TD/requirements-importer.txt" -f https://iree-org.github.io/iree/pip-release-links.html --extra-index-url https://download.pytorch.org/whl/nightly/cpu
|
||||
elif [[ $(uname -s) = 'Darwin' ]]; then
|
||||
echo "${Yellow}macOS detected.. installing macOS importer tools"
|
||||
#Conda seems to have some problems installing these packages and hope they get resolved upstream.
|
||||
$PYTHON -m pip install --no-warn-conflicts --upgrade -r "$TD/requirements-importer-macos.txt" -f ${RUNTIME} --extra-index-url https://download.pytorch.org/whl/nightly/cpu
|
||||
fi
|
||||
fi
|
||||
|
||||
$PYTHON -m pip install --no-warn-conflicts -e . -f https://llvm.github.io/torch-mlir/package-index/ -f ${RUNTIME} -f https://download.pytorch.org/whl/nightly/torch/
|
||||
|
||||
if [[ $(uname -s) = 'Linux' && ! -z "${BENCHMARK}" ]]; then
|
||||
T_VER=$($PYTHON -m pip show torch | grep Version)
|
||||
TORCH_VERSION=${T_VER:9:17}
|
||||
TV_VER=$($PYTHON -m pip show torchvision | grep Version)
|
||||
TV_VERSION=${TV_VER:9:18}
|
||||
$PYTHON -m pip uninstall -y torch torchvision
|
||||
$PYTHON -m pip install -U --pre --no-warn-conflicts triton
|
||||
$PYTHON -m pip install --no-deps https://download.pytorch.org/whl/nightly/cu117/torch-${TORCH_VERSION}%2Bcu117-cp310-cp310-linux_x86_64.whl https://download.pytorch.org/whl/nightly/cu117/torchvision-${TV_VERSION}%2Bcu117-cp310-cp310-linux_x86_64.whl
|
||||
if [ $? -eq 0 ];then
|
||||
echo "Successfully Installed torch + cu117."
|
||||
else
|
||||
echo "Could not install torch + cu117." >&2
|
||||
fi
|
||||
fi
|
||||
|
||||
if [[ ! -z "${ONNX}" ]]; then
|
||||
echo "${Yellow}Installing ONNX and onnxruntime for benchmarks..."
|
||||
$PYTHON -m pip install onnx onnxruntime psutil
|
||||
if [ $? -eq 0 ];then
|
||||
echo "Successfully installed ONNX and ONNX runtime."
|
||||
else
|
||||
echo "Could not install ONNX." >&2
|
||||
fi
|
||||
fi
|
||||
|
||||
if [[ -z "${CONDA_PREFIX}" ]]; then
|
||||
echo "${Green}Before running examples activate venv with:"
|
||||
echo " ${Green}source $VENV_DIR/bin/activate"
|
||||
fi
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user