Compare commits

..

126 Commits

Author SHA1 Message Date
dan
6eea111f5e bert training wip 2022-11-17 17:24:46 +00:00
powderluv
a63755bc24 Correct spelling 2022-10-11 01:53:55 -07:00
Quinn Dawkins
d93d0783a8 Add script for tensorflow stable diffusion (#391) 2022-10-10 12:01:49 -04:00
Daniel Garvey
d38e37bd99 seperate importer and benchmark deps (#393) 2022-10-08 23:31:20 -05:00
Ean Garvey
3618fb3ada Move old test scripts out of base tank directory and add xfails. (#389) 2022-10-07 16:02:46 -07:00
Vivek Khandelwal
70a29b03e0 Add FP16 Resnet50 script 2022-10-06 21:56:43 +05:30
Ean Garvey
006adf8746 Fix issue with FASTAPI pip install. (#382) 2022-10-01 14:55:24 -05:00
Quinn Dawkins
33b53e7caf Add flag for specifying the vae mlir file location in stable diffusion (#381) 2022-09-30 00:37:58 -04:00
Daniel Garvey
c54815de17 edit assets path (#376) 2022-09-28 16:42:36 -05:00
Gaurav Shukla
0013fb0753 [WEB] Add shark-web logging
1. This commit adds support to display logs in the shark-web.
2. It also adds nod logo in the home page.
3. Stable-diffusion outputs are being saved now.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-09-29 01:20:42 +05:30
Ean Garvey
56f8a0d85a Update torch-mlir releases page in setup_venv.sh (#374)
* Update README.md

* Update setup_venv.sh
2022-09-28 11:07:44 -07:00
Ean Garvey
9035a2eed3 Add --local_tank_cache flag and update requirements. (#368)
* Add --local_tank_cache flag and update requirements.

* Update requirements-importer.txt
2022-09-28 03:02:59 -05:00
Vivek Khandelwal
28daf410b6 Add instructions to use locally build Torch-MLIR with SHARK 2022-09-28 10:16:38 +05:30
Ean Garvey
cbf3f784aa Add pytest option to specify a URL for shark tank artifacts. (#363)
* Xfail updates.

* Generalize tank SHA option to bucket address and add pytest option.
2022-09-27 02:40:40 -05:00
Anush Elangovan
ef4b306c7b Add diffusers and scipy 2022-09-26 13:35:23 -07:00
powderluv
5316c1e0bf Use latest transformers (#346) 2022-09-26 13:11:41 -07:00
Gaurav Shukla
0228973eef [WEB] Fix the mlir location of stable-diffusion model (#367)
Update the location of stable-diffusion mlir file since there is some
problem with iree-compile.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-09-26 10:56:36 -07:00
Gaurav Shukla
d4eeff0a5d [WEB] Add Stable-Diffusion in the SHARK web (#366)
1. This commit adds stable-diffusion as a part of shark web.
2. The V-diffusion model has been disabled for now as it's not
   working(will raise a different patch with fix).
3. Add standard output in the web ui.
4. Add instructions to launch the shark-web.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-09-26 10:42:02 -07:00
Prashant Kumar
c7b2d39ab2 Update stable_diff to contain vae. 2022-09-26 20:11:43 +05:30
Gaurav Shukla
21958cc02a [WEB] Remove unused parameters in the v-diffuison model (#314)
This commit removes unused parameters in the v-diffusion model. It also
updated the server parameters in order to make multiple requests to be
handled sequentially.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-09-25 10:57:06 -07:00
Ean Garvey
de23e5d9d7 update xfails for PyTorch DistilBERT (#355) 2022-09-24 14:53:20 -05:00
Quinn Dawkins
6438bce023 Add a script to convert a jpg to the correct input for resnet50 with the vulkan gui (#362) 2022-09-23 16:32:52 -07:00
yzhang93
587d74b449 Update model annotation tool (#361)
Usage:
with create_context() as ctx:
  module = model_annotation(ctx, input_contents=..., config_path=..., search_op=...)

Example:
The example is to annotate the minilm model with GPU config files.
python model_annotation.py /nodclouddata/vivian/minilm_model/model.mlir /nodclouddata/vivian/minilm_model/model_config.json
2022-09-23 15:44:51 -07:00
Prashant Kumar
b9c8985047 Add sharkdynamo which combines shark with torchdynamo.
-- Adds graph breaks when necessary.
-- Even for loops are supported.
2022-09-23 22:40:02 +05:30
Vivek Khandelwal
93ebe07d2b Add bert_tosa script 2022-09-23 10:52:06 +05:30
Ean Garvey
d82b305781 Fix issues with loading .vmfb into SharkInference 2022-09-23 09:53:13 +05:30
Quinn Dawkins
1df20fac95 [Lockstep] Hack to avoid aten._reshape_alias (#332)
This enforces the decomposition for aten._reshape_alias used in AOTAutograd to essentially avoid having to deal with problems with strides when running in eager mode.
2022-09-22 18:02:09 -04:00
Prashant Kumar
991e7043d1 Add stable diffusion model. 2022-09-22 13:40:51 +05:30
powderluv
1c4d6c23fa Update CMakeLists.txt 2022-09-21 22:48:56 -07:00
Anush Elangovan
87895446a5 Roll SHARK-Runtime 2022-09-22 00:09:04 -07:00
Ean Garvey
c0f3a09a40 Include SHA in path to failure reproducers. Add --save_fails option. (#352) 2022-09-21 17:55:06 -05:00
Anush Elangovan
e9ad4b9fc4 Update SHARK Runtime 2022-09-21 06:31:48 -07:00
Ean Garvey
c061a8897d Add pytest options to save reproducers. (#350)
* Add pytest options to save and/or upload reproducers.

* pass shark_module to benchmark method.
2022-09-20 20:29:46 -05:00
Ean Garvey
4253551b67 Update README with new testing instructions and filter test cases. (#349) 2022-09-20 15:55:46 -05:00
Vivek Khandelwal
e4991c049e Add Readme file for the bloom model 2022-09-20 20:27:52 +05:30
Daniel Garvey
5df582e7e8 creates abstract test case class (#333) 2022-09-20 07:06:38 -07:00
Ean Garvey
814a6f8295 Modify vulkan target triple substring searches. (#318) 2022-09-20 01:20:20 -05:00
Vivek Khandelwal
7013c3cd4a Add bloom e2e script 2022-09-20 10:56:04 +05:30
powderluv
0ddd65b6f1 Create LICENSE 2022-09-19 15:07:59 -07:00
powderluv
44d8f08bfc Fix Torch-MLIR release page 2022-09-17 00:50:39 -07:00
erman-gurses
fc8aa6ae63 Add ROCM parameters (#335) 2022-09-16 09:12:19 -07:00
Quinn Dawkins
9bd951b083 Clean up the v-diffusion install pipeline (#327) 2022-09-16 11:47:07 -04:00
Vivek Khandelwal
c43448a826 Update compile_utils.py 2022-09-15 18:28:10 +05:30
Vivek Khandelwal
864723a473 add bloom model example 2022-09-15 18:23:09 +05:30
Anush Elangovan
3b0ec8ce4e Update resnet paths 2022-09-14 16:56:20 -07:00
Anush Elangovan
174b171913 Clean up SDL linking 2022-09-14 13:18:55 -07:00
powderluv
cfd9733c2b Delete shark_web directory 2022-09-14 06:38:30 -07:00
Anush Elangovan
8d4d543a49 Update shark runtime 2022-09-14 06:14:02 -07:00
Anush Elangovan
1b9c88a052 Update vulkan gui readme 2022-09-13 19:35:47 -07:00
Anush Elangovan
e212ff2071 Fix resnet50 vulkan_gui to work with tank models 2022-09-13 19:22:41 -07:00
Quinn Dawkins
8d21292d34 Fix input tensors with non-floating point dtype in the lockstep tracer (#328) 2022-09-13 21:14:38 -04:00
Anush Elangovan
e304041574 Remove redundant {} 2022-09-13 16:12:35 -07:00
Anush Elangovan
1776c55e73 Fix torch-mlir download URL 2022-09-13 16:07:25 -07:00
Anush Elangovan
4e4c34c717 fix release downloads 2022-09-13 15:00:47 -07:00
Anush Elangovan
23378b6be8 Add resnet to vulkan-gui 2022-09-13 07:06:47 -07:00
Ean Garvey
6cf5564c84 Remove "gpu" device alias and migrate to using "cuda" for NVIDIA GPU. (#325)
* Replace instances of "gpu" alias for devices with "cuda"
2022-09-13 01:16:56 -05:00
Ean Garvey
7143902a90 Update test-models.yml (#323) 2022-09-12 22:47:40 -05:00
Anush Elangovan
15186db73f Hardcode SDL2 for now (works on linux) 2022-09-12 10:17:41 -07:00
powderluv
ccd7a01ce2 Update README.md 2022-09-12 07:12:57 -07:00
Anush Elangovan
1d7035117d Add cpp inference examples and vulkan_gui 2022-09-12 07:07:33 -07:00
Ean Garvey
1710abd366 Update mobilenet_v3_small_torch_test.py (#322) 2022-09-10 15:22:57 -05:00
Ean Garvey
6aeda3670f Split nightly workflow by backend (IREE / SHARK) (#313)
* Fix validation for nightly builds.

* Add option to generate shark_tank inside SHARK project
Add shark_arg for updating tank on mismatched hash (downloader)

* Fixup CI tank dir option.

* Fixup work directory variable
2022-09-09 22:51:30 +05:30
Prashant Kumar
bb52b224d0 Add sparse architecture and test with torchrec SparseArch.
Features that don't work with current implementation:
    -- embeddingbag config with multiple features.
2022-09-09 21:49:30 +05:30
Stanley Winata
95ec3d7216 [tank][v-diffusion] Polish up v-diffusion UX (#315) 2022-09-08 12:55:51 -07:00
powderluv
18872222d3 Update README.md 2022-09-07 01:14:30 -07:00
Ean Garvey
d453f2e49d Enable CPU benchmarks on test-models workflows. (#299)
* Update test-models.yml

* Update README.md
2022-09-07 01:22:58 -05:00
Ean Garvey
3824d37d27 Add metadata to benchmark results. (#297) 2022-09-06 13:03:48 -05:00
Ean Garvey
d946287723 Update xfails for torchvision models. (#310) 2022-09-01 13:06:12 -05:00
Prashant Kumar
885b0969f5 [WEB] Cache the compiled module.
-- Don't compile the module again and again.
2022-09-01 23:08:08 +05:30
Gaurav Shukla
a886cba655 [WEB] Add v_diffusion model in the shark web (#306)
This commit adds adds `v_diffusion` model web visualization as a part of
shark web.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-09-01 06:34:51 -07:00
Vivek Khandelwal
4afe2e3adb Add func to save intermediate images in v_diffusion_pytorch 2022-09-01 18:36:58 +05:30
Gaurav Shukla
fe080eaee6 [WEB] Introduce web interface for the SHARK models (#298)
This commit introduces web application for SHARK using gradio platform.
This adds web visualization of `Resnet50` and `Albert_Maskfill` models
as a start.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>

Signed-off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-08-31 23:17:52 -07:00
Quinn Dawkins
3703f014d9 Add scripts for generating images on ats-m (#305) 2022-08-31 23:07:02 -07:00
Daniel Garvey
d45a496030 adds a flag to enable directory choice (#303)
individual tests will require implementation of the flag
alternatively, simply passing shark_default_sha in your
individual app's download function will allow for this behavior
2022-08-31 22:17:40 -07:00
powderluv
4ee164c66f remove a100 cpu 2022-08-31 12:59:47 -07:00
powderluv
bf84c033bb add icelake 2022-08-31 12:58:40 -07:00
Prashant Kumar
5105f62551 Add the dlrm_model in shark example. (#301)
-- DLRM model is added in the shark example.
-- The model is verified on cpu, gpu and vulkan.

Co-authored-by: powderluv <powderluv@users.noreply.github.com>
2022-08-31 12:54:21 -07:00
Quinn Dawkins
99be837d84 Add lockstep tracer based on TorchMLIR eager mode + examples (#243) 2022-08-31 15:50:24 -04:00
Quinn Dawkins
b7766898ee Add cfg sampling from tank model for v-diffusion and move compilation outside of the sampling loop (#302) 2022-08-31 11:35:04 -07:00
powderluv
57f73dfbc9 Update nightly.yml 2022-08-28 23:59:03 -07:00
powderluv
50b2b9638d Update nightly.yml 2022-08-28 23:43:32 -07:00
Daniel Garvey
1bfd00e2f8 fixes an install issue (#295) 2022-08-25 18:52:00 -05:00
Daniel Garvey
64424877ac No iree instal (#294)
* adds support to default to tuned model

currently setup for tf bert/resnet50
going to refactor test class to avoid having to
add an argument to 50+ files

* adds an option to avoid installing iree

useful when building iree from source
specify env variable NO_BACKEND=1
2022-08-25 15:02:28 -05:00
Phaneesh Barwaria
02d857260c Update ReadMe
-Add gsutil installation for resnet50 example
2022-08-25 20:28:50 +05:30
Phaneesh Barwaria
1322ec5935 Simplified Testing Interface (#289) 2022-08-24 23:54:56 -05:00
Daniel Garvey
48e9818f7e adds support to default to tuned model (#287)
currently setup for tf bert/resnet50
going to refactor test class to avoid having to
add an argument to 50+ files
2022-08-24 16:30:02 -05:00
Ean Garvey
14857770dc Fix local artifact recognition and usage by SHARK downloader. (#286)
* Fix local artifact recognition and usage by SHARK downloader.

* Update generate_sharktank.py

* Update generate_sharktank.py
2022-08-24 14:37:16 -05:00
Vivek Khandelwal
f79a6bf5aa Update setup_v_diffusion_pytorch.sh (#291)
Fix minor issue with v-diffusion PyTorch version
2022-08-24 22:00:02 +05:30
Prashant Kumar
7dc27a7477 Don't remove the latest .whl package from CI. (#290)
Previously, the CI was removing the latest package and pointing to the
stale package.
2022-08-24 09:03:48 -07:00
Chi_Liu
17dba601c8 Add huggingface top5 image classification automodel (#268) 2022-08-22 15:05:38 -07:00
Chi_Liu
064aa3b1f4 Fix tmp dir bug (#285) 2022-08-22 15:00:35 -07:00
Ean Garvey
4960efc686 Update requirements-importer.txt (#284) 2022-08-19 23:21:41 -05:00
Ean Garvey
a3654f33da Fix sourcing for canonical MiniLM shark_tank model artifacts. (#278)
* Fix generation of MiniLM artifacts.

* Fix miniLM output for validation. Xfail numerics failure on mpnet.

* Update distilbert-base-uncased_tf_test.py

* try-except for transition of minilm model
2022-08-17 23:03:47 -05:00
Daniel Garvey
82c541dfb8 fix missing model download path (#281) 2022-08-17 23:02:50 -05:00
Stanley Winata
55bcb2eb3c Level Zero Backend (#280) 2022-08-17 19:19:27 -07:00
Daniel Garvey
1a85550879 fix nightly upload check (#277) 2022-08-17 14:31:15 -05:00
Ean Garvey
334f2f76c4 Update README.md (#273)
* Update README.md

* Update README.md

* Update README.md

* Update README.md

Co-authored-by: powderluv <powderluv@users.noreply.github.com>
2022-08-17 10:38:27 -07:00
Vivek Khandelwal
03601ccdd6 Add v_diffusion_pytorch model in shark/tank (#271) 2022-08-17 22:53:31 +05:30
Prashant Kumar
88b0dec0ee Update unet_model to run on shark.
-- Verified unet_model runs on the cpu/gpu/vulkan backend.
2022-08-17 13:16:02 +05:30
Ean Garvey
3514822cac Improvements to pytest benchmarks. (#267)
* Add ONNX env var flags for venv setup.

* Setup arguments for ONNX benchmarking via pytest.

* Enable ONNX benchmarking on MiniLM via pytest (experimental)

* Fix sequence lengths to 128 for TF model creation and fix issue with benchmarks.

* Disable CI CPU benchmarks on A100, change some default args.

* add xfails for roberta TF model tests on GPU.
2022-08-17 02:29:48 -05:00
Ean Garvey
a8b021dc8d Add benchmarks to MHLO miniLM and resnet50 and add dialect, num_iterations (#264) 2022-08-16 13:55:40 -05:00
Daniel Garvey
5e931debd5 Sharktank-ci (#262) 2022-08-15 13:32:24 -05:00
Ean Garvey
22ff92c48b Add config.VmModule argument to from_flatbuffer call. (#266) 2022-08-14 15:11:19 -07:00
powderluv
7f5aaa3477 Update nightly.yml 2022-08-14 12:22:50 -07:00
powderluv
904e0e1444 Update nightly.yml 2022-08-14 09:57:10 -07:00
powderluv
db6e2207ed Update _common.py 2022-08-13 13:49:01 -07:00
Daniel Garvey
7975087ee2 change backend name (#265) 2022-08-13 12:01:12 -07:00
Daniel Garvey
e8482d47f5 split nightly pytest commands (#259)
prevents oom
2022-08-12 16:11:46 -07:00
Ean Garvey
3e900d2b25 Change Resnet50 directory names. (#263) 2022-08-12 16:10:59 -07:00
Ean Garvey
4b5d09fc6c Add TF ResNet50 to tank tests. (#261)
* Add TensorFlow Resnet50 test to shark tank.
2022-08-12 09:20:43 -07:00
Prashant Kumar
02b1e7ac36 Update torch_mlir.compile API.
torch_mlir.compile API is updated and verified by compiling all the
torch models via generate_sharktank script.
2022-08-10 22:50:15 +05:30
Ean Garvey
23619068eb Disable passing of sm_arch to iree-compile CL args by default. (#253)
* Disable passing of sm_arch to iree-compile CL args by default.

* Fix formatting.
2022-08-10 01:19:24 -07:00
powderluv
f7f24dc4d9 Revert "Add Debug log of torch_model_blacklist.txt (#242)" (#249)
This reverts commit 7023d556b5.
2022-08-09 10:23:14 -07:00
powderluv
c2aa451767 Update test-models.yml 2022-08-09 10:12:59 -07:00
Chi_Liu
7023d556b5 Add Debug log of torch_model_blacklist.txt (#242)
* Add debug log of torch_model_blacklist.txt

* Add make_fx for torch model

* Update torch_model_blacklists.txt

* Add some Xfails
2022-08-09 17:54:02 +05:30
powderluv
274650fd43 Update nightly.yml
Add tests for USE_IREE=1
2022-08-07 00:06:11 -07:00
Prashant Kumar
d934765b1d Add mobilenet_v3_small torch model to the test_suite.
-- The model doesn't validate with the correct results on the GPU.
-- The model passes on CPU and levelzero.
-- The static version of the model gets stuck for vulkan.
2022-08-05 14:10:43 +05:30
Ean Garvey
6f5ceb4e61 Update test-models.yml (#244) 2022-08-04 21:56:08 -07:00
Ean Garvey
6c22139ac9 Upload benchmark results for every test-models workflow (excl. Vulkan) (#241)
* Upload benchmark results for every test-models workflow (excl. Vulkan)
2022-08-04 14:43:07 -07:00
powderluv
1c4f5e0c34 Add M1 Max and Pro variants 2022-08-04 13:45:34 -07:00
Daniel Garvey
7dc0a4f74d fine tune with shark (#211) 2022-08-04 13:14:57 -05:00
Chi_Liu
90fddc6cb0 Add more torch hg model tests (#238) 2022-08-03 18:00:04 -07:00
Quinn Dawkins
934f15ebb7 Fix IREE eager backend device string (#237) 2022-08-03 12:09:52 -07:00
Ean Garvey
38664a4c68 Update README.md (#239) 2022-08-03 11:39:00 -07:00
Chi_Liu
abce0b1c91 Move torch tests up to /tank (#234) 2022-08-03 10:50:53 -07:00
Phaneesh Barwaria
189466bbe4 Mark XFail for M1 Vulkan Failures (#235) 2022-08-02 19:56:02 -07:00
173 changed files with 16513 additions and 3281 deletions

View File

@@ -16,6 +16,7 @@ jobs:
fail-fast: false
matrix:
python-version: ["3.10"]
backend: [IREE, SHARK]
steps:
- uses: actions/checkout@v3
@@ -49,42 +50,79 @@ jobs:
body: |
Automatic snapshot release of nod.ai SHARK.
draft: true
prerelease: false
prerelease: false
- name: Find Torch-MLIR Release
run: |
TM_HTML_URL="$(python3 -c "import urllib.request, json, sys; u=json.loads(urllib.request.urlopen('https://api.github.com/repos/llvm/torch-mlir/releases/latest').read().decode()).get('html_url', False); print(u) if u else sys.exit(1);")"
TM_RELEASE_DIR=${TM_HTML_URL/"tag"/"expanded_assets"}
echo "TM_RELEASE_DIR=${TM_RELEASE_DIR}" >> $GITHUB_ENV
- name: Install dependencies
run: |
echo "Torch-MLIR Release DIR is ${{ env.TM_RELEASE_DIR }}"
python -m pip install --upgrade pip
python -m pip install flake8 pytest toml
if [ -f requirements.txt ]; then pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/nightly/cpu -f https://github.com/llvm/torch-mlir/releases -f https://github.com/nod-ai/SHARK-Runtime/releases; fi
if [ -f requirements.txt ]; then pip install -r requirements.txt -f ${{ env.TM_RELEASE_DIR }} -f https://github.com/nod-ai/SHARK-Runtime/releases; fi
- name: Lint with flake8
run: |
# stop the build if there are Python syntax errors or undefined names
flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics --exclude shark.venv,lit.cfg.py
# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics --exclude shark.venv,lit.cfg.py
- name: Build and validate the IREE package
if: ${{ matrix.backend == 'IREE' }}
run: |
cd $GITHUB_WORKSPACE
USE_IREE=1 VENV_DIR=iree.venv ./setup_venv.sh
source iree.venv/bin/activate
package_version="$(printf '%(%Y%m%d)T.${{ github.run_number }}')"
SHARK_PACKAGE_VERSION=${package_version} \
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f ${{ env.TM_RELEASE_DIR }} -f https://github.com/iree-org/iree/releases
# Install the built wheel
pip install ./wheelhouse/nodai*
# Validate the Models
/bin/bash "$GITHUB_WORKSPACE/build_tools/populate_sharktank_ci.sh"
pytest tank/test_models.py |
tail -n 1 |
tee -a pytest_results.txt
if !(grep -Fxq " failed" pytest_results.txt)
then
export SHA=$(git log -1 --format='%h')
gsutil -m cp -r $GITHUB_WORKSPACE/gen_shark_tank/* gs://shark_tank/$SHA
gsutil -m cp -r gs://shark_tank/$SHA/* gs://shark_tank/latest/
fi
rm -rf ./wheelhouse/nodai*
- name: Build and validate the package
- name: Build and validate the SHARK Runtime package
if: ${{ matrix.backend == 'SHARK' }}
run: |
cd $GITHUB_WORKSPACE
./setup_venv.sh
source shark.venv/bin/activate
package_version="$(printf '%(%Y%m%d)T.${{ github.run_number }}')"
SHARK_PACKAGE_VERSION=${package_version} \
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://github.com/llvm/torch-mlir/releases -f https://github.com/nod-ai/SHARK-Runtime/releases
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f ${{ env.TM_RELEASE_DIR }} -f https://github.com/nod-ai/SHARK-Runtime/releases
# Install the built wheel
pip install ./wheelhouse/nodai*
# Validate the Models
pytest -k 'not benchmark' --ignore=benchmarks/tests/test_hf_benchmark.py --ignore=benchmarks/tests/test_benchmark.py --ignore=shark/tests/test_shark_importer.py --ignore=tank/tf/
pytest tank/test_models.py |
tail -n 1 |
tee -a pytest_results.txt
publish:
runs-on: a100
needs: build
steps:
- name: Upload Release Assets
if: ${{ matrix.backend == 'SHARK' }}
id: upload-release-assets
uses: dwenegar/upload-release-assets@v1
env:
GITHUB_TOKEN: ${{ secrets.NODAI_INVOCATION_TOKEN }}
with:
release_id: ${{ steps.create_release.outputs.id }}
assets_path: ./wheelhouse/nodai_*.whl
assets_path: ${GITHUB_WORKSPACE}/wheelhouse/nodai_*.whl
- name: Publish Release
if: ${{ matrix.backend == 'SHARK' }}
id: publish_release
uses: eregon/publish-release@v1
env:

View File

@@ -15,8 +15,8 @@ jobs:
strategy:
fail-fast: true
matrix:
os: [a100, MacStudio, ubuntu-latest]
suite: [cpu,gpu,vulkan]
os: [icelake, a100, MacStudio, ubuntu-latest]
suite: [cpu,cuda,vulkan]
python-version: ["3.10"]
include:
- os: ubuntu-latest
@@ -25,27 +25,40 @@ jobs:
- os: ubuntu-latest
suite: vulkan
- os: ubuntu-latest
suite: gpu
suite: cuda
- os: ubuntu-latest
suite: cpu
- os: MacStudio
suite: gpu
suite: cuda
- os: MacStudio
suite: cpu
- os: MacStudio
suite: vulkan
- os: icelake
suite: vulkan
- os: icelake
suite: cuda
- os: a100
suite: cpu
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v3
- name: Set Environment Variables
run: |
echo "SHORT_SHA=`git rev-parse --short=4 HEAD`" >> $GITHUB_ENV
echo "DATE=$(date +'%Y-%m-%d')" >> $GITHUB_ENV
- name: Set up Python Version File ${{ matrix.python-version }}
if: matrix.os == 'a100' || matrix.os == 'ubuntu-latest'
if: matrix.os == 'a100' || matrix.os == 'ubuntu-latest' || matrix.os == 'icelake'
run: |
# See https://github.com/actions/setup-python/issues/433
echo ${{ matrix.python-version }} >> $GITHUB_WORKSPACE/.python-version
- name: Set up Python ${{ matrix.python-version }}
if: matrix.os == 'a100' || matrix.os == 'ubuntu-latest'
if: matrix.os == 'a100' || matrix.os == 'ubuntu-latest' || matrix.os == 'icelake'
uses: actions/setup-python@v4
with:
python-version: '${{ matrix.python-version }}'
@@ -71,26 +84,30 @@ jobs:
# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics --exclude lit.cfg.py
- name: Validate CPU Models
- name: Validate Models on CPU
if: matrix.suite == 'cpu'
run: |
cd $GITHUB_WORKSPACE
PYTHON=python${{ matrix.python-version }} ./setup_venv.sh
PYTHON=python${{ matrix.python-version }} BENCHMARK=1 IMPORTER=1 ./setup_venv.sh
source shark.venv/bin/activate
pytest -k 'cpu' --ignore=shark/tests/test_shark_importer.py --ignore=benchmarks/tests/test_hf_benchmark.py --ignore=benchmarks/tests/test_benchmark.py
pytest --benchmark --ci --ci_sha=${SHORT_SHA} --local_tank_cache="/data/anush" tank/test_models.py -k cpu
gsutil cp ./bench_results.csv gs://shark-public/builder/bench_results/${DATE}/bench_results_cpu_${SHORT_SHA}.csv
gsutil cp gs://shark-public/builder/bench_results/${DATE}/bench_results_cpu_${SHORT_SHA}.csv gs://shark-public/builder/bench_results/latest/bench_results_cpu_latest.csv
- name: Validate GPU Models
if: matrix.suite == 'gpu'
- name: Validate Models on NVIDIA GPU
if: matrix.suite == 'cuda'
run: |
cd $GITHUB_WORKSPACE
PYTHON=python${{ matrix.python-version }} ./setup_venv.sh
PYTHON=python${{ matrix.python-version }} BENCHMARK=1 IMPORTER=1 ./setup_venv.sh
source shark.venv/bin/activate
pytest -k "gpu" --ignore=shark/tests/test_shark_importer.py --ignore=benchmarks/tests/test_hf_benchmark.py --ignore=benchmarks/tests/test_benchmark.py
pytest --benchmark --ci --ci_sha=${SHORT_SHA} --local_tank_cache="/data/anush" tank/test_models.py -k cuda
gsutil cp ./bench_results.csv gs://shark-public/builder/bench_results/${DATE}/bench_results_cuda_${SHORT_SHA}.csv
gsutil cp gs://shark-public/builder/bench_results/${DATE}/bench_results_cuda_${SHORT_SHA}.csv gs://shark-public/builder/bench_results/latest/bench_results_cuda_latest.csv
- name: Validate Vulkan Models
if: matrix.suite == 'vulkan'
run: |
cd $GITHUB_WORKSPACE
PYTHON=python${{ matrix.python-version }} ./setup_venv.sh
PYTHON=python${{ matrix.python-version }} BENCHMARK=1 IMPORTER=1 ./setup_venv.sh
source shark.venv/bin/activate
pytest -k 'vulkan' --ignore=shark/tests/test_shark_importer.py --ignore=benchmarks/tests/test_hf_benchmark.py --ignore=benchmarks/tests/test_benchmark.py
pytest --ci --ci_sha=${SHORT_SHA} --local_tank_cache="/data/anush" tank/test_models.py -k vulkan

218
LICENSE Normal file
View File

@@ -0,0 +1,218 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
---- LLVM Exceptions to the Apache 2.0 License ----
As an exception, if, as a result of your compiling your source code, portions
of this Software are embedded into an Object form of such source code, you
may redistribute such embedded portions in such Object form without complying
with the conditions of Sections 4(a), 4(b) and 4(d) of the License.
In addition, if you combine or link compiled forms of this Software with
software that is licensed under the GPLv2 ("Combined Software") and if a
court of competent jurisdiction determines that the patent provision (Section
3), the indemnity provision (Section 9) or other Section of the License
conflicts with the conditions of the GPLv2, you may retroactively and
prospectively choose to deem waived or otherwise exclude such Section(s) of
the License, but only in their entirety and only with respect to the Combined
Software.

View File

@@ -47,7 +47,7 @@ If you are on an Intel macOS machine you need this [workaround](https://github.c
```shell
curl -O https://raw.githubusercontent.com/nod-ai/SHARK/main/shark/examples/shark_inference/resnet50_script.py
#Install deps for test script
pip install --pre torch torchvision torchaudio tqdm pillow --extra-index-url https://download.pytorch.org/whl/nightly/cpu
pip install --pre torch torchvision torchaudio tqdm pillow gsutil --extra-index-url https://download.pytorch.org/whl/nightly/cpu
python ./resnet50_script.py --device="cpu" #use cuda or vulkan or metal
```
@@ -81,55 +81,100 @@ For example if you want to use Python3.10 and upstream IREE with TF Import tools
# PYTHON=python3.10 VENV_DIR=0617_venv IMPORTER=1 USE_IREE=1 ./setup_venv.sh
```
If you are a Torch-mlir developer or an IREE developer and want to test local changes you can uninstall
If you are a *Torch-mlir developer or an IREE developer* and want to test local changes you can uninstall
the provided packages with `pip uninstall torch-mlir` and / or `pip uninstall iree-compiler iree-runtime` and build locally
with Python bindings and set your PYTHONPATH as mentioned [here](https://google.github.io/iree/bindings/python/)
for IREE and [here](https://github.com/llvm/torch-mlir/blob/main/development.md#setup-python-environment-to-export-the-built-python-packages)
for Torch-MLIR.
### How to use your locally built Torch-MLIR with SHARK
```shell
1.) Run `./setup_venv.sh in SHARK` and activate `shark.venv` virtual env.
2.) Run `pip uninstall torch-mlir`.
3.) Go to your local Torch-MLIR directory.
4.) Activate mlir_venv virtual envirnoment.
5.) Run `pip uninstall -r requirements.txt`.
6.) Run `pip install -r requirements.txt`.
7.) Build Torch-MLIR.
8.) Activate shark.venv virtual environment from the Torch-MLIR directory.
8.) Run `export PYTHONPATH=`pwd`/build/tools/torch-mlir/python_packages/torch_mlir:`pwd`/examples` in the Torch-MLIR directory.
9.) Go to the SHARK directory.
```
Now the SHARK will use your locally build Torch-MLIR repo.
### Run a demo script
```shell
python -m shark.examples.shark_inference.resnet50_script --device="cpu" # Use gpu | vulkan
# Or a pytest
pytest tank/tf/hf_masked_lm/albert-base-v2_test.py::AlbertBaseModuleTest::test_module_static_cpu
pytest tank/test_models.py -k "MiniLM"
```
</details>
<details>
<summary>Testing</summary>
<summary>Testing and Benchmarks</summary>
### Run all model tests on CPU/GPU/VULKAN/Metal
```shell
pytest tank
pytest tank/test_models.py
# If on Linux for quicker results:
pytest tank -n auto
# If on Linux for multithreading on CPU (faster results):
pytest tank/test_models.py -n auto
```
### Running specific tests
```shell
# Run tests for a specific model:
pytest tank/<MODEL_NAME> #i.e., pytest tank/bert-base-uncased
# Run tests for a specific case:
pytest tank/<MODEL_NAME>/<MODEL_TEST>.py::<MODEL>ModuleTest::<CASE>
# i.e., pytest tank/bert-base-uncased/bert-base-uncased_test.py::BertModuleTest::test_module_static_cpu
# For frontends other than pytorch, if available for a model, add frontend to filename: tank/bert-base-uncased/bert-base-uncased_tf_test.py
# Search for test cases by including a keyword that matches all or part of the test case's name;
pytest tank/test_models.py -k "keyword"
# Run all tests, including tests for benchmarking and SHARK modules:
# From base SHARK directory,
pytest
```
# Test cases are named uniformly by format test_module_<model_name_underscores_only>_<torch/tf>_<static/dynamic>_<device>.
# Example: Test all models on nvidia gpu:
pytest tank/test_models.py -k "cuda"
# Example: Test all tensorflow resnet models on Vulkan backend:
pytest tank/test_models.py -k "resnet and tf and vulkan"
# Exclude a test case:
pytest tank/test_models.py -k "not ..."
### Run benchmarks on SHARK tank pytests and generate bench_results.csv with results.
(the following requires source installation with `IMPORTER=1 ./setup_venv.sh`)
### Run all model benchmark tests on CPU/GPU/VULKAN/Metal
```shell
pytest benchmarks
pytest --benchmark tank/test_models.py
# Just do static GPU benchmarks for PyTorch tests:
pytest --benchmark tank/test_models.py -k "pytorch and static and cuda"
```
### Benchmark Resnet50, MiniLM on CPU
(requires source installation with `IMPORTER=1 ./setup_venv.sh`)
```shell
# We suggest running the following commands as root before running benchmarks on CPU:
cat /sys/devices/system/cpu/cpu*/topology/thread_siblings_list | awk -F, '{print $2}' | sort -n | uniq | ( while read X ; do echo $X ; echo 0 > /sys/devices/system/cpu/cpu$X/online ; done )
echo 1 > /sys/devices/system/cpu/intel_pstate/no_turbo
# Benchmark canonical Resnet50 on CPU via pytest
pytest --benchmark tank/test_models -k "resnet50 and tf_static_cpu"
# Benchmark canonical MiniLM on CPU via pytest
pytest --benchmark tank/test_models -k "MiniLM and cpu"
# Benchmark MiniLM on CPU via transformer-benchmarks:
git clone --recursive https://github.com/nod-ai/transformer-benchmarks.git
cd transformer-benchmarks
./perf-ci.sh -n
# Check detail.csv for MLIR/IREE results.
```
</details>

View File

@@ -0,0 +1,5 @@
#!/bin/bash
IMPORTER=1 ./setup_venv.sh
source $GITHUB_WORKSPACE/shark.venv/bin/activate
python generate_sharktank.py --upload=False --ci_tank_dir=True

View File

@@ -1,17 +1,5 @@
def pytest_addoption(parser):
# Attaches SHARK command-line arguments to the pytest machinery.
parser.addoption(
"--save_mlir",
action="store_true",
default="False",
help="Pass option to save input MLIR",
)
parser.addoption(
"--save_vmfb",
action="store_true",
default="False",
help="Pass option to save IREE output .vmfb",
)
parser.addoption(
"--benchmark",
action="store_true",
@@ -19,8 +7,50 @@ def pytest_addoption(parser):
help="Pass option to benchmark and write results.csv",
)
parser.addoption(
"--save_temps",
"--onnx_bench",
action="store_true",
default="False",
help="Saves IREE reproduction artifacts for filing upstream issues.",
help="Add ONNX benchmark results to pytest benchmarks.",
)
parser.addoption(
"--tf32",
action="store_true",
default="False",
help="Use TensorFloat-32 calculations.",
)
parser.addoption(
"--save_repro",
action="store_true",
default="False",
help="Pass option to save reproduction artifacts to SHARK/shark_tmp/test_case/",
)
parser.addoption(
"--save_fails",
action="store_true",
default="False",
help="Save reproduction artifacts for a test case only if it fails. Default is False.",
)
parser.addoption(
"--ci",
action="store_true",
default="False",
help="Enables uploading of reproduction artifacts upon test case failure during iree-compile or validation. Must be passed with --ci_sha option ",
)
parser.addoption(
"--ci_sha",
action="store",
default="None",
help="Passes the github SHA of the CI workflow to include in google storage directory for reproduction artifacts.",
)
parser.addoption(
"--local_tank_cache",
action="store",
default="",
help="Specify the directory in which all downloaded shark_tank artifacts will be cached.",
)
parser.addoption(
"--tank_url",
type=str,
default="gs://shark_tank/latest",
help="URL to bucket from which to download SHARK tank artifacts. Default is gs://shark_tank/latest",
)

52
cpp/CMakeLists.txt Normal file
View File

@@ -0,0 +1,52 @@
# Copyright 2022 The IREE Authors
#
# Licensed under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
cmake_minimum_required(VERSION 3.21...3.23)
#-------------------------------------------------------------------------------
# Project configuration
#-------------------------------------------------------------------------------
project(iree-samples C CXX)
set(CMAKE_C_STANDARD 11)
set(CMAKE_CXX_STANDARD 17)
set_property(GLOBAL PROPERTY USE_FOLDERS ON)
#-------------------------------------------------------------------------------
# Core project dependency
#-------------------------------------------------------------------------------
message(STATUS "Fetching core IREE repo (this may take a few minutes)...")
# Note: for log output, set -DFETCHCONTENT_QUIET=OFF,
# see https://gitlab.kitware.com/cmake/cmake/-/issues/18238#note_440475
include(FetchContent)
FetchContent_Declare(
iree
GIT_REPOSITORY https://github.com/nod-ai/shark-runtime.git
GIT_TAG shark
GIT_SUBMODULES_RECURSE OFF
GIT_SHALLOW OFF
GIT_PROGRESS ON
USES_TERMINAL_DOWNLOAD ON
)
# Extend module path to find MLIR CMake modules.
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_BINARY_DIR}/lib/cmake/mlir")
# Disable core project features not needed for these out of tree samples.
set(IREE_BUILD_TESTS OFF CACHE BOOL "" FORCE)
set(IREE_BUILD_SAMPLES OFF CACHE BOOL "" FORCE)
FetchContent_MakeAvailable(iree)
FetchContent_GetProperties(iree SOURCE_DIR IREE_SOURCE_DIR)
#-------------------------------------------------------------------------------
# Individual samples
#-------------------------------------------------------------------------------
add_subdirectory(vulkan_gui)

58
cpp/README.md Normal file
View File

@@ -0,0 +1,58 @@
# SHARK C/C++ Samples
These C/C++ samples can be built using CMake. The samples depend on the main
SHARK-Runtime project's C/C++ sources, including both the runtime and the compiler.
Individual samples may require additional dependencies. Watch CMake's output
for information about which you are missing for individual samples.
On Windows we recommend using https://github.com/microsoft/vcpkg to download packages for
your system. The general setup flow looks like
*Install and activate SHARK*
```bash
source shark.venv/bin/activate #follow main repo instructions to setup your venv
```
*Install Dependencies*
```bash
vcpkg install [library] --triplet [your platform]
vcpkg integrate install
# Then pass `-DCMAKE_TOOLCHAIN_FILE=[check logs for path]` when configuring CMake
```
In Ubuntu Linux you can install
```bash
sudo apt install libsdl2-dev
```
*Build*
```bash
cd cpp
cmake -GNinja -B build/
cmake --build build/
```
*Prepare the model*
```bash
wget https://storage.googleapis.com/shark_tank/latest/resnet50_tf/resnet50_tf.mlir
iree-compile --iree-input-type=mhlo --iree-vm-bytecode-module-output-format=flatbuffer-binary --iree-hal-target-backends=vulkan --iree-llvm-embedded-linker-path=`python3 -c 'import sysconfig; print(sysconfig.get_paths()["purelib"])'`/iree/compiler/tools/../_mlir_libs/iree-lld --mlir-print-debuginfo --mlir-print-op-on-diagnostic=false --mlir-pass-pipeline-crash-reproducer=ist/core-reproducer.mlir --iree-llvm-target-cpu-features=host -iree-vulkan-target-triple=rdna2-unknown-linux --iree-stream-resource-index-bits=64 --iree-vm-target-index-bits=64 resnet50_tf.mlir -o resnet50_tf.vmfb
```
*Prepare the input*
```bash
python save_img.py
```
Note that this requires tensorflow, e.g.
```bash
python -m pip install tensorflow
```
*Run the vulkan_gui*
```bash
./build/vulkan_gui/iree-samples-vulkan-gui
```

BIN
cpp/dog_imagenet.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

19
cpp/save_img.py Normal file
View File

@@ -0,0 +1,19 @@
import numpy as np
import tensorflow as tf
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_tf_model
def load_and_preprocess_image(fname: str):
image = tf.io.read_file(fname)
image = tf.image.decode_image(image, channels=3)
image = tf.image.resize(image, (224, 224))
image = image[tf.newaxis, :]
# preprocessing pipeline
input_tensor = tf.keras.applications.resnet50.preprocess_input(image)
return input_tensor
data = load_and_preprocess_image("dog_imagenet.jpg").numpy()
data.tofile("dog.bin")

View File

@@ -0,0 +1,84 @@
# Copyright 2022 The IREE Authors
#
# Licensed under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
if(NOT IREE_TARGET_BACKEND_LLVM_CPU OR
NOT IREE_HAL_EXECUTABLE_LOADER_EMBEDDED_ELF)
message(STATUS "Missing LLVM backend and/or embeddded elf loader, skipping vision_inference sample")
return()
endif()
# vcpkg install stb
# tested with version 2021-09-10
find_package(Stb)
if(NOT Stb_FOUND)
message(STATUS "Could not find Stb, skipping vision inference sample")
return()
endif()
# Compile mnist.mlir to mnist.vmfb.
set(_COMPILE_TOOL_EXECUTABLE $<TARGET_FILE:iree-compile>)
set(_COMPILE_ARGS)
list(APPEND _COMPILE_ARGS "--iree-input-type=mhlo")
list(APPEND _COMPILE_ARGS "--iree-hal-target-backends=llvm-cpu")
list(APPEND _COMPILE_ARGS "${IREE_SOURCE_DIR}/samples/models/mnist.mlir")
list(APPEND _COMPILE_ARGS "-o")
list(APPEND _COMPILE_ARGS "mnist.vmfb")
add_custom_command(
OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/mnist.vmfb
COMMAND ${_COMPILE_TOOL_EXECUTABLE} ${_COMPILE_ARGS}
DEPENDS ${_COMPILE_TOOL_EXECUTABLE} "${IREE_SOURCE_DIR}/samples/models/mnist.mlir"
)
# Embed mnist.vmfb into a C file as mnist_bytecode_module_c.[h/c]
set(_EMBED_DATA_EXECUTABLE $<TARGET_FILE:generate_embed_data>)
set(_EMBED_ARGS)
list(APPEND _EMBED_ARGS "--output_header=mnist_bytecode_module_c.h")
list(APPEND _EMBED_ARGS "--output_impl=mnist_bytecode_module_c.c")
list(APPEND _EMBED_ARGS "--identifier=iree_samples_vision_inference_mnist_bytecode_module")
list(APPEND _EMBED_ARGS "--flatten")
list(APPEND _EMBED_ARGS "${CMAKE_CURRENT_BINARY_DIR}/mnist.vmfb")
add_custom_command(
OUTPUT "mnist_bytecode_module_c.h" "mnist_bytecode_module_c.c"
COMMAND ${_EMBED_DATA_EXECUTABLE} ${_EMBED_ARGS}
DEPENDS ${_EMBED_DATA_EXECUTABLE} ${CMAKE_CURRENT_BINARY_DIR}/mnist.vmfb
)
# Define a library target for mnist_bytecode_module_c.
add_library(iree_samples_vision_inference_mnist_bytecode_module_c OBJECT)
target_sources(iree_samples_vision_inference_mnist_bytecode_module_c
PRIVATE
mnist_bytecode_module_c.h
mnist_bytecode_module_c.c
)
# Define the sample executable.
set(_NAME "iree-run-mnist-module")
add_executable(${_NAME} "")
target_sources(${_NAME}
PRIVATE
"image_util.h"
"image_util.c"
"iree-run-mnist-module.c"
)
set_target_properties(${_NAME} PROPERTIES OUTPUT_NAME "iree-run-mnist-module")
target_include_directories(${_NAME} PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_BINARY_DIR}>
)
target_include_directories(${_NAME} PRIVATE
${Stb_INCLUDE_DIR}
)
target_link_libraries(${_NAME}
iree_base_base
iree_base_tracing
iree_hal_hal
iree_runtime_runtime
iree_samples_vision_inference_mnist_bytecode_module_c
)
# Define a target that copies the test image into the build directory.
add_custom_target(iree_samples_vision_inference_test_image
COMMAND ${CMAKE_COMMAND} -E copy "${CMAKE_CURRENT_SOURCE_DIR}/mnist_test.png" "${CMAKE_CURRENT_BINARY_DIR}/mnist_test.png")
add_dependencies(${_NAME} iree_samples_vision_inference_test_image)
message(STATUS "Configured vision_inference sample successfully")

View File

@@ -0,0 +1,8 @@
# Vision Inference Sample (C code)
This sample demonstrates how to run a MNIST handwritten digit detection vision
model on an image using IREE's C API.
A similar sample is implemented using a Python script and IREE's command line
tools over in the primary iree repository at
https://github.com/iree-org/iree/tree/main/samples/vision_inference

View File

@@ -0,0 +1,224 @@
// Copyright 2021 The IREE Authors
//
// Licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
#include "image_util.h"
#include <math.h>
#include "iree/base/internal/flags.h"
#include "iree/base/tracing.h"
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
iree_status_t iree_tools_utils_pixel_rescaled_to_buffer(
const uint8_t* pixel_data, iree_host_size_t buffer_length,
const float* input_range, iree_host_size_t range_length,
float* out_buffer) {
IREE_TRACE_ZONE_BEGIN(z0);
if (range_length != 2) {
IREE_TRACE_ZONE_END(z0);
return iree_make_status(IREE_STATUS_INVALID_ARGUMENT,
"range defined as 2-element [min, max] array.");
}
float input_scale = fabsf(input_range[1] - input_range[0]) / 2.0f;
float input_offset = (input_range[0] + input_range[1]) / 2.0f;
const float kUint8Mean = 127.5f;
for (int i = 0; i < buffer_length; ++i) {
out_buffer[i] =
(((float)(pixel_data[i])) - kUint8Mean) / kUint8Mean * input_scale +
input_offset;
}
IREE_TRACE_ZONE_END(z0);
return iree_ok_status();
}
iree_status_t iree_tools_utils_load_pixel_data_impl(
const iree_string_view_t filename, const iree_hal_dim_t* shape,
iree_host_size_t shape_rank, iree_hal_element_type_t element_type,
uint8_t** out_pixel_data, iree_host_size_t* out_buffer_length) {
int img_dims[3];
if (stbi_info(filename.data, img_dims, &(img_dims[1]), &(img_dims[2])) == 0) {
return iree_make_status(IREE_STATUS_NOT_FOUND, "can't load image %.*s",
(int)filename.size, filename.data);
}
if (!(element_type == IREE_HAL_ELEMENT_TYPE_FLOAT_32 ||
element_type == IREE_HAL_ELEMENT_TYPE_SINT_8 ||
element_type == IREE_HAL_ELEMENT_TYPE_UINT_8)) {
char element_type_str[16];
IREE_RETURN_IF_ERROR(iree_hal_format_element_type(
element_type, sizeof(element_type_str), element_type_str, NULL));
return iree_make_status(IREE_STATUS_UNIMPLEMENTED,
"element type %s not supported", element_type_str);
}
switch (shape_rank) {
case 2: { // Assume tensor <height x width>
if (img_dims[2] != 1 || (shape[0] != img_dims[1]) ||
(shape[1] != img_dims[0])) {
return iree_make_status(
IREE_STATUS_INVALID_ARGUMENT,
"image size: %dx%dx%d, expected: %" PRIdim "x%" PRIdim, img_dims[0],
img_dims[1], img_dims[2], shape[1], shape[0]);
}
break;
}
case 3: { // Assume tensor <height x width x channel>
if (shape[0] != img_dims[1] || shape[1] != img_dims[0] ||
shape[2] != img_dims[2]) {
return iree_make_status(IREE_STATUS_INVALID_ARGUMENT,
"image size: %dx%dx%d, expected: %" PRIdim
"x%" PRIdim "x%" PRIdim,
img_dims[0], img_dims[1], img_dims[2], shape[1],
shape[0], shape[2]);
}
break;
}
case 4: { // Assume tensor <batch x height x width x channel>
if (shape[1] != img_dims[1] || shape[2] != img_dims[0] ||
shape[3] != img_dims[2]) {
return iree_make_status(IREE_STATUS_INVALID_ARGUMENT,
"image size: %dx%dx%d, expected: %" PRIdim
"x%" PRIdim "x%" PRIdim,
img_dims[0], img_dims[1], img_dims[2], shape[2],
shape[1], shape[3]);
}
break;
}
default:
return iree_make_status(
IREE_STATUS_INVALID_ARGUMENT,
"Input buffer shape rank %" PRIhsz " not supported", shape_rank);
}
// Drop the alpha channel if present.
int req_ch = (img_dims[2] >= 3) ? 3 : 0;
*out_pixel_data = stbi_load(filename.data, img_dims, &(img_dims[1]),
&(img_dims[2]), req_ch);
if (*out_pixel_data == NULL) {
return iree_make_status(IREE_STATUS_NOT_FOUND, "can't load image %.*s",
(int)filename.size, filename.data);
}
*out_buffer_length =
img_dims[0] * img_dims[1] * (img_dims[2] > 3 ? 3 : img_dims[2]);
return iree_ok_status();
}
iree_status_t iree_tools_utils_load_pixel_data(
const iree_string_view_t filename, const iree_hal_dim_t* shape,
iree_host_size_t shape_rank, iree_hal_element_type_t element_type,
uint8_t** out_pixel_data, iree_host_size_t* out_buffer_length) {
IREE_TRACE_ZONE_BEGIN(z0);
iree_status_t result = iree_tools_utils_load_pixel_data_impl(
filename, shape, shape_rank, element_type, out_pixel_data,
out_buffer_length);
IREE_TRACE_ZONE_END(z0);
return result;
}
iree_status_t iree_tools_utils_buffer_view_from_image(
const iree_string_view_t filename, const iree_hal_dim_t* shape,
iree_host_size_t shape_rank, iree_hal_element_type_t element_type,
iree_hal_allocator_t* allocator, iree_hal_buffer_view_t** out_buffer_view) {
IREE_TRACE_ZONE_BEGIN(z0);
*out_buffer_view = NULL;
if (element_type != IREE_HAL_ELEMENT_TYPE_SINT_8 &&
element_type != IREE_HAL_ELEMENT_TYPE_UINT_8) {
IREE_TRACE_ZONE_END(z0);
return iree_make_status(IREE_STATUS_INVALID_ARGUMENT,
"element type should be i8 or u8");
}
iree_status_t result;
uint8_t* pixel_data = NULL;
iree_host_size_t buffer_length;
result = iree_tools_utils_load_pixel_data(
filename, shape, shape_rank, element_type, &pixel_data, &buffer_length);
if (iree_status_is_ok(result)) {
iree_host_size_t element_byte =
iree_hal_element_dense_byte_count(element_type);
// SINT_8 and UINT_8 perform direct buffer wrap.
result = iree_hal_buffer_view_allocate_buffer(
allocator, shape_rank, shape, element_type,
IREE_HAL_ENCODING_TYPE_DENSE_ROW_MAJOR,
(iree_hal_buffer_params_t){
.type = IREE_HAL_MEMORY_TYPE_DEVICE_LOCAL,
.access = IREE_HAL_MEMORY_ACCESS_READ,
.usage = IREE_HAL_BUFFER_USAGE_DISPATCH_STORAGE |
IREE_HAL_BUFFER_USAGE_TRANSFER,
},
iree_make_const_byte_span(pixel_data, element_byte * buffer_length),
out_buffer_view);
}
stbi_image_free(pixel_data);
IREE_TRACE_ZONE_END(z0);
return result;
}
typedef struct iree_tools_utils_buffer_view_load_params_t {
const uint8_t* pixel_data;
iree_host_size_t pixel_data_length;
const float* input_range;
iree_host_size_t input_range_length;
} iree_tools_utils_buffer_view_load_params_t;
static iree_status_t iree_tools_utils_buffer_view_load_image_rescaled(
iree_hal_buffer_mapping_t* mapping, void* user_data) {
iree_tools_utils_buffer_view_load_params_t* params =
(iree_tools_utils_buffer_view_load_params_t*)user_data;
return iree_tools_utils_pixel_rescaled_to_buffer(
params->pixel_data, params->pixel_data_length, params->input_range,
params->input_range_length, (float*)mapping->contents.data);
}
iree_status_t iree_tools_utils_buffer_view_from_image_rescaled(
const iree_string_view_t filename, const iree_hal_dim_t* shape,
iree_host_size_t shape_rank, iree_hal_element_type_t element_type,
iree_hal_allocator_t* allocator, const float* input_range,
iree_host_size_t input_range_length,
iree_hal_buffer_view_t** out_buffer_view) {
IREE_TRACE_ZONE_BEGIN(z0);
*out_buffer_view = NULL;
if (element_type != IREE_HAL_ELEMENT_TYPE_FLOAT_32) {
IREE_TRACE_ZONE_END(z0);
return iree_make_status(IREE_STATUS_INVALID_ARGUMENT,
"element type should be f32");
}
// Classic row-major image layout.
iree_hal_encoding_type_t encoding_type =
IREE_HAL_ENCODING_TYPE_DENSE_ROW_MAJOR;
// Load pixel data from the file into a new host memory allocation (the only
// interface stb_image provides). A real application would want to use the
// generation callback to directly decode the image into the target mapped
// device buffer.
uint8_t* pixel_data = NULL;
iree_host_size_t buffer_length = 0;
IREE_RETURN_AND_END_ZONE_IF_ERROR(
z0, iree_tools_utils_load_pixel_data(filename, shape, shape_rank,
element_type, &pixel_data,
&buffer_length));
iree_tools_utils_buffer_view_load_params_t params = {
.pixel_data = pixel_data,
.pixel_data_length = buffer_length,
.input_range = input_range,
.input_range_length = input_range_length,
};
iree_status_t status = iree_hal_buffer_view_generate_buffer(
allocator, shape_rank, shape, element_type, encoding_type,
(iree_hal_buffer_params_t){
.type = IREE_HAL_MEMORY_TYPE_DEVICE_LOCAL |
IREE_HAL_MEMORY_TYPE_HOST_VISIBLE,
.usage = IREE_HAL_BUFFER_USAGE_DISPATCH_STORAGE |
IREE_HAL_BUFFER_USAGE_TRANSFER |
IREE_HAL_BUFFER_USAGE_MAPPING,
},
iree_tools_utils_buffer_view_load_image_rescaled, &params,
out_buffer_view);
stbi_image_free(pixel_data);
IREE_TRACE_ZONE_END(z0);
return status;
}

View File

@@ -0,0 +1,77 @@
// Copyright 2021 The IREE Authors
//
// Licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
#ifndef IREE_SAMPLES_VISION_INFERENCE_IMAGE_UTIL_H_
#define IREE_SAMPLES_VISION_INFERENCE_IMAGE_UTIL_H_
#include "iree/base/api.h"
#include "iree/hal/api.h"
#include "iree/hal/buffer_view.h"
#if __cplusplus
extern "C" {
#endif // __cplusplus
// Loads the image at |filename| into |out_pixel_data| and sets
// |out_buffer_length| to its length.
//
// The image dimension must match the width, height, and channel in|shape|,
// while 2 <= |shape_rank| <= 4 to match the image tensor format.
//
// The file must be in a format supported by stb_image.h.
// The returned |out_pixel_data| buffer must be released by the caller.
iree_status_t iree_tools_utils_load_pixel_data(
const iree_string_view_t filename, const iree_hal_dim_t* shape,
iree_host_size_t shape_rank, iree_hal_element_type_t element_type,
uint8_t** out_pixel_data, iree_host_size_t* out_buffer_length);
// Parse the content in an image file in |filename| into a HAL buffer view
// |out_buffer_view|. |out_buffer_view| properties are defined by |shape|,
// |shape_rank|, and |element_type|, while being allocated by |allocator|.
//
// The |element_type| has to be SINT_8 or UINT_8. For FLOAT_32, use
// |iree_tools_utils_buffer_view_from_image_rescaled| instead.
//
// The returned |out_buffer_view| must be released by the caller.
iree_status_t iree_tools_utils_buffer_view_from_image(
const iree_string_view_t filename, const iree_hal_dim_t* shape,
iree_host_size_t shape_rank, iree_hal_element_type_t element_type,
iree_hal_allocator_t* allocator, iree_hal_buffer_view_t** out_buffer_view);
// Parse the content in an image file in |filename| into a HAL buffer view
// |out_buffer_view|. |out_buffer_view| properties are defined by |shape|,
// |shape_rank|, and |element_type|, while being allocated by |allocator|.
// The value in |out_buffer_view| is rescaled with |input_range|.
//
// The |element_type| has to be FLOAT_32, For SINT_8 or UINT_8, use
// |iree_tools_utils_buffer_view_from_image| instead.
//
// The returned |out_buffer_view| must be released by the caller.
iree_status_t iree_tools_utils_buffer_view_from_image_rescaled(
const iree_string_view_t filename, const iree_hal_dim_t* shape,
iree_host_size_t shape_rank, iree_hal_element_type_t element_type,
iree_hal_allocator_t* allocator, const float* input_range,
iree_host_size_t input_range_length,
iree_hal_buffer_view_t** out_buffer_view);
// Normalize uint8_t |pixel_data| of the size |buffer_length| to float buffer
// |out_buffer| with the range |input_range|.
//
// float32_x = (uint8_x - 127.5) / 127.5 * input_scale + input_offset, where
// input_scale = abs(|input_range[0]| - |input_range[1]| / 2
// input_offset = |input_range[0]| + |input_range[1]| / 2
//
// |out_buffer| needs to be allocated before the call.
iree_status_t iree_tools_utils_pixel_rescaled_to_buffer(
const uint8_t* pixel_data, iree_host_size_t pixel_count,
const float* input_range, iree_host_size_t input_range_length,
float* out_buffer);
#if __cplusplus
}
#endif // __cplusplus
#endif // IREE_SAMPLES_VISION_INFERENCE_IMAGE_UTIL_H_

View File

@@ -0,0 +1,121 @@
// Copyright 2021 The IREE Authors
//
// Licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// This sample uses image_util to load a hand-written image as an
// iree_hal_buffer_view_t then passes it to the bytecode module built from
// mnist.mlir on the CPU backend with the local-task driver.
#include <float.h>
#include "image_util.h"
#include "iree/runtime/api.h"
#include "mnist_bytecode_module_c.h"
iree_status_t Run(const iree_string_view_t image_path) {
iree_runtime_instance_options_t instance_options;
iree_runtime_instance_options_initialize(IREE_API_VERSION_LATEST,
&instance_options);
iree_runtime_instance_options_use_all_available_drivers(&instance_options);
iree_runtime_instance_t* instance = NULL;
IREE_RETURN_IF_ERROR(iree_runtime_instance_create(
&instance_options, iree_allocator_system(), &instance));
// TODO(#5724): move device selection into the compiled modules.
iree_hal_device_t* device = NULL;
IREE_RETURN_IF_ERROR(iree_runtime_instance_try_create_default_device(
instance, iree_make_cstring_view("local-task"), &device));
// Create one session per loaded module to hold the module state.
iree_runtime_session_options_t session_options;
iree_runtime_session_options_initialize(&session_options);
iree_runtime_session_t* session = NULL;
IREE_RETURN_IF_ERROR(iree_runtime_session_create_with_device(
instance, &session_options, device,
iree_runtime_instance_host_allocator(instance), &session));
iree_hal_device_release(device);
const struct iree_file_toc_t* module_file =
iree_samples_vision_inference_mnist_bytecode_module_create();
IREE_RETURN_IF_ERROR(iree_runtime_session_append_bytecode_module_from_memory(
session, iree_make_const_byte_span(module_file->data, module_file->size),
iree_allocator_null()));
iree_runtime_call_t call;
IREE_RETURN_IF_ERROR(iree_runtime_call_initialize_by_name(
session, iree_make_cstring_view("module.predict"), &call));
// Prepare the input hal buffer view with image_util library.
// The input of the mmist model is single 28x28 pixel image as a
// tensor<1x28x28x1xf32>, with pixels in [0.0, 1.0].
iree_hal_buffer_view_t* buffer_view = NULL;
iree_hal_dim_t buffer_shape[] = {1, 28, 28, 1};
iree_hal_element_type_t hal_element_type = IREE_HAL_ELEMENT_TYPE_FLOAT_32;
float input_range[2] = {0.0f, 1.0f};
IREE_RETURN_IF_ERROR(
iree_tools_utils_buffer_view_from_image_rescaled(
image_path, buffer_shape, IREE_ARRAYSIZE(buffer_shape),
hal_element_type, iree_hal_device_allocator(device), input_range,
IREE_ARRAYSIZE(input_range), &buffer_view),
"load image");
IREE_RETURN_IF_ERROR(
iree_runtime_call_inputs_push_back_buffer_view(&call, buffer_view));
iree_hal_buffer_view_release(buffer_view);
IREE_RETURN_IF_ERROR(iree_runtime_call_invoke(&call, /*flags=*/0));
// Get the result buffers from the invocation.
iree_hal_buffer_view_t* ret_buffer_view = NULL;
IREE_RETURN_IF_ERROR(
iree_runtime_call_outputs_pop_front_buffer_view(&call, &ret_buffer_view));
// Read back the results. The output of the mnist model is a 1x10 prediction
// confidence values for each digit in [0, 9].
float predictions[1 * 10] = {0.0f};
IREE_RETURN_IF_ERROR(iree_hal_device_transfer_d2h(
iree_runtime_session_device(session),
iree_hal_buffer_view_buffer(ret_buffer_view), 0, predictions,
sizeof(predictions), IREE_HAL_TRANSFER_BUFFER_FLAG_DEFAULT,
iree_infinite_timeout()));
iree_hal_buffer_view_release(ret_buffer_view);
// Get the highest index from the output.
float result_val = FLT_MIN;
int result_idx = 0;
for (iree_host_size_t i = 0; i < IREE_ARRAYSIZE(predictions); ++i) {
if (predictions[i] > result_val) {
result_val = predictions[i];
result_idx = i;
}
}
fprintf(stdout, "Detected number: %d\n", result_idx);
iree_runtime_call_deinitialize(&call);
iree_runtime_session_release(session);
iree_runtime_instance_release(instance);
return iree_ok_status();
}
int main(int argc, char** argv) {
if (argc > 2) {
fprintf(stderr, "Usage: iree-run-mnist-module <image file>\n");
return -1;
}
iree_string_view_t image_path;
if (argc == 1) {
image_path = iree_make_cstring_view("mnist_test.png");
} else {
image_path = iree_make_cstring_view(argv[1]);
}
iree_status_t result = Run(image_path);
if (!iree_status_is_ok(result)) {
iree_status_fprint(stderr, result);
iree_status_ignore(result);
return -1;
}
iree_status_ignore(result);
return 0;
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 261 B

View File

@@ -0,0 +1,84 @@
# Copyright 2022 The IREE Authors
#
# Licensed under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
if(NOT IREE_TARGET_BACKEND_VULKAN_SPIRV OR
NOT IREE_HAL_DRIVER_VULKAN)
message(STATUS "Missing Vulkan backend and/or driver, skipping vulkan_gui sample")
return()
endif()
# This target statically links against Vulkan.
# One way to achieve this is by installing the Vulkan SDK from
# https://vulkan.lunarg.com/.
include(FindVulkan)
if(NOT Vulkan_FOUND)
message(STATUS "Could not find Vulkan, skipping vulkan_gui sample")
return()
endif()
# vcpkg install sdl2[vulkan]
# tested with versions 2.0.14#4 - 2.0.22#1
find_package(SDL2)
if(NOT SDL2_FOUND)
message(STATUS "Could not find SDL2, skipping vulkan_gui sample")
return()
endif()
FetchContent_Declare(
imgui
GIT_REPOSITORY https://github.com/ocornut/imgui
GIT_TAG master
)
FetchContent_MakeAvailable(imgui)
# Dear ImGui
set(IMGUI_DIR ${CMAKE_BINARY_DIR}/_deps/imgui-src)
message("Looking for Imgui in ${IMGUI_DIR}")
include_directories(${IMGUI_DIR} ${IMGUI_DIR}/backends ..)
# Define the sample executable.
set(_NAME "iree-samples-vulkan-gui")
add_executable(${_NAME} "")
target_sources(${_NAME}
PRIVATE
vulkan_inference_gui.cc
"${IMGUI_DIR}/backends/imgui_impl_sdl.cpp"
"${IMGUI_DIR}/backends/imgui_impl_vulkan.cpp"
"${IMGUI_DIR}/imgui.cpp"
"${IMGUI_DIR}/imgui_draw.cpp"
"${IMGUI_DIR}/imgui_demo.cpp"
"${IMGUI_DIR}/imgui_tables.cpp"
"${IMGUI_DIR}/imgui_widgets.cpp"
)
set_target_properties(${_NAME} PROPERTIES OUTPUT_NAME "iree-samples-vulkan-gui")
target_include_directories(${_NAME} PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_BINARY_DIR}>
)
target_link_libraries(${_NAME}
SDL2::SDL2
Vulkan::Vulkan
iree_runtime_runtime
iree_base_internal_main
iree_hal_drivers_vulkan_registration_registration
iree_modules_hal_hal
iree_vm_vm
iree_vm_bytecode_module
iree_vm_cc
)
if(${CMAKE_SYSTEM_NAME} STREQUAL "Windows")
set(_GUI_LINKOPTS "-SUBSYSTEM:CONSOLE")
else()
set(_GUI_LINKOPTS "")
endif()
target_link_options(${_NAME}
PRIVATE
${_GUI_LINKOPTS}
)
message(STATUS "Configured vulkan_gui sample successfully")

View File

@@ -0,0 +1,4 @@
func.func @simple_mul(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> {
%0 = "arith.mulf"(%arg0, %arg1) : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32>
return %0 : tensor<4xf32>
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

7897
cpp/vulkan_gui/stb_image.h Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -2,19 +2,24 @@
"""SHARK Tank"""
# python generate_sharktank.py, you have to give a csv tile with [model_name, model_download_url]
# will generate local shark tank folder like this:
# /SHARK
# /gen_shark_tank
# /albert_lite_base
# /...model_name...
# HOME
# /.local
# /shark_tank
# /albert_lite_base
# /...model_name...
#
import os
import csv
import argparse
from shark.shark_importer import SharkImporter
from shark.examples.shark_training.bert_training import get_model_and_test_values
from shark.parser import shark_args
import tensorflow as tf
import subprocess as sp
import hashlib
import numpy as np
from pathlib import Path
visible_default = tf.config.list_physical_devices("GPU")
try:
@@ -26,9 +31,6 @@ except:
# Invalid device or cannot modify virtual devices once initialized.
pass
# All generated models and metadata will be saved under this directory.
WORKDIR = os.path.join(os.path.dirname(__file__), "gen_shark_tank")
def create_hash(file_name):
with open(file_name, "rb") as f:
@@ -42,6 +44,7 @@ def create_hash(file_name):
def save_torch_model(torch_model_list):
from tank.model_utils import get_hf_model
from tank.model_utils import get_vision_model
from tank.model_utils import get_hf_img_cls_model
with open(torch_model_list) as csvfile:
torch_reader = csv.reader(csvfile, delimiter=",")
@@ -50,33 +53,66 @@ def save_torch_model(torch_model_list):
torch_model_name = row[0]
tracing_required = row[1]
model_type = row[2]
is_dynamic = row[3]
tracing_required = False if tracing_required == "False" else True
is_dynamic = False if is_dynamic == "False" else True
model = None
input = None
if model_type == "vision":
model, input, _ = get_vision_model(torch_model_name)
elif model_type == "hf":
model, input, _ = get_hf_model(torch_model_name)
if model_type == "Training":
asm, np_inputs, train_func, func_name = None, None, None, None
#TODO {Dan}: replace this with a generic AutoModelForMaskedLM generator
if torch_model_name == "bert-large-uncased_training":
(
asm,
np_inputs,
train_func,
func_name,
) = get_model_and_test_values()
torch_model_name = torch_model_name.replace("/", "_")
torch_model_dir = os.path.join(
WORKDIR, str(torch_model_name) + "_torch"
)
os.makedirs(torch_model_dir, exist_ok=True)
torch_model_name = torch_model_name.replace("/", "_")
torch_model_dir = os.path.join(
WORKDIR, str(torch_model_name) + "_torch"
)
os.makedirs(torch_model_dir, exist_ok=True)
print("saving to:")
print(torch_model_dir)
model_path = os.path.join(
torch_model_dir, torch_model_name + "_torch" + ".mlir"
)
with open(model_path, "w+") as f:
f.write(asm)
with open(os.path.join(torch_model_dir, "inputs.npz"), "wb") as f:
[np.save(f, x.numpy()) for x in np_inputs]
np.save(os.path.join(torch_model_dir, "function_name"), np.array(func_name))
mlir_importer = SharkImporter(
model,
(input,),
frontend="torch",
)
mlir_importer.import_debug(
is_dynamic=False,
tracing_required=tracing_required,
dir=torch_model_dir,
model_name=torch_model_name,
)
else:
if model_type == "vision":
model, input, _ = get_vision_model(torch_model_name)
elif model_type == "hf":
model, input, _ = get_hf_model(torch_model_name)
elif model_type == "hf_img_cls":
model, input, _ = get_hf_img_cls_model(torch_model_name)
torch_model_name = torch_model_name.replace("/", "_")
torch_model_dir = os.path.join(
WORKDIR, str(torch_model_name) + "_torch"
)
os.makedirs(torch_model_dir, exist_ok=True)
print(torch_model_name)
print(model_type)
mlir_importer = SharkImporter(
model,
(input,),
frontend="torch",
)
mlir_importer.import_debug(
is_dynamic=False,
tracing_required=tracing_required,
dir=torch_model_dir,
model_name=torch_model_name,
)
mlir_hash = create_hash(
os.path.join(
torch_model_dir, torch_model_name + "_torch" + ".mlir"
@@ -84,17 +120,22 @@ def save_torch_model(torch_model_list):
)
np.save(os.path.join(torch_model_dir, "hash"), np.array(mlir_hash))
# Generate torch dynamic models.
mlir_importer.import_debug(
is_dynamic=True,
tracing_required=tracing_required,
dir=torch_model_dir,
model_name=torch_model_name + "_dynamic",
)
if is_dynamic:
mlir_importer.import_debug(
is_dynamic=True,
tracing_required=tracing_required,
dir=torch_model_dir,
model_name=torch_model_name + "_dynamic",
)
def save_tf_model(tf_model_list):
from tank.model_utils_tf import get_causal_lm_model
from tank.model_utils_tf import get_causal_image_model
from tank.model_utils_tf import (
get_causal_image_model,
get_causal_lm_model,
get_keras_model,
get_TFhf_model,
)
with open(tf_model_list) as csvfile:
tf_reader = csv.reader(csvfile, delimiter=",")
@@ -105,11 +146,15 @@ def save_tf_model(tf_model_list):
model = None
input = None
print(model_type)
print(f"Generating artifacts for model {tf_model_name}")
if model_type == "hf":
model, input, _ = get_causal_lm_model(tf_model_name)
if model_type == "img":
model, input, _ = get_causal_image_model(tf_model_name)
if model_type == "keras":
model, input, _ = get_keras_model(tf_model_name)
if model_type == "TFhf":
model, input, _ = get_TFhf_model(tf_model_name)
tf_model_name = tf_model_name.replace("/", "_")
tf_model_dir = os.path.join(WORKDIR, str(tf_model_name) + "_tf")
@@ -206,18 +251,31 @@ if __name__ == "__main__":
default="./tank/tflite/tflite_model_list.csv",
help="Contains the file with tf model name and args.",
)
parser.add_argument(
"--ci_tank_dir",
type=bool,
default=False,
)
parser.add_argument("--upload", type=bool, default=False)
args = parser.parse_args()
home = str(Path.home())
if args.ci_tank_dir == True:
WORKDIR = os.path.join(os.path.dirname(__file__), "gen_shark_tank")
else:
WORKDIR = os.path.join(home, ".local/shark_tank/")
if args.torch_model_csv:
save_torch_model(args.torch_model_csv)
if args.tf_model_csv:
save_tf_model(args.tf_model_csv)
# if args.tf_model_csv:
# save_tf_model(args.tf_model_csv)
if args.tflite_model_csv:
save_tflite_model(args.tflite_model_csv)
# if args.tflite_model_csv:
# save_tflite_model(args.tflite_model_csv)
if args.upload:
print("uploading files to gs://shark_tank/")
os.system("gsutil cp -r ./gen_shark_tank/* gs://shark_tank/")
git_hash = sp.getoutput("git log -1 --format='%h'") + "/"
print("uploading files to gs://shark_tank/" + git_hash)
os.system(f"gsutil cp -r {WORKDIR}* gs://shark_tank/" + git_hash)

View File

@@ -19,13 +19,16 @@ tensorflow-macos
tensorflow-metal
#tf-models-nightly
#tensorflow-text-nightly
transformers==4.18.0
transformers
tensorflow-probability
#jax[cpu]
# tflitehub dependencies.
Pillow
# web dependecies.
gradio
# Testing and support.
#lit
#pyyaml

View File

@@ -17,7 +17,8 @@ gin-config
tensorflow
#tf-models-nightly
#tensorflow-text-nightly
transformers==4.18.0
transformers
diffusers
#tensorflow-probability
#jax[cpu]
@@ -28,6 +29,12 @@ Pillow
# Testing and support.
lit
pyyaml
python-dateutil
sacremoses
# web dependecies.
gradio
scipy
#ONNX and ORT for benchmarking
#--extra-index-url https://test.pypi.org/simple/

View File

@@ -11,3 +11,4 @@ gsutil
pytest
pytest-xdist
Pillow
parameterized

View File

@@ -7,6 +7,12 @@ with open("README.md", "r", encoding="utf-8") as fh:
long_description = fh.read()
PACKAGE_VERSION = os.environ.get("SHARK_PACKAGE_VERSION") or "0.0.4"
backend_deps = []
if "NO_BACKEND" in os.environ.keys():
backend_deps = [
"iree-compiler>=20220427.13",
"iree-runtime>=20220427.13",
]
setup(
name="nodai-SHARK",
@@ -32,7 +38,6 @@ setup(
"numpy",
"PyYAML",
"torch-mlir>=20220428.420",
"iree-compiler>=20220427.13",
"iree-runtime>=20220427.13",
],
]
+ backend_deps,
)

View File

@@ -7,6 +7,8 @@
# VENV_DIR=myshark.venv #create a venv called myshark.venv
# USE_IREE=1 #use stock IREE instead of Nod.ai's SHARK build
# IMPORTER=1 #Install importer deps
# BENCHMARK=1 #Install benchmark deps
# NO_BACKEND=1 #Don't install iree or shark backend
# if you run the script from a conda env it will install in your conda env
TD="$(cd $(dirname $0) && pwd)"
@@ -74,7 +76,7 @@ fi
$PYTHON -m pip install --upgrade pip || die "Could not upgrade pip"
$PYTHON -m pip install --upgrade -r "$TD/requirements.txt"
if [ "$torch_mlir_bin" = true ]; then
$PYTHON -m pip install --find-links https://github.com/llvm/torch-mlir/releases torch-mlir --extra-index-url https://download.pytorch.org/whl/nightly/cpu
$PYTHON -m pip install --pre torch-mlir -f https://llvm.github.io/torch-mlir/package-index/
if [ $? -eq 0 ];then
echo "Successfully Installed torch-mlir"
else
@@ -91,14 +93,17 @@ if [[ -z "${USE_IREE}" ]]; then
else
RUNTIME="google/iree"
fi
echo "Installing ${RUNTIME}..."
$PYTHON -m pip install --find-links https://github.com/${RUNTIME}/releases iree-compiler iree-runtime
if [[ -z "${NO_BACKEND}" ]]; then
echo "Installing ${RUNTIME}..."
$PYTHON -m pip install --find-links https://github.com/${RUNTIME}/releases iree-compiler iree-runtime
else
echo "Not installing a backend, please make sure to add your backend to PYTHONPATH"
fi
if [[ ! -z "${IMPORTER}" ]]; then
echo "${Yellow}Installing importer tools.."
if [[ $(uname -s) = 'Linux' ]]; then
echo "${Yellow}Linux detected.. installing Linux importer tools"
$PYTHON -m pip install --upgrade -r "$TD/requirements-importer.txt" -f https://github.com/${RUNTIME}/releases --extra-index-url https://test.pypi.org/simple/ --extra-index-url https://download.pytorch.org/whl/nightly/cu116
$PYTHON -m pip install --upgrade -r "$TD/requirements-importer.txt" -f https://github.com/${RUNTIME}/releases --extra-index-url https://download.pytorch.org/whl/nightly/cpu
elif [[ $(uname -s) = 'Darwin' ]]; then
echo "${Yellow}macOS detected.. installing macOS importer tools"
#Conda seems to have some problems installing these packages and hope they get resolved upstream.
@@ -106,9 +111,9 @@ if [[ ! -z "${IMPORTER}" ]]; then
fi
fi
$PYTHON -m pip install -e . --extra-index-url https://download.pytorch.org/whl/nightly/cpu -f https://github.com/llvm/torch-mlir/releases -f https://github.com/${RUNTIME}/releases
$PYTHON -m pip install -e . -f https://llvm.github.io/torch-mlir/package-index/ -f https://github.com/${RUNTIME}/releases
if [[ $(uname -s) = 'Linux' && ! -z "${IMPORTER}" ]]; then
if [[ $(uname -s) = 'Linux' && ! -z "${BENCHMARK}" ]]; then
$PYTHON -m pip uninstall -y torch torchvision
$PYTHON -m pip install --pre torch torchvision --extra-index-url https://download.pytorch.org/whl/nightly/cu116
if [ $? -eq 0 ];then
@@ -118,6 +123,16 @@ if [[ $(uname -s) = 'Linux' && ! -z "${IMPORTER}" ]]; then
fi
fi
if [[ ! -z "${ONNX}" ]]; then
echo "${Yellow}Installing ONNX and onnxruntime for benchmarks..."
$PYTHON -m pip install onnx onnxruntime psutil
if [ $? -eq 0 ];then
echo "Successfully installed ONNX and ONNX runtime."
else
echo "Could not install ONNX." >&2
fi
fi
if [[ -z "${CONDA_PREFIX}" ]]; then
echo "${Green}Before running examples activate venv with:"
echo " ${Green}source $VENV_DIR/bin/activate"

View File

@@ -15,6 +15,7 @@
import torch
from torch._decomp import get_decompositions
from torch.fx.experimental.proxy_tensor import make_fx
from functorch._src.compile_utils import strip_overloads
from torch.nn.utils import _stateless
from torch import fx
@@ -69,6 +70,7 @@ class MakeFxModule:
fx_g.graph.set_codegen(torch.fx.graph.CodeGen())
fx_g.recompile()
fx_g = self.change_fx_graph_return_to_tuple(fx_g)
strip_overloads(fx_g)
ts_g = torch.jit.script(fx_g)
temp = tempfile.NamedTemporaryFile(
suffix="_shark_ts", prefix="temp_ts_"

View File

@@ -0,0 +1,70 @@
import torchdynamo
import torch
import torch_mlir
from shark.sharkdynamo.utils import make_shark_compiler
import warnings, logging
warnings.simplefilter("ignore")
torchdynamo.config.log_level = logging.ERROR
torchdynamo.reset()
@torchdynamo.optimize(
make_shark_compiler(use_tracing=False, device="cuda", verbose=False)
)
def foo(t):
return 2 * t
example_input = torch.rand((2, 3))
x = foo(example_input)
print(x)
torchdynamo.reset()
@torchdynamo.optimize(
make_shark_compiler(use_tracing=False, device="cuda", verbose=False)
)
def foo(a, b):
x = a / (a + 1)
if b.sum() < 0:
b = b * -1
return x * b
print(foo(torch.rand((2, 3)), -torch.rand((2, 3))))
torchdynamo.reset()
@torchdynamo.optimize(
make_shark_compiler(use_tracing=False, device="cuda", verbose=True)
)
def foo(a):
for i in range(10):
a += 1.0
return a
print(foo(torch.rand((1, 2))))
torchdynamo.reset()
@torchdynamo.optimize(
make_shark_compiler(use_tracing=False, device="cuda", verbose=True)
)
def test_unsupported_types(t, y):
return t, 2 * y
str_input = "hello"
tensor_input = torch.randn(2)
print(test_unsupported_types(str_input, tensor_input))

View File

@@ -0,0 +1,73 @@
import torch
import numpy as np
model = torch.hub.load(
"pytorch/vision:v0.10.0", "squeezenet1_0", pretrained=True
)
model.eval()
# from PIL import Image
# from torchvision import transforms
# import urllib
#
# url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
# try: urllib.URLopener().retrieve(url, filename)
# except: urllib.request.urlretrieve(url, filename)
#
#
# input_image = Image.open(filename)
# preprocess = transforms.Compose([
# transforms.Resize(256),
# transforms.CenterCrop(224),
# transforms.ToTensor(),
# transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
# ])
# input_tensor = preprocess(input_image)
# input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
# print(input_batch.shape) # size = [1, 3, 224, 224]
# The above is code for generating sample inputs from an image. We can just use
# random values for accuracy testing though
input_batch = torch.randn(1, 3, 224, 224)
# Focus on CPU for now
if False and torch.cuda.is_available():
input_batch = input_batch.to("cuda")
model.to("cuda")
with torch.no_grad():
output = model(input_batch)
# Tensor of shape 1000, with confidence scores over Imagenet's 1000 classes
golden_confidences = output[0]
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
golden_probabilities = torch.nn.functional.softmax(
golden_confidences, dim=0
).numpy()
golden_confidences = golden_confidences.numpy()
from shark.torch_mlir_lockstep_tensor import TorchMLIRLockstepTensor
input_detached_clone = input_batch.clone()
eager_input_batch = TorchMLIRLockstepTensor(input_detached_clone)
print("getting torch-mlir result")
output = model(eager_input_batch)
static_output = output.elem
confidences = static_output[0]
probabilities = torch.nn.functional.softmax(
torch.from_numpy(confidences), dim=0
).numpy()
print("The obtained result via shark is: ", confidences)
print("The golden result is:", golden_confidences)
np.testing.assert_allclose(
golden_confidences, confidences, rtol=1e-02, atol=1e-03
)
np.testing.assert_allclose(
golden_probabilities, probabilities, rtol=1e-02, atol=1e-03
)

View File

@@ -18,14 +18,23 @@ class AlbertModule(torch.nn.Module):
self.model.eval()
def forward(self, input_ids, attention_mask):
return self.model(input_ids=input_ids, attention_mask=attention_mask).logits
return self.model(
input_ids=input_ids, attention_mask=attention_mask
).logits
if __name__ == "__main__":
# Prepping Data
tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
text = "This [MASK] is very tasty."
encoded_inputs = tokenizer(text, padding='max_length', truncation=True, max_length=MAX_SEQUENCE_LENGTH, return_tensors="pt")
inputs = (encoded_inputs["input_ids"],encoded_inputs["attention_mask"])
encoded_inputs = tokenizer(
text,
padding="max_length",
truncation=True,
max_length=MAX_SEQUENCE_LENGTH,
return_tensors="pt",
)
inputs = (encoded_inputs["input_ids"], encoded_inputs["attention_mask"])
mlir_importer = SharkImporter(
AlbertModule(),
inputs,
@@ -34,26 +43,46 @@ if __name__ == "__main__":
minilm_mlir, func_name = mlir_importer.import_mlir(
is_dynamic=False, tracing_required=True
)
shark_module = SharkInference(minilm_mlir, func_name, mlir_dialect="linalg")
shark_module = SharkInference(
minilm_mlir, func_name, mlir_dialect="linalg"
)
shark_module.compile()
token_logits = torch.tensor(shark_module.forward(inputs))
mask_id = torch.where(encoded_inputs["input_ids"] == tokenizer.mask_token_id)[1]
mask_id = torch.where(
encoded_inputs["input_ids"] == tokenizer.mask_token_id
)[1]
mask_token_logits = token_logits[0, mask_id, :]
top_5_tokens = torch.topk(mask_token_logits, 5, dim=1).indices[0].tolist()
for token in top_5_tokens:
print(f"'>>> Sample/Warmup output: {text.replace(tokenizer.mask_token, tokenizer.decode(token))}'")
print(
f"'>>> Sample/Warmup output: {text.replace(tokenizer.mask_token, tokenizer.decode(token))}'"
)
while True:
try:
new_text = input("Give me a sentence with [MASK] to fill: ")
encoded_inputs = tokenizer(new_text, padding='max_length', truncation=True, max_length=MAX_SEQUENCE_LENGTH, return_tensors="pt")
inputs = (encoded_inputs["input_ids"],encoded_inputs["attention_mask"])
encoded_inputs = tokenizer(
new_text,
padding="max_length",
truncation=True,
max_length=MAX_SEQUENCE_LENGTH,
return_tensors="pt",
)
inputs = (
encoded_inputs["input_ids"],
encoded_inputs["attention_mask"],
)
token_logits = torch.tensor(shark_module.forward(inputs))
mask_id = torch.where(encoded_inputs["input_ids"] == tokenizer.mask_token_id)[1]
mask_id = torch.where(
encoded_inputs["input_ids"] == tokenizer.mask_token_id
)[1]
mask_token_logits = token_logits[0, mask_id, :]
top_5_tokens = torch.topk(mask_token_logits, 5, dim=1).indices[0].tolist()
top_5_tokens = (
torch.topk(mask_token_logits, 5, dim=1).indices[0].tolist()
)
for token in top_5_tokens:
print(f"'>>> {new_text.replace(tokenizer.mask_token, tokenizer.decode(token))}'")
print(
f"'>>> {new_text.replace(tokenizer.mask_token, tokenizer.decode(token))}'"
)
except KeyboardInterrupt:
print("Exiting program.")
break

View File

@@ -18,13 +18,15 @@ BATCH_SIZE = 1
# Create a set of inputs
t5_inputs = [
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32)
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
]
class AlbertModule(tf.Module):
def __init__(self):
super(AlbertModule, self).__init__()
self.m = TFAutoModelForMaskedLM.from_pretrained("albert-base-v2")
self.m.predict = lambda x,y: self.m(input_ids=x, attention_mask=y)
self.m.predict = lambda x, y: self.m(input_ids=x, attention_mask=y)
@tf.function(input_signature=t5_inputs)
def forward(self, input_ids, attention_mask):
@@ -36,8 +38,14 @@ if __name__ == "__main__":
tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
# text = "This is a great [MASK]."
text = "This [MASK] is very tasty."
encoded_inputs = tokenizer(text, padding='max_length', truncation=True, max_length=MAX_SEQUENCE_LENGTH, return_tensors="tf")
inputs = (encoded_inputs["input_ids"],encoded_inputs["attention_mask"])
encoded_inputs = tokenizer(
text,
padding="max_length",
truncation=True,
max_length=MAX_SEQUENCE_LENGTH,
return_tensors="tf",
)
inputs = (encoded_inputs["input_ids"], encoded_inputs["attention_mask"])
mlir_importer = SharkImporter(
AlbertModule(),
inputs,
@@ -51,22 +59,42 @@ if __name__ == "__main__":
output_idx = 0
data_idx = 1
token_logits = shark_module.forward(inputs)[output_idx][data_idx]
mask_id = np.where(tf.squeeze(encoded_inputs["input_ids"]) == tokenizer.mask_token_id)
mask_id = np.where(
tf.squeeze(encoded_inputs["input_ids"]) == tokenizer.mask_token_id
)
mask_token_logits = token_logits[0, mask_id, :]
top_5_tokens = np.flip(np.argsort(mask_token_logits)).squeeze()[0:5]
for token in top_5_tokens:
print(f"'>>> Sample/Warmup output: {text.replace(tokenizer.mask_token, tokenizer.decode(token))}'")
print(
f"'>>> Sample/Warmup output: {text.replace(tokenizer.mask_token, tokenizer.decode(token))}'"
)
while True:
try:
new_text = input("Give me a sentence with [MASK] to fill: ")
encoded_inputs = tokenizer(new_text, padding='max_length', truncation=True, max_length=MAX_SEQUENCE_LENGTH, return_tensors="tf")
inputs = (encoded_inputs["input_ids"],encoded_inputs["attention_mask"])
encoded_inputs = tokenizer(
new_text,
padding="max_length",
truncation=True,
max_length=MAX_SEQUENCE_LENGTH,
return_tensors="tf",
)
inputs = (
encoded_inputs["input_ids"],
encoded_inputs["attention_mask"],
)
token_logits = shark_module.forward(inputs)[output_idx][data_idx]
mask_id = np.where(tf.squeeze(encoded_inputs["input_ids"]) == tokenizer.mask_token_id)
mask_id = np.where(
tf.squeeze(encoded_inputs["input_ids"])
== tokenizer.mask_token_id
)
mask_token_logits = token_logits[0, mask_id, :]
top_5_tokens = np.flip(np.argsort(mask_token_logits)).squeeze()[0:5]
top_5_tokens = np.flip(np.argsort(mask_token_logits)).squeeze()[
0:5
]
for token in top_5_tokens:
print(f"'>>> {new_text.replace(tokenizer.mask_token, tokenizer.decode(token))}'")
print(
f"'>>> {new_text.replace(tokenizer.mask_token, tokenizer.decode(token))}'"
)
except KeyboardInterrupt:
print("Exiting program.")
sys.exit()

View File

@@ -1,35 +0,0 @@
from PIL import Image
import requests
from transformers import AutoModelForMaskedLM, AutoTokenizer
import torch
from shark.shark_inference import SharkInference
from shark.shark_importer import SharkImporter
from iree.compiler import tf as tfc
from iree.compiler import compile_str
from iree import runtime as ireert
import os
import numpy as np
MAX_SEQUENCE_LENGTH = 512
BATCH_SIZE = 1
if __name__ == "__main__":
# Prepping Data
model = AutoModelForMaskedLM.from_pretrained("albert-base-v2")
tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
text = "This [MASK] is very tasty."
inputs = tokenizer(text, padding='max_length', truncation=True, max_length=MAX_SEQUENCE_LENGTH, return_tensors="pt")
token_logits = model(**inputs).logits
print(token_logits)
# Find the location of [MASK] and extract its logits
mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
mask_token_logits = token_logits[0, mask_token_index, :]
# print(mask_token_logits)
# Pick the [MASK] candidates with the highest logits
top_5_tokens = torch.topk(mask_token_logits, 5, dim=1).indices[0].tolist()
print(np.argsort(mask_token_logits.detach().numpy()))
# print(top_5_tokens)
for token in top_5_tokens:
print(f"'>>> {text.replace(tokenizer.mask_token, tokenizer.decode([token]))}'")

View File

@@ -0,0 +1,12 @@
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_torch_model
mlir_model, func_name, inputs, golden_out = download_torch_model("bloom")
shark_module = SharkInference(
mlir_model, func_name, device="cpu", mlir_dialect="tm_tensor"
)
shark_module.compile()
result = shark_module.forward(inputs)
print("The obtained result via shark is: ", result)
print("The golden result is:", golden_out)

View File

@@ -8,7 +8,7 @@ mlir_model, func_name, inputs, golden_out = download_torch_model(
shark_module = SharkInference(
mlir_model, func_name, mlir_dialect="linalg"
mlir_model, func_name, device="cpu", mlir_dialect="linalg"
)
shark_module.compile()
result = shark_module.forward(inputs)

View File

@@ -23,7 +23,7 @@ input = torch.randn(1, 3, 224, 224)
mlir_importer = SharkImporter(
ResnestModule(),
(input),
(input,),
frontend="torch",
)
@@ -33,9 +33,7 @@ mlir_importer = SharkImporter(
print(golden_out)
shark_module = SharkInference(
vision_mlir, func_name, device="cpu", mlir_dialect="linalg"
)
shark_module = SharkInference(vision_mlir, func_name, mlir_dialect="linalg")
shark_module.compile()
result = shark_module.forward((input))
result = shark_module.forward((input,))
print("Obtained result", result)

View File

@@ -0,0 +1,76 @@
from shark.shark_inference import SharkInference
from shark.parser import shark_args
import torch
import numpy as np
import sys
import torchvision.models as models
import torch_mlir
torch.manual_seed(0)
class VisionModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.model = models.resnet50(pretrained=True)
self.train(False)
def forward(self, input):
return self.model.forward(input)
model = VisionModule()
test_input = torch.randn(1, 3, 224, 224)
actual_out = model(test_input)
test_input_fp16 = test_input.to(device=torch.device("cuda"), dtype=torch.half)
model_fp16 = model.half()
model_fp16.eval()
model_fp16.to("cuda")
actual_out_fp16 = model_fp16(test_input_fp16)
ts_g = torch.jit.trace(model_fp16, [test_input_fp16])
module = torch_mlir.compile(
ts_g,
(test_input_fp16),
torch_mlir.OutputType.LINALG_ON_TENSORS,
use_tracing=True,
verbose=False,
)
# from contextlib import redirect_stdout
# with open('resnet50_fp16_linalg_ir.mlir', 'w') as f:
# with redirect_stdout(f):
# print(module.operation.get_asm())
mlir_model = module
func_name = "forward"
shark_module = SharkInference(
mlir_model, func_name, device="cuda", mlir_dialect="linalg"
)
shark_module.compile()
def shark_result(x):
x_ny = x.cpu().detach().numpy()
inputs = (x_ny,)
result = shark_module.forward(inputs)
return torch.from_numpy(result)
observed_out = shark_result(test_input_fp16)
print("Golden result:", actual_out_fp16)
print("SHARK result:", observed_out)
actual_out_fp16 = actual_out_fp16.to(device=torch.device("cpu"))
print(
torch.testing.assert_allclose(
actual_out_fp16, observed_out, rtol=1e-2, atol=1e-2
)
)

View File

@@ -69,7 +69,9 @@ labels = load_labels()
mlir_model, func_name, inputs, golden_out = download_torch_model("resnet50")
shark_module = SharkInference(mlir_model, func_name, mlir_dialect="linalg")
shark_module.compile()
# shark_module.compile()
path = shark_module.save_module()
shark_module.load_module(path)
result = shark_module.forward((img.detach().numpy(),))
print("The top 3 results obtained via shark_runner is:")

View File

@@ -0,0 +1,392 @@
# Description: an implementation of a deep learning recommendation model (DLRM)
# The model input consists of dense and sparse features. The former is a vector
# of floating point values. The latter is a list of sparse indices into
# embedding tables, which consist of vectors of floating point values.
# The selected vectors are passed to mlp networks denoted by triangles,
# in some cases the vectors are interacted through operators (Ops).
#
# output:
# vector of values
# model: |
# /\
# /__\
# |
# _____________________> Op <___________________
# / | \
# /\ /\ /\
# /__\ /__\ ... /__\
# | | |
# | Op Op
# | ____/__\_____ ____/__\____
# | |_Emb_|____|__| ... |_Emb_|__|___|
# input:
# [ dense features ] [sparse indices] , ..., [sparse indices]
#
# More precise definition of model layers:
# 1) fully connected layers of an mlp
# z = f(y)
# y = Wx + b
#
# 2) embedding lookup (for a list of sparse indices p=[p1,...,pk])
# z = Op(e1,...,ek)
# obtain vectors e1=E[:,p1], ..., ek=E[:,pk]
#
# 3) Operator Op can be one of the following
# Sum(e1,...,ek) = e1 + ... + ek
# Dot(e1,...,ek) = [e1'e1, ..., e1'ek, ..., ek'e1, ..., ek'ek]
# Cat(e1,...,ek) = [e1', ..., ek']'
# where ' denotes transpose operation
#
# References:
# [1] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
# Narayanan Sundaram, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu,
# Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherniavskii,
# Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko,
# Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong,
# Misha Smelyanskiy, "Deep Learning Recommendation Model for Personalization and
# Recommendation Systems", CoRR, arXiv:1906.00091, 2019
import argparse
import sys
import numpy as np
import torch
import torch.nn as nn
from shark.shark_inference import SharkInference
from shark.shark_importer import SharkImporter
torch.manual_seed(0)
np.random.seed(0)
### define dlrm in PyTorch ###
class DLRM_Net(nn.Module):
def create_mlp(self, ln, sigmoid_layer):
# build MLP layer by layer
layers = nn.ModuleList()
for i in range(0, ln.size - 1):
n = ln[i]
m = ln[i + 1]
# construct fully connected operator
LL = nn.Linear(int(n), int(m), bias=True)
# initialize the weights
# with torch.no_grad():
# custom Xavier input, output or two-sided fill
mean = 0.0 # std_dev = np.sqrt(variance)
std_dev = np.sqrt(2 / (m + n)) # np.sqrt(1 / m) # np.sqrt(1 / n)
W = np.random.normal(mean, std_dev, size=(m, n)).astype(np.float32)
std_dev = np.sqrt(1 / m) # np.sqrt(2 / (m + 1))
bt = np.random.normal(mean, std_dev, size=m).astype(np.float32)
LL.weight.data = torch.tensor(W, requires_grad=True)
LL.bias.data = torch.tensor(bt, requires_grad=True)
# approach 2
# LL.weight.data.copy_(torch.tensor(W))
# LL.bias.data.copy_(torch.tensor(bt))
# approach 3
# LL.weight = Parameter(torch.tensor(W),requires_grad=True)
# LL.bias = Parameter(torch.tensor(bt),requires_grad=True)
layers.append(LL)
# construct sigmoid or relu operator
if i == sigmoid_layer:
layers.append(nn.Sigmoid())
else:
layers.append(nn.ReLU())
# approach 1: use ModuleList
# return layers
# approach 2: use Sequential container to wrap all layers
return torch.nn.Sequential(*layers)
def create_emb(self, m, ln, weighted_pooling=None):
emb_l = nn.ModuleList()
v_W_l = []
for i in range(0, ln.size):
n = ln[i]
# construct embedding operator
EE = nn.EmbeddingBag(n, m, mode="sum")
# initialize embeddings
# nn.init.uniform_(EE.weight, a=-np.sqrt(1 / n), b=np.sqrt(1 / n))
W = np.random.uniform(
low=-np.sqrt(1 / n), high=np.sqrt(1 / n), size=(n, m)
).astype(np.float32)
# approach 1
print(W)
EE.weight.data = torch.tensor(W, requires_grad=True)
# approach 2
# EE.weight.data.copy_(torch.tensor(W))
# approach 3
# EE.weight = Parameter(torch.tensor(W),requires_grad=True)
if weighted_pooling is None:
v_W_l.append(None)
else:
v_W_l.append(torch.ones(n, dtype=torch.float32))
emb_l.append(EE)
return emb_l, v_W_l
def __init__(
self,
m_spa=None,
ln_emb=None,
ln_bot=None,
ln_top=None,
arch_interaction_op=None,
arch_interaction_itself=False,
sigmoid_bot=-1,
sigmoid_top=-1,
weighted_pooling=None,
):
super(DLRM_Net, self).__init__()
if (
(m_spa is not None)
and (ln_emb is not None)
and (ln_bot is not None)
and (ln_top is not None)
and (arch_interaction_op is not None)
):
# save arguments
self.output_d = 0
self.arch_interaction_op = arch_interaction_op
self.arch_interaction_itself = arch_interaction_itself
if weighted_pooling is not None and weighted_pooling != "fixed":
self.weighted_pooling = "learned"
else:
self.weighted_pooling = weighted_pooling
# create operators
self.emb_l, w_list = self.create_emb(
m_spa, ln_emb, weighted_pooling
)
if self.weighted_pooling == "learned":
self.v_W_l = nn.ParameterList()
for w in w_list:
self.v_W_l.append(nn.Parameter(w))
else:
self.v_W_l = w_list
self.bot_l = self.create_mlp(ln_bot, sigmoid_bot)
self.top_l = self.create_mlp(ln_top, sigmoid_top)
def apply_mlp(self, x, layers):
return layers(x)
def apply_emb(self, lS_o, lS_i, emb_l, v_W_l):
# WARNING: notice that we are processing the batch at once. We implicitly
# assume that the data is laid out such that:
# 1. each embedding is indexed with a group of sparse indices,
# corresponding to a single lookup
# 2. for each embedding the lookups are further organized into a batch
# 3. for a list of embedding tables there is a list of batched lookups
# TORCH-MLIR
# We are passing all the embeddings as arguments for easy parsing.
ly = []
for k, sparse_index_group_batch in enumerate(lS_i):
sparse_offset_group_batch = lS_o[k]
# embedding lookup
# We are using EmbeddingBag, which implicitly uses sum operator.
# The embeddings are represented as tall matrices, with sum
# happening vertically across 0 axis, resulting in a row vector
# E = emb_l[k]
if v_W_l[k] is not None:
per_sample_weights = v_W_l[k].gather(
0, sparse_index_group_batch
)
else:
per_sample_weights = None
E = emb_l[k]
V = E(
sparse_index_group_batch,
sparse_offset_group_batch,
per_sample_weights=per_sample_weights,
)
ly.append(V)
return ly
def interact_features(self, x, ly):
if self.arch_interaction_op == "dot":
# concatenate dense and sparse features
(batch_size, d) = x.shape
T = torch.cat([x] + ly, dim=1).view((batch_size, -1, d))
# perform a dot product
Z = torch.bmm(T, torch.transpose(T, 1, 2))
# append dense feature with the interactions (into a row vector)
# approach 1: all
# Zflat = Z.view((batch_size, -1))
# approach 2: unique
_, ni, nj = Z.shape
# approach 1: tril_indices
# offset = 0 if self.arch_interaction_itself else -1
# li, lj = torch.tril_indices(ni, nj, offset=offset)
# approach 2: custom
offset = 1 if self.arch_interaction_itself else 0
li = torch.tensor(
[i for i in range(ni) for j in range(i + offset)]
)
lj = torch.tensor(
[j for i in range(nj) for j in range(i + offset)]
)
Zflat = Z[:, li, lj]
# concatenate dense features and interactions
R = torch.cat([x] + [Zflat], dim=1)
elif self.arch_interaction_op == "cat":
# concatenation features (into a row vector)
R = torch.cat([x] + ly, dim=1)
else:
sys.exit(
"ERROR: --arch-interaction-op="
+ self.arch_interaction_op
+ " is not supported"
)
return R
def forward(self, dense_x, lS_o, *lS_i):
return self.sequential_forward(dense_x, lS_o, lS_i)
def sequential_forward(self, dense_x, lS_o, lS_i):
# process dense features (using bottom mlp), resulting in a row vector
x = self.apply_mlp(dense_x, self.bot_l)
# debug prints
# print("intermediate")
# print(x.detach().cpu().numpy())
# process sparse features(using embeddings), resulting in a list of row vectors
ly = self.apply_emb(lS_o, lS_i, self.emb_l, self.v_W_l)
# for y in ly:
# print(y.detach().cpu().numpy())
# interact features (dense and sparse)
z = self.interact_features(x, ly)
# print(z.detach().cpu().numpy())
# obtain probability of a click (using top mlp)
p = self.apply_mlp(z, self.top_l)
# # clamp output if needed
# if 0.0 < self.loss_threshold and self.loss_threshold < 1.0:
# z = torch.clamp(p, min=self.loss_threshold, max=(1.0 - self.loss_threshold))
# else:
# z = p
return p
def dash_separated_ints(value):
vals = value.split("-")
for val in vals:
try:
int(val)
except ValueError:
raise argparse.ArgumentTypeError(
"%s is not a valid dash separated list of ints" % value
)
return value
# model related parameters
parser = argparse.ArgumentParser(
description="Train Deep Learning Recommendation Model (DLRM)"
)
parser.add_argument("--arch-sparse-feature-size", type=int, default=2)
parser.add_argument(
"--arch-embedding-size", type=dash_separated_ints, default="4-3-2"
)
# j will be replaced with the table number
parser.add_argument(
"--arch-mlp-bot", type=dash_separated_ints, default="4-3-2"
)
parser.add_argument(
"--arch-mlp-top", type=dash_separated_ints, default="8-2-1"
)
parser.add_argument(
"--arch-interaction-op", type=str, choices=["dot", "cat"], default="dot"
)
parser.add_argument(
"--arch-interaction-itself", action="store_true", default=False
)
parser.add_argument("--weighted-pooling", type=str, default=None)
args = parser.parse_args()
ln_bot = np.fromstring(args.arch_mlp_bot, dtype=int, sep="-")
ln_top = np.fromstring(args.arch_mlp_top, dtype=int, sep="-")
m_den = ln_bot[0]
ln_emb = np.fromstring(args.arch_embedding_size, dtype=int, sep="-")
m_spa = args.arch_sparse_feature_size
ln_emb = np.asarray(ln_emb)
num_fea = ln_emb.size + 1 # num sparse + num dense features
# Initialize the model.
dlrm_model = DLRM_Net(
m_spa=m_spa,
ln_emb=ln_emb,
ln_bot=ln_bot,
ln_top=ln_top,
arch_interaction_op=args.arch_interaction_op,
)
# Inputs to the model.
dense_inp = torch.tensor([[0.6965, 0.2861, 0.2269, 0.5513]])
vs0 = torch.tensor([[0], [0], [0]], dtype=torch.int64)
vsi = torch.tensor([1, 2, 3]), torch.tensor([1]), torch.tensor([1])
input_dlrm = (dense_inp, vs0, *vsi)
golden_output = dlrm_model(dense_inp, vs0, *vsi)
mlir_importer = SharkImporter(
dlrm_model,
input_dlrm,
frontend="torch",
)
(dlrm_mlir, func_name), inputs, golden_out = mlir_importer.import_debug(
tracing_required=True
)
shark_module = SharkInference(
dlrm_mlir, func_name, device="vulkan", mlir_dialect="linalg"
)
shark_module.compile()
result = shark_module.forward(input_dlrm)
np.testing.assert_allclose(
golden_output.detach().numpy(), result, rtol=1e-02, atol=1e-03
)
# Verified via torch-mlir.
# import torch_mlir
# from torch_mlir_e2e_test.linalg_on_tensors_backends import refbackend
# module = torch_mlir.compile(
# dlrm_model, inputs, use_tracing=True, output_type="linalg-on-tensors"
# )
# backend = refbackend.RefBackendLinalgOnTensorsBackend()
# compiled = backend.compile(module)
# jit_module = backend.load(compiled)
# dense_numpy = dense_inp.numpy()
# vs0_numpy = vs0.numpy()
# vsi_numpy = [inp.numpy() for inp in vsi]
# numpy_inp = (dense_numpy, vs0_numpy, *vsi_numpy)
# print(jit_module.forward(*numpy_inp))

View File

@@ -0,0 +1,314 @@
import torch
from torch import nn
from torchrec.datasets.utils import Batch
from torchrec.modules.crossnet import LowRankCrossNet
from torchrec.sparse.jagged_tensor import KeyedJaggedTensor, KeyedTensor
from torchrec.modules.embedding_configs import EmbeddingBagConfig
from torchrec.modules.embedding_modules import EmbeddingBagCollection
from torchrec.sparse.jagged_tensor import KeyedJaggedTensor
from typing import Dict, List, Optional, Tuple
from torchrec.models.dlrm import (
choose,
DenseArch,
DLRM,
InteractionArch,
SparseArch,
OverArch,
)
from shark.shark_inference import SharkInference
from shark.shark_importer import SharkImporter
import numpy as np
torch.manual_seed(0)
np.random.seed(0)
def calculate_offsets(tensor_list, prev_values, prev_offsets):
offset_init = 0
offset_list = []
values_list = []
if prev_offsets != None:
offset_init = prev_values.shape[-1]
for tensor in tensor_list:
offset_list.append(offset_init)
offset_init += tensor.shape[0]
concatendated_tensor_list = torch.cat(tensor_list)
if prev_values != None:
concatendated_tensor_list = torch.cat(
[prev_values, concatendated_tensor_list]
)
concatenated_offsets = torch.tensor(offset_list)
if prev_offsets != None:
concatenated_offsets = torch.cat([prev_offsets, concatenated_offsets])
return concatendated_tensor_list, concatenated_offsets
# Have to make combined_keys as dict as to which embedding bags they
# point to. {f1: 0, f3: 0, f2: 1}
# The result will be a triple containing values, indices and pointer tensor.
def to_list(key_jagged, combined_keys):
key_jagged_dict = key_jagged.to_dict()
combined_list = []
for key in combined_keys:
prev_values, prev_offsets = calculate_offsets(
key_jagged_dict[key].to_dense(), None, None
)
print(prev_values)
print(prev_offsets)
combined_list.append(prev_values)
combined_list.append(prev_offsets)
combined_list.append(torch.tensor(combined_keys[key]))
return combined_list
class SparseArchShark(nn.Module):
def create_emb(self, embedding_dim, num_embeddings_list):
embedding_list = nn.ModuleList()
for i in range(0, num_embeddings_list.size):
num_embeddings = num_embeddings_list[i]
EE = nn.EmbeddingBag(num_embeddings, embedding_dim, mode="sum")
W = np.random.uniform(
low=-np.sqrt(1 / num_embeddings),
high=np.sqrt(1 / num_embeddings),
size=(num_embeddings, embedding_dim),
).astype(np.float32)
EE.weight.data = torch.tensor(W, requires_grad=True)
embedding_list.append(EE)
return embedding_list
def __init__(
self,
embedding_dim,
total_features,
num_embeddings_list,
):
super(SparseArchShark, self).__init__()
self.embedding_dim = embedding_dim
self.num_features = total_features
self.embedding_list = self.create_emb(
embedding_dim, num_embeddings_list
)
def forward(self, *batched_inputs):
concatenated_list = []
input_enum, embedding_enum = 0, 0
for k in range(len(batched_inputs) // 3):
values = batched_inputs[input_enum]
input_enum += 1
offsets = batched_inputs[input_enum]
input_enum += 1
embedding_pointer = int(batched_inputs[input_enum])
input_enum += 1
E = self.embedding_list[embedding_pointer]
V = E(values, offsets)
concatenated_list.append(V)
return torch.cat(concatenated_list, dim=1).reshape(
-1, self.num_features, self.embedding_dim
)
def test_sparse_arch() -> None:
D = 3
eb1_config = EmbeddingBagConfig(
name="t1",
embedding_dim=D,
num_embeddings=10,
feature_names=["f1", "f3"],
)
eb2_config = EmbeddingBagConfig(
name="t2",
embedding_dim=D,
num_embeddings=10,
feature_names=["f2"],
)
ebc = EmbeddingBagCollection(tables=[eb1_config, eb2_config])
w1 = ebc.embedding_bags["t1"].weight
w2 = ebc.embedding_bags["t2"].weight
sparse_arch = SparseArch(ebc)
keys = ["f1", "f2", "f3", "f4", "f5"]
offsets = torch.tensor([0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 19])
features = KeyedJaggedTensor.from_offsets_sync(
keys=keys,
values=torch.tensor(
[1, 2, 4, 5, 4, 3, 2, 9, 1, 2, 4, 5, 4, 3, 2, 9, 1, 2, 3]
),
offsets=offsets,
)
sparse_archi = SparseArchShark(D, 3, np.array([10, 10]))
sparse_archi.embedding_list[0].weight = w1
sparse_archi.embedding_list[1].weight = w2
inputs = to_list(features, {"f1": 0, "f3": 0, "f2": 1})
test_results = sparse_archi(*inputs)
sparse_features = sparse_arch(features)
torch.allclose(
sparse_features,
test_results,
rtol=1e-4,
atol=1e-4,
)
test_sparse_arch()
class DLRMShark(nn.Module):
def __init__(
self,
embedding_dim,
total_features,
num_embeddings_list,
dense_in_features: int,
dense_arch_layer_sizes: List[int],
over_arch_layer_sizes: List[int],
) -> None:
super().__init__()
self.sparse_arch: SparseArchShark = SparseArchShark(
embedding_dim, total_features, num_embeddings_list
)
num_sparse_features: int = total_features
self.dense_arch = DenseArch(
in_features=dense_in_features,
layer_sizes=dense_arch_layer_sizes,
)
self.inter_arch = InteractionArch(
num_sparse_features=num_sparse_features,
)
over_in_features: int = (
embedding_dim
+ choose(num_sparse_features, 2)
+ num_sparse_features
)
self.over_arch = OverArch(
in_features=over_in_features,
layer_sizes=over_arch_layer_sizes,
)
def forward(
self, dense_features: torch.Tensor, *sparse_features
) -> torch.Tensor:
embedded_dense = self.dense_arch(dense_features)
embedded_sparse = self.sparse_arch(*sparse_features)
concatenated_dense = self.inter_arch(
dense_features=embedded_dense, sparse_features=embedded_sparse
)
logits = self.over_arch(concatenated_dense)
return logits
def test_dlrm() -> None:
B = 2
D = 8
dense_in_features = 100
eb1_config = EmbeddingBagConfig(
name="t1",
embedding_dim=D,
num_embeddings=100,
feature_names=["f1", "f3"],
)
eb2_config = EmbeddingBagConfig(
name="t2",
embedding_dim=D,
num_embeddings=100,
feature_names=["f2"],
)
ebc = EmbeddingBagCollection(tables=[eb1_config, eb2_config])
sparse_features = KeyedJaggedTensor.from_offsets_sync(
keys=["f1", "f3", "f2"],
values=torch.tensor([1, 2, 4, 5, 4, 3, 2, 9, 1, 2, 3]),
offsets=torch.tensor([0, 2, 4, 6, 8, 10, 11]),
)
ebc = EmbeddingBagCollection(tables=[eb1_config, eb2_config])
sparse_nn = DLRM(
embedding_bag_collection=ebc,
dense_in_features=dense_in_features,
dense_arch_layer_sizes=[20, D],
over_arch_layer_sizes=[5, 1],
)
sparse_nn_nod = DLRMShark(
embedding_dim=8,
total_features=3,
num_embeddings_list=np.array([100, 100]),
dense_in_features=dense_in_features,
dense_arch_layer_sizes=[20, D],
over_arch_layer_sizes=[5, 1],
)
dense_features = torch.rand((B, dense_in_features))
x = to_list(sparse_features, {"f1": 0, "f3": 0, "f2": 1})
w1 = ebc.embedding_bags["t1"].weight
w2 = ebc.embedding_bags["t2"].weight
sparse_nn_nod.sparse_arch.embedding_list[0].weight = w1
sparse_nn_nod.sparse_arch.embedding_list[1].weight = w2
sparse_nn_nod.dense_arch.load_state_dict(sparse_nn.dense_arch.state_dict())
sparse_nn_nod.inter_arch.load_state_dict(sparse_nn.inter_arch.state_dict())
sparse_nn_nod.over_arch.load_state_dict(sparse_nn.over_arch.state_dict())
logits = sparse_nn(
dense_features=dense_features,
sparse_features=sparse_features,
)
logits_nod = sparse_nn_nod(dense_features, *x)
# print(logits)
# print(logits_nod)
# Import the module and print.
mlir_importer = SharkImporter(
sparse_nn_nod,
(dense_features, *x),
frontend="torch",
)
(dlrm_mlir, func_name), inputs, golden_out = mlir_importer.import_debug(
tracing_required=True
)
shark_module = SharkInference(
dlrm_mlir, func_name, device="cpu", mlir_dialect="linalg"
)
shark_module.compile()
result = shark_module.forward(inputs)
np.testing.assert_allclose(golden_out, result, rtol=1e-02, atol=1e-03)
torch.allclose(
logits,
logits_nod,
rtol=1e-4,
atol=1e-4,
)
test_dlrm()

View File

@@ -0,0 +1,268 @@
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, UNet2DConditionModel, PNDMScheduler
import torch
from PIL import Image
from diffusers import LMSDiscreteScheduler
from tqdm.auto import tqdm
from shark.shark_inference import SharkInference
from torch.fx.experimental.proxy_tensor import make_fx
from torch._decomp import get_decompositions
import torch_mlir
import tempfile
import numpy as np
# pip install diffusers
# pip install scipy
############### Parsing args #####################
import argparse
p = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
p.add_argument(
"--prompt",
type=str,
default="a photograph of an astronaut riding a horse",
help="the text prompt to use",
)
p.add_argument("--device", type=str, default="cpu", help="the device to use")
p.add_argument("--steps", type=int, default=10, help="the device to use")
p.add_argument("--mlir_loc", type=str, default=None, help="the device to use")
p.add_argument("--vae_loc", type=str, default=None, help="the device to use")
args = p.parse_args()
#####################################################
def load_mlir(mlir_loc):
import os
if mlir_loc == None:
return None
print(f"Trying to load the model from {mlir_loc}.")
with open(os.path.join(mlir_loc)) as f:
mlir_module = f.read()
return mlir_module
def compile_through_fx(model, inputs, mlir_loc=None):
module = load_mlir(mlir_loc)
if mlir_loc == None:
fx_g = make_fx(
model,
decomposition_table=get_decompositions(
[
torch.ops.aten.embedding_dense_backward,
torch.ops.aten.native_layer_norm_backward,
torch.ops.aten.slice_backward,
torch.ops.aten.select_backward,
torch.ops.aten.norm.ScalarOpt_dim,
torch.ops.aten.native_group_norm,
torch.ops.aten.upsample_bilinear2d.vec,
torch.ops.aten.split.Tensor,
torch.ops.aten.split_with_sizes,
]
),
)(*inputs)
fx_g.graph.set_codegen(torch.fx.graph.CodeGen())
fx_g.recompile()
def strip_overloads(gm):
"""
Modifies the target of graph nodes in :attr:`gm` to strip overloads.
Args:
gm(fx.GraphModule): The input Fx graph module to be modified
"""
for node in gm.graph.nodes:
if isinstance(node.target, torch._ops.OpOverload):
node.target = node.target.overloadpacket
gm.recompile()
strip_overloads(fx_g)
ts_g = torch.jit.script(fx_g)
module = torch_mlir.compile(
ts_g,
inputs,
torch_mlir.OutputType.LINALG_ON_TENSORS,
use_tracing=False,
verbose=False,
)
mlir_model = module
func_name = "forward"
shark_module = SharkInference(
mlir_model, func_name, device=args.device, mlir_dialect="tm_tensor"
)
shark_module.compile()
return shark_module
if __name__ == "__main__":
YOUR_TOKEN = "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"
# 1. Load the autoencoder model which will be used to decode the latents into image space.
vae = AutoencoderKL.from_pretrained(
"CompVis/stable-diffusion-v1-4",
subfolder="vae",
use_auth_token=YOUR_TOKEN,
)
# 2. Load the tokenizer and text encoder to tokenize and encode the text.
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained(
"openai/clip-vit-large-patch14"
)
class VaeModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.vae = AutoencoderKL.from_pretrained(
"CompVis/stable-diffusion-v1-4",
subfolder="vae",
use_auth_token=YOUR_TOKEN,
)
def forward(self, input):
return self.vae.decode(input, return_dict=False)[0]
vae = VaeModel()
vae_input = torch.rand(1, 4, 64, 64)
shark_vae = compile_through_fx(vae, (vae_input,), args.vae_loc)
# Wrap the unet model to return tuples.
class UnetModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.unet = UNet2DConditionModel.from_pretrained(
"CompVis/stable-diffusion-v1-4",
subfolder="unet",
use_auth_token=YOUR_TOKEN,
)
self.in_channels = self.unet.in_channels
self.train(False)
def forward(self, x, y, z):
return self.unet.forward(x, y, z, return_dict=False)[0]
# 3. The UNet model for generating the latents.
unet = UnetModel()
latent_model_input = torch.rand([2, 4, 64, 64])
text_embeddings = torch.rand([2, 77, 768])
shark_unet = compile_through_fx(
unet,
(latent_model_input, torch.tensor([1.0]), text_embeddings),
args.mlir_loc,
)
# torch.jit.script(unet)
scheduler = LMSDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
)
prompt = [args.prompt]
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
num_inference_steps = args.steps # Number of denoising steps
guidance_scale = 7.5 # Scale for classifier-free guidance
generator = torch.manual_seed(
42
) # Seed generator to create the inital latent noise
batch_size = len(prompt)
text_input = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = text_encoder(text_input.input_ids)[0]
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[""] * batch_size,
padding="max_length",
max_length=max_length,
return_tensors="pt",
)
uncond_embeddings = text_encoder(uncond_input.input_ids)[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
latents = torch.randn(
(batch_size, unet.in_channels, height // 8, width // 8),
generator=generator,
)
# latents = latents.to(torch_device)
scheduler.set_timesteps(num_inference_steps)
latents = latents * scheduler.sigmas[0]
# print(latents, latents.shape)
for i, t in tqdm(enumerate(scheduler.timesteps)):
print(f"i = {i} t = {t}")
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5)
# predict the noise residual
# with torch.no_grad():
# noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)
latent_model_input_numpy = latent_model_input.detach().numpy()
text_embeddings_numpy = text_embeddings.detach().numpy()
noise_pred = shark_unet.forward(
(
latent_model_input_numpy,
np.array([t]).astype(np.float32),
text_embeddings_numpy,
)
)
noise_pred = torch.from_numpy(noise_pred)
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, i, latents)["prev_sample"]
# print("Latents shape : ", latents.shape)
# scale and decode the image latents with vae
latents = 1 / 0.18215 * latents
latents_numpy = latents.detach().numpy()
image = shark_vae.forward((latents_numpy,))
image = torch.from_numpy(image)
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
pil_images[0].save("astro.jpg")

View File

@@ -0,0 +1,313 @@
import math
import numpy as np
import tensorflow as tf
from tensorflow import keras
from keras_cv.models.generative.stable_diffusion.clip_tokenizer import (
SimpleTokenizer,
)
from keras_cv.models.generative.stable_diffusion.constants import (
_ALPHAS_CUMPROD,
)
from keras_cv.models.generative.stable_diffusion.constants import (
_UNCONDITIONAL_TOKENS,
)
from keras_cv.models.generative.stable_diffusion.decoder import Decoder
from keras_cv.models.generative.stable_diffusion.text_encoder import (
TextEncoder,
)
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_tf_model
from PIL import Image
# pip install "git+https://github.com/keras-team/keras-cv.git"
# pip install tensorflow_dataset
############### Parsing args #####################
import argparse
p = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
p.add_argument(
"--prompt",
type=str,
default="a photograph of an astronaut riding a horse",
help="the text prompt to use",
)
p.add_argument("--device", type=str, default="cpu", help="the device to use")
p.add_argument(
"--steps", type=int, default=10, help="the number of steps to use"
)
p.add_argument(
"--save_path",
type=str,
default=None,
help="the file to save the resulting image to. (default to <input prompt>.jpg)",
)
args = p.parse_args()
#####################################################
MAX_PROMPT_LENGTH = 77
class SharkStableDiffusion:
"""Shark implementation of Stable Diffusion based on model from keras_cv.
Stable Diffusion is a powerful image generation model that can be used,
among other things, to generate pictures according to a short text description
(called a "prompt").
Arguments:
device: Device to use with SHARK. Default: cpu
jit_compile: Whether to compile the underlying models to XLA.
This can lead to a significant speedup on some systems. Default: False.
References:
- [About Stable Diffusion](https://stability.ai/blog/stable-diffusion-announcement)
- [Original implementation](https://github.com/CompVis/stable-diffusion)
"""
def __init__(self, device="cpu", jit_compile=True):
self.img_height = 512
self.img_width = 512
self.tokenizer = SimpleTokenizer()
# Create models
self.text_encoder = TextEncoder(MAX_PROMPT_LENGTH)
mlir_model, func_name, inputs, golden_out = download_tf_model(
"stable_diff", tank_url="gs://shark_tank/quinn"
)
shark_module = SharkInference(
mlir_model, func_name, device=device, mlir_dialect="mhlo"
)
shark_module.compile()
self.diffusion_model = shark_module
self.decoder = Decoder(self.img_height, self.img_width)
if jit_compile:
self.text_encoder.compile(jit_compile=True)
self.decoder.compile(jit_compile=True)
print(
"By using this model checkpoint, you acknowledge that its usage is "
"subject to the terms of the CreativeML Open RAIL-M license at "
"https://raw.githubusercontent.com/CompVis/stable-diffusion/main/LICENSE"
)
# Load weights
text_encoder_weights_fpath = keras.utils.get_file(
origin="https://huggingface.co/fchollet/stable-diffusion/resolve/main/kcv_encoder.h5",
file_hash="4789e63e07c0e54d6a34a29b45ce81ece27060c499a709d556c7755b42bb0dc4",
)
decoder_weights_fpath = keras.utils.get_file(
origin="https://huggingface.co/fchollet/stable-diffusion/resolve/main/kcv_decoder.h5",
file_hash="ad350a65cc8bc4a80c8103367e039a3329b4231c2469a1093869a345f55b1962",
)
self.text_encoder.load_weights(text_encoder_weights_fpath)
self.decoder.load_weights(decoder_weights_fpath)
def text_to_image(
self,
prompt,
batch_size=1,
num_steps=25,
unconditional_guidance_scale=7.5,
seed=None,
):
encoded_text = self.encode_text(prompt)
return self.generate_image(
encoded_text,
batch_size=batch_size,
num_steps=num_steps,
unconditional_guidance_scale=unconditional_guidance_scale,
seed=seed,
)
def encode_text(self, prompt):
"""Encodes a prompt into a latent text encoding.
The encoding produced by this method should be used as the
`encoded_text` parameter of `StableDiffusion.generate_image`. Encoding
text separately from generating an image can be used to arbitrarily
modify the text encoding priot to image generation, e.g. for walking
between two prompts.
Args:
prompt: a string to encode, must be 77 tokens or shorter.
Example:
```python
from keras_cv.models import StableDiffusion
model = StableDiffusion(img_height=512, img_width=512, jit_compile=True)
encoded_text = model.encode_text("Tacos at dawn")
img = model.generate_image(encoded_text)
```
"""
# Tokenize prompt (i.e. starting context)
inputs = self.tokenizer.encode(prompt)
if len(inputs) > MAX_PROMPT_LENGTH:
raise ValueError(
f"Prompt is too long (should be <= {MAX_PROMPT_LENGTH} tokens)"
)
phrase = inputs + [49407] * (MAX_PROMPT_LENGTH - len(inputs))
phrase = tf.convert_to_tensor([phrase], dtype=tf.int32)
context = self.text_encoder.predict_on_batch(
[phrase, self._get_pos_ids()]
)
return context
def generate_image(
self,
encoded_text,
batch_size=1,
num_steps=25,
unconditional_guidance_scale=7.5,
diffusion_noise=None,
seed=None,
):
"""Generates an image based on encoded text.
The encoding passed to this method should be derived from
`StableDiffusion.encode_text`.
Args:
encoded_text: Tensor of shape (`batch_size`, 77, 768), or a Tensor
of shape (77, 768). When the batch axis is omitted, the same encoded
text will be used to produce every generated image.
batch_size: number of images to generate. Default: 1.
num_steps: number of diffusion steps (controls image quality).
Default: 25.
unconditional_guidance_scale: float controling how closely the image
should adhere to the prompt. Larger values result in more
closely adhering to the prompt, but will make the image noisier.
Default: 7.5.
diffusion_noise: Tensor of shape (`batch_size`, img_height // 8,
img_width // 8, 4), or a Tensor of shape (img_height // 8,
img_width // 8, 4). Optional custom noise to seed the diffusion
process. When the batch axis is omitted, the same noise will be
used to seed diffusion for every generated image.
seed: integer which is used to seed the random generation of
diffusion noise, only to be specified if `diffusion_noise` is
None.
Example:
```python
from keras_cv.models import StableDiffusion
batch_size = 8
model = StableDiffusion(img_height=512, img_width=512, jit_compile=True)
e_tacos = model.encode_text("Tacos at dawn")
e_watermelons = model.encode_text("Watermelons at dusk")
e_interpolated = tf.linspace(e_tacos, e_watermelons, batch_size)
images = model.generate_image(e_interpolated, batch_size=batch_size)
```
"""
if diffusion_noise is not None and seed is not None:
raise ValueError(
"`diffusion_noise` and `seed` should not both be passed to "
"`generate_image`. `seed` is only used to generate diffusion "
"noise when it's not already user-specified."
)
encoded_text = tf.squeeze(encoded_text)
if encoded_text.shape.rank == 2:
encoded_text = tf.repeat(
tf.expand_dims(encoded_text, axis=0), batch_size, axis=0
)
context = encoded_text
unconditional_context = tf.repeat(
self._get_unconditional_context(), batch_size, axis=0
)
context = tf.concat([context, unconditional_context], 0)
if diffusion_noise is not None:
diffusion_noise = tf.squeeze(diffusion_noise)
if diffusion_noise.shape.rank == 3:
diffusion_noise = tf.repeat(
tf.expand_dims(diffusion_noise, axis=0), batch_size, axis=0
)
latent = diffusion_noise
else:
latent = self._get_initial_diffusion_noise(batch_size, seed)
# Iterative reverse diffusion stage
timesteps = tf.range(1, 1000, 1000 // num_steps)
alphas, alphas_prev = self._get_initial_alphas(timesteps)
progbar = keras.utils.Progbar(len(timesteps))
iteration = 0
for index, timestep in list(enumerate(timesteps))[::-1]:
latent_prev = latent # Set aside the previous latent vector
t_emb = self._get_timestep_embedding(timestep, batch_size)
# Prepare the latent and unconditional latent to be run with a single forward call
latent = tf.concat([latent, latent], 0)
t_emb = tf.concat([t_emb, t_emb], 0)
latent_numpy = self.diffusion_model.forward(
[latent.numpy(), t_emb.numpy(), context.numpy()]
)
latent = tf.convert_to_tensor(latent_numpy, dtype=tf.float32)
latent, unconditional_latent = tf.split(latent, 2)
latent = unconditional_latent + unconditional_guidance_scale * (
latent - unconditional_latent
)
a_t, a_prev = alphas[index], alphas_prev[index]
pred_x0 = (latent_prev - math.sqrt(1 - a_t) * latent) / math.sqrt(
a_t
)
latent = (
latent * math.sqrt(1.0 - a_prev) + math.sqrt(a_prev) * pred_x0
)
iteration += 1
progbar.update(iteration)
# Decoding stage
decoded = self.decoder.predict_on_batch(latent)
decoded = ((decoded + 1) / 2) * 255
return np.clip(decoded, 0, 255).astype("uint8")
def _get_unconditional_context(self):
unconditional_tokens = tf.convert_to_tensor(
[_UNCONDITIONAL_TOKENS], dtype=tf.int32
)
unconditional_context = self.text_encoder.predict_on_batch(
[unconditional_tokens, self._get_pos_ids()]
)
return unconditional_context
def _get_timestep_embedding(
self, timestep, batch_size, dim=320, max_period=10000
):
half = dim // 2
freqs = tf.math.exp(
-math.log(max_period) * tf.range(0, half, dtype=tf.float32) / half
)
args = tf.convert_to_tensor([timestep], dtype=tf.float32) * freqs
embedding = tf.concat([tf.math.cos(args), tf.math.sin(args)], 0)
embedding = tf.reshape(embedding, [1, -1])
return tf.repeat(embedding, batch_size, axis=0)
def _get_initial_alphas(self, timesteps):
alphas = [_ALPHAS_CUMPROD[t] for t in timesteps]
alphas_prev = [1.0] + alphas[:-1]
return alphas, alphas_prev
def _get_initial_diffusion_noise(self, batch_size, seed):
return tf.random.normal(
(batch_size, self.img_height // 8, self.img_width // 8, 4),
seed=seed,
)
@staticmethod
def _get_pos_ids():
return tf.convert_to_tensor(
[list(range(MAX_PROMPT_LENGTH))], dtype=tf.int32
)
if __name__ == "__main__":
SD = SharkStableDiffusion(device=args.device)
images = SD.text_to_image(args.prompt, num_steps=args.steps)
pil_images = [Image.fromarray(image) for image in images]
save_fname = args.prompt + ".jpg"
if args.save_path is not None:
save_fname = args.save_path
pil_images[0].save(save_fname)

View File

@@ -1,47 +0,0 @@
from PIL import Image
import requests
from transformers import T5Tokenizer, T5ForConditionalGeneration, T5Model
import torch
from shark.shark_inference import SharkInference
from shark.shark_importer import SharkImporter
from iree.compiler import tf as tfc
from iree.compiler import compile_str
from iree import runtime as ireert
import os
MAX_SEQUENCE_LENGTH = 512
BATCH_SIZE = 1
class T5Module(torch.nn.Module):
def __init__(self):
super().__init__()
self.model = T5ForConditionalGeneration.from_pretrained("t5-small")
self.model.eval()
def forward(self, input_ids):
return self.model.generate(input_ids)
if __name__ == "__main__":
# Prepping Data
tokenizer = T5Tokenizer.from_pretrained("t5-small")
text = "I love the distilled version of models."
task_prefix = "translate English to German: "
encoded_input = tokenizer(task_prefix + text, padding='max_length', truncation=True, max_length=MAX_SEQUENCE_LENGTH, return_tensors="pt").input_ids
inputs = (encoded_input)
mlir_importer = SharkImporter(
T5Module(),
inputs,
frontend="torch",
)
import pdb; pdb.set_trace()
minilm_mlir, func_name = mlir_importer.import_mlir(
is_dynamic=True, tracing_required=True
)
shark_module = SharkInference(minilm_mlir, func_name, mlir_dialect="linalg")
shark_module.compile()
import pdb; pdb.set_trace()
output = shark_module.forward(inputs)
print(tokenizer.batch_decode(output, skip_special_tokens=True))

View File

@@ -1,51 +0,0 @@
from PIL import Image
import requests
from transformers import T5Tokenizer, TFT5Model, TFT5ForConditionalGeneration
import tensorflow as tf
from shark.shark_inference import SharkInference
from shark.shark_importer import SharkImporter
from iree.compiler import tf as tfc
from iree.compiler import compile_str
from iree import runtime as ireert
import os
MAX_SEQUENCE_LENGTH = 512
BATCH_SIZE = 1
# Create a set of inputs
t5_inputs = [
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32)
]
class T5Module(tf.Module):
def __init__(self):
super(T5Module, self).__init__()
self.m = TFT5ForConditionalGeneration.from_pretrained("t5-small")
self.m.predict = lambda x: self.m.generate(input_ids=x)
@tf.function(input_signature=t5_inputs)
def forward(self, input_ids):
return self.m.predict(input_ids)
if __name__ == "__main__":
# Prepping Data
tokenizer = T5Tokenizer.from_pretrained("t5-small")
text = "I love the distilled version of models."
task_prefix = "translate English to German: "
encoded_input = tokenizer(task_prefix + text, padding='max_length', truncation=True, max_length=MAX_SEQUENCE_LENGTH, return_tensors="tf").input_ids
inputs = (encoded_input)
mlir_importer = SharkImporter(
T5Module(),
inputs,
frontend="tf",
)
minilm_mlir, func_name = mlir_importer.import_mlir(
is_dynamic=False, tracing_required=False
)
shark_module = SharkInference(minilm_mlir, func_name, mlir_dialect="mhlo")
shark_module.compile()
import pdb; pdb.set_trace()
output = shark_module.forward(inputs)
print(tokenizer.batch_decode(output, skip_special_tokens=True))

View File

@@ -1,8 +1,9 @@
import torch
from shark_runner import SharkInference
import numpy as np
from shark.shark_inference import SharkInference
from shark.shark_importer import SharkImporter
# Currently not supported aten.transpose_conv2d missing.
class UnetModule(torch.nn.Module):
def __init__(self):
super().__init__()
@@ -14,7 +15,7 @@ class UnetModule(torch.nn.Module):
init_features=32,
pretrained=True,
)
self.train(False)
self.model.eval()
def forward(self, input):
return self.model(input)
@@ -22,10 +23,17 @@ class UnetModule(torch.nn.Module):
input = torch.randn(1, 3, 224, 224)
print(input)
shark_module = SharkInference(
mlir_importer = SharkImporter(
UnetModule(),
(input,),
frontend="torch",
)
shark_module.benchmark_forward((input,))
print(input)
(vision_mlir, func_name), inputs, golden_out = mlir_importer.import_debug(
tracing_required=False
)
shark_module = SharkInference(vision_mlir, func_name, mlir_dialect="linalg")
shark_module.compile()
result = shark_module.forward((input,))
np.testing.assert_allclose(golden_out, result, rtol=1e-02, atol=1e-03)

View File

@@ -5,7 +5,7 @@ from shark.shark_downloader import download_torch_model
mlir_model, func_name, inputs, golden_out = download_torch_model("v_diffusion")
shark_module = SharkInference(
mlir_model, func_name, mlir_dialect="linalg"
mlir_model, func_name, device="vulkan", mlir_dialect="linalg"
)
shark_module.compile()
result = shark_module.forward(inputs)

View File

@@ -1,14 +1,27 @@
import torch
import time
import numpy as np
from torch.nn.utils import _stateless
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from shark.shark_runner import SharkTrainer
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
BertModel,
AutoModelForMaskedLM,
)
from shark.shark_trainer import SharkTrainer
def get_torch_params(model):
params = {v: i for v, i in model.named_parameters()}
buffers = {v: i for v, i in model.named_buffers()}
return params, buffers
class MiniLMSequenceClassification(torch.nn.Module):
def __init__(self):
super().__init__()
self.model = AutoModelForSequenceClassification.from_pretrained(
"microsoft/MiniLM-L12-H384-uncased", # The pretrained model.
self.model = AutoModelForMaskedLM.from_pretrained(
"bert-large-uncased", # The pretrained model.
num_labels=2, # The number of output labels--2 for binary classification.
output_attentions=False, # Whether the model returns attentions weights.
output_hidden_states=False, # Whether the model returns all hidden-states.
@@ -19,29 +32,49 @@ class MiniLMSequenceClassification(torch.nn.Module):
return self.model.forward(tokens)[0]
mod = MiniLMSequenceClassification()
def get_sorted_params(named_params):
return [i[1] for i in sorted(named_params.items())]
print(dict(mod.named_buffers()))
def get_model_and_test_values():
mod = MiniLMSequenceClassification() # .to("cuda")
inp = torch.randint(2, (32, 128)) # .to("cuda")
inp = (torch.randint(2, (1, 128)),)
training_inputs = [i.detach() for i in mod.parameters()]
for i in mod.buffers():
training_inputs.append(i.detach())
training_inputs.append(inp.detach())
# np.savez("/home/dan/inputs.npz", *[x.numpy() for x in training_inputs])
def forward(params, buffers, args):
params_and_buffers = {**params, **buffers}
_stateless.functional_call(
mod, params_and_buffers, args, {}
).sum().backward()
optim = torch.optim.SGD(get_sorted_params(params), lr=0.01)
# optim.load_state_dict(optim_state)
optim.step()
return params, buffers
shark_module = SharkTrainer(mod, (inp,), from_aot=True)
shark_module.compile(forward)
rr = shark_module.shark_runner
asm = rr.mlir_module.operation.get_asm()
return asm, training_inputs, forward, "forward"
def forward(params, buffers, args):
params_and_buffers = {**params, **buffers}
_stateless.functional_call(
mod, params_and_buffers, args, {}
).sum().backward()
optim = torch.optim.SGD(get_sorted_params(params), lr=0.01)
# optim.load_state_dict(optim_state)
optim.step()
return params, buffers
shark_module = SharkTrainer(mod, inp, custom_inference_fn=forward)
print(shark_module.forward())
def custom_benchmark_func(mod, shark_module):
p, b = get_torch_params(mod)
shark_params_and_buffers = shark_module.shark_runner.run(training_inputs)
iterations = 1
start = time.time()
for i in range(iterations):
p, b = forward(p, b, inp)
end = time.time()
total_time = end - start
print("total_time(ms)/iter: " + str(1000 * total_time / iterations))
golden = [v for v in p.values()][0].shape
test = shark_params_and_buffers[0].shape
return np.allclose(golden, test)

View File

@@ -0,0 +1,84 @@
import torch
import time
import numpy as np
from torch.nn.utils import _stateless
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
BertModel,
AutoModelForMaskedLM,
)
from shark.shark_trainer import SharkTrainer
def get_torch_params(model):
params = {v: i for v, i in model.named_parameters()}
buffers = {v: i for v, i in model.named_buffers()}
return params, buffers
class MiniLMSequenceClassification(torch.nn.Module):
def __init__(self):
super().__init__()
self.model = AutoModelForMaskedLM.from_pretrained(
"bert-large-uncased", # The pretrained model.
num_labels=2, # The number of output labels--2 for binary classification.
output_attentions=False, # Whether the model returns attentions weights.
output_hidden_states=False, # Whether the model returns all hidden-states.
torchscript=True,
)
def forward(self, tokens):
return self.model.forward(tokens)[0]
def get_sorted_params(named_params):
return [i[1] for i in sorted(named_params.items())]
#def get_model_and_test_values():
mod = MiniLMSequenceClassification().to("cuda")
inp = torch.randint(2, (1, 128)).to("cuda")
training_inputs = [i.detach() for i in mod.parameters()]
for i in mod.buffers():
training_inputs.append(i.detach())
training_inputs.append(inp.detach())
# np.savez("/home/dan/inputs.npz", *[x.numpy() for x in training_inputs])
def forward(params, buffers, args):
params_and_buffers = {**params, **buffers}
params_and_buffers = {k:v.to("cuda") for k, v in params_and_buffers.items()}
_stateless.functional_call(
mod, params_and_buffers, args, {}
).sum().backward()
optim = torch.optim.SGD(get_sorted_params(params), lr=0.01)
# optim.load_state_dict(optim_state)
optim.step()
return params, buffers
shark_module = SharkTrainer(mod, (inp,), from_aot=True)
#shark_module.compile(forward)
#rr = shark_module.shark_runner
#asm = rr.mlir_module.operation.get_asm()
#return asm, training_inputs, forward, "forward"
#def custom_benchmark_func(mod, shark_module):
p, b = get_torch_params(mod)
#shark_params_and_buffers = shark_module.shark_runner.run(training_inputs)
iterations = 200
for i in range(iterations):
if i==1:
start = time.time()
p, b = forward(p, b, inp)
b = {k:v.to("cpu") for k, v in b.items()}
#p = {k:v.to("cpu") for k, v in p.items()}
end = time.time()
total_time = end - start
print("total_time(ms)/iter: " + str(1000 * total_time / (iterations-1)))
golden = [v for v in p.values()][0].shape
#test = shark_params_and_buffers[0].shape
#return np.allclose(golden, test)

View File

@@ -48,8 +48,8 @@ class EagerModeIREELinalgOnTensorsBackend(TorchMLIREagerBackend):
def __init__(self, device: str):
self.torch_device_str = device
self.iree_device_str = IREE_DEVICE_MAP[device]
self.config = ireert.Config(self.iree_device_str)
self.config = ireert.Config(IREE_DEVICE_MAP[device])
self.raw_device_str = device
def get_torch_metadata(
self, tensor: DeviceArray, kwargs: Dict[str, Any]
@@ -71,7 +71,7 @@ class EagerModeIREELinalgOnTensorsBackend(TorchMLIREagerBackend):
"EagerMode",
)
callable, _ = get_iree_compiled_module(
imported_module, self.iree_device_str, func_name=fn_name
imported_module, self.raw_device_str, func_name=fn_name
)
return callable

View File

@@ -39,28 +39,26 @@ def run_cmd(cmd):
IREE_DEVICE_MAP = {
"cpu": "local-task",
"gpu": "cuda",
"cuda": "cuda",
"vulkan": "vulkan",
"metal": "vulkan",
"rocm": "rocm",
"intel-gpu" : "level_zero",
"intel-gpu": "level_zero",
}
IREE_TARGET_MAP = {
"cpu": "dylib",
"gpu": "cuda",
"cpu": "llvm-cpu",
"cuda": "cuda",
"vulkan": "vulkan",
"metal": "vulkan",
"rocm": "rocm",
"intel-gpu" : "opencl-spirv",
"intel-gpu": "opencl-spirv",
}
# Finds whether the required drivers are installed for the given device.
def check_device_drivers(device):
"""Checks necessary drivers present for gpu and vulkan devices"""
if device in ["gpu", "cuda"]:
if device == "cuda":
try:
subprocess.check_output("nvidia-smi")
except Exception:
@@ -71,10 +69,18 @@ def check_device_drivers(device):
except Exception:
return True
elif device in ["intel-gpu"]:
# TODO: Add intel gpu check.
return False
try:
subprocess.check_output(["dpkg", "-L", "intel-level-zero-gpu"])
return False
except Exception:
return True
elif device == "cpu":
return False
elif device == "rocm":
try:
subprocess.check_output("rocminfo")
except Exception:
return True
# Unknown device.
else:
return True
@@ -84,9 +90,11 @@ def check_device_drivers(device):
# Installation info for the missing device drivers.
def device_driver_info(device):
if device in ["gpu", "cuda"]:
if device == "cuda":
return "nvidia-smi not found, please install the required drivers from https://www.nvidia.in/Download/index.aspx?lang=en-in"
elif device in ["metal", "vulkan"]:
return "vulkaninfo not found, Install from https://vulkan.lunarg.com/sdk/home or your distribution"
elif device == "rocm":
return "rocm info not found. Please install rocm"
else:
return f"{device} is not supported."

View File

@@ -34,9 +34,12 @@ def tensor_to_type_str(input_tensors: tuple, mlir_dialect: str):
dtype_string = str(input_tensor.dtype).replace("torch.", "")
elif mlir_dialect in ["mhlo", "tflite"]:
dtype = input_tensor.dtype
dtype_string = re.findall("'[^\"]*'", str(dtype))[0].replace(
"'", ""
)
try:
dtype_string = re.findall("'[^\"]*'", str(dtype))[0].replace(
"'", ""
)
except IndexError:
dtype_string = str(dtype)
regex_split = re.compile("([a-zA-Z]+)([0-9]+)")
match = regex_split.match(dtype_string)
mlir_type_string = str(match.group(1)[0]) + str(match.group(2))

View File

@@ -23,7 +23,7 @@ def get_iree_device_args(device):
from shark.iree_utils.cpu_utils import get_iree_cpu_args
return get_iree_cpu_args()
if device in ["gpu", "cuda"]:
if device == "cuda":
from shark.iree_utils.gpu_utils import get_iree_gpu_args
return get_iree_gpu_args()
@@ -31,6 +31,10 @@ def get_iree_device_args(device):
from shark.iree_utils.vulkan_utils import get_iree_vulkan_args
return get_iree_vulkan_args()
if device == "rocm":
from shark.iree_utils.gpu_utils import get_iree_rocm_args
return get_iree_rocm_args()
return []
@@ -64,7 +68,7 @@ def compile_module_to_flatbuffer(
input_type = ""
args = get_iree_frontend_args(frontend)
args += get_iree_device_args(device)
# args += get_iree_common_args()
args += get_iree_common_args()
if frontend in ["tensorflow", "tf"]:
input_type = "mhlo"
@@ -72,6 +76,8 @@ def compile_module_to_flatbuffer(
input_type = frontend
elif frontend in ["tflite", "tflite-tosa"]:
input_type = "tosa"
elif frontend in ["tm_tensor"]:
input_type = frontend
# TODO: make it simpler.
# Compile according to the input type, else just try compiling.
@@ -98,8 +104,10 @@ def compile_module_to_flatbuffer(
def get_iree_module(flatbuffer_blob, device, func_name):
# Returns the compiled module and the configs.
vm_module = ireert.VmModule.from_flatbuffer(flatbuffer_blob)
config = ireert.Config(IREE_DEVICE_MAP[device])
vm_module = ireert.VmModule.from_flatbuffer(
config.vm_instance, flatbuffer_blob
)
ctx = ireert.SystemContext(config=config)
ctx.add_vm_module(vm_module)
ModuleCompiled = ctx.modules.module[func_name]
@@ -120,19 +128,29 @@ def get_iree_compiled_module(
return get_iree_module(flatbuffer_blob, device, func_name)
def load_flatbuffer(
flatbuffer_path: str, device: str, func_name: str = "forward"
):
with open(os.path.join(flatbuffer_path), "rb") as f:
flatbuffer_blob = f.read()
return get_iree_module(flatbuffer_blob, device, func_name)
def export_iree_module_to_vmfb(
module,
device: str,
directory: str,
frontend: str = "torch",
mlir_dialect: str = "linalg",
func_name: str = "forward",
model_config_path: str = None,
):
# Compiles the module given specs and saves it as .vmfb file.
flatbuffer_blob = compile_module_to_flatbuffer(
module, device, frontend, func_name, model_config_path
module, device, mlir_dialect, func_name, model_config_path
)
module_name = f"{frontend}_{func_name}_{device}"
module_name = f"{mlir_dialect}_{func_name}_{device}"
filename = os.path.join(directory, module_name + ".vmfb")
print(f"Saved vmfb in {filename}.")
with open(filename, "wb") as f:

View File

@@ -16,6 +16,7 @@
import iree.runtime as ireert
import ctypes
from shark.parser import shark_args
# Get the default gpu args given the architecture.
def get_iree_gpu_args():
@@ -23,7 +24,9 @@ def get_iree_gpu_args():
ireert.flags.parse_flags("--cuda_allow_inline_execution")
# TODO: Give the user_interface to pass the sm_arch.
sm_arch = get_cuda_sm_cc()
if sm_arch in ["sm_70", "sm_72", "sm_75", "sm_80", "sm_84", "sm_86"]:
if (
sm_arch in ["sm_70", "sm_72", "sm_75", "sm_80", "sm_84", "sm_86"]
) and (shark_args.enable_tf32 == True):
return [
"--iree-hal-cuda-disable-loop-nounroll-wa",
f"--iree-hal-cuda-llvm-target-arch={sm_arch}",
@@ -32,6 +35,18 @@ def get_iree_gpu_args():
return ["--iree-hal-cuda-disable-loop-nounroll-wa"]
# Get the default gpu args given the architecture.
def get_iree_rocm_args():
ireert.flags.FUNCTION_INPUT_VALIDATION = False
# TODO: find a way to get arch from code.
rocm_arch = "gfx908"
return [
f"--iree-rocm-target-chip={rocm_arch}",
"--iree-rocm-link-bc=true",
"--iree-rocm-bc-dir=/opt/rocm/amdgcn/bitcode",
]
# Some constants taken from cuda.h
CUDA_SUCCESS = 0
CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT = 16

View File

@@ -18,23 +18,30 @@ from shark.iree_utils._common import run_cmd
def get_vulkan_triple_flag():
vulkan_device_cmd = "vulkaninfo | grep deviceName | awk 'END{{print $NF}}'"
vulkan_device_cmd = "vulkaninfo | grep deviceName"
vulkan_device = run_cmd(vulkan_device_cmd).strip()
if vulkan_device == "Ultra":
print("Found MacStudio M1 Device. Using m1-moltenvk-macos")
if all(x in vulkan_device for x in ("Apple", "M1")):
print(f"Found {vulkan_device} Device. Using m1-moltenvk-macos")
return "-iree-vulkan-target-triple=m1-moltenvk-macos"
elif vulkan_device == "M2":
elif all(x in vulkan_device for x in ("Apple", "M2")):
print("Found Apple M2 Device. Using m1-moltenvk-macos")
return "-iree-vulkan-target-triple=m1-moltenvk-macos"
elif vulkan_device == "M1":
print("Found Apple M1 Device. Using m1-moltenvk-macos")
return "-iree-vulkan-target-triple=m1-moltenvk-macos"
elif vulkan_device == "A100-SXM4-40GB":
print("Found Nvidia Device. Using ampere-rtx3080-linux")
elif all(x in vulkan_device for x in ("A100", "SXM4")):
print(f"Found {vulkan_device} Device. Using ampere-rtx3080-linux")
return "-iree-vulkan-target-triple=ampere-rtx3080-linux"
elif vulkan_device == "3090":
print("Found Nvidia Device. Using ampere-rtx3090-linux")
elif all(x in vulkan_device for x in ("RTX", "3090")):
print(f"Found {vulkan_device} Device. Using ampere-rtx3090-linux")
return "-iree-vulkan-target-triple=ampere-rtx3090-linux"
elif any(x in vulkan_device for x in ("Radeon", "RX 5")):
print(
"Found AMD Radeon RX 5000 series device. Using rdna1-5700xt-linux"
)
return "-iree-vulkan-target-triple=rdna1-5700xt-linux"
elif all(x in vulkan_device for x in ("Radeon", "RX 6")):
print(
"Found AMD Radeon RX 6000 series device. Using rdna2-unknown-linux"
)
return "-iree-vulkan-target-triple=rdna2-unknown-linux"
else:
print(
"""Optimized kernel for your target device is not added yet.

View File

@@ -12,22 +12,21 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import json
import os
from typing import List, Dict
import sys
from typing import Dict, List
from iree.compiler import ir
from iree.compiler.transforms import ireec as ireec_trans
MATMUL_OP_NAMES = set(
["linalg.matmul", "linalg.batch_matmul", "mhlo.dot", "mhlo.dot_general"]
)
idx = 0
def model_annotation(
ctx: ir.Context, *, input_contents: str, config_path: str
ctx: ir.Context,
*,
input_contents: str,
config_path: str,
search_op: str = "matmul",
):
if os.path.isfile(input_contents):
with open(input_contents, "rb") as f:
@@ -41,21 +40,35 @@ def model_annotation(
# The Python API does not expose a general walk() function, so we just
# do it ourselves.
walk_children(module.operation, configs)
walk_children(module.operation, configs, 0, search_op)
if not module.operation.verify():
raise RuntimeError("Modified program does not verify!")
# More efficient than: print(module)
# - Disables verification (already done above)
# - Writes as binary, avoiding costly unicode conversions
sys.stdout.buffer.write(
module.operation.get_asm(assume_verified=True, binary=True)
)
return module
def walk_children(op: ir.Operation, configs: List[Dict]):
def walk_children(
op: ir.Operation, configs: List[Dict], idx: int, search_op: str
):
if search_op == "matmul":
op_names = ["linalg.matmul", "mhlo.dot"]
elif search_op == "bmm":
op_names = ["linalg.batch_matmul", "mhlo.dot_general"]
elif search_op == "conv":
op_names = ["mhlo.convolution", "linalg.conv_2d_nhwc_hwcf"]
elif search_op == "all":
op_names = [
"mhlo.dot",
"mhlo.dot_general",
"mhlo.convolution",
"linalg.matmul",
"linalg.batch_matmul",
"linalg.conv_2d_nhwc_hwcf",
]
else:
raise ValueError(f"{search_op} op is not tunable.")
for region in op.regions:
for block in region.blocks:
for child_op in block.operations:
@@ -63,30 +76,32 @@ def walk_children(op: ir.Operation, configs: List[Dict]):
# 'operation' and 'name' attributes.
if isinstance(child_op, ir.OpView):
child_op = child_op.operation
if child_op.name in MATMUL_OP_NAMES:
global idx
(
tile_sizes,
pipeline,
workgroup_size,
split_k,
pipeline_depth,
) = parse_config(configs[idx])
add_compilation_info(
child_op,
tile_sizes=tile_sizes,
pipeline=pipeline,
workgroup_size=workgroup_size,
pipeline_depth=pipeline_depth,
)
if split_k:
add_split_k(child_op, split_k)
if child_op.name in op_names and idx < len(configs):
add_attributes(child_op, configs[idx])
idx = idx + 1
print(f"Updated op {child_op}", file=sys.stderr)
walk_children(child_op, configs)
walk_children(child_op, configs, idx, search_op)
def add_attributes(op: ir.Operation, config: Dict):
(
tile_sizes,
pipeline,
workgroup_size,
split_k,
pipeline_depth,
) = parse_config(config)
add_compilation_info(
op,
tile_sizes=tile_sizes,
pipeline=pipeline,
workgroup_size=workgroup_size,
pipeline_depth=pipeline_depth,
)
if split_k:
add_attribute_by_name(op, "iree_flow_split_k", split_k)
def parse_config(config: Dict):
@@ -145,9 +160,9 @@ def add_compilation_info(
op.attributes["compilation_info"] = attr
def add_split_k(op: ir.Operation, k: int):
attr = ir.IntegerAttr.get(ir.IntegerType.get_signless(64), k)
op.attributes["iree_flow_split_k"] = attr
def add_attribute_by_name(op: ir.Operation, name: str, val: int):
attr = ir.IntegerAttr.get(ir.IntegerType.get_signless(64), val)
op.attributes[name] = attr
def create_context() -> ir.Context:
@@ -159,6 +174,14 @@ def create_context() -> ir.Context:
if __name__ == "__main__":
with create_context() as ctx:
model_annotation(
ctx, input_contents=sys.argv[1], config_path=sys.argv[2]
module = model_annotation(
ctx,
input_contents=sys.argv[1],
config_path=sys.argv[2],
search_op="all",
)
mlir_str = str(module)
filename = "tuned_model.mlir"
with open(filename, "w") as f:
f.write(mlir_str)
print(f"Saved mlir in {filename}.")

View File

@@ -38,7 +38,7 @@ parser.add_argument(
"--device",
type=str,
default="cpu",
help="Device on which shark_runner runs. options are cpu, gpu, and vulkan",
help="Device on which shark_runner runs. options are cpu, cuda, and vulkan",
)
parser.add_argument(
"--repro_dir",
@@ -47,16 +47,10 @@ parser.add_argument(
default="./shark_tmp",
)
parser.add_argument(
"--save_mlir",
"--enable_tf32",
type=bool,
default=False,
action="store_true",
help="Saves input MLIR module to /tmp/ directory.",
)
parser.add_argument(
"--save_vmfb",
default=False,
action="store_true",
help="Saves iree .vmfb module to /tmp/ directory.",
help="Enables TF32 precision calculations on supported GPUs.",
)
parser.add_argument(
"--model_config_path",
@@ -67,14 +61,36 @@ parser.add_argument(
parser.add_argument(
"--num_warmup_iterations",
type=int,
default=2,
default=5,
help="Run the model for the specified number of warmup iterations.",
)
parser.add_argument(
"--num_iterations",
type=int,
default=1,
default=100,
help="Run the model for the specified number of iterations.",
)
parser.add_argument(
"--onnx_bench",
default=False,
action="store_true",
help="When enabled, pytest bench results will include ONNX benchmark results.",
)
parser.add_argument(
"--shark_prefix",
default="latest",
help="gs://shark_tank/<this_flag>/model_directories",
)
parser.add_argument(
"--update_tank",
default=False,
action="store_true",
help="When enabled, SHARK downloader will update local shark_tank if local hash is different from latest upstream hash.",
)
parser.add_argument(
"--local_tank_cache",
default="",
help="Specify where to save downloaded shark_tank artifacts. If this is not set, the default is ~/.local/shark_tank/.",
)
shark_args, unknown = parser.parse_known_args()

View File

@@ -19,13 +19,26 @@ from shark.iree_utils.benchmark_utils import (
run_benchmark_module,
)
from shark.parser import shark_args
from tank.model_utils import get_torch_model
from datetime import datetime
import time
import csv
import os
class OnnxFusionOptions(object):
def __init__(self):
self.disable_gelu = False
self.disable_layer_norm = False
self.disable_attention = False
self.disable_skip_layer_norm = False
self.disable_embed_layer_norm = False
self.disable_bias_skip_layer_norm = False
self.disable_bias_gelu = False
self.enable_gelu_approximation = False
self.use_mask_index = False
self.no_attention_mask = False
class SharkBenchmarkRunner(SharkRunner):
# SharkRunner derived class with Benchmarking capabilities.
def __init__(
@@ -34,22 +47,21 @@ class SharkBenchmarkRunner(SharkRunner):
function_name: str = "forward",
device: str = "none",
mlir_dialect: str = "linalg",
frontend: str = "torch",
):
self.device = shark_args.device if device == "none" else device
self.frontend = frontend
self.frontend_model = None
self.vmfb_file = None
self.mlir_dialect = mlir_dialect
SharkRunner.__init__(
self,
mlir_module,
function_name,
device,
mlir_dialect,
self.mlir_dialect,
)
if self.vmfb_file == None:
self.vmfb_file = export_iree_module_to_vmfb(
mlir_module, device, shark_args.repro_dir, self.frontend
mlir_module, device, shark_args.repro_dir, self.mlir_dialect
)
def setup_cl(self, input_tensors):
@@ -59,24 +71,26 @@ class SharkBenchmarkRunner(SharkRunner):
input_tensors,
mlir_dialect=self.mlir_dialect,
)
print(self.benchmark_cl)
def benchmark_frontend(self, inputs, modelname):
if self.frontend in ["pytorch", "torch"]:
def benchmark_frontend(self, modelname):
if self.mlir_dialect in ["linalg", "torch"]:
return self.benchmark_torch(modelname)
elif self.frontend in ["tensorflow", "tf"]:
return self.benchmark_tf(inputs, modelname)
elif self.mlir_dialect in ["mhlo", "tf"]:
return self.benchmark_tf(modelname)
def benchmark_torch(self, modelname):
import torch
from tank.model_utils import get_torch_model
if self.device == "gpu":
if self.device == "cuda":
torch.set_default_tensor_type(torch.cuda.FloatTensor)
else:
torch.set_default_tensor_type(torch.FloatTensor)
torch_device = torch.device(
"cuda:0" if self.device == "gpu" else "cpu"
"cuda:0" if self.device == "cuda" else "cpu"
)
HFmodel, input, act_out = get_torch_model(modelname)
HFmodel, input = get_torch_model(modelname)[:2]
frontend_model = HFmodel.model
frontend_model.to(torch_device)
input.to(torch_device)
@@ -98,13 +112,21 @@ class SharkBenchmarkRunner(SharkRunner):
f"{((end-begin)/shark_args.num_iterations)*1000}",
]
def benchmark_tf(self, frontend_model, inputs):
def benchmark_tf(self, modelname):
import tensorflow as tf
from tank.model_utils_tf import get_tf_model
model, input, = get_tf_model(
modelname
)[:2]
frontend_model = model
for i in range(shark_args.num_warmup_iterations):
frontend_model.forward(*inputs)
frontend_model.forward(*input)
begin = time.time()
for i in range(shark_args.num_iterations):
out = frontend_model.forward(*inputs)
out = frontend_model.forward(*input)
if i == shark_args.num_iterations - 1:
end = time.time()
break
@@ -117,8 +139,9 @@ class SharkBenchmarkRunner(SharkRunner):
]
def benchmark_c(self):
print(self.benchmark_cl)
result = run_benchmark_module(self.benchmark_cl)
print(f"Shark-{self.frontend} C-benchmark:{result} iter/second")
print(f"Shark-IREE-C benchmark:{result} iter/second")
return [f"{result}", f"{1000/result}"]
def benchmark_python(self, inputs):
@@ -132,32 +155,138 @@ class SharkBenchmarkRunner(SharkRunner):
if i == shark_args.num_iterations - 1:
end = time.time()
print(
f"Shark-{self.frontend} Python-benchmark:{shark_args.num_iterations/(end-begin)} iter/second, Total Iterations:{shark_args.num_iterations}"
f"Shark-IREE Python benchmark:{shark_args.num_iterations/(end-begin)} iter/second, Total Iterations:{shark_args.num_iterations}"
)
return [
f"{shark_args.num_iterations/(end-begin)}",
f"{((end-begin)/shark_args.num_iterations)*1000}",
]
def benchmark_all(self, inputs: tuple):
self.benchmark_frontend(inputs)
self.benchmark_python(inputs)
self.benchmark_c()
def benchmark_onnx(self, modelname, inputs):
if self.device == "cuda":
print(
"Currently GPU benchmarking on ONNX is not supported in SHARK."
)
return ["N/A", "N/A"]
else:
from onnxruntime.transformers.benchmark import run_onnxruntime
from onnxruntime.transformers.huggingface_models import MODELS
from onnxruntime.transformers.benchmark_helper import (
ConfigModifier,
Precision,
)
import psutil
if modelname == "microsoft/MiniLM-L12-H384-uncased":
modelname = "bert-base-uncased"
if modelname not in MODELS:
print(
f"{modelname} is currently not supported in ORT's HF. Check \
https://github.com/microsoft/onnxruntime/blob/master/onnxruntime/python/tools/transformers/huggingface_models.py \
for currently supported models. Exiting benchmark ONNX."
)
return ["N/A", "N/A"]
use_gpu = self.device == "cuda"
num_threads = psutil.cpu_count(logical=False)
batch_sizes = [1]
sequence_lengths = [128]
cache_dir = os.path.join(".", "cache_models")
onnx_dir = os.path.join(".", "onnx_models")
verbose = False
input_counts = [1]
optimize_onnx = True
validate_onnx = False
disable_ort_io_binding = False
use_raw_attention_mask = True
model_fusion_statistics = {}
overwrite = False
model_source = "pt" # Either "pt" or "tf"
provider = None
config_modifier = ConfigModifier(None)
onnx_args = OnnxFusionOptions()
result = run_onnxruntime(
use_gpu,
provider,
(modelname,),
None,
config_modifier,
Precision.FLOAT32,
num_threads,
batch_sizes,
sequence_lengths,
shark_args.num_iterations,
input_counts,
optimize_onnx,
validate_onnx,
cache_dir,
onnx_dir,
verbose,
overwrite,
disable_ort_io_binding,
use_raw_attention_mask,
model_fusion_statistics,
model_source,
onnx_args,
)
print(
f"ONNX ORT-benchmark:{result[0]['QPS']} iter/second, Total Iterations:{shark_args.num_iterations}"
)
return [
result[0]["QPS"],
result[0]["average_latency_ms"],
]
def get_metadata(self, modelname):
with open("./tank/model_metadata.csv", mode="r") as csvfile:
torch_reader = csv.reader(csvfile, delimiter=",")
fields = next(torch_reader)
for row in torch_reader:
torch_model_name = row[0]
if torch_model_name == modelname:
param_count = row[3]
model_tags = row[4]
model_notes = row[5]
return [param_count, model_tags, model_notes]
def compare_bench_results(self, baseline: str, result: str):
# Takes two numbers represented as strings and returns "<n>x slower/faster", as in "result is <n>x slower than baseline".
a = float(baseline)
b = float(result)
if a < b:
# result slower than baseline
comparison = (b - a) / a
comp_str = f"{round(comparison, 2)}x slower"
elif a > b:
# result faster than baseline
comparison = a / b
comp_str = f"{round(comparison, 2)}x faster"
else:
comp_str = "equal"
return comp_str
def benchmark_all_csv(
self, inputs: tuple, modelname, dynamic, device_str, frontend
):
self.setup_cl(inputs)
field_names = [
"platform",
"model",
"dynamic",
"engine",
"dialect",
"device",
"shape_type",
"data_type",
"iter/sec",
"ms/iter",
"vs. PyTorch/TF",
"iterations",
"param_count",
"tags",
"notes",
"datetime",
]
platforms = ["frontend", "shark_python", "shark_iree_c"]
engines = ["frontend", "shark_python", "shark_iree_c"]
if shark_args.onnx_bench == True:
engines.append("onnxruntime")
if not os.path.exists("bench_results.csv"):
with open("bench_results.csv", mode="w", newline="") as f:
@@ -169,26 +298,65 @@ class SharkBenchmarkRunner(SharkRunner):
bench_result = {}
bench_result["model"] = modelname
if dynamic == True:
bench_result["dynamic"] = "True"
bench_result["shape_type"] = "dynamic"
else:
bench_result["dynamic"] = "False"
bench_result["shape_type"] = "static"
bench_result["device"] = device_str
for p in platforms:
if p == "frontend":
bench_result["platform"] = frontend
bench_result["iter/sec"] = self.benchmark_frontend(
inputs, modelname
)[0]
bench_result["ms/iter"] = self.benchmark_frontend(
inputs, modelname
)[1]
elif p == "shark_python":
bench_result["platform"] = "shark_python"
bench_result["iter/sec"] = self.benchmark_python(inputs)[0]
bench_result["ms/iter"] = self.benchmark_python(inputs)[1]
else:
bench_result["platform"] = "shark_iree_c"
bench_result["iter/sec"] = self.benchmark_c()[0]
bench_result["ms/iter"] = self.benchmark_c()[1]
bench_result["data_type"] = inputs[0].dtype
for e in engines:
(
bench_result["param_count"],
bench_result["tags"],
bench_result["notes"],
) = ["", "", ""]
if e == "frontend":
bench_result["engine"] = frontend
(
bench_result["iter/sec"],
bench_result["ms/iter"],
) = self.benchmark_frontend(modelname)
self.frontend_result = bench_result["ms/iter"]
bench_result["vs. PyTorch/TF"] = "="
(
bench_result["param_count"],
bench_result["tags"],
bench_result["notes"],
) = self.get_metadata(modelname)
elif e == "shark_python":
bench_result["engine"] = "shark_python"
(
bench_result["iter/sec"],
bench_result["ms/iter"],
) = self.benchmark_python(inputs)
bench_result[
"vs. PyTorch/TF"
] = self.compare_bench_results(
self.frontend_result, bench_result["ms/iter"]
)
elif e == "shark_iree_c":
bench_result["engine"] = "shark_iree_c"
(
bench_result["iter/sec"],
bench_result["ms/iter"],
) = self.benchmark_c()
bench_result[
"vs. PyTorch/TF"
] = self.compare_bench_results(
self.frontend_result, bench_result["ms/iter"]
)
elif e == "onnxruntime":
bench_result["engine"] = "onnxruntime"
(
bench_result["iter/sec"],
bench_result["ms/iter"],
) = self.benchmark_onnx(modelname, inputs)
bench_result["dialect"] = self.mlir_dialect
bench_result["iterations"] = shark_args.num_iterations
bench_result["datetime"] = str(datetime.now())
writer.writerow(bench_result)

View File

@@ -18,6 +18,7 @@ import urllib.request
import json
import hashlib
from pathlib import Path
from shark.parser import shark_args
input_type_to_np_dtype = {
"float32": np.float32,
@@ -32,9 +33,26 @@ input_type_to_np_dtype = {
# Save the model in the home local so it needn't be fetched everytime in the CI.
home = str(Path.home())
WORKDIR = os.path.join(home, ".local/shark_tank/")
print(WORKDIR)
alt_path = os.path.join(os.path.dirname(__file__), "../gen_shark_tank/")
custom_path = shark_args.local_tank_cache
if os.path.exists(alt_path):
WORKDIR = alt_path
print(
f"Using {WORKDIR} as shark_tank directory. Delete this directory if you aren't working from locally generated shark_tank."
)
if custom_path:
if not os.path.exists(custom_path):
os.mkdir(custom_path)
WORKDIR = custom_path
print(f"Using {WORKDIR} as local shark_tank cache directory.")
else:
WORKDIR = os.path.join(home, ".local/shark_tank/")
print(
f"shark_tank local cache is located at {WORKDIR} . You may change this by setting the --local_tank_cache="
" pytest flag"
)
# Checks whether the directory and files exists.
def check_dir_exists(model_name, frontend="torch", dynamic=""):
@@ -70,7 +88,9 @@ def check_dir_exists(model_name, frontend="torch", dynamic=""):
# Downloads the torch model from gs://shark_tank dir.
def download_torch_model(model_name, dynamic=False):
def download_torch_model(
model_name, dynamic=False, tank_url="gs://shark_tank/latest"
):
model_name = model_name.replace("/", "_")
dyn_str = "_dynamic" if dynamic else ""
os.makedirs(WORKDIR, exist_ok=True)
@@ -78,7 +98,8 @@ def download_torch_model(model_name, dynamic=False):
def gs_download_model():
gs_command = (
'gsutil -o "GSUtil:parallel_process_count=1" cp -r gs://shark_tank'
'gsutil -o "GSUtil:parallel_process_count=1" cp -r '
+ tank_url
+ "/"
+ model_dir_name
+ " "
@@ -93,7 +114,8 @@ def download_torch_model(model_name, dynamic=False):
model_dir = os.path.join(WORKDIR, model_dir_name)
local_hash = str(np.load(os.path.join(model_dir, "hash.npy")))
gs_hash = (
'gsutil -o "GSUtil:parallel_process_count=1" cp gs://shark_tank'
'gsutil -o "GSUtil:parallel_process_count=1" cp '
+ tank_url
+ "/"
+ model_dir_name
+ "/hash.npy"
@@ -106,7 +128,12 @@ def download_torch_model(model_name, dynamic=False):
np.load(os.path.join(model_dir, "upstream_hash.npy"))
)
if local_hash != upstream_hash:
gs_download_model()
if shark_args.update_tank == True:
gs_download_model()
else:
print(
"Hash does not match upstream in gs://shark_tank/. If you are using SHARK Downloader with locally generated artifacts, this is working as intended."
)
model_dir = os.path.join(WORKDIR, model_dir_name)
with open(
@@ -124,14 +151,17 @@ def download_torch_model(model_name, dynamic=False):
# Downloads the tflite model from gs://shark_tank dir.
def download_tflite_model(model_name, dynamic=False):
def download_tflite_model(
model_name, dynamic=False, tank_url="gs://shark_tank/latest"
):
dyn_str = "_dynamic" if dynamic else ""
os.makedirs(WORKDIR, exist_ok=True)
model_dir_name = model_name + "_tflite"
def gs_download_model():
gs_command = (
'gsutil -o "GSUtil:parallel_process_count=1" cp -r gs://shark_tank'
'gsutil -o "GSUtil:parallel_process_count=1" cp -r '
+ tank_url
+ "/"
+ model_dir_name
+ " "
@@ -148,7 +178,8 @@ def download_tflite_model(model_name, dynamic=False):
model_dir = os.path.join(WORKDIR, model_dir_name)
local_hash = str(np.load(os.path.join(model_dir, "hash.npy")))
gs_hash = (
'gsutil -o "GSUtil:parallel_process_count=1" cp gs://shark_tank'
'gsutil -o "GSUtil:parallel_process_count=1" cp '
+ tank_url
+ "/"
+ model_dir_name
+ "/hash.npy"
@@ -161,7 +192,12 @@ def download_tflite_model(model_name, dynamic=False):
np.load(os.path.join(model_dir, "upstream_hash.npy"))
)
if local_hash != upstream_hash:
gs_download_model()
if shark_args.update_tank == True:
gs_download_model()
else:
print(
"Hash does not match upstream in gs://shark_tank/. If you are using SHARK Downloader with locally generated artifacts, this is working as intended."
)
model_dir = os.path.join(WORKDIR, model_dir_name)
with open(
@@ -178,14 +214,17 @@ def download_tflite_model(model_name, dynamic=False):
return mlir_file, function_name, inputs_tuple, golden_out_tuple
def download_tf_model(model_name):
def download_tf_model(
model_name, tuned=None, tank_url="gs://shark_tank/latest"
):
model_name = model_name.replace("/", "_")
os.makedirs(WORKDIR, exist_ok=True)
model_dir_name = model_name + "_tf"
def gs_download_model():
gs_command = (
'gsutil -o "GSUtil:parallel_process_count=1" cp -r gs://shark_tank'
'gsutil -o "GSUtil:parallel_process_count=1" cp -r '
+ tank_url
+ "/"
+ model_dir_name
+ " "
@@ -200,7 +239,8 @@ def download_tf_model(model_name):
model_dir = os.path.join(WORKDIR, model_dir_name)
local_hash = str(np.load(os.path.join(model_dir, "hash.npy")))
gs_hash = (
'gsutil -o "GSUtil:parallel_process_count=1" cp gs://shark_tank'
'gsutil -o "GSUtil:parallel_process_count=1" cp '
+ tank_url
+ "/"
+ model_dir_name
+ "/hash.npy"
@@ -213,10 +253,20 @@ def download_tf_model(model_name):
np.load(os.path.join(model_dir, "upstream_hash.npy"))
)
if local_hash != upstream_hash:
gs_download_model()
if shark_args.update_tank == True:
gs_download_model()
else:
print(
"Hash does not match upstream in gs://shark_tank/. If you are using SHARK Downloader with locally generated artifacts, this is working as intended."
)
model_dir = os.path.join(WORKDIR, model_dir_name)
with open(os.path.join(model_dir, model_name + "_tf.mlir")) as f:
suffix = "_tf.mlir" if tuned is None else "_tf_" + tuned + ".mlir"
filename = os.path.join(model_dir, model_name + suffix)
if not os.path.isfile(filename):
filename = os.path.join(model_dir, model_name + "_tf.mlir")
with open(filename) as f:
mlir_file = f.read()
function_name = str(np.load(os.path.join(model_dir, "function_name.npy")))

View File

@@ -199,9 +199,11 @@ class SharkImporter:
)
elif golden_out is tuple:
golden_out = self.convert_to_numpy(golden_out)
else:
elif hasattr(golden_out, "logits"):
# from transformers import TFSequenceClassifierOutput
golden_out = golden_out.logits
else:
golden_out = golden_out.last_hidden_state
# Save the artifacts in the directory dir.
self.save_data(
dir,

View File

@@ -9,7 +9,13 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from shark.iree_utils.compile_utils import (
export_iree_module_to_vmfb,
load_flatbuffer,
)
import os
from shark.shark_runner import SharkRunner
from shark.parser import shark_args
import numpy as np
@@ -65,7 +71,7 @@ class SharkInference:
):
self.mlir_module = mlir_module
self.function_name = function_name
self.device = device
self.device = shark_args.device if device == "none" else device
self.mlir_dialect = mlir_dialect
self.is_benchmark = is_benchmark
@@ -135,3 +141,31 @@ class SharkInference:
)
)
return tuple(inputs)
# TODO: Instead of passing directory and having names decided by the module
# , user may want to save the module with manual names.
def save_module(self, dir=os.getcwd()):
return export_iree_module_to_vmfb(
self.mlir_module,
self.device,
dir,
self.mlir_dialect,
self.function_name,
)
# load and return the module.
def load_module(self, path):
self.shark_runner = SharkRunner(
function_name=self.function_name,
device=self.device,
compile_vmfb=False,
)
(
self.shark_runner.iree_compilation_module,
self.shark_runner.iree_config,
) = load_flatbuffer(
path,
self.device,
self.function_name,
)
return

View File

@@ -16,6 +16,7 @@ from shark.iree_utils.compile_utils import (
get_iree_compiled_module,
get_results,
export_iree_module_to_vmfb,
load_flatbuffer,
)
from shark.iree_utils._common import check_device_drivers, device_driver_info
from shark.parser import shark_args
@@ -24,7 +25,7 @@ import sys
# supported dialects by the shark-runtime.
supported_dialects = {"linalg", "mhlo", "tosa", "tf-lite"}
supported_dialects = {"linalg", "mhlo", "tosa", "tf-lite", "tm_tensor"}
class SharkRunner:
@@ -60,10 +61,11 @@ class SharkRunner:
def __init__(
self,
mlir_module: str,
mlir_module: str = "none",
function_name: str = "forward",
device: str = "none",
mlir_dialect: str = "linalg",
compile_vmfb: bool = True,
):
self.mlir_module = mlir_module
self.function_name = function_name
@@ -74,16 +76,17 @@ class SharkRunner:
device_driver_info(self.device)
sys.exit(1)
# Compile the module to get the .vmfb.
(
self.iree_compilation_module,
self.iree_config,
) = get_iree_compiled_module(
self.mlir_module,
self.device,
self.mlir_dialect,
func_name=self.function_name,
)
if compile_vmfb == True:
# Compile the module to get the .vmfb.
(
self.iree_compilation_module,
self.iree_config,
) = get_iree_compiled_module(
self.mlir_module,
self.device,
self.mlir_dialect,
func_name=self.function_name,
)
def run(self, inputs: tuple):
return get_results(
@@ -92,10 +95,3 @@ class SharkRunner:
self.iree_config,
self.mlir_dialect,
)
# TODO: Instead of passing directory and having names decided by the module
# , user may want to save the module with manual names.
def save_module(self, dir=os.getcwd()):
return export_iree_module_to_vmfb(
self.model, self.device, dir, self.mlir_dialect
)

View File

@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from shark.shark_importer import SharkImporter
from shark.parser import shark_args
from shark.shark_runner import SharkRunner
from shark.backward_makefx import MakeFxModule
@@ -76,14 +77,15 @@ class SharkTrainer:
# Returns the backward graph.
training_graph = aot_module.training_graph
weights = self.get_torch_params()
mlir_importer = SharkImporter(
training_graph, weights + self.input, "torch"
)
self.imported_mlir, func_name = mlir_importer.import_mlir(
is_dynamic=self.dynamic, tracing_required=self.jit_trace
)
self.shark_runner = SharkRunner(
training_graph,
weights + self.input,
self.dynamic,
self.device,
self.jit_trace,
self.from_aot,
self.frontend,
self.imported_mlir, func_name, self.device, "tm_tensor"
)
elif self.frontend in ["tensorflow", "tf", "mhlo"]:
self.shark_runner = SharkRunner(

View File

@@ -0,0 +1,11 @@
1. Install torchdynamo
- `git clone https://github.com/pytorch/torchdynamo.git`
- `cd torchdynamo`
- `python -m pip install -r requirements.txt`
- `python setup.py develop`
2. Install functorch
- `python -m pip install -v "git+https://github.com/pytorch/pytorch.git@$(python -c "import torch.version; print(torch.version.git_version)")#subdirectory=functorch"`
3. Run examples.
- `python shark/examples/shark_dynamo/basic_examples.py`

View File

157
shark/sharkdynamo/utils.py Normal file
View File

@@ -0,0 +1,157 @@
import functools
import time
from typing import List, Optional
import torch
from torch.fx.experimental.proxy_tensor import make_fx
from functorch._src.compile_utils import strip_overloads
from shark.shark_inference import SharkInference
from torch._decomp import get_decompositions
import torch_mlir
# TODO: Control decompositions.
def default_decompositions():
return get_decompositions(
[
torch.ops.aten.embedding_dense_backward,
torch.ops.aten.native_layer_norm_backward,
torch.ops.aten.slice_backward,
torch.ops.aten.select_backward,
torch.ops.aten.norm.ScalarOpt_dim,
torch.ops.aten.native_group_norm,
torch.ops.aten.upsample_bilinear2d.vec,
torch.ops.aten.split.Tensor,
torch.ops.aten.split_with_sizes,
]
)
def timeit(*, append_time_to: Optional[List] = None):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
start_time = time.time_ns()
result = func(*args, **kwargs)
end_time = time.time_ns()
if append_time_to is not None:
append_time_to.append(end_time - start_time)
return result
return wrapper
return decorator
def _returns_nothing(fx_g: torch.fx.GraphModule) -> bool:
for node in fx_g.graph.nodes:
if node.op == "output":
assert (
len(node.args) == 1
), "Output node must have a single argument"
node_arg = node.args[0]
if isinstance(node_arg, tuple):
return len(node_arg) == 0
return False
def _unwrap_single_tuple_return(fx_g: torch.fx.GraphModule) -> bool:
"""
Replace tuple with tuple element in functions that return one-element tuples.
Returns true if an unwrapping took place, and false otherwise.
"""
unwrapped_tuple = False
for node in fx_g.graph.nodes:
if node.op == "output":
assert (
len(node.args) == 1
), "Output node must have a single argument"
node_arg = node.args[0]
if isinstance(node_arg, tuple):
if len(node_arg) == 1:
node.args = (node_arg[0],)
unwrapped_tuple = True
break
if unwrapped_tuple:
fx_g.graph.lint()
fx_g.recompile()
return unwrapped_tuple
def make_shark_compiler(use_tracing: bool, device: str, verbose=False):
def compiler(
fx_graph: torch.fx.GraphModule,
example_inputs: List[torch.Tensor],
):
"""Compile GraphModule using torch-mlir + SHARK."""
if verbose:
print("Compiling graph...")
if _returns_nothing(fx_graph):
return fx_graph
was_unwrapped = _unwrap_single_tuple_return(fx_graph)
fx_graph = make_fx(
fx_graph, decomposition_table=default_decompositions()
)(*example_inputs)
strip_overloads(fx_graph)
if verbose:
print("torch.fx graph:")
print(fx_graph.graph)
ts_compiler = torch.jit.trace if use_tracing else torch.jit.script
ts_graph = ts_compiler(fx_graph, example_inputs)
if verbose:
torch_mlir_module = torch_mlir.compile(
ts_graph,
example_inputs,
output_type=torch_mlir.OutputType.TORCH,
)
print("\n\ntorch-mlir backend contract graph:")
print(torch_mlir_module)
linalg_module = torch_mlir.compile(
ts_graph,
example_inputs,
output_type=torch_mlir.OutputType.LINALG_ON_TENSORS,
)
shark_module = SharkInference(
linalg_module, "forward", mlir_dialect="linalg", device=device
)
shark_module.compile()
def forward(*inputs):
result = shark_module.forward(inputs)
result = tuple() if result is None else result
return (result,) if was_unwrapped else result
return forward
return compiler
def check_results(compiled_results, eager_results):
for compiled_result, eager_result in zip(compiled_results, eager_results):
if not torch.allclose(
compiled_result.to("cpu"), eager_result.to("cpu"), atol=1e-5
):
print("Compiled result does not match eager result")
return
print("Compiled result matches eager result!")
def print_time_stats(times):
times_tensor = torch.tensor(times)
def quantile_ms(q):
return torch.quantile(times_tensor.to(float), q).item() / 1e6
print(f"Median: {quantile_ms(0.5)} ms")
print(f"10%ile: {quantile_ms(0.1)} ms")
print(f"90%ile: {quantile_ms(0.9)} ms")
print(f"Total: {torch.sum(times_tensor) / 1e6} ms")
print()

View File

@@ -0,0 +1,220 @@
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
# Also available under a BSD-style license. See LICENSE.
import contextlib
import re
import traceback
import warnings
from typing import Any
import numpy as np
import torch
from torch.utils._pytree import tree_map
from torch_mlir.eager_mode.ir_building import build_mlir_module
from torch_mlir.eager_mode.torch_mlir_dispatch import (
UnsupportedByTorchMlirEagerMode,
normalize_args_kwargs,
check_get_aliased_arg,
)
from torch_mlir.eager_mode import EAGER_MODE_DEBUG
from torch_mlir.eager_mode.torch_mlir_tensor import (
TorchMLIRTensor,
check_requires_grad,
make_wrapper_subclass_from_torch_tensor,
make_bare_wrapper_subclass,
UNSUPPORTED_OPS,
no_dispatch,
)
from torch_mlir.eager_mode import torch_mlir_tensor
from shark.iree_eager_backend import EagerModeIREELinalgOnTensorsBackend
backend = EagerModeIREELinalgOnTensorsBackend("cpu")
torch_mlir_tensor.backend = backend
rtol = 1e-04
atol = 1e-05
class TorchMLIRLockstepTensor(TorchMLIRTensor):
"""This class overrides the dispatching for TorchMLIRTensor to allow for an op-by-op numerical comparison between PyTorch and the Torch-MLIR -> IREE backend compilation pipeline. This only supports the IREE backend and focuses on op-by-op level verification.
TODO: Extend this to do a cumulative trace with summary statistics at the end. Possibly requires a wrapper environment to store full trace info.
"""
def __new__(cls, elem, **kwargs):
if kwargs.get("constructing_from_device_tensor", False):
tensor_meta_data = backend.get_torch_metadata(elem, kwargs)
r = make_bare_wrapper_subclass(
cls=cls,
size=tensor_meta_data.size,
strides=tensor_meta_data.strides,
storage_offset=tensor_meta_data.storage_offset,
dtype=tensor_meta_data.dtype,
layout=tensor_meta_data.layout,
device=tensor_meta_data.device,
requires_grad=tensor_meta_data.requires_grad,
)
r.elem = elem
elif isinstance(elem, torch.nn.Parameter):
r = make_wrapper_subclass_from_torch_tensor(
cls, elem.data, **kwargs
)
# This is a hack to handle non-contiguous data through IREE-backend
nt = elem.detach().data.numpy()
if not nt.flags["C_CONTIGUOUS"]:
nt = np.ascontiguousarray(nt, dtype=nt.dtype)
r.elem = backend.transfer_from_torch_to_device(
torch.from_numpy(nt)
)
elif isinstance(elem, torch.Tensor):
r = make_wrapper_subclass_from_torch_tensor(cls, elem, **kwargs)
# Ditto TODO: Find a better way to handle this
nt = elem.numpy()
if not nt.flags["C_CONTIGUOUS"]:
nt = np.ascontiguousarray(nt, dtype=nt.dtype)
r.elem = backend.transfer_from_torch_to_device(
torch.from_numpy(nt)
)
# This branch handles the case when a python scalar is passed to some op
# or is returned from some aten op, such as _local_scalar_dense.
elif isinstance(elem, (int, float, bool)):
return elem
else:
raise ValueError(f"Unknown element type: {type(elem)}")
return r
def __repr__(self):
if self.grad_fn:
return f"TorchMLIRLockstepTensor({self.elem}, backend={backend.__class__.__name__}, grad_fn={self.grad_fn})"
else:
return f"TorchMLIRLockstepTensor({self.elem}, backend={backend.__class__.__name__})"
"""This does essentially the same dispatch as TorchMLIRTensor but operates as if debug mode is enabled. The numeric verification happens after the Torch-MLIR result is obtained by comparing against the
"""
@classmethod
def __torch_dispatch__(cls, func, _types, args=(), kwargs=None):
requires_grad = check_requires_grad(*args, **kwargs)
try:
with no_dispatch():
if hasattr(func, "op_name"):
op_name = func.op_name
elif hasattr(func, "__name__"):
# Handle builtin_function_or_method.
op_name = func.__name__
else:
raise RuntimeError(f"op {func} has no name")
if UNSUPPORTED_OPS.match(op_name):
raise UnsupportedByTorchMlirEagerMode(op_name)
if not hasattr(func, "_schema"):
raise RuntimeError(f"op {func} has no schema.")
normalized_kwargs = normalize_args_kwargs(func, args, kwargs)
if "layout" in normalized_kwargs and normalized_kwargs[
"layout"
] not in {0, None}:
raise UnsupportedByTorchMlirEagerMode(
f"{normalized_kwargs['layout']} layout not supported."
)
if "memory_format" in normalized_kwargs and normalized_kwargs[
"memory_format"
] not in {0, None}:
raise UnsupportedByTorchMlirEagerMode(
f"{normalized_kwargs['memory_format']} memory format not supported."
)
eager_module = build_mlir_module(func, normalized_kwargs)
device_tensor_args = [
kwarg.elem
for _, kwarg in normalized_kwargs.items()
if isinstance(kwarg, cls)
]
assert len(eager_module.body.operations[0].arguments) == len(
device_tensor_args
), "Number of parameters and number of arguments differs."
op_mlir_backend_callable = backend.compile(eager_module)
out = op_mlir_backend_callable(*device_tensor_args)
out = tree_map(
lambda x: cls(
x,
requires_grad=requires_grad,
constructing_from_device_tensor=True,
),
out,
)
# Numeric verification; Value for comparison comes from PyTorch eager
with no_dispatch():
unwrapped_args = tree_map(cls.unwrap, args)
unwrapped_kwargs = tree_map(cls.unwrap, kwargs)
if "_reshape_alias" in op_name:
native_out = torch.ops.aten.view(
unwrapped_args[0], unwrapped_args[1]
)
else:
native_out = func(*unwrapped_args, **unwrapped_kwargs)
native_out = tree_map(
lambda x: cls(x, requires_grad=requires_grad), native_out
).elem
tmp_out = out.elem
try:
np.testing.assert_allclose(
native_out.to_host(),
tmp_out.to_host(),
rtol=rtol,
atol=atol,
)
except Exception as e:
shaped_args = [
arg.shape if torch.is_tensor(arg) else arg
for arg in unwrapped_args
]
shaped_kwargs = [
kwarg.shape if torch.is_tensor(kwarg) else kwarg
for kwarg in unwrapped_kwargs
]
warnings.warn(
f"Lockstep accuracy verification failed with error: *{str(e)}*; "
f"Dispatched function name: *{str(func)}*; "
f"Dispatched function args: *{str(shaped_args)}*; "
f"Dispatched function kwargs: *{str(shaped_kwargs)}*; "
)
except Exception as e:
warnings.warn(traceback.format_exc())
if isinstance(e, UnsupportedByTorchMlirEagerMode):
warnings.warn(
f"Couldn't use TorchMLIR eager because current incompatibility: *{str(e)}*; running through PyTorch eager."
)
else:
warnings.warn(
f"Couldn't use TorchMLIR eager because of error: *{str(e)}*; "
f"Running through PyTorch eager"
)
with no_dispatch():
unwrapped_args = tree_map(cls.unwrap, args)
unwrapped_kwargs = tree_map(cls.unwrap, kwargs)
if "_reshape_alias" in op_name:
out = torch.ops.aten.view(
unwrapped_args[0], unwrapped_args[1]
)
else:
out = func(*unwrapped_args, **unwrapped_kwargs)
out = tree_map(lambda x: cls(x, requires_grad=requires_grad), out)
maybe_aliased_arg_name = check_get_aliased_arg(func)
if maybe_aliased_arg_name is not None:
warnings.warn(
f"Found aliased arg, but didn't copy tensor contents. This could lead to incorrect results for E2E model execution but doesn't affect the validity of the lockstep op verification."
)
# TODO: Find a way to handle argument aliasing for IREE backend
# backend.copy_into(normalized_kwargs[maybe_aliased_arg_name].elem, out.elem)
return out

View File

@@ -12,26 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import io
import pickle
from torch_mlir.dialects.torch.importer.jit_ir import (
ClassAnnotator,
ModuleBuilder,
)
from torch_mlir_e2e_test.torchscript.serialization import (
extract_serializable_annotations,
apply_serializable_annotations,
SerializableTest,
)
from torch_mlir_e2e_test.linalg_on_tensors_backends import refbackend
from torch_mlir.passmanager import PassManager
from torch_mlir_e2e_test.torchscript.annotations import annotate_args, export
from torch_mlir.ir import StringAttr
import torch_mlir
from torch_mlir_e2e_test.linalg_on_tensors_backends import refbackend
import tempfile
from shark.parser import shark_args
def get_module_name_for_asm_dump(module):
@@ -45,22 +30,6 @@ def get_module_name_for_asm_dump(module):
).value
def get_input_annotations(inputs: tuple, dynamic: bool) -> list:
"""TODO: Include necessary documentation"""
annotations_list = [None]
for i in inputs:
temp_list = []
if dynamic:
temp_list.append([-1 for i in range(len(i.shape))])
else:
temp_list.append(list(i.shape))
temp_list.append(i.dtype)
temp_list.append(True)
annotations_list.append(tuple(temp_list))
return annotations_list
def run_on_refbackend(torch_module, inputs):
backend = refbackend.RefBackendLinalgOnTensorsBackend()
compiled = backend.compile(torch_module)
@@ -69,42 +38,16 @@ def run_on_refbackend(torch_module, inputs):
return jit_module.forward(np_inputs[0])
def shark_jit_trace(
module, input: tuple, dynamic: bool, tracing_required: bool
):
"""TODO: Include necessary documentation."""
if not tracing_required:
return torch.jit.script(module)
traced_module = torch.jit.trace_module(module, {"forward": input})
actual_script = traced_module._actual_script_module
export(actual_script.forward)
annotate_args_decorator = annotate_args(
get_input_annotations(input, dynamic)
)
annotate_args_decorator(actual_script.forward)
module = torch.jit.script(actual_script)
# TODO: remove saved annotations.pickle
torchscript_module_bytes = module.save_to_buffer(
{
"annotations.pkl": pickle.dumps(
extract_serializable_annotations(module)
)
}
)
serializable_test = SerializableTest(
unique_name="", program=torchscript_module_bytes, trace=None
)
_extra_files = {"annotations.pkl": ""}
module = torch.jit.load(
io.BytesIO(serializable_test.program), _extra_files=_extra_files
)
# Load the pickled annotations.
annotations = pickle.loads(_extra_files["annotations.pkl"])
apply_serializable_annotations(module, annotations)
return module
# Creates dynamic dims for all dims.
# TODO: Pass user specified dynamic dims.
def create_dynamic_placeholders(inputs):
placeholders = []
for inp in inputs:
placeholder = torch_mlir.TensorPlaceholder.like(
inp, dynamic_axes=[i for i in range(len(inp.shape))]
)
placeholders.append(placeholder)
return tuple(placeholders)
def get_torch_mlir_module(
@@ -114,39 +57,20 @@ def get_torch_mlir_module(
jit_trace: bool,
from_torchscript: bool = False,
):
"""TODO: Include necessary documentation."""
"""Get the MLIR's linalg-on-tensors module from torchscipt module."""
ignore_traced_shapes = False
if dynamic:
input = create_dynamic_placeholders(input)
if jit_trace:
ignore_traced_shapes = True
# Static modules compiles well with the torch_mlir.compile API.
# We will always jit_trace = True with the API since we always
# want to propagate static shapes.
if not dynamic:
module = torch_mlir.compile(
module,
input,
output_type=torch_mlir.OutputType.LINALG_ON_TENSORS,
use_tracing=jit_trace,
)
return module
tempfile.tempdir = shark_args.repro_dir
# Tracing is not required from the aot_module.
if not from_torchscript:
module = shark_jit_trace(module, input, dynamic, jit_trace)
mb = ModuleBuilder()
class_annotator = ClassAnnotator()
class_annotator.exportNone(module._c._type())
class_annotator.exportPath(module._c._type(), ["forward"])
class_annotator.annotateArgs(
module._c._type(),
["forward"],
get_input_annotations(input, dynamic),
module = torch_mlir.compile(
module,
input,
output_type=torch_mlir.OutputType.LINALG_ON_TENSORS,
use_tracing=jit_trace,
ignore_traced_shapes=ignore_traced_shapes,
)
mb.import_module(module._c, class_annotator)
with mb.module.context:
pm = PassManager.parse(
"torchscript-module-to-torch-backend-pipeline,torch-backend-to-linalg-on-tensors-backend-pipeline"
)
pm.run(mb.module)
return mb.module
return module

13
tank/README.md Normal file
View File

@@ -0,0 +1,13 @@
To run the fine tuning example, from the root SHARK directory, run:
```shell
IMPORTER=1 ./setup_venv.sh
source shark.venv/bin/activate
pip install jupyter tf-models-nightly tf-datasets
jupyter-notebook
```
if running from a google vm, you can view jupyter notebooks on your local system with:
```shell
gcloud compute ssh <YOUR_INSTANCE_DETAILS> --ssh-flag="-N -L localhost:8888:localhost:8888"
```

View File

@@ -1,60 +0,0 @@
from shark.iree_utils._common import check_device_drivers, device_driver_info
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_tf_model
import iree.compiler as ireec
import unittest
import pytest
import numpy as np
class AlbertBaseModuleTester:
def __init__(
self,
benchmark=False,
):
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model, func_name, inputs, golden_out = download_tf_model(
"albert-base-v2"
)
shark_module = SharkInference(
model, func_name, device=device, mlir_dialect="mhlo"
)
shark_module.compile()
result = shark_module.forward(inputs)
np.testing.assert_allclose(golden_out, result, rtol=1e-02, atol=1e-03)
class AlbertBaseModuleTest(unittest.TestCase):
@pytest.fixture(autouse=True)
def configure(self, pytestconfig):
self.module_tester = AlbertBaseModuleTester(self)
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
def test_module_static_cpu(self):
dynamic = False
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_static_gpu(self):
dynamic = False
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_static_vulkan(self):
dynamic = False
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
if __name__ == "__main__":
unittest.main()

1
tank/all_models.csv Normal file
View File

@@ -0,0 +1 @@
bert-large-uncased_training,tm_tensor,torch,1e-2,1e-3,default
1 bert-large-uncased_training tm_tensor torch 1e-2 1e-3 default

View File

@@ -1,60 +0,0 @@
from shark.iree_utils._common import check_device_drivers, device_driver_info
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_tf_model
import iree.compiler as ireec
import unittest
import pytest
import numpy as np
class BertBaseUncasedModuleTester:
def __init__(
self,
benchmark=False,
):
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model, func_name, inputs, golden_out = download_tf_model(
"bert-base-uncased"
)
shark_module = SharkInference(
model, func_name, device=device, mlir_dialect="mhlo"
)
shark_module.compile()
result = shark_module.forward(inputs)
np.testing.assert_allclose(golden_out, result, rtol=1e-02, atol=1e-03)
class BertBaseUncasedModuleTest(unittest.TestCase):
@pytest.fixture(autouse=True)
def configure(self, pytestconfig):
self.module_tester = BertBaseUncasedModuleTester(self)
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
def test_module_static_cpu(self):
dynamic = False
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_static_gpu(self):
dynamic = False
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_static_vulkan(self):
dynamic = False
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
if __name__ == "__main__":
unittest.main()

View File

@@ -0,0 +1,24 @@
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_torch_model
mlir_model, func_name, inputs, golden_out = download_torch_model(
"bert-base-uncased_tosa"
)
shark_module = SharkInference(
mlir_model, func_name, device="cpu", mlir_dialect="tosa"
)
shark_module.compile()
result = shark_module.forward(inputs)
print("The obtained result via shark is: ", result)
print("The golden result is:", golden_out)
import numpy as np
result_unsqueeze = np.expand_dims(result, axis=0)
print(
np.testing.assert_allclose(
result_unsqueeze, golden_out, rtol=1e-3, atol=1e-3
)
)

View File

@@ -0,0 +1,184 @@
import numpy as np
from iree import runtime as ireert
from iree.compiler import tf as tfc
from iree.compiler import compile_str
import tensorflow as tf
try:
import tensorflow_datasets as tfds
import tensorflow_models as tfm
from official.nlp.modeling import layers
from official.nlp.modeling import networks
from official.nlp.modeling.models import bert_classifier
except ModuleNotFoundError:
print(
"tensorflow models or datasets not found please run the following command with your virtual env active:\npip install tf-models-nightly tf-datasets"
)
import json
import time
import os
gs_folder_bert = "gs://cloud-tpu-checkpoints/bert/v3/uncased_L-12_H-768_A-12"
tf.io.gfile.listdir(gs_folder_bert)
vocab_size = 100
NUM_CLASSES = 2
SEQUENCE_LENGTH = 128
BATCH_SIZE = 1
# Create a set of 2-dimensional inputs
bert_input = [
tf.TensorSpec(shape=[BATCH_SIZE, SEQUENCE_LENGTH], dtype=tf.int32),
tf.TensorSpec(shape=[BATCH_SIZE, SEQUENCE_LENGTH], dtype=tf.int32),
tf.TensorSpec(shape=[BATCH_SIZE, SEQUENCE_LENGTH], dtype=tf.int32),
]
class BertModule(tf.Module):
def __init__(self):
super(BertModule, self).__init__()
dict_outputs = False
bert_config_file = os.path.join(gs_folder_bert, "bert_config.json")
config_dict = json.loads(tf.io.gfile.GFile(bert_config_file).read())
encoder_config = tfm.nlp.encoders.EncoderConfig(
{"type": "bert", "bert": config_dict}
)
bert_encoder = tfm.nlp.encoders.build_encoder(encoder_config)
# Create a BERT trainer with the created network.
bert_trainer_model = bert_classifier.BertClassifier(
bert_encoder, num_classes=NUM_CLASSES
)
bert_trainer_model.summary()
checkpoint = tf.train.Checkpoint(encoder=bert_encoder)
checkpoint.read(
os.path.join(gs_folder_bert, "bert_model.ckpt")
).assert_consumed()
# Invoke the trainer model on the inputs. This causes the layer to be built.
self.m = bert_trainer_model
self.m.predict = lambda x: self.m.call(x, training=False)
self.predict = tf.function(input_signature=[bert_input])(
self.m.predict
)
self.m.learn = lambda x, y: self.m.call(x, training=False)
self.loss = tf.keras.losses.SparseCategoricalCrossentropy()
self.optimizer = tf.keras.optimizers.SGD(learning_rate=1e-2)
@tf.function(
input_signature=[
bert_input, # inputs
tf.TensorSpec(shape=[BATCH_SIZE], dtype=tf.int32), # labels
]
)
def learn(self, inputs, labels):
with tf.GradientTape() as tape:
# Capture the gradients from forward prop...
probs = self.m.call(inputs, training=True)
loss = self.loss(labels, probs)
# ...and use them to update the model's weights.
variables = self.m.trainable_variables
gradients = tape.gradient(loss, variables)
self.optimizer.apply_gradients(zip(gradients, variables))
return loss
if __name__ == "__main__":
glue, info = tfds.load("glue/mrpc", with_info=True, batch_size=BATCH_SIZE)
tokenizer = tfm.nlp.layers.FastWordpieceBertTokenizer(
vocab_file=os.path.join(gs_folder_bert, "vocab.txt"), lower_case=True
)
max_seq_length = SEQUENCE_LENGTH
packer = tfm.nlp.layers.BertPackInputs(
seq_length=max_seq_length,
special_tokens_dict=tokenizer.get_special_tokens_dict(),
)
class BertInputProcessor(tf.keras.layers.Layer):
def __init__(self, tokenizer, packer):
super().__init__()
self.tokenizer = tokenizer
self.packer = packer
def call(self, inputs):
tok1 = self.tokenizer(inputs["sentence1"])
tok2 = self.tokenizer(inputs["sentence2"])
packed = self.packer([tok1, tok2])
if "label" in inputs:
return packed, inputs["label"]
else:
return packed
bert_inputs_processor = BertInputProcessor(tokenizer, packer)
glue_train = glue["train"].map(bert_inputs_processor).prefetch(1)
glue_validation = glue["validation"].map(bert_inputs_processor).prefetch(1)
glue_test = glue["test"].map(bert_inputs_processor).prefetch(1)
# base tensorflow model
bert_model = BertModule()
# Compile the model using IREE
compiler_module = tfc.compile_module(
bert_model, exported_names=["learn"], import_only=True
)
# choose from dylib-llvm-aot or cuda
backend = "dylib-llvm-aot"
if backend == "dylib-llvm-aot":
args = [
"--iree-llvm-target-cpu-features=host",
"--iree-mhlo-demote-i64-to-i32=false",
"--iree-flow-demote-i64-to-i32",
]
backend_config = "dylib"
else:
backend_config = "cuda"
args = [
"--iree-cuda-llvm-target-arch=sm_80",
"--iree-hal-cuda-disable-loop-nounroll-wa",
"--iree-enable-fusion-with-reduction-ops",
]
flatbuffer_blob = compile_str(
compiler_module,
target_backends=[backend],
extra_args=args,
input_type="mhlo",
)
# Save module as MLIR file in a directory
vm_module = ireert.VmModule.from_flatbuffer(flatbuffer_blob)
tracer = ireert.Tracer(os.getcwd())
config = ireert.Config("local-sync", tracer)
ctx = ireert.SystemContext(config=config)
ctx.add_vm_module(vm_module)
BertCompiled = ctx.modules.module
# compare output losses:
start = time.time()
iterations = 100
for i in range(iterations):
example_inputs, example_labels = next(iter(glue_train))
example_labels = tf.cast(example_labels, tf.int32)
example_inputs = [value for key, value in example_inputs.items()]
# iree version
# iree_loss = BertCompiled.learn(
# example_inputs, example_labels
# ).to_host()
# base tensorflow
tf_loss = np.array(bert_model.learn(example_inputs, example_labels))
# print(np.allclose(iree_loss, tf_loss))
end = time.time()
total = (end - start) * 1000
print("total time/iter (ms): " + str(total / iterations))

View File

@@ -1,60 +0,0 @@
from shark.iree_utils._common import check_device_drivers, device_driver_info
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_tf_model
import iree.compiler as ireec
import unittest
import pytest
import numpy as np
class CamemBertModuleTester:
def __init__(
self,
benchmark=False,
):
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model, func_name, inputs, golden_out = download_tf_model(
"camembert-base"
)
shark_module = SharkInference(
model, func_name, device=device, mlir_dialect="mhlo"
)
shark_module.compile()
result = shark_module.forward(inputs)
np.testing.assert_allclose(golden_out, result, rtol=1e-02, atol=1e-03)
class CamemBertModuleTest(unittest.TestCase):
@pytest.fixture(autouse=True)
def configure(self, pytestconfig):
self.module_tester = CamemBertModuleTester(self)
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
def test_module_static_cpu(self):
dynamic = False
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_static_gpu(self):
dynamic = False
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_static_vulkan(self):
dynamic = False
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
if __name__ == "__main__":
unittest.main()

View File

@@ -1,60 +0,0 @@
from shark.iree_utils._common import check_device_drivers, device_driver_info
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_tf_model
import iree.compiler as ireec
import unittest
import pytest
import numpy as np
class ConvBertModuleTester:
def __init__(
self,
benchmark=False,
):
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model, func_name, inputs, golden_out = download_tf_model(
"dbmdz/convbert-base-turkish-cased"
)
shark_module = SharkInference(
model, func_name, device=device, mlir_dialect="mhlo"
)
shark_module.compile()
result = shark_module.forward(inputs)
np.testing.assert_allclose(golden_out, result, rtol=1e-02, atol=1e-03)
class ConvBertModuleTest(unittest.TestCase):
@pytest.fixture(autouse=True)
def configure(self, pytestconfig):
self.module_tester = ConvBertModuleTester(self)
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
def test_module_static_cpu(self):
dynamic = False
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_static_gpu(self):
dynamic = False
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_static_vulkan(self):
dynamic = False
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
if __name__ == "__main__":
unittest.main()

View File

@@ -1,68 +0,0 @@
from shark.iree_utils._common import check_device_drivers, device_driver_info
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_tf_model
import iree.compiler as ireec
import unittest
import pytest
import numpy as np
class DistilBertModuleTester:
def __init__(
self,
benchmark=False,
):
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model, func_name, inputs, golden_out = download_tf_model(
"distilbert-base-uncased"
)
shark_module = SharkInference(
model, func_name, device=device, mlir_dialect="mhlo"
)
shark_module.compile()
result = shark_module.forward(inputs)
np.testing.assert_allclose(golden_out, result, rtol=1e-02, atol=1e-03)
class DistilBertModuleTest(unittest.TestCase):
@pytest.fixture(autouse=True)
def configure(self, pytestconfig):
self.module_tester = DistilBertModuleTester(self)
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
def test_module_static_cpu(self):
dynamic = False
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("intel-gpu"), reason=device_driver_info("intel-gpu")
)
def test_module_static_intelgpu(self):
dynamic = False
device = "intel-gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_static_gpu(self):
dynamic = False
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_static_vulkan(self):
dynamic = False
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
if __name__ == "__main__":
unittest.main()

View File

@@ -1,68 +0,0 @@
from shark.iree_utils._common import check_device_drivers, device_driver_info
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_tf_model
import iree.compiler as ireec
import unittest
import pytest
import numpy as np
class ElectraModuleTester:
def __init__(
self,
benchmark=False,
):
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model, func_name, inputs, golden_out = download_tf_model(
"google/electra-small-discriminator"
)
shark_module = SharkInference(
model, func_name, device=device, mlir_dialect="mhlo"
)
shark_module.compile()
result = shark_module.forward(inputs)
np.testing.assert_allclose(golden_out, result, rtol=1e-02, atol=1e-03)
class ElectraModuleTest(unittest.TestCase):
@pytest.fixture(autouse=True)
def configure(self, pytestconfig):
self.module_tester = ElectraModuleTester(self)
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
def test_module_static_cpu(self):
dynamic = False
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("intel-gpu"), reason=device_driver_info("intel-gpu")
)
def test_module_static_intelgpu(self):
dynamic = False
device = "intel-gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_static_gpu(self):
dynamic = False
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_static_vulkan(self):
dynamic = False
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
if __name__ == "__main__":
unittest.main()

View File

@@ -1,81 +0,0 @@
from shark.iree_utils._common import check_device_drivers, device_driver_info
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_tf_model
import unittest
import pytest
import numpy as np
class ConvNextTinyModuleTester:
def __init__(
self,
benchmark=False,
):
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model, func_name, inputs, golden_out = download_tf_model(
"facebook/convnext-tiny-224"
)
shark_module = SharkInference(
model, func_name, device=device, mlir_dialect="mhlo"
)
shark_module.compile()
result = shark_module.forward(inputs)
# result: array([['logits',
# <IREE DeviceArray: shape=[1, 1000], dtype=<class 'numpy.float32'>>]],
# dtype=object)
# post process of img output
ir_device_array = result[0][1]
logits = ir_device_array.astype(ir_device_array.dtype)
logits = np.squeeze(logits, axis=0)
print("logits: ", logits.shape)
print("golden_out: ", golden_out[0].shape)
print(np.allclose(golden_out[0], logits, rtol=1e-02, atol=1e-03))
class ConvNextTinyModuleTest(unittest.TestCase):
@pytest.fixture(autouse=True)
def configure(self, pytestconfig):
self.module_tester = ConvNextTinyModuleTester(self)
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
def test_module_static_cpu(self):
dynamic = False
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("intel-gpu"), reason=device_driver_info("intel-gpu")
)
def test_module_static_intelgpu(self):
dynamic = False
device = "intel-gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_static_gpu(self):
dynamic = False
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_static_vulkan(self):
dynamic = False
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
if __name__ == "__main__":
# dynamic = False
# device = "cpu"
# module_tester = ConvNextTinyModuleTester()
# module_tester.create_and_check_module(dynamic, device)
unittest.main()

View File

@@ -1,74 +0,0 @@
from shark.iree_utils._common import check_device_drivers, device_driver_info
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_tf_model
import iree.compiler as ireec
import unittest
import pytest
import numpy as np
class FunnelModuleTester:
def __init__(
self,
benchmark=False,
):
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model, func_name, inputs, golden_out = download_tf_model(
"funnel-transformer/small"
)
shark_module = SharkInference(
model, func_name, device=device, mlir_dialect="mhlo"
)
shark_module.compile()
result = shark_module.forward(inputs)
np.testing.assert_allclose(golden_out, result, rtol=1e-02, atol=1e-03)
class FunnelModuleTest(unittest.TestCase):
@pytest.fixture(autouse=True)
def configure(self, pytestconfig):
self.module_tester = FunnelModuleTester(self)
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
def test_module_static_cpu(self):
dynamic = False
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("intel-gpu"), reason=device_driver_info("intel-gpu")
)
def test_module_static_intelgpu(self):
dynamic = False
device = "intel-gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.xfail(
reason="failing in the iree-compiler passes, see https://github.com/nod-ai/SHARK/issues/201"
)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_static_gpu(self):
dynamic = False
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.xfail(
reason="failing in the iree-compiler passes, see https://github.com/nod-ai/SHARK/issues/201"
)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_static_vulkan(self):
dynamic = False
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
if __name__ == "__main__":
unittest.main()

View File

@@ -1,78 +0,0 @@
from shark.iree_utils._common import check_device_drivers, device_driver_info
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_tf_model
import unittest
import pytest
import numpy as np
class VitBaseModuleTester:
def __init__(
self,
benchmark=False,
):
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model, func_name, inputs, golden_out = download_tf_model(
"google/vit-base-patch16-224"
)
shark_module = SharkInference(
model, func_name, device=device, mlir_dialect="mhlo"
)
shark_module.compile()
result = shark_module.forward(inputs)
# post process of img output
ir_device_array = result[0][1]
logits = ir_device_array.astype(ir_device_array.dtype)
logits = np.squeeze(logits, axis=0)
print("logits: ", logits.shape)
print("golden_out: ", golden_out[0].shape)
print(np.allclose(golden_out[0], logits, rtol=1e-02, atol=1e-03))
class VitBaseModuleTest(unittest.TestCase):
@pytest.fixture(autouse=True)
def configure(self, pytestconfig):
self.module_tester = VitBaseModuleTester(self)
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
def test_module_static_cpu(self):
dynamic = False
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("intel-gpu"), reason=device_driver_info("intel-gpu")
)
def test_module_static_intelgpu(self):
dynamic = False
device = "intel-gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_static_gpu(self):
dynamic = False
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_static_vulkan(self):
dynamic = False
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
if __name__ == "__main__":
dynamic = False
device = "cpu"
module_tester = VitBaseModuleTester()
module_tester.create_and_check_module(dynamic, device)
# unittest.main()

View File

@@ -1,60 +0,0 @@
from shark.iree_utils._common import check_device_drivers, device_driver_info
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_tf_model
import iree.compiler as ireec
import unittest
import pytest
import numpy as np
class LayoutLMModuleTester:
def __init__(
self,
benchmark=False,
):
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model, func_name, inputs, golden_out = download_tf_model(
"microsoft/layoutlm-base-uncased"
)
shark_module = SharkInference(
model, func_name, device=device, mlir_dialect="mhlo"
)
shark_module.compile()
result = shark_module.forward(inputs)
np.testing.assert_allclose(golden_out, result, rtol=1e-02, atol=1e-03)
class LayoutLMModuleTest(unittest.TestCase):
@pytest.fixture(autouse=True)
def configure(self, pytestconfig):
self.module_tester = LayoutLMModuleTester(self)
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
def test_module_static_cpu(self):
dynamic = False
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_static_gpu(self):
dynamic = False
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_static_vulkan(self):
dynamic = False
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
if __name__ == "__main__":
unittest.main()

View File

@@ -1,61 +0,0 @@
from shark.iree_utils._common import check_device_drivers, device_driver_info
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_tf_model
import iree.compiler as ireec
import unittest
import pytest
import numpy as np
class LongformerModuleTester:
def __init__(
self,
benchmark=False,
):
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model, func_name, inputs, golden_out = download_tf_model(
"allenai/longformer-base-4096"
)
shark_module = SharkInference(
model, func_name, device=device, mlir_dialect="mhlo"
)
shark_module.compile()
result = shark_module.forward(inputs)
np.testing.assert_allclose(golden_out, result, rtol=1e-02, atol=1e-03)
class LongformerModuleTest(unittest.TestCase):
@pytest.skip(reason="Model can't be imported.", allow_module_level=True)
@pytest.fixture(autouse=True)
def configure(self, pytestconfig):
self.module_tester = LongformerModuleTester(self)
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
def test_module_static_cpu(self):
dynamic = False
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_static_gpu(self):
dynamic = False
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_static_vulkan(self):
dynamic = False
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
if __name__ == "__main__":
unittest.main()

View File

@@ -1,60 +0,0 @@
from shark.iree_utils._common import check_device_drivers, device_driver_info
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_tf_model
import iree.compiler as ireec
import unittest
import pytest
import numpy as np
class MobileBertModuleTester:
def __init__(
self,
benchmark=False,
):
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model, func_name, inputs, golden_out = download_tf_model(
"google/mobilebert-uncased"
)
shark_module = SharkInference(
model, func_name, device=device, mlir_dialect="mhlo"
)
shark_module.compile()
result = shark_module.forward(inputs)
np.testing.assert_allclose(golden_out, result, rtol=1e-02, atol=1e-03)
class MobileBertModuleTest(unittest.TestCase):
@pytest.fixture(autouse=True)
def configure(self, pytestconfig):
self.module_tester = MobileBertModuleTester(self)
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
def test_module_static_cpu(self):
dynamic = False
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_static_gpu(self):
dynamic = False
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_static_vulkan(self):
dynamic = False
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
if __name__ == "__main__":
unittest.main()

29
tank/model_metadata.csv Normal file
View File

@@ -0,0 +1,29 @@
model_name, use_tracing, dynamic, param_count, tags, notes
microsoft/MiniLM-L12-H384-uncased,True,True,66M,"nlp;bert-variant;transformer-encoder","Large version has 12 layers; 384 hidden size; Smaller than BERTbase (66M params vs 109M params)"
albert-base-v2,True,True,11M,"nlp;bert-variant;transformer-encoder","12 layers; 128 embedding dim; 768 hidden dim; 12 attention heads; Smaller than BERTbase (11M params vs 109M params); Uses weight sharing to reduce # params but computational cost is similar to BERT."
bert-base-uncased,True,True,109M,"nlp;bert-variant;transformer-encoder","12 layers; 768 hidden; 12 attention heads"
bert-base-cased,True,True,109M,"nlp;bert-variant;transformer-encoder","12 layers; 768 hidden; 12 attention heads"
distilbert-base-uncased,True,True,66M,"nlp;bert-variant;transformer-encoder","Smaller and faster than BERT with 97percent retained accuracy."
google/mobilebert-uncased,True,True,25M,"nlp,bert-variant,transformer-encoder,mobile","24 layers, 512 hidden size, 128 embedding"
alexnet,False,True,61M,"cnn,parallel-layers","The CNN that revolutionized computer vision (move away from hand-crafted features to neural networks),10 years old now and probably no longer used in prod."
resnet18,False,True,11M,"cnn,image-classification,residuals,resnet-variant","1 7x7 conv2d and the rest are 3x3 conv2d"
resnet50,False,True,23M,"cnn,image-classification,residuals,resnet-variant","Bottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks)"
resnet101,False,True,29M,"cnn,image-classification,residuals,resnet-variant","Bottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks)"
squeezenet1_0,False,True,1.25M,"cnn,image-classification,mobile,parallel-layers","Parallel conv2d (1x1 conv to compress -> (3x3 expand | 1x1 expand) -> concat)"
wide_resnet50_2,False,True,69M,"cnn,image-classification,residuals,resnet-variant","Resnet variant where model depth is decreased and width is increased."
mobilenet_v3_small,False,True,2.5M,"image-classification,cnn,mobile",N/A
google/vit-base-patch16-224,True,False,86M,"image-classification,vision-transformer,transformer-encoder",N/A
microsoft/resnet-50,True,False,23M,"image-classification,cnn,residuals,resnet-variant","Bottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks)"
facebook/deit-small-distilled-patch16-224,True,False,22M,"image-classification,vision-transformer,cnn",N/A
microsoft/beit-base-patch16-224-pt22k-ft22k,True,False,86M,"image-classification,transformer-encoder,bert-variant,vision-transformer",N/A
nvidia/mit-b0,True,False,3.7M,"image-classification,transformer-encoder",SegFormer
camembert-base,False,False,-,-,-
dbmdz/convbert-base-turkish-cased,False,False,-,-,-
google/electra-small-discriminator,False,False,-,-,-
hf-internal-testing/tiny-random-flaubert,False,False,-,-,-
funnel-transformer/small,False,False,-,-,-
microsoft/layoutlm-base-uncased,False,False,-,-,-
microsoft/mpnet-base,False,False,-,-,-
roberta-base,False,False,-,-,-
xlm-roberta-base,False,False,-,-,-
facebook/convnext-tiny-224,False,False,-,-,-
1 model_name use_tracing dynamic param_count tags notes
2 microsoft/MiniLM-L12-H384-uncased True True 66M nlp;bert-variant;transformer-encoder Large version has 12 layers; 384 hidden size; Smaller than BERTbase (66M params vs 109M params)
3 albert-base-v2 True True 11M nlp;bert-variant;transformer-encoder 12 layers; 128 embedding dim; 768 hidden dim; 12 attention heads; Smaller than BERTbase (11M params vs 109M params); Uses weight sharing to reduce # params but computational cost is similar to BERT.
4 bert-base-uncased True True 109M nlp;bert-variant;transformer-encoder 12 layers; 768 hidden; 12 attention heads
5 bert-base-cased True True 109M nlp;bert-variant;transformer-encoder 12 layers; 768 hidden; 12 attention heads
6 distilbert-base-uncased True True 66M nlp;bert-variant;transformer-encoder Smaller and faster than BERT with 97percent retained accuracy.
7 google/mobilebert-uncased True True 25M nlp,bert-variant,transformer-encoder,mobile 24 layers, 512 hidden size, 128 embedding
8 alexnet False True 61M cnn,parallel-layers The CNN that revolutionized computer vision (move away from hand-crafted features to neural networks),10 years old now and probably no longer used in prod.
9 resnet18 False True 11M cnn,image-classification,residuals,resnet-variant 1 7x7 conv2d and the rest are 3x3 conv2d
10 resnet50 False True 23M cnn,image-classification,residuals,resnet-variant Bottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks)
11 resnet101 False True 29M cnn,image-classification,residuals,resnet-variant Bottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks)
12 squeezenet1_0 False True 1.25M cnn,image-classification,mobile,parallel-layers Parallel conv2d (1x1 conv to compress -> (3x3 expand | 1x1 expand) -> concat)
13 wide_resnet50_2 False True 69M cnn,image-classification,residuals,resnet-variant Resnet variant where model depth is decreased and width is increased.
14 mobilenet_v3_small False True 2.5M image-classification,cnn,mobile N/A
15 google/vit-base-patch16-224 True False 86M image-classification,vision-transformer,transformer-encoder N/A
16 microsoft/resnet-50 True False 23M image-classification,cnn,residuals,resnet-variant Bottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks)
17 facebook/deit-small-distilled-patch16-224 True False 22M image-classification,vision-transformer,cnn N/A
18 microsoft/beit-base-patch16-224-pt22k-ft22k True False 86M image-classification,transformer-encoder,bert-variant,vision-transformer N/A
19 nvidia/mit-b0 True False 3.7M image-classification,transformer-encoder SegFormer
20 camembert-base False False - - -
21 dbmdz/convbert-base-turkish-cased False False - - -
22 google/electra-small-discriminator False False - - -
23 hf-internal-testing/tiny-random-flaubert False False - - -
24 funnel-transformer/small False False - - -
25 microsoft/layoutlm-base-uncased False False - - -
26 microsoft/mpnet-base False False - - -
27 roberta-base False False - - -
28 xlm-roberta-base False False - - -
29 facebook/convnext-tiny-224 False False - - -

View File

@@ -1,4 +1,5 @@
from shark.shark_inference import SharkInference
from shark.parser import shark_args
import torch
import numpy as np
@@ -13,16 +14,79 @@ vision_models = [
"resnet50",
"squeezenet1_0",
"wide_resnet50_2",
"mobilenet_v3_small",
]
hf_img_cls_models = [
"google/vit-base-patch16-224",
"microsoft/resnet-50",
"facebook/deit-small-distilled-patch16-224",
"microsoft/beit-base-patch16-224-pt22k-ft22k",
"nvidia/mit-b0",
]
def get_torch_model(modelname):
if modelname in vision_models:
return get_vision_model(modelname)
elif modelname in hf_img_cls_models:
return get_hf_img_cls_model(modelname)
else:
return get_hf_model(modelname)
##################### Hugging Face Image Classification Models ###################################
from transformers import AutoModelForImageClassification
from transformers import AutoFeatureExtractor
from PIL import Image
import requests
def preprocess_input_image(model_name):
# from datasets import load_dataset
# dataset = load_dataset("huggingface/cats-image")
# image1 = dataset["test"]["image"][0]
# # print("image1: ", image1) # <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x480 at 0x7FA0B86BB6D0>
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
# <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x480 at 0x7FA0B86BB6D0>
image = Image.open(requests.get(url, stream=True).raw)
# feature_extractor = img_models_fe_dict[model_name].from_pretrained(
# model_name
# )
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
inputs = feature_extractor(images=image, return_tensors="pt")
# inputs = {'pixel_values': tensor([[[[ 0.1137..., -0.2000, -0.4275, -0.5294]]]])}
# torch.Size([1, 3, 224, 224]), torch.FloatTensor
return inputs[str(*inputs)]
class HuggingFaceImageClassification(torch.nn.Module):
def __init__(self, hf_model_name):
super().__init__()
self.model = AutoModelForImageClassification.from_pretrained(
hf_model_name, # The pretrained model.
output_attentions=False, # Whether the model returns attentions weights.
return_dict=False, # https://github.com/huggingface/transformers/issues/9095
torchscript=True,
)
def forward(self, inputs):
return self.model.forward(inputs)[0]
def get_hf_img_cls_model(name):
model = HuggingFaceImageClassification(name)
# you can use preprocess_input_image to get the test_input or just random value.
test_input = preprocess_input_image(name)
# test_input = torch.FloatTensor(1, 3, 224, 224).uniform_(-1, 1)
print("test_input.shape: ", test_input.shape)
# test_input.shape: torch.Size([1, 3, 224, 224])
actual_out = model(test_input)
print("actual_out.shape ", actual_out.shape)
# actual_out.shape torch.Size([1, 1000])
return model, test_input, actual_out
##################### Hugging Face LM Models ###################################
@@ -84,6 +148,7 @@ def get_vision_model(torch_model):
"resnet101": models.resnet101(pretrained=True),
"squeezenet1_0": models.squeezenet1_0(pretrained=True),
"wide_resnet50_2": models.wide_resnet50_2(pretrained=True),
"mobilenet_v3_small": models.mobilenet_v3_small(pretrained=True),
}
if isinstance(torch_model, str):
torch_model = vision_models_dict[torch_model]
@@ -96,9 +161,6 @@ def get_vision_model(torch_model):
################################################################################
# Utility function for comparing two tensors (torch).
def compare_tensors(torch_tensor, numpy_tensor):
# setting the absolute and relative tolerance
rtol = 1e-02
atol = 1e-03
def compare_tensors(torch_tensor, numpy_tensor, rtol=1e-02, atol=1e-03):
# torch_to_numpy = torch_tensor.detach().numpy()
return np.allclose(torch_tensor, numpy_tensor, rtol, atol)

View File

@@ -16,10 +16,58 @@ except:
# Invalid device or cannot modify virtual devices once initialized.
pass
##################### Tensorflow Hugging Face LM Models ###################################
MAX_SEQUENCE_LENGTH = 512
BATCH_SIZE = 1
MAX_SEQUENCE_LENGTH = 128
################################## MHLO/TF models #########################################
# TODO : Generate these lists or fetch model source from tank/tf/tf_model_list.csv
keras_models = [
"resnet50",
]
maskedlm_models = [
"albert-base-v2",
"bert-base-uncased",
"camembert-base",
"dbmdz/convbert-base-turkish-cased",
"deberta-base",
"distilbert-base-uncased",
"google/electra-small-discriminator",
"funnel-transformer/small",
"microsoft/layoutlm-base-uncased",
"longformer-base-4096",
"google/mobilebert-uncased",
"microsoft/mpnet-base",
"google/rembert",
"roberta-base",
"tapas-base",
"hf-internal-testing/tiny-random-flaubert",
"xlm-roberta",
]
tfhf_models = [
"microsoft/MiniLM-L12-H384-uncased",
]
img_models = [
"google/vit-base-patch16-224",
"facebook/convnext-tiny-224",
]
def get_tf_model(name):
if name in keras_models:
return get_keras_model(name)
elif name in maskedlm_models:
return get_causal_lm_model(name)
elif name in tfhf_models:
return get_TFhf_model(name)
elif name in img_models:
return get_causal_image_model(name)
else:
raise Exception(
"TF model not found! Please check that the modelname has been input correctly."
)
##################### Tensorflow Hugging Face LM Models ###################################
# Create a set of 2-dimensional inputs
tf_bert_input = [
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
@@ -45,9 +93,6 @@ class TFHuggingFaceLanguage(tf.Module):
def get_TFhf_model(name):
# gpus = tf.config.experimental.list_physical_devices("GPU")
# for gpu in gpus:
# tf.config.experimental.set_memory_growth(gpu, True)
model = TFHuggingFaceLanguage(name)
tokenizer = BertTokenizer.from_pretrained(
"microsoft/MiniLM-L12-H384-uncased"
@@ -85,22 +130,8 @@ def compare_tensors_tf(tf_tensor, numpy_tensor):
from transformers import TFAutoModelForMaskedLM, AutoTokenizer
import tensorflow as tf
visible_default = tf.config.list_physical_devices("GPU")
try:
tf.config.set_visible_devices([], "GPU")
visible_devices = tf.config.get_visible_devices()
for device in visible_devices:
assert device.device_type != "GPU"
except:
# Invalid device or cannot modify virtual devices once initialized.
pass
# The max_sequence_length is set small for testing purpose.
BATCH_SIZE = 1
MAX_SEQUENCE_LENGTH = 16
# Create a set of input signature.
inputs_signature = [
input_signature_maskedlm = [
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
]
@@ -131,15 +162,12 @@ class MaskedLM(tf.Module):
)
self.m.predict = lambda x, y: self.m(input_ids=x, attention_mask=y)[0]
@tf.function(input_signature=inputs_signature)
@tf.function(input_signature=input_signature_maskedlm)
def forward(self, input_ids, attention_mask):
return self.m.predict(input_ids, attention_mask)
def get_causal_lm_model(hf_name, text="Hello, this is the default text."):
# gpus = tf.config.experimental.list_physical_devices("GPU")
# for gpu in gpus:
# tf.config.experimental.set_memory_growth(gpu, True)
model = MaskedLM(hf_name)
encoded_input = preprocess_input(hf_name, text)
test_input = (encoded_input["input_ids"], encoded_input["attention_mask"])
@@ -147,16 +175,59 @@ def get_causal_lm_model(hf_name, text="Hello, this is the default text."):
return model, test_input, actual_out
##################### TensorFlow Keras Resnet Models #########################################################
# Static shape, including batch size (1).
# Can be dynamic once dynamic shape support is ready.
INPUT_SHAPE = [1, 224, 224, 3]
tf_model = tf.keras.applications.resnet50.ResNet50(
weights="imagenet", include_top=True, input_shape=tuple(INPUT_SHAPE[1:])
)
class ResNetModule(tf.Module):
def __init__(self):
super(ResNetModule, self).__init__()
self.m = tf_model
self.m.predict = lambda x: self.m.call(x, training=False)
@tf.function(input_signature=[tf.TensorSpec(INPUT_SHAPE, tf.float32)])
def forward(self, inputs):
return self.m.predict(inputs)
def load_image(path_to_image):
image = tf.io.read_file(path_to_image)
image = tf.image.decode_image(image, channels=3)
image = tf.image.resize(image, (224, 224))
image = image[tf.newaxis, :]
return image
def get_keras_model(modelname):
model = ResNetModule()
content_path = tf.keras.utils.get_file(
"YellowLabradorLooking_new.jpg",
"https://storage.googleapis.com/download.tensorflow.org/example_images/YellowLabradorLooking_new.jpg",
)
content_image = load_image(content_path)
input_tensor = tf.keras.applications.resnet50.preprocess_input(
content_image
)
input_data = tf.expand_dims(input_tensor, 0)
actual_out = model.forward(*input_data)
return model, input_data, actual_out
##################### Tensorflow Hugging Face Image Classification Models ###################################
from transformers import TFAutoModelForImageClassification
from transformers import ConvNextFeatureExtractor, ViTFeatureExtractor
from transformers import BeitFeatureExtractor, AutoFeatureExtractor
import tensorflow as tf
from PIL import Image
import requests
# Create a set of input signature.
inputs_signature = [
input_signature_img_cls = [
tf.TensorSpec(shape=[1, 3, 224, 224], dtype=tf.float32),
]
@@ -169,7 +240,7 @@ class AutoModelImageClassfication(tf.Module):
)
self.m.predict = lambda x: self.m(x)
@tf.function(input_signature=inputs_signature)
@tf.function(input_signature=input_signature_img_cls)
def forward(self, inputs):
return self.m.predict(inputs)

View File

@@ -1,60 +0,0 @@
from shark.iree_utils._common import check_device_drivers, device_driver_info
from shark.shark_inference import SharkInference
from shark.shark_downloader import download_tf_model
import iree.compiler as ireec
import unittest
import pytest
import numpy as np
class MpNetModuleTester:
def __init__(
self,
benchmark=False,
):
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model, func_name, inputs, golden_out = download_tf_model(
"microsoft/mpnet-base"
)
shark_module = SharkInference(
model, func_name, device=device, mlir_dialect="mhlo"
)
shark_module.compile()
result = shark_module.forward(inputs)
np.testing.assert_allclose(golden_out, result, rtol=1e-02, atol=1e-03)
class MpNetModuleTest(unittest.TestCase):
@pytest.fixture(autouse=True)
def configure(self, pytestconfig):
self.module_tester = MpNetModuleTester(self)
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
def test_module_static_cpu(self):
dynamic = False
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_static_gpu(self):
dynamic = False
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_static_vulkan(self):
dynamic = False
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
if __name__ == "__main__":
unittest.main()

View File

@@ -1,112 +0,0 @@
from shark.shark_inference import SharkInference
from shark.iree_utils._common import check_device_drivers, device_driver_info
from tank.model_utils import compare_tensors
from shark.shark_downloader import download_torch_model
import unittest
import numpy as np
import pytest
class MiniLMModuleTester:
def __init__(
self,
benchmark=False,
):
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model_mlir, func_name, input, act_out = download_torch_model(
"microsoft/MiniLM-L12-H384-uncased", dynamic
)
# from shark.shark_importer import SharkImporter
# mlir_importer = SharkImporter(
# model,
# (input,),
# frontend="torch",
# )
# minilm_mlir, func_name = mlir_importer.import_mlir(
# is_dynamic=dynamic, tracing_required=True
# )
shark_module = SharkInference(
model_mlir,
func_name,
device=device,
mlir_dialect="linalg",
is_benchmark=self.benchmark,
)
shark_module.compile()
results = shark_module.forward(input)
assert True == compare_tensors(act_out, results)
if self.benchmark == True:
shark_module.shark_runner.benchmark_all_csv(
(input),
"microsoft/MiniLM-L12-H384-uncased",
dynamic,
device,
"torch",
)
class MiniLMModuleTest(unittest.TestCase):
@pytest.fixture(autouse=True)
def configure(self, pytestconfig):
self.module_tester = MiniLMModuleTester(self)
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
def test_module_static_cpu(self):
dynamic = False
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
def test_module_dynamic_cpu(self):
dynamic = True
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("intel-gpu"), reason=device_driver_info("intel-gpu")
)
def test_module_static_intelgpu(self):
dynamic = False
device = "intel-gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_static_gpu(self):
dynamic = False
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_dynamic_gpu(self):
dynamic = True
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_static_vulkan(self):
dynamic = False
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_dynamic_vulkan(self):
dynamic = True
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
if __name__ == "__main__":
unittest.main()

View File

@@ -1,112 +0,0 @@
from shark.shark_inference import SharkInference
from shark.iree_utils._common import check_device_drivers, device_driver_info
from tank.model_utils import compare_tensors
from shark.shark_downloader import download_torch_model
import unittest
import numpy as np
import pytest
class AlbertModuleTester:
def __init__(
self,
benchmark=False,
):
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model_mlir, func_name, input, act_out = download_torch_model(
"albert-base-v2", dynamic
)
# from shark.shark_importer import SharkImporter
# mlir_importer = SharkImporter(
# model,
# (input,),
# frontend="torch",
# )
# minilm_mlir, func_name = mlir_importer.import_mlir(
# is_dynamic=dynamic, tracing_required=True
# )
shark_module = SharkInference(
model_mlir,
func_name,
device=device,
mlir_dialect="linalg",
is_benchmark=self.benchmark,
)
shark_module.compile()
results = shark_module.forward(input)
assert True == compare_tensors(act_out, results)
if self.benchmark == True:
shark_module.shark_runner.benchmark_all_csv(
(input),
"albert-base-v2",
dynamic,
device,
"torch",
)
class AlbertModuleTest(unittest.TestCase):
@pytest.fixture(autouse=True)
def configure(self, pytestconfig):
self.module_tester = AlbertModuleTester(self)
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
def test_module_static_cpu(self):
dynamic = False
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
def test_module_dynamic_cpu(self):
dynamic = True
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("intel-gpu"), reason=device_driver_info("intel-gpu")
)
def test_module_static_intelgpu(self):
dynamic = False
device = "intel-gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_static_gpu(self):
dynamic = False
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_dynamic_gpu(self):
dynamic = True
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_static_vulkan(self):
dynamic = False
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_dynamic_vulkan(self):
dynamic = True
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
if __name__ == "__main__":
unittest.main()

View File

@@ -1,112 +0,0 @@
from shark.shark_inference import SharkInference
from shark.iree_utils._common import check_device_drivers, device_driver_info
from tank.model_utils import compare_tensors
from shark.shark_downloader import download_torch_model
import unittest
import numpy as np
import pytest
class AlexnetModuleTester:
def __init__(
self,
benchmark=False,
):
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model_mlir, func_name, input, act_out = download_torch_model(
"alexnet", dynamic
)
# from shark.shark_importer import SharkImporter
# mlir_importer = SharkImporter(
# model,
# (input,),
# frontend="torch",
# )
# minilm_mlir, func_name = mlir_importer.import_mlir(
# is_dynamic=dynamic, tracing_required=True
# )
shark_module = SharkInference(
model_mlir,
func_name,
device=device,
mlir_dialect="linalg",
is_benchmark=self.benchmark,
)
shark_module.compile()
results = shark_module.forward(input)
assert True == compare_tensors(act_out, results)
if self.benchmark == True:
shark_module.shark_runner.benchmark_all_csv(
(input),
"alexnet",
dynamic,
device,
"torch",
)
class AlexnetModuleTest(unittest.TestCase):
@pytest.fixture(autouse=True)
def configure(self, pytestconfig):
self.module_tester = AlexnetModuleTester(self)
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
def test_module_static_cpu(self):
dynamic = False
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
def test_module_dynamic_cpu(self):
dynamic = True
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("intel-gpu"), reason=device_driver_info("intel-gpu")
)
def test_module_static_intelgpu(self):
dynamic = False
device = "intel-gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_static_gpu(self):
dynamic = False
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_dynamic_gpu(self):
dynamic = True
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_static_vulkan(self):
dynamic = False
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_dynamic_vulkan(self):
dynamic = True
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
if __name__ == "__main__":
unittest.main()

View File

@@ -1 +0,0 @@
platform,model,dynamic,device,iter/sec,ms/iter,datetime
1 platform model dynamic device iter/sec ms/iter datetime

View File

@@ -1,117 +0,0 @@
from shark.shark_inference import SharkInference
from shark.iree_utils._common import check_device_drivers, device_driver_info
from tank.model_utils import compare_tensors
from shark.shark_downloader import download_torch_model
import torch
import unittest
import numpy as np
import pytest
class BertBaseUncasedModuleTester:
def __init__(
self,
save_mlir=False,
save_vmfb=False,
benchmark=False,
):
self.save_mlir = save_mlir
self.save_vmfb = save_vmfb
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model_mlir, func_name, input, act_out = download_torch_model(
"bert-base-uncased", dynamic
)
# from shark.shark_importer import SharkImporter
# mlir_importer = SharkImporter(
# model,
# (input,),
# frontend="torch",
# )
# minilm_mlir, func_name = mlir_importer.import_mlir(
# is_dynamic=dynamic, tracing_required=True
# )
shark_module = SharkInference(
model_mlir,
func_name,
device=device,
mlir_dialect="linalg",
is_benchmark=self.benchmark,
)
shark_module.compile()
results = shark_module.forward(input)
assert True == compare_tensors(act_out, results)
if self.benchmark == True:
shark_module.shark_runner.benchmark_all_csv(
(input),
"bert-base-uncased",
dynamic,
device,
"torch",
)
class BertBaseUncasedModuleTest(unittest.TestCase):
@pytest.fixture(autouse=True)
def configure(self, pytestconfig):
self.module_tester = BertBaseUncasedModuleTester(self)
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
def test_module_static_cpu(self):
dynamic = False
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
def test_module_dynamic_cpu(self):
dynamic = True
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("intel-gpu"), reason=device_driver_info("intel-gpu")
)
def test_module_static_intelgpu(self):
dynamic = False
device = "intel-gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_static_gpu(self):
dynamic = False
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_dynamic_gpu(self):
dynamic = True
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_static_vulkan(self):
dynamic = False
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_dynamic_vulkan(self):
dynamic = True
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
if __name__ == "__main__":
unittest.main()

View File

@@ -0,0 +1,36 @@
# Bloom model
## Installation
<details>
<summary>Installation (Linux)</summary>
### Activate shark.venv Virtual Environment
```shell
source shark.venv/bin/activate
# Some older pip installs may not be able to handle the recent PyTorch deps
python -m pip install --upgrade pip
```
### Install dependencies
```shell
pip install transformers==4.21.2
```
Use this branch of Torch-MLIR for running the model: https://github.com/vivekkhandelwal1/torch-mlir/tree/bloom-ops
### Run bloom model
```shell
python bloom_model.py
```
The runtime device, model config, and text prompt can be specified with `--device <device string>`, `--config <config string>`, `--prompt <prompt string>` respectively.
To run the complete 176B params bloom model, run the following command:
```shell
python bloom_model.py --config "bloom"
```

View File

@@ -0,0 +1,122 @@
### Please do `pip install transformers==4.21.2` before running this script.
### To run the complete bloom model: pass as argument "--config bloom".
import argparse
import torch
import torch_mlir
from transformers import BloomTokenizerFast, BloomForSequenceClassification
from torch.fx.experimental.proxy_tensor import make_fx
from torch._decomp import get_decompositions
from shark.shark_inference import SharkInference
p = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
p.add_argument(
"--prompt",
type=str,
default="Hello, my dog is cute",
help="the text prompt to use",
)
p.add_argument("--device", type=str, default="cpu", help="the device to use")
p.add_argument("--seed", type=int, default=0, help="the random seed")
p.add_argument(
"--config",
type=str,
default="bloom-560m",
help="the configuration of model to use",
)
args = p.parse_args()
torch.manual_seed(args.seed)
model_config = "bigscience/" + args.config
tokenizer = BloomTokenizerFast.from_pretrained(model_config)
test_input = tokenizer(args.prompt, return_tensors="pt")["input_ids"]
class HuggingFaceLanguage(torch.nn.Module):
def __init__(self):
super().__init__()
self.model = BloomForSequenceClassification.from_pretrained(
model_config
)
def forward(self, tokens):
return self.model.forward(tokens)[0]
model = HuggingFaceLanguage()
actual_out = model(test_input)
# import numpy as np
# test_input_ny = test_input.detach().numpy()
# input_tuple = (test_input_ny,)
# np.savez('inputs.npz', *input_tuple)
# output_ny = actual_out.detach().numpy()
# output_tuple = (output_ny,)
# np.savez('golden_out.npz', *output_tuple)
fx_g = make_fx(
model,
decomposition_table=get_decompositions(
[
torch.ops.aten.split.Tensor,
torch.ops.aten.split_with_sizes,
]
),
)(test_input)
# # print(fx_g.graph)
fx_g.graph.set_codegen(torch.fx.graph.CodeGen())
fx_g.recompile()
def strip_overloads(gm):
"""
Modifies the target of graph nodes in :attr:`gm` to strip overloads.
Args:
gm(fx.GraphModule): The input Fx graph module to be modified
"""
for node in gm.graph.nodes:
if isinstance(node.target, torch._ops.OpOverload):
node.target = node.target.overloadpacket
gm.recompile()
strip_overloads(fx_g)
ts_g = torch.jit.script(fx_g)
module = torch_mlir.compile(
ts_g,
[test_input],
torch_mlir.OutputType.LINALG_ON_TENSORS,
use_tracing=True,
verbose=False,
)
# # module.dump()
mlir_model = module
func_name = "forward"
shark_module = SharkInference(
mlir_model, func_name, device=args.device, mlir_dialect="tm_tensor"
)
shark_module.compile()
def shark_result(x):
x_ny = x.detach().numpy()
inputs = (x_ny,)
result = shark_module.forward(inputs)
return torch.from_numpy(result)
observed_out = shark_result(test_input)
print("Golden result:", actual_out)
print("SHARK result:", observed_out)

View File

@@ -1,127 +0,0 @@
from shark.shark_inference import SharkInference
from shark.iree_utils._common import check_device_drivers, device_driver_info
from tank.model_utils import compare_tensors
from shark.parser import shark_args
from shark.shark_downloader import download_torch_model
import unittest
import numpy as np
import pytest
class DistilBertModuleTester:
def __init__(
self,
benchmark=False,
):
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model_mlir, func_name, input, act_out = download_torch_model(
"distilbert-base-uncased", dynamic
)
# from shark.shark_importer import SharkImporter
# mlir_importer = SharkImporter(
# model,
# (input,),
# frontend="torch",
# )
# minilm_mlir, func_name = mlir_importer.import_mlir(
# is_dynamic=dynamic, tracing_required=True
# )
shark_module = SharkInference(
model_mlir,
func_name,
device=device,
mlir_dialect="linalg",
is_benchmark=self.benchmark,
)
shark_module.compile()
results = shark_module.forward(input)
assert True == compare_tensors(act_out, results)
if self.benchmark == True:
shark_module.shark_runner.benchmark_all_csv(
(input),
"distilbert-base-uncased",
dynamic,
device,
"torch",
)
class DistilBertModuleTest(unittest.TestCase):
@pytest.fixture(autouse=True)
def configure(self, pytestconfig):
self.module_tester = DistilBertModuleTester(self)
self.module_tester.save_mlir = pytestconfig.getoption("save_mlir")
self.module_tester.save_vmfb = pytestconfig.getoption("save_vmfb")
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
@pytest.mark.skip(
reason="Fails to lower in torch-mlir. See https://github.com/nod-ai/SHARK/issues/222"
)
def test_module_static_cpu(self):
dynamic = False
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skip(
reason="Fails to lower in torch-mlir. See https://github.com/nod-ai/SHARK/issues/222"
)
def test_module_dynamic_cpu(self):
dynamic = True
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("intel-gpu"), reason=device_driver_info("intel-gpu")
)
def test_module_static_intelgpu(self):
dynamic = False
device = "intel-gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skip(
reason="Fails to lower in torch-mlir. See https://github.com/nod-ai/SHARK/issues/222"
)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_static_gpu(self):
dynamic = False
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skip(reason="DistilBert needs to be uploaded to cloud.")
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_dynamic_gpu(self):
dynamic = True
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skip(reason="DistilBert needs to be uploaded to cloud.")
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_static_vulkan(self):
dynamic = False
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skip(reason="DistilBert needs to be uploaded to cloud.")
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_dynamic_vulkan(self):
dynamic = True
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
if __name__ == "__main__":
unittest.main()

View File

@@ -1,113 +0,0 @@
from shark.shark_inference import SharkInference
from shark.iree_utils._common import check_device_drivers, device_driver_info
from tank.model_utils import compare_tensors
from shark.shark_downloader import download_torch_model
import torch
import unittest
import numpy as np
import pytest
class MobileBertModuleTester:
def __init__(
self,
benchmark=False,
):
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model_mlir, func_name, input, act_out = download_torch_model(
"google/mobilebert-uncased", dynamic
)
# from shark.shark_importer import SharkImporter
# mlir_importer = SharkImporter(
# model,
# (input,),
# frontend="torch",
# )
# minilm_mlir, func_name = mlir_importer.import_mlir(
# is_dynamic=dynamic, tracing_required=True
# )
shark_module = SharkInference(
model_mlir,
func_name,
device=device,
mlir_dialect="linalg",
is_benchmark=self.benchmark,
)
shark_module.compile()
results = shark_module.forward(input)
assert True == compare_tensors(act_out, results)
if self.benchmark == True:
shark_module.shark_runner.benchmark_all_csv(
(input),
"google/mobilebert-uncased",
dynamic,
device,
"torch",
)
class MobileBertModuleTest(unittest.TestCase):
@pytest.fixture(autouse=True)
def configure(self, pytestconfig):
self.module_tester = MobileBertModuleTester(self)
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
def test_module_static_cpu(self):
dynamic = False
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
def test_module_dynamic_cpu(self):
dynamic = True
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("intel-gpu"), reason=device_driver_info("intel-gpu")
)
def test_module_static_intelgpu(self):
dynamic = False
device = "intel-gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_static_gpu(self):
dynamic = False
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_dynamic_gpu(self):
dynamic = True
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_static_vulkan(self):
dynamic = False
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_dynamic_vulkan(self):
dynamic = True
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
if __name__ == "__main__":
unittest.main()

View File

@@ -1,114 +0,0 @@
from shark.shark_inference import SharkInference
from shark.iree_utils._common import check_device_drivers, device_driver_info
from tank.model_utils import compare_tensors
from shark.shark_downloader import download_torch_model
import unittest
import numpy as np
import pytest
class Resnet101ModuleTester:
def __init__(
self,
benchmark=False,
):
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model_mlir, func_name, input, act_out = download_torch_model(
"resnet101", dynamic
)
# from shark.shark_importer import SharkImporter
# mlir_importer = SharkImporter(
# model,
# (input,),
# frontend="torch",
# )
# minilm_mlir, func_name = mlir_importer.import_mlir(
# is_dynamic=dynamic, tracing_required=True
# )
shark_module = SharkInference(
model_mlir,
func_name,
device=device,
mlir_dialect="linalg",
is_benchmark=self.benchmark,
)
shark_module.compile()
results = shark_module.forward(input)
assert True == compare_tensors(act_out, results)
if self.benchmark == True:
shark_module.shark_runner.benchmark_all_csv(
(input),
"resnet101",
dynamic,
device,
"torch",
)
class Resnet101ModuleTest(unittest.TestCase):
@pytest.fixture(autouse=True)
def configure(self, pytestconfig):
self.module_tester = Resnet101ModuleTester(self)
self.module_tester.save_mlir = pytestconfig.getoption("save_mlir")
self.module_tester.save_vmfb = pytestconfig.getoption("save_vmfb")
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
def test_module_static_cpu(self):
dynamic = False
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
def test_module_dynamic_cpu(self):
dynamic = True
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("intel-gpu"), reason=device_driver_info("intel-gpu")
)
def test_module_static_intelgpu(self):
dynamic = False
device = "intel-gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_static_gpu(self):
dynamic = False
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_dynamic_gpu(self):
dynamic = True
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_static_vulkan(self):
dynamic = False
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_dynamic_vulkan(self):
dynamic = True
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
if __name__ == "__main__":
unittest.main()

View File

@@ -1,113 +0,0 @@
from shark.shark_inference import SharkInference
from shark.iree_utils._common import check_device_drivers, device_driver_info
from tank.model_utils import get_vision_model, compare_tensors
from shark.shark_downloader import download_torch_model
import unittest
import numpy as np
import pytest
class Resnet18ModuleTester:
def __init__(
self,
benchmark=False,
):
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model_mlir, func_name, input, act_out = download_torch_model(
"resnet18", dynamic
)
# mlir_importer = SharkImporter(
# model,
# (input,),
# frontend="torch",
# )
# minilm_mlir, func_name = mlir_importer.import_mlir(
# is_dynamic=dynamic, tracing_required=True
# )
shark_module = SharkInference(
model_mlir,
func_name,
device=device,
mlir_dialect="linalg",
is_benchmark=self.benchmark,
)
shark_module.compile()
results = shark_module.forward(input)
assert True == compare_tensors(act_out, results)
if self.benchmark == True:
shark_module.shark_runner.benchmark_all_csv(
(input),
"resnet18",
dynamic,
device,
"torch",
)
class Resnet18ModuleTest(unittest.TestCase):
@pytest.fixture(autouse=True)
def configure(self, pytestconfig):
self.module_tester = Resnet18ModuleTester(self)
self.module_tester.save_mlir = pytestconfig.getoption("save_mlir")
self.module_tester.save_vmfb = pytestconfig.getoption("save_vmfb")
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
def test_module_static_cpu(self):
dynamic = False
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
def test_module_dynamic_cpu(self):
dynamic = True
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("intel-gpu"), reason=device_driver_info("intel-gpu")
)
def test_module_static_intelgpu(self):
dynamic = False
device = "intel-gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_static_gpu(self):
dynamic = False
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_dynamic_gpu(self):
dynamic = True
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_static_vulkan(self):
dynamic = False
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_dynamic_vulkan(self):
dynamic = True
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
if __name__ == "__main__":
unittest.main()

View File

@@ -1,114 +0,0 @@
from shark.shark_inference import SharkInference
from shark.iree_utils._common import check_device_drivers, device_driver_info
from tank.model_utils import get_vision_model, compare_tensors
from shark.shark_downloader import download_torch_model
import unittest
import numpy as np
import pytest
class Resnet50ModuleTester:
def __init__(
self,
benchmark=False,
):
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model_mlir, func_name, input, act_out = download_torch_model(
"resnet50", dynamic
)
# from shark.shark_importer import SharkImporter
# mlir_importer = SharkImporter(
# model,
# (input,),
# frontend="torch",
# )
# minilm_mlir, func_name = mlir_importer.import_mlir(
# is_dynamic=dynamic, tracing_required=True
# )
shark_module = SharkInference(
model_mlir,
func_name,
device=device,
mlir_dialect="linalg",
is_benchmark=self.benchmark,
)
shark_module.compile()
results = shark_module.forward(input)
assert True == compare_tensors(act_out, results)
if self.benchmark == True:
shark_module.shark_runner.benchmark_all_csv(
(input),
"resnet50",
dynamic,
device,
"torch",
)
class Resnet50ModuleTest(unittest.TestCase):
@pytest.fixture(autouse=True)
def configure(self, pytestconfig):
self.module_tester = Resnet50ModuleTester(self)
self.module_tester.save_mlir = pytestconfig.getoption("save_mlir")
self.module_tester.save_vmfb = pytestconfig.getoption("save_vmfb")
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
def test_module_static_cpu(self):
dynamic = False
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
def test_module_dynamic_cpu(self):
dynamic = True
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("intel-gpu"), reason=device_driver_info("intel-gpu")
)
def test_module_static_intelgpu(self):
dynamic = False
device = "intel-gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_static_gpu(self):
dynamic = False
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_dynamic_gpu(self):
dynamic = True
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_static_vulkan(self):
dynamic = False
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_dynamic_vulkan(self):
dynamic = True
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
if __name__ == "__main__":
unittest.main()

View File

@@ -1,114 +0,0 @@
from shark.shark_inference import SharkInference
from shark.iree_utils._common import check_device_drivers, device_driver_info
from tank.model_utils import get_vision_model, compare_tensors
from shark.shark_downloader import download_torch_model
import unittest
import numpy as np
import pytest
class SqueezenetModuleTester:
def __init__(
self,
benchmark=False,
):
self.benchmark = benchmark
def create_and_check_module(self, dynamic, device):
model_mlir, func_name, input, act_out = download_torch_model(
"squeezenet1_0", dynamic
)
# from shark.shark_importer import SharkImporter
# mlir_importer = SharkImporter(
# model,
# (input,),
# frontend="torch",
# )
# minilm_mlir, func_name = mlir_importer.import_mlir(
# is_dynamic=dynamic, tracing_required=True
# )
shark_module = SharkInference(
model_mlir,
func_name,
device=device,
mlir_dialect="linalg",
is_benchmark=self.benchmark,
)
shark_module.compile()
results = shark_module.forward(input)
assert True == compare_tensors(act_out, results)
if self.benchmark == True:
shark_module.shark_runner.benchmark_all_csv(
(input),
"squeezenet1_0",
dynamic,
device,
"torch",
)
class SqueezenetModuleTest(unittest.TestCase):
@pytest.fixture(autouse=True)
def configure(self, pytestconfig):
self.module_tester = SqueezenetModuleTester(self)
self.module_tester.save_mlir = pytestconfig.getoption("save_mlir")
self.module_tester.save_vmfb = pytestconfig.getoption("save_vmfb")
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
def test_module_static_cpu(self):
dynamic = False
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
def test_module_dynamic_cpu(self):
dynamic = True
device = "cpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("intel-gpu"), reason=device_driver_info("intel-gpu")
)
def test_module_static_intelgpu(self):
dynamic = False
device = "intel-gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_static_gpu(self):
dynamic = False
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("gpu"), reason=device_driver_info("gpu")
)
def test_module_dynamic_gpu(self):
dynamic = True
device = "gpu"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_static_vulkan(self):
dynamic = False
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
@pytest.mark.skipif(
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
)
def test_module_dynamic_vulkan(self):
dynamic = True
device = "vulkan"
self.module_tester.create_and_check_module(dynamic, device)
if __name__ == "__main__":
unittest.main()

Some files were not shown because too many files have changed in this diff Show More