Compare commits

..

20 Commits

Author SHA1 Message Date
Ean Garvey
7762166535 formatting 2024-05-28 12:14:32 -05:00
Ean Garvey
c2f717d6e9 Formatting 2024-05-28 12:14:32 -05:00
Ean Garvey
7fac1d75a8 Fix custom weights. 2024-05-28 12:14:32 -05:00
Ean Garvey
1c6db08b67 Small fixes 2024-05-28 12:14:32 -05:00
Ean Garvey
34a40abb0d Fix linux setup 2024-05-28 12:14:32 -05:00
Ean Garvey
5905904bf5 Update test-studio.yml 2024-05-28 12:14:31 -05:00
Ean Garvey
072d5afab6 Fix device parsing. 2024-05-28 12:14:31 -05:00
Ean Garvey
6e7c91f8b5 Update requirements 2024-05-28 12:14:30 -05:00
Ean Garvey
0d2bc755ca Formatting 2024-05-28 12:14:07 -05:00
Ean Garvey
1bd7265960 Fix typo 2024-05-28 12:14:06 -05:00
Ean Garvey
00353aa24f Update utils.py 2024-05-28 12:13:53 -05:00
Ean Garvey
b609a03da8 Switch from pin to minimum torch version and fix index url 2024-05-28 12:13:53 -05:00
Ean Garvey
febe88994c Small fixes. 2024-05-28 12:13:53 -05:00
Ean Garvey
7e50013f6d Abstract out SD pipelines from Studio Webui (WIP) 2024-05-28 12:13:53 -05:00
Ean Garvey
f99e794be8 Shark Studio SDXL support, HIP driver support, simpler device info, small fixes 2024-05-28 12:13:53 -05:00
gpetters94
6d8fb5bbe1 Remove IREE pin (fixes exe issue) (#2126)
* Diagnose a build issue

* Remove IREE pin

* Revert the build on pull request change
2024-05-28 12:13:52 -05:00
saienduri
7e5f73d7f6 Update requirements.txt for iree-turbine (#2130)
* Update requirements.txt to iree-turbine creation

* Update requirements.txt

* Update requirements.txt

* Update requirements.txt
2024-05-28 12:13:33 -05:00
Ean Garvey
8191cbeaa5 Small fixes for unifying pipelines. 2024-05-28 12:12:33 -05:00
Ean Garvey
6bad4aa826 Fixups to llm API/UI and ignore user config files. 2024-05-28 12:12:32 -05:00
Ean Garvey
0f9930096a Shark Studio SDXL support, HIP driver support, simpler device info, small fixes 2024-05-28 12:11:57 -05:00
21 changed files with 205 additions and 391 deletions

View File

@@ -81,5 +81,4 @@ jobs:
source shark.venv/bin/activate
pip install -r requirements.txt --no-cache-dir
pip install -e .
# Disabled due to hang when exporting test llama2
# python apps/shark_studio/tests/api_test.py
python apps/shark_studio/tests/api_test.py

View File

@@ -3,13 +3,8 @@ from turbine_models.model_runner import vmfbRunner
from turbine_models.gen_external_params.gen_external_params import gen_external_params
import time
from shark.iree_utils.compile_utils import compile_module_to_flatbuffer
from apps.shark_studio.web.utils.file_utils import (
get_resource_path,
get_checkpoints_path,
)
from apps.shark_studio.web.utils.file_utils import get_resource_path
from apps.shark_studio.modules.shared_cmd_opts import cmd_opts
from apps.shark_studio.api.utils import parse_device
from urllib.request import urlopen
import iree.runtime as ireert
from itertools import chain
import gc
@@ -70,7 +65,6 @@ class LanguageModel:
use_system_prompt=True,
streaming_llm=False,
):
_, _, self.triple = parse_device(device)
self.hf_model_name = llm_model_map[model_name]["hf_model_name"]
self.device = device.split("=>")[-1].strip()
self.backend = self.device.split("://")[0]
@@ -171,7 +165,6 @@ class LanguageModel:
precision=self.precision,
quantization=self.quantization,
streaming_llm=self.streaming_llm,
decomp_attn=True,
)
with open(self.tempfile_name, "w+") as f:
f.write(self.torch_ir)
@@ -201,27 +194,11 @@ class LanguageModel:
)
elif self.backend == "vulkan":
flags.extend(["--iree-stream-resource-max-allocation-size=4294967296"])
elif self.backend == "rocm":
flags.extend(
[
"--iree-codegen-llvmgpu-enable-transform-dialect-jit=false",
"--iree-llvmgpu-enable-prefetch=true",
"--iree-opt-outer-dim-concat=true",
"--iree-flow-enable-aggressive-fusion",
]
)
if "gfx9" in self.triple:
flags.extend(
[
f"--iree-codegen-transform-dialect-library={get_mfma_spec_path(self.triple, get_checkpoints_path())}",
"--iree-codegen-llvmgpu-use-vector-distribution=true",
]
)
flags.extend(llm_model_map[self.hf_model_name]["compile_flags"])
flatbuffer_blob = compile_module_to_flatbuffer(
self.tempfile_name,
device=self.device,
frontend="auto",
frontend="torch",
model_config_path=None,
extra_args=flags,
write_to=self.vmfb_name,
@@ -352,17 +329,6 @@ class LanguageModel:
return result_output, total_time
def get_mfma_spec_path(target_chip, save_dir):
url = "https://raw.githubusercontent.com/iree-org/iree/main/build_tools/pkgci/external_test_suite/attention_and_matmul_spec.mlir"
attn_spec = urlopen(url).read().decode("utf-8")
spec_path = os.path.join(save_dir, "attention_and_matmul_spec_mfma.mlir")
if os.path.exists(spec_path):
return spec_path
with open(spec_path, "w") as f:
f.write(attn_spec)
return spec_path
def llm_chat_api(InputData: dict):
from datetime import datetime as dt

View File

@@ -1,13 +1,10 @@
import gc
import torch
import gradio as gr
import time
import os
import json
import numpy as np
import copy
import importlib.util
import sys
from tqdm.auto import tqdm
from pathlib import Path
@@ -59,23 +56,6 @@ EMPTY_FLAGS = {
}
def load_script(source, module_name):
"""
reads file source and loads it as a module
:param source: file to load
:param module_name: name of module to register in sys.modules
:return: loaded module
"""
spec = importlib.util.spec_from_file_location(module_name, source)
module = importlib.util.module_from_spec(spec)
sys.modules[module_name] = module
spec.loader.exec_module(module)
return module
class StableDiffusion:
# This class is responsible for executing image generation and creating
# /managing a set of compiled modules to run Stable Diffusion. The init
@@ -93,34 +73,25 @@ class StableDiffusion:
scheduler: str,
precision: str,
device: str,
target_triple: str = None,
custom_vae: str = None,
num_loras: int = 0,
import_ir: bool = True,
is_controlled: bool = False,
external_weights: str = "safetensors",
):
self.precision = precision
self.compiled_pipeline = False
self.base_model_id = base_model_id
self.custom_vae = custom_vae
self.is_sdxl = "xl" in self.base_model_id.lower()
self.is_custom = ".py" in self.base_model_id.lower()
if self.is_custom:
custom_module = load_script(
os.path.join(get_checkpoints_path("scripts"), self.base_model_id),
"custom_pipeline",
)
self.turbine_pipe = custom_module.StudioPipeline
self.model_map = custom_module.MODEL_MAP
elif self.is_sdxl:
if self.is_sdxl:
self.turbine_pipe = SharkSDXLPipeline
self.model_map = EMPTY_SDXL_MAP
else:
self.turbine_pipe = SharkSDPipeline
self.model_map = EMPTY_SD_MAP
external_weights = "safetensors"
max_length = 64
target_backend, self.rt_device, triple = parse_device(device, target_triple)
target_backend, self.rt_device, triple = parse_device(device)
pipe_id_list = [
safe_name(base_model_id),
str(batch_size),
@@ -150,12 +121,9 @@ class StableDiffusion:
if triple in ["gfx940", "gfx942", "gfx90a"]:
decomp_attn = False
attn_spec = "mfma"
elif triple in ["gfx1100", "gfx1103", "gfx1150"]:
elif triple in ["gfx1100", "gfx1103"]:
decomp_attn = False
attn_spec = "wmma"
if triple in ["gfx1103", "gfx1150"]:
# external weights have issues on igpu
external_weights = None
elif target_backend == "llvm-cpu":
decomp_attn = False
@@ -181,17 +149,12 @@ class StableDiffusion:
print(f"\n[LOG] Pipeline initialized with pipe_id: {self.pipe_id}.")
gc.collect()
def prepare_pipe(
self, custom_weights, adapters, embeddings, is_img2img, compiled_pipeline
):
def prepare_pipe(self, custom_weights, adapters, embeddings, is_img2img):
print(f"\n[LOG] Preparing pipeline...")
self.is_img2img = False
mlirs = copy.deepcopy(self.model_map)
vmfbs = copy.deepcopy(self.model_map)
weights = copy.deepcopy(self.model_map)
if not self.is_sdxl:
compiled_pipeline = False
self.compiled_pipeline = compiled_pipeline
if custom_weights:
custom_weights = os.path.join(
@@ -258,6 +221,7 @@ class StableDiffusion:
guidance_scale,
seed,
ondemand,
repeatable_seeds,
resample_type,
control_mode,
hints,
@@ -276,7 +240,7 @@ class StableDiffusion:
def shark_sd_fn_dict_input(
sd_kwargs: dict,
):
print("\n[LOG] Submitting Request...")
print("[LOG] Submitting Request...")
for key in sd_kwargs:
if sd_kwargs[key] in [None, []]:
@@ -286,34 +250,9 @@ def shark_sd_fn_dict_input(
if key == "seed":
sd_kwargs[key] = int(sd_kwargs[key])
# TODO: move these checks into the UI code so we don't have gradio warnings in a generalized dict input function.
if not sd_kwargs["device"]:
gr.Warning("No device specified. Please specify a device.")
return None, ""
if sd_kwargs["height"] not in [512, 1024]:
gr.Warning("Height must be 512 or 1024. This is a temporary limitation.")
return None, ""
if sd_kwargs["height"] != sd_kwargs["width"]:
gr.Warning("Height and width must be the same. This is a temporary limitation.")
return None, ""
if sd_kwargs["base_model_id"] == "stabilityai/sdxl-turbo":
if sd_kwargs["steps"] > 10:
gr.Warning("Max steps for sdxl-turbo is 10. 1 to 4 steps are recommended.")
return None, ""
if sd_kwargs["guidance_scale"] > 3:
gr.Warning(
"sdxl-turbo CFG scale should be less than 2.0 if using negative prompt, 0 otherwise."
)
return None, ""
if sd_kwargs["target_triple"] == "":
if parse_device(sd_kwargs["device"], sd_kwargs["target_triple"])[2] == "":
gr.Warning(
"Target device architecture could not be inferred. Please specify a target triple, e.g. 'gfx1100' for a Radeon 7900xtx."
)
return None, ""
generated_imgs = yield from shark_sd_fn(**sd_kwargs)
return generated_imgs
for i in range(1):
generated_imgs = yield from shark_sd_fn(**sd_kwargs)
yield generated_imgs
def shark_sd_fn(
@@ -334,9 +273,8 @@ def shark_sd_fn(
custom_vae: str,
precision: str,
device: str,
target_triple: str,
ondemand: bool,
compiled_pipeline: bool,
repeatable_seeds: bool,
resample_type: str,
controlnets: dict,
embeddings: dict,
@@ -346,6 +284,8 @@ def shark_sd_fn(
sd_init_image = [sd_init_image]
is_img2img = True if sd_init_image[0] is not None else False
print("\n[LOG] Performing Stable Diffusion Pipeline setup...")
from apps.shark_studio.modules.shared_cmd_opts import cmd_opts
import apps.shark_studio.web.utils.globals as global_obj
@@ -386,7 +326,6 @@ def shark_sd_fn(
"batch_size": batch_size,
"precision": precision,
"device": device,
"target_triple": target_triple,
"custom_vae": custom_vae,
"num_loras": num_loras,
"import_ir": import_ir,
@@ -399,7 +338,6 @@ def shark_sd_fn(
"adapters": adapters,
"embeddings": embeddings,
"is_img2img": is_img2img,
"compiled_pipeline": compiled_pipeline,
}
submit_run_kwargs = {
"prompt": prompt,
@@ -409,6 +347,7 @@ def shark_sd_fn(
"guidance_scale": guidance_scale,
"seed": seed,
"ondemand": ondemand,
"repeatable_seeds": repeatable_seeds,
"resample_type": resample_type,
"control_mode": control_mode,
"hints": hints,
@@ -441,35 +380,22 @@ def shark_sd_fn(
for current_batch in range(batch_count):
start_time = time.time()
out_imgs = global_obj.get_sd_obj().generate_images(**submit_run_kwargs)
if not isinstance(out_imgs, list):
out_imgs = [out_imgs]
# total_time = time.time() - start_time
# text_output = f"Total image(s) generation time: {total_time:.4f}sec"
# print(f"\n[LOG] {text_output}")
# if global_obj.get_sd_status() == SD_STATE_CANCEL:
# break
# else:
for batch in range(batch_size):
save_output_img(
out_imgs[batch],
seed,
sd_kwargs,
)
save_output_img(
out_imgs[current_batch],
seed,
sd_kwargs,
)
generated_imgs.extend(out_imgs)
# TODO: make seed changes over batch counts more configurable.
submit_run_kwargs["seed"] = submit_run_kwargs["seed"] + 1
yield generated_imgs, status_label(
"Stable Diffusion", current_batch + 1, batch_count, batch_size
)
return (generated_imgs, "")
def unload_sd():
print("Unloading models.")
import apps.shark_studio.web.utils.globals as global_obj
global_obj.clear_cache()
gc.collect()
return generated_imgs, ""
def cancel_sd():

View File

@@ -52,13 +52,6 @@ def get_available_devices():
set_iree_runtime_flags()
available_devices = []
rocm_devices = get_devices_by_name("rocm")
available_devices.extend(rocm_devices)
cpu_device = get_devices_by_name("cpu-sync")
available_devices.extend(cpu_device)
cpu_device = get_devices_by_name("cpu-task")
available_devices.extend(cpu_device)
from shark.iree_utils.vulkan_utils import (
get_all_vulkan_devices,
)
@@ -71,28 +64,19 @@ def get_available_devices():
id += 1
if id != 0:
print(f"vulkan devices are available.")
available_devices.extend(vulkan_devices)
metal_devices = get_devices_by_name("metal")
available_devices.extend(metal_devices)
cuda_devices = get_devices_by_name("cuda")
available_devices.extend(cuda_devices)
rocm_devices = get_devices_by_name("rocm")
available_devices.extend(rocm_devices)
hip_devices = get_devices_by_name("hip")
available_devices.extend(hip_devices)
for idx, device_str in enumerate(available_devices):
if "AMD Radeon(TM) Graphics =>" in device_str:
igpu_id_candidates = [
x.split("w/")[-1].split("=>")[0]
for x in available_devices
if "M Graphics" in x
]
for igpu_name in igpu_id_candidates:
if igpu_name:
available_devices[idx] = device_str.replace(
"AMD Radeon(TM) Graphics", igpu_name
)
break
cpu_device = get_devices_by_name("cpu-sync")
available_devices.extend(cpu_device)
cpu_device = get_devices_by_name("cpu-task")
available_devices.extend(cpu_device)
return available_devices
@@ -145,7 +129,7 @@ def set_iree_runtime_flags():
set_iree_vulkan_runtime_flags(flags=vulkan_runtime_flags)
def parse_device(device_str, target_override=""):
def parse_device(device_str):
from shark.iree_utils.compile_utils import (
clean_device_info,
get_iree_target_triple,
@@ -159,8 +143,6 @@ def parse_device(device_str, target_override=""):
else:
rt_device = rt_driver
if target_override:
return target_backend, rt_device, target_override
match target_backend:
case "vulkan-spirv":
triple = get_iree_target_triple(device_str)
@@ -186,7 +168,6 @@ def get_rocm_target_chip(device_str):
"MI100": "gfx908",
"MI50": "gfx906",
"MI60": "gfx906",
"780M": "gfx1103",
}
for key in rocm_chip_map:
if key in device_str:

View File

@@ -24,47 +24,47 @@ def get_schedulers(model_id):
model_id,
subfolder="scheduler",
)
# schedulers["DDPM"] = DDPMScheduler.from_pretrained(
# model_id,
# subfolder="scheduler",
# )
# schedulers["KDPM2Discrete"] = KDPM2DiscreteScheduler.from_pretrained(
# model_id,
# subfolder="scheduler",
# )
# schedulers["LMSDiscrete"] = LMSDiscreteScheduler.from_pretrained(
# model_id,
# subfolder="scheduler",
# )
# schedulers["DDIM"] = DDIMScheduler.from_pretrained(
# model_id,
# subfolder="scheduler",
# )
# schedulers["LCMScheduler"] = LCMScheduler.from_pretrained(
# model_id,
# subfolder="scheduler",
# )
# schedulers["DPMSolverMultistep"] = DPMSolverMultistepScheduler.from_pretrained(
# model_id, subfolder="scheduler", algorithm_type="dpmsolver"
# )
# schedulers["DPMSolverMultistep++"] = DPMSolverMultistepScheduler.from_pretrained(
# model_id, subfolder="scheduler", algorithm_type="dpmsolver++"
# )
# schedulers["DPMSolverMultistepKarras"] = (
# DPMSolverMultistepScheduler.from_pretrained(
# model_id,
# subfolder="scheduler",
# use_karras_sigmas=True,
# )
# )
# schedulers["DPMSolverMultistepKarras++"] = (
# DPMSolverMultistepScheduler.from_pretrained(
# model_id,
# subfolder="scheduler",
# algorithm_type="dpmsolver++",
# use_karras_sigmas=True,
# )
# )
schedulers["DDPM"] = DDPMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers["KDPM2Discrete"] = KDPM2DiscreteScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers["LMSDiscrete"] = LMSDiscreteScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers["DDIM"] = DDIMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers["LCMScheduler"] = LCMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers["DPMSolverMultistep"] = DPMSolverMultistepScheduler.from_pretrained(
model_id, subfolder="scheduler", algorithm_type="dpmsolver"
)
schedulers["DPMSolverMultistep++"] = DPMSolverMultistepScheduler.from_pretrained(
model_id, subfolder="scheduler", algorithm_type="dpmsolver++"
)
schedulers["DPMSolverMultistepKarras"] = (
DPMSolverMultistepScheduler.from_pretrained(
model_id,
subfolder="scheduler",
use_karras_sigmas=True,
)
)
schedulers["DPMSolverMultistepKarras++"] = (
DPMSolverMultistepScheduler.from_pretrained(
model_id,
subfolder="scheduler",
algorithm_type="dpmsolver++",
use_karras_sigmas=True,
)
)
schedulers["EulerDiscrete"] = EulerDiscreteScheduler.from_pretrained(
model_id,
subfolder="scheduler",
@@ -75,24 +75,24 @@ def get_schedulers(model_id):
subfolder="scheduler",
)
)
# schedulers["DEISMultistep"] = DEISMultistepScheduler.from_pretrained(
# model_id,
# subfolder="scheduler",
# )
# schedulers["DPMSolverSinglestep"] = DPMSolverSinglestepScheduler.from_pretrained(
# model_id,
# subfolder="scheduler",
# )
# schedulers["KDPM2AncestralDiscrete"] = (
# KDPM2AncestralDiscreteScheduler.from_pretrained(
# model_id,
# subfolder="scheduler",
# )
# )
# schedulers["HeunDiscrete"] = HeunDiscreteScheduler.from_pretrained(
# model_id,
# subfolder="scheduler",
# )
schedulers["DEISMultistep"] = DEISMultistepScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers["DPMSolverSinglestep"] = DPMSolverSinglestepScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
schedulers["KDPM2AncestralDiscrete"] = (
KDPM2AncestralDiscreteScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
)
schedulers["HeunDiscrete"] = HeunDiscreteScheduler.from_pretrained(
model_id,
subfolder="scheduler",
)
return schedulers
@@ -102,17 +102,17 @@ def export_scheduler_model(model):
scheduler_model_map = {
"PNDM": export_scheduler_model("PNDMScheduler"),
# "DPMSolverSDE": export_scheduler_model("DpmSolverSDEScheduler"),
"DPMSolverSDE": export_scheduler_model("DpmSolverSDEScheduler"),
"EulerDiscrete": export_scheduler_model("EulerDiscreteScheduler"),
"EulerAncestralDiscrete": export_scheduler_model("EulerAncestralDiscreteScheduler"),
# "LCM": export_scheduler_model("LCMScheduler"),
# "LMSDiscrete": export_scheduler_model("LMSDiscreteScheduler"),
# "DDPM": export_scheduler_model("DDPMScheduler"),
# "DDIM": export_scheduler_model("DDIMScheduler"),
# "DPMSolverMultistep": export_scheduler_model("DPMSolverMultistepScheduler"),
# "KDPM2Discrete": export_scheduler_model("KDPM2DiscreteScheduler"),
# "DEISMultistep": export_scheduler_model("DEISMultistepScheduler"),
# "DPMSolverSinglestep": export_scheduler_model("DPMSolverSingleStepScheduler"),
# "KDPM2AncestralDiscrete": export_scheduler_model("KDPM2AncestralDiscreteScheduler"),
# "HeunDiscrete": export_scheduler_model("HeunDiscreteScheduler"),
"LCM": export_scheduler_model("LCMScheduler"),
"LMSDiscrete": export_scheduler_model("LMSDiscreteScheduler"),
"DDPM": export_scheduler_model("DDPMScheduler"),
"DDIM": export_scheduler_model("DDIMScheduler"),
"DPMSolverMultistep": export_scheduler_model("DPMSolverMultistepScheduler"),
"KDPM2Discrete": export_scheduler_model("KDPM2DiscreteScheduler"),
"DEISMultistep": export_scheduler_model("DEISMultistepScheduler"),
"DPMSolverSinglestep": export_scheduler_model("DPMSolverSingleStepScheduler"),
"KDPM2AncestralDiscrete": export_scheduler_model("KDPM2AncestralDiscreteScheduler"),
"HeunDiscrete": export_scheduler_model("HeunDiscreteScheduler"),
}

View File

@@ -0,0 +1,28 @@
{
"prompt": [
"a photo taken of the front of a super-car drifting on a road near mountains at high speeds with smoke coming off the tires, front angle, front point of view, trees in the mountains of the background, ((sharp focus))"
],
"negative_prompt": [
"watermark, signature, logo, text, lowres, ((monochrome, grayscale)), blurry, ugly, blur, oversaturated, cropped"
],
"sd_init_image": [null],
"height": 512,
"width": 512,
"steps": 50,
"strength": 0.8,
"guidance_scale": 7.5,
"seed": "-1",
"batch_count": 1,
"batch_size": 1,
"scheduler": "EulerDiscrete",
"base_model_id": "stabilityai/stable-diffusion-2-1-base",
"custom_weights": null,
"custom_vae": null,
"precision": "fp16",
"device": "AMD Radeon RX 7900 XTX => vulkan://0",
"ondemand": false,
"repeatable_seeds": false,
"resample_type": "Nearest Neighbor",
"controlnets": {},
"embeddings": {}
}

View File

@@ -76,8 +76,8 @@ def launch_webui(address):
def webui():
from apps.shark_studio.modules.shared_cmd_opts import cmd_opts
from apps.shark_studio.web.ui.utils import (
amdicon_loc,
amdlogo_loc,
nodicon_loc,
nodlogo_loc,
)
launch_api = cmd_opts.api
@@ -172,9 +172,9 @@ def webui():
analytics_enabled=False,
title="Shark Studio 2.0 Beta",
) as studio_web:
amd_logo = Image.open(amdlogo_loc)
nod_logo = Image.open(nodlogo_loc)
gr.Image(
value=amd_logo,
value=nod_logo,
show_label=False,
interactive=False,
elem_id="tab_bar_logo",
@@ -209,7 +209,7 @@ def webui():
inbrowser=True,
server_name="0.0.0.0",
server_port=cmd_opts.server_port,
favicon_path=amdicon_loc,
favicon_path=nodicon_loc,
)

View File

@@ -138,7 +138,6 @@ with gr.Blocks(title="Chat") as chat_element:
label="Run in streaming mode (requires recompilation)",
value=True,
interactive=False,
visible=False,
)
prompt_prefix = gr.Checkbox(
label="Add System Prompt",

View File

@@ -367,7 +367,7 @@ footer {
#tab_bar_logo .image-container {
object-fit: scale-down;
position: absolute !important;
top: 10px;
top: 14px;
right: 0px;
height: 36px;
}
}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

View File

@@ -10,7 +10,7 @@ from apps.shark_studio.web.utils.file_utils import (
get_generated_imgs_path,
get_generated_imgs_todays_subdir,
)
from apps.shark_studio.web.ui.utils import amdlogo_loc
from apps.shark_studio.web.ui.utils import nodlogo_loc
from apps.shark_studio.web.utils.metadata import displayable_metadata
# -- Functions for file, directory and image info querying
@@ -60,7 +60,7 @@ def output_subdirs() -> list[str]:
# --- Define UI layout for Gradio
with gr.Blocks() as outputgallery_element:
amd_logo = Image.open(amdlogo_loc)
nod_logo = Image.open(nodlogo_loc)
with gr.Row(elem_id="outputgallery_gallery"):
# needed to workaround gradio issue:
@@ -73,7 +73,7 @@ with gr.Blocks() as outputgallery_element:
with gr.Column(scale=6):
logo = gr.Image(
label="Getting subdirectories...",
value=amd_logo,
value=nod_logo,
interactive=False,
visible=True,
show_label=True,

View File

@@ -14,12 +14,11 @@ from apps.shark_studio.web.utils.file_utils import (
get_checkpoints_path,
get_checkpoints,
get_configs_path,
write_default_sd_configs,
write_default_sd_config,
)
from apps.shark_studio.api.sd import (
shark_sd_fn_dict_input,
cancel_sd,
unload_sd,
)
from apps.shark_studio.api.controlnet import (
cnet_preview,
@@ -33,7 +32,7 @@ from apps.shark_studio.modules.img_processing import (
)
from apps.shark_studio.modules.shared_cmd_opts import cmd_opts
from apps.shark_studio.web.ui.utils import (
amdlogo_loc,
nodlogo_loc,
none_to_str_none,
str_none_to_none,
)
@@ -118,9 +117,8 @@ def pull_sd_configs(
custom_vae,
precision,
device,
target_triple,
ondemand,
compiled_pipeline,
repeatable_seeds,
resample_type,
controlnets,
embeddings,
@@ -177,9 +175,8 @@ def load_sd_cfg(sd_json: dict, load_sd_config: str):
sd_json["custom_vae"],
sd_json["precision"],
sd_json["device"],
sd_json["target_triple"],
sd_json["ondemand"],
sd_json["compiled_pipeline"],
sd_json["repeatable_seeds"],
sd_json["resample_type"],
sd_json["controlnets"],
sd_json["embeddings"],
@@ -256,11 +253,6 @@ with gr.Blocks(title="Stable Diffusion") as sd_element:
choices=global_obj.get_device_list(),
allow_custom_value=False,
)
target_triple = gr.Textbox(
elem_id="target_triple",
label="Architecture",
value="",
)
with gr.Row():
ondemand = gr.Checkbox(
value=cmd_opts.lowvram,
@@ -283,7 +275,6 @@ with gr.Blocks(title="Stable Diffusion") as sd_element:
elem_id="custom_model",
value="stabilityai/stable-diffusion-2-1-base",
choices=sd_default_models,
allow_custom_value=True,
) # base_model_id
with gr.Row():
height = gr.Slider(
@@ -588,6 +579,21 @@ with gr.Blocks(title="Stable Diffusion") as sd_element:
object_fit="fit",
preview=True,
)
with gr.Row():
std_output = gr.Textbox(
value=f"{sd_model_info}\n"
f"Images will be saved at "
f"{get_generated_imgs_path()}",
lines=2,
elem_id="std_output",
show_label=True,
label="Log",
show_copy_button=True,
)
sd_element.load(
logger.read_sd_logs, None, std_output, every=1
)
sd_status = gr.Textbox(visible=False)
with gr.Row():
batch_count = gr.Slider(
1,
@@ -606,15 +612,17 @@ with gr.Blocks(title="Stable Diffusion") as sd_element:
interactive=True,
visible=True,
)
compiled_pipeline = gr.Checkbox(
False,
label="Faster txt2img (SDXL only)",
repeatable_seeds = gr.Checkbox(
cmd_opts.repeatable_seeds,
label="Use Repeatable Seeds for Batches",
)
with gr.Row():
stable_diffusion = gr.Button("Start")
unload = gr.Button("Unload Models")
unload.click(
fn=unload_sd,
random_seed = gr.Button("Randomize Seed")
random_seed.click(
lambda: -1,
inputs=[],
outputs=[seed],
queue=False,
show_progress=False,
)
@@ -629,7 +637,7 @@ with gr.Blocks(title="Stable Diffusion") as sd_element:
get_configs_path(),
"default_sd_config.json",
)
write_default_sd_configs(get_configs_path())
write_default_sd_config(default_config_file)
sd_json = gr.JSON(
elem_classes=["fill"],
value=view_json_file(default_config_file),
@@ -683,9 +691,8 @@ with gr.Blocks(title="Stable Diffusion") as sd_element:
custom_vae,
precision,
device,
target_triple,
ondemand,
compiled_pipeline,
repeatable_seeds,
resample_type,
cnet_config,
embeddings_config,
@@ -702,22 +709,6 @@ with gr.Blocks(title="Stable Diffusion") as sd_element:
inputs=[sd_json, sd_config_name],
outputs=[sd_config_name],
)
with gr.Tab(label="Log", id=103) as sd_tab_log:
with gr.Row():
std_output = gr.Textbox(
value=f"{sd_model_info}\n"
f"Images will be saved at "
f"{get_generated_imgs_path()}",
lines=2,
elem_id="std_output",
show_label=True,
label="Log",
show_copy_button=True,
)
sd_element.load(
logger.read_sd_logs, None, std_output, every=1
)
sd_status = gr.Textbox(visible=False)
pull_kwargs = dict(
fn=pull_sd_configs,
@@ -739,9 +730,8 @@ with gr.Blocks(title="Stable Diffusion") as sd_element:
custom_vae,
precision,
device,
target_triple,
ondemand,
compiled_pipeline,
repeatable_seeds,
resample_type,
cnet_config,
embeddings_config,

View File

@@ -10,8 +10,8 @@ def resource_path(relative_path):
return os.path.join(base_path, relative_path)
amdlogo_loc = resource_path("logos/amd-logo.jpg")
amdicon_loc = resource_path("logos/amd-icon.jpg")
nodlogo_loc = resource_path("logos/nod-logo.png")
nodicon_loc = resource_path("logos/nod-icon.png")
class HSLHue(IntEnum):

View File

@@ -1,95 +0,0 @@
default_sd_config = r"""{
"prompt": [
"a photo taken of the front of a super-car drifting on a road near mountains at high speeds with smoke coming off the tires, front angle, front point of view, trees in the mountains of the background, ((sharp focus))"
],
"negative_prompt": [
"watermark, signature, logo, text, lowres, ((monochrome, grayscale)), blurry, ugly, blur, oversaturated, cropped"
],
"sd_init_image": [null],
"height": 512,
"width": 512,
"steps": 50,
"strength": 0.8,
"guidance_scale": 7.5,
"seed": "-1",
"batch_count": 1,
"batch_size": 1,
"scheduler": "EulerDiscrete",
"base_model_id": "stabilityai/stable-diffusion-2-1-base",
"custom_weights": null,
"custom_vae": null,
"precision": "fp16",
"device": "",
"target_triple": "",
"ondemand": false,
"compiled_pipeline": false,
"resample_type": "Nearest Neighbor",
"controlnets": {},
"embeddings": {}
}"""
sdxl_30steps = r"""{
"prompt": [
"a cat under the snow with blue eyes, covered by snow, cinematic style, medium shot, professional photo, animal"
],
"negative_prompt": [
"watermark, signature, logo, text, lowres, ((monochrome, grayscale)), blurry, ugly, blur, oversaturated, cropped"
],
"sd_init_image": [null],
"height": 1024,
"width": 1024,
"steps": 30,
"strength": 0.8,
"guidance_scale": 7.5,
"seed": "-1",
"batch_count": 1,
"batch_size": 1,
"scheduler": "EulerDiscrete",
"base_model_id": "stabilityai/stable-diffusion-xl-base-1.0",
"custom_weights": null,
"custom_vae": null,
"precision": "fp16",
"device": "",
"target_triple": "",
"ondemand": false,
"compiled_pipeline": true,
"resample_type": "Nearest Neighbor",
"controlnets": {},
"embeddings": {}
}"""
sdxl_turbo = r"""{
"prompt": [
"A cat wearing a hat that says 'TURBO' on it. The cat is sitting on a skateboard."
],
"negative_prompt": [
""
],
"sd_init_image": [null],
"height": 512,
"width": 512,
"steps": 2,
"strength": 0.8,
"guidance_scale": 0,
"seed": "-1",
"batch_count": 1,
"batch_size": 1,
"scheduler": "EulerAncestralDiscrete",
"base_model_id": "stabilityai/sdxl-turbo",
"custom_weights": null,
"custom_vae": null,
"precision": "fp16",
"device": "",
"target_triple": "",
"ondemand": false,
"compiled_pipeline": true,
"resample_type": "Nearest Neighbor",
"controlnets": {},
"embeddings": {}
}"""
default_sd_configs = {
"default_sd_config.json": default_sd_config,
"sdxl-30steps.json": sdxl_30steps,
"sdxl-turbo.json": sdxl_turbo,
}

View File

@@ -11,14 +11,39 @@ checkpoints_filetypes = (
"*.safetensors",
)
from apps.shark_studio.web.utils.default_configs import default_sd_configs
default_sd_config = r"""{
"prompt": [
"a photo taken of the front of a super-car drifting on a road near mountains at high speeds with smoke coming off the tires, front angle, front point of view, trees in the mountains of the background, ((sharp focus))"
],
"negative_prompt": [
"watermark, signature, logo, text, lowres, ((monochrome, grayscale)), blurry, ugly, blur, oversaturated, cropped"
],
"sd_init_image": [null],
"height": 512,
"width": 512,
"steps": 50,
"strength": 0.8,
"guidance_scale": 7.5,
"seed": "-1",
"batch_count": 1,
"batch_size": 1,
"scheduler": "EulerDiscrete",
"base_model_id": "stabilityai/stable-diffusion-2-1-base",
"custom_weights": null,
"custom_vae": null,
"precision": "fp16",
"device": "AMD Radeon RX 7900 XTX => vulkan://0",
"ondemand": false,
"repeatable_seeds": false,
"resample_type": "Nearest Neighbor",
"controlnets": {},
"embeddings": {}
}"""
def write_default_sd_configs(path):
for key in default_sd_configs.keys():
config_fpath = os.path.join(path, key)
with open(config_fpath, "w") as f:
f.write(default_sd_configs[key])
def write_default_sd_config(path):
with open(path, "w") as f:
f.write(default_sd_config)
def safe_name(name):

View File

@@ -10,7 +10,7 @@ from utils import get_datasets
shark_root = Path(__file__).parent.parent
demo_css = shark_root.joinpath("web/demo.css").resolve()
nodlogo_loc = shark_root.joinpath("web/models/stable_diffusion/logos/amd-logo.jpg")
nodlogo_loc = shark_root.joinpath("web/models/stable_diffusion/logos/nod-logo.png")
with gr.Blocks(title="Dataset Annotation Tool", css=demo_css) as shark_web:

View File

@@ -6,11 +6,9 @@ setuptools
wheel
torch==2.3.0
torch>=2.3.0
shark-turbine @ git+https://github.com/iree-org/iree-turbine.git@main
turbine-models @ git+https://github.com/nod-ai/SHARK-Turbine.git@deprecated-constraints#subdirectory=models
diffusers @ git+https://github.com/nod-ai/diffusers@0.29.0.dev0-shark
brevitas @ git+https://github.com/Xilinx/brevitas.git@6695e8df7f6a2c7715b9ed69c4b78157376bb60b
turbine-models @ git+https://github.com/nod-ai/SHARK-Turbine.git@ean-unify-sd#subdirectory=models
# SHARK Runner
tqdm
@@ -26,9 +24,6 @@ parameterized
# Add transformers, diffusers and scipy since it most commonly used
#accelerate is now required for diffusers import from ckpt.
accelerate
scipy
transformers==4.37.1
torchsde # Required for Stable Diffusion SDE schedulers.
ftfy
gradio==4.29.0
altair

View File

@@ -89,7 +89,7 @@ else {python -m venv .\shark.venv\}
python -m pip install --upgrade pip
pip install wheel
pip install --pre -r requirements.txt
pip install --force-reinstall https://github.com/nod-ai/SRT/releases/download/candidate-20240528.279/iree_compiler-20240528.279-cp311-cp311-win_amd64.whl https://github.com/nod-ai/SRT/releases/download/candidate-20240528.279/iree_runtime-20240528.279-cp311-cp311-win_amd64.whl
pip install -e .
>>>>>>> 0c904eb7 (Shark Studio SDXL support, HIP driver support, simpler device info, small fixes)
Write-Host "Source your venv with ./shark.venv/Scripts/activate"