mirror of
https://github.com/nod-ai/SHARK-Studio.git
synced 2026-01-11 23:08:19 -05:00
Compare commits
3 Commits
github-pag
...
RefVideo
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d8c9225af8 | ||
|
|
62f3573d43 | ||
|
|
b73f79be66 |
37
.github/workflows/gh-pages-releases.yml
vendored
37
.github/workflows/gh-pages-releases.yml
vendored
@@ -1,37 +0,0 @@
|
||||
# See: https://github.com/llvm/torch-mlir/issues/1374
|
||||
name: Publish releases page
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
scrape_and_publish_releases:
|
||||
name: "Scrape and publish releases"
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
# Don't run this in everyone's forks.
|
||||
if: github.repository == 'nod-ai/SHARK'
|
||||
|
||||
steps:
|
||||
- name: Checking out repository
|
||||
uses: actions/checkout@v2
|
||||
with:
|
||||
token: ${{ secrets.NODAI_INVOCATION_TOKEN }}
|
||||
- name: Run scrape releases script
|
||||
run: python ./build_tools/scrape_releases.py nod-ai SHARK > /tmp/index.html
|
||||
shell: bash
|
||||
- run: git fetch --all
|
||||
- run: git switch github-pages
|
||||
- run: git config --global user.email "none@none.com"
|
||||
- run: git config --global user.name "nod-team"
|
||||
- run: mv /tmp/index.html package-index/index.html
|
||||
- run: git add package-index/index.html
|
||||
|
||||
# Only try to make a commit if the file has changed.
|
||||
- run: git diff --cached --exit-code || git commit -m "Update releases."
|
||||
|
||||
- name: GitHub Push
|
||||
uses: ad-m/github-push-action@v0.6.0
|
||||
with:
|
||||
github_token: ${{ secrets.NODAI_INVOCATION_TOKEN }}
|
||||
branch: github-pages
|
||||
68
.github/workflows/nightly.yml
vendored
68
.github/workflows/nightly.yml
vendored
@@ -16,7 +16,6 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version: ["3.10"]
|
||||
backend: [IREE, SHARK]
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
@@ -39,10 +38,6 @@ jobs:
|
||||
tag_name="${package_version}"
|
||||
echo "package_version=${package_version}" >> $GITHUB_ENV
|
||||
echo "tag_name=${tag_name}" >> $GITHUB_ENV
|
||||
- name: Set Environment Variables
|
||||
run: |
|
||||
echo "SHORT_SHA=`git rev-parse --short=4 HEAD`" >> $GITHUB_ENV
|
||||
echo "DATE=$(date +'%Y-%m-%d')" >> $GITHUB_ENV
|
||||
- name: Create Release
|
||||
id: create_release
|
||||
uses: actions/create-release@v1
|
||||
@@ -54,18 +49,12 @@ jobs:
|
||||
body: |
|
||||
Automatic snapshot release of nod.ai SHARK.
|
||||
draft: true
|
||||
prerelease: false
|
||||
- name: Find Torch-MLIR Release
|
||||
run: |
|
||||
TM_HTML_URL="$(python3 -c "import urllib.request, json, sys; u=json.loads(urllib.request.urlopen('https://api.github.com/repos/llvm/torch-mlir/releases/latest').read().decode()).get('html_url', False); print(u) if u else sys.exit(1);")"
|
||||
TM_RELEASE_DIR=${TM_HTML_URL/"tag"/"expanded_assets"}
|
||||
echo "TM_RELEASE_DIR=${TM_RELEASE_DIR}" >> $GITHUB_ENV
|
||||
prerelease: false
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
echo "Torch-MLIR Release DIR is ${{ env.TM_RELEASE_DIR }}"
|
||||
python -m pip install --upgrade pip
|
||||
python -m pip install flake8 pytest toml
|
||||
if [ -f requirements.txt ]; then pip install -r requirements.txt -f ${{ env.TM_RELEASE_DIR }} -f https://github.com/nod-ai/SHARK-Runtime/releases; fi
|
||||
if [ -f requirements.txt ]; then pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/nightly/cpu -f https://github.com/llvm/torch-mlir/releases -f https://github.com/nod-ai/SHARK-Runtime/releases; fi
|
||||
- name: Lint with flake8
|
||||
run: |
|
||||
# stop the build if there are Python syntax errors or undefined names
|
||||
@@ -73,19 +62,46 @@ jobs:
|
||||
# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
|
||||
flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics --exclude shark.venv,lit.cfg.py
|
||||
- name: Build and validate the IREE package
|
||||
if: ${{ matrix.backend == 'IREE' }}
|
||||
run: |
|
||||
cd $GITHUB_WORKSPACE
|
||||
USE_IREE=1 VENV_DIR=iree.venv ./setup_venv.sh
|
||||
source iree.venv/bin/activate
|
||||
package_version="$(printf '%(%Y%m%d)T.${{ github.run_number }}')"
|
||||
SHARK_PACKAGE_VERSION=${package_version} \
|
||||
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f ${{ env.TM_RELEASE_DIR }} -f https://github.com/iree-org/iree/releases
|
||||
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://github.com/llvm/torch-mlir/releases -f https://github.com/iree-org/iree/releases
|
||||
# Install the built wheel
|
||||
pip install ./wheelhouse/nodai*
|
||||
# Validate the Models
|
||||
/bin/bash "$GITHUB_WORKSPACE/build_tools/populate_sharktank_ci.sh"
|
||||
pytest --ci --ci_sha=${SHORT_SHA} --local_tank_cache="./gen_shark_tank/" tank/test_models.py |
|
||||
pytest -k 'cpu' --ignore=benchmarks/tests/test_hf_benchmark.py --ignore=benchmarks/tests/test_benchmark.py --ignore=shark/tests/test_shark_importer.py --ignore=tank/tf/ |
|
||||
tail -n 1 |
|
||||
tee -a pytest_results.txt
|
||||
pytest -k 'gpu' --ignore=benchmarks/tests/test_hf_benchmark.py --ignore=benchmarks/tests/test_benchmark.py --ignore=shark/tests/test_shark_importer.py --ignore=tank/tf/ |
|
||||
tail -n 1 |
|
||||
tee -a pytest_results.txt
|
||||
pytest -k 'vulkan' --ignore=benchmarks/tests/test_hf_benchmark.py --ignore=benchmarks/tests/test_benchmark.py --ignore=shark/tests/test_shark_importer.py --ignore=tank/tf/ |
|
||||
tail -n 1 |
|
||||
tee -a pytest_results.txt
|
||||
rm -rf ./wheelhouse/nodai*
|
||||
|
||||
- name: Build and validate the SHARK Runtime package
|
||||
run: |
|
||||
cd $GITHUB_WORKSPACE
|
||||
./setup_venv.sh
|
||||
source shark.venv/bin/activate
|
||||
package_version="$(printf '%(%Y%m%d)T.${{ github.run_number }}')"
|
||||
SHARK_PACKAGE_VERSION=${package_version} \
|
||||
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f https://github.com/llvm/torch-mlir/releases -f https://github.com/nod-ai/SHARK-Runtime/releases
|
||||
# Install the built wheel
|
||||
pip install ./wheelhouse/nodai*
|
||||
# Validate the Models
|
||||
pytest -k 'cpu' --ignore=benchmarks/tests/test_hf_benchmark.py --ignore=benchmarks/tests/test_benchmark.py --ignore=shark/tests/test_shark_importer.py --ignore=tank/tf/ |
|
||||
tail -n 1 |
|
||||
tee -a pytest_results.txt
|
||||
pytest -k 'gpu' --ignore=benchmarks/tests/test_hf_benchmark.py --ignore=benchmarks/tests/test_benchmark.py --ignore=shark/tests/test_shark_importer.py --ignore=tank/tf/ |
|
||||
tail -n 1 |
|
||||
tee -a pytest_results.txt
|
||||
pytest -k 'vulkan' --ignore=benchmarks/tests/test_hf_benchmark.py --ignore=benchmarks/tests/test_benchmark.py --ignore=shark/tests/test_shark_importer.py --ignore=tank/tf/ |
|
||||
tail -n 1 |
|
||||
tee -a pytest_results.txt
|
||||
if !(grep -Fxq " failed" pytest_results.txt)
|
||||
@@ -94,36 +110,20 @@ jobs:
|
||||
gsutil -m cp -r $GITHUB_WORKSPACE/gen_shark_tank/* gs://shark_tank/$SHA
|
||||
gsutil -m cp -r gs://shark_tank/$SHA/* gs://shark_tank/latest/
|
||||
fi
|
||||
rm pytest_results.txt
|
||||
rm -rf ./wheelhouse/nodai*
|
||||
|
||||
- name: Build and validate the SHARK Runtime package
|
||||
if: ${{ matrix.backend == 'SHARK' }}
|
||||
run: |
|
||||
cd $GITHUB_WORKSPACE
|
||||
./setup_venv.sh
|
||||
source shark.venv/bin/activate
|
||||
package_version="$(printf '%(%Y%m%d)T.${{ github.run_number }}')"
|
||||
SHARK_PACKAGE_VERSION=${package_version} \
|
||||
pip wheel -v -w wheelhouse . --pre -f https://download.pytorch.org/whl/nightly/torch -f ${{ env.TM_RELEASE_DIR }} -f https://github.com/nod-ai/SHARK-Runtime/releases
|
||||
# Install the built wheel
|
||||
pip install ./wheelhouse/nodai*
|
||||
# Validate the Models
|
||||
pytest --ci --ci_sha=${SHORT_SHA} --local_tank_cache="./gen_shark_tank/" tank/test_models.py |
|
||||
tail -n 1 |
|
||||
tee -a pytest_results.txt
|
||||
|
||||
- name: Upload Release Assets
|
||||
if: ${{ matrix.backend == 'SHARK' }}
|
||||
id: upload-release-assets
|
||||
uses: dwenegar/upload-release-assets@v1
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.NODAI_INVOCATION_TOKEN }}
|
||||
with:
|
||||
release_id: ${{ steps.create_release.outputs.id }}
|
||||
assets_path: ${GITHUB_WORKSPACE}/wheelhouse/nodai_*.whl
|
||||
assets_path: ./wheelhouse/nodai_*.whl
|
||||
|
||||
- name: Publish Release
|
||||
if: ${{ matrix.backend == 'SHARK' }}
|
||||
id: publish_release
|
||||
uses: eregon/publish-release@v1
|
||||
env:
|
||||
|
||||
41
.github/workflows/test-models.yml
vendored
41
.github/workflows/test-models.yml
vendored
@@ -15,8 +15,8 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: true
|
||||
matrix:
|
||||
os: [icelake, a100, MacStudio, ubuntu-latest]
|
||||
suite: [cpu,cuda,vulkan]
|
||||
os: [a100, MacStudio, ubuntu-latest]
|
||||
suite: [cpu,gpu,vulkan]
|
||||
python-version: ["3.10"]
|
||||
include:
|
||||
- os: ubuntu-latest
|
||||
@@ -25,21 +25,15 @@ jobs:
|
||||
- os: ubuntu-latest
|
||||
suite: vulkan
|
||||
- os: ubuntu-latest
|
||||
suite: cuda
|
||||
suite: gpu
|
||||
- os: ubuntu-latest
|
||||
suite: cpu
|
||||
- os: MacStudio
|
||||
suite: cuda
|
||||
suite: gpu
|
||||
- os: MacStudio
|
||||
suite: cpu
|
||||
- os: MacStudio
|
||||
suite: vulkan
|
||||
- os: icelake
|
||||
suite: vulkan
|
||||
- os: icelake
|
||||
suite: cuda
|
||||
- os: a100
|
||||
suite: cpu
|
||||
|
||||
runs-on: ${{ matrix.os }}
|
||||
|
||||
@@ -52,13 +46,13 @@ jobs:
|
||||
echo "DATE=$(date +'%Y-%m-%d')" >> $GITHUB_ENV
|
||||
|
||||
- name: Set up Python Version File ${{ matrix.python-version }}
|
||||
if: matrix.os == 'a100' || matrix.os == 'ubuntu-latest' || matrix.os == 'icelake'
|
||||
if: matrix.os == 'a100' || matrix.os == 'ubuntu-latest'
|
||||
run: |
|
||||
# See https://github.com/actions/setup-python/issues/433
|
||||
echo ${{ matrix.python-version }} >> $GITHUB_WORKSPACE/.python-version
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
if: matrix.os == 'a100' || matrix.os == 'ubuntu-latest' || matrix.os == 'icelake'
|
||||
if: matrix.os == 'a100' || matrix.os == 'ubuntu-latest'
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '${{ matrix.python-version }}'
|
||||
@@ -84,30 +78,27 @@ jobs:
|
||||
# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
|
||||
flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics --exclude lit.cfg.py
|
||||
|
||||
- name: Validate Models on CPU
|
||||
- name: Validate CPU Models
|
||||
if: matrix.suite == 'cpu'
|
||||
run: |
|
||||
cd $GITHUB_WORKSPACE
|
||||
PYTHON=python${{ matrix.python-version }} BENCHMARK=1 IMPORTER=1 ./setup_venv.sh
|
||||
PYTHON=python${{ matrix.python-version }} IMPORTER=1 ./setup_venv.sh
|
||||
source shark.venv/bin/activate
|
||||
pytest --benchmark --ci --ci_sha=${SHORT_SHA} --local_tank_cache="/data/anush" tank/test_models.py -k cpu
|
||||
gsutil cp ./bench_results.csv gs://shark-public/builder/bench_results/${DATE}/bench_results_cpu_${SHORT_SHA}.csv
|
||||
gsutil cp gs://shark-public/builder/bench_results/${DATE}/bench_results_cpu_${SHORT_SHA}.csv gs://shark-public/builder/bench_results/latest/bench_results_cpu_latest.csv
|
||||
pytest -k 'cpu' --ignore=shark/tests/test_shark_importer.py --ignore=benchmarks/tests/test_hf_benchmark.py --ignore=benchmarks/tests/test_benchmark.py
|
||||
|
||||
- name: Validate Models on NVIDIA GPU
|
||||
if: matrix.suite == 'cuda'
|
||||
- name: Validate GPU Models
|
||||
if: matrix.suite == 'gpu'
|
||||
run: |
|
||||
cd $GITHUB_WORKSPACE
|
||||
PYTHON=python${{ matrix.python-version }} BENCHMARK=1 IMPORTER=1 ./setup_venv.sh
|
||||
PYTHON=python${{ matrix.python-version }} IMPORTER=1 ./setup_venv.sh
|
||||
source shark.venv/bin/activate
|
||||
pytest --benchmark --ci --ci_sha=${SHORT_SHA} --local_tank_cache="/data/anush" tank/test_models.py -k cuda
|
||||
gsutil cp ./bench_results.csv gs://shark-public/builder/bench_results/${DATE}/bench_results_cuda_${SHORT_SHA}.csv
|
||||
gsutil cp gs://shark-public/builder/bench_results/${DATE}/bench_results_cuda_${SHORT_SHA}.csv gs://shark-public/builder/bench_results/latest/bench_results_cuda_latest.csv
|
||||
pytest --benchmark -k "gpu" --ignore=shark/tests/test_shark_importer.py --ignore=benchmarks/tests/test_hf_benchmark.py --ignore=benchmarks/tests/test_benchmark.py
|
||||
gsutil cp ./bench_results.csv gs://shark-public/builder/bench_results/${DATE}/bench_results_gpu_${SHORT_SHA}.csv
|
||||
|
||||
- name: Validate Vulkan Models
|
||||
if: matrix.suite == 'vulkan'
|
||||
run: |
|
||||
cd $GITHUB_WORKSPACE
|
||||
PYTHON=python${{ matrix.python-version }} BENCHMARK=1 IMPORTER=1 ./setup_venv.sh
|
||||
PYTHON=python${{ matrix.python-version }} ./setup_venv.sh
|
||||
source shark.venv/bin/activate
|
||||
pytest --ci --ci_sha=${SHORT_SHA} --local_tank_cache="/data/anush" tank/test_models.py -k vulkan
|
||||
pytest -k 'vulkan' --ignore=shark/tests/test_shark_importer.py --ignore=benchmarks/tests/test_hf_benchmark.py --ignore=benchmarks/tests/test_benchmark.py
|
||||
|
||||
4
.gitmodules
vendored
Normal file
4
.gitmodules
vendored
Normal file
@@ -0,0 +1,4 @@
|
||||
[submodule "inference/thirdparty/shark-runtime"]
|
||||
path = inference/thirdparty/shark-runtime
|
||||
url =https://github.com/nod-ai/SHARK-Runtime.git
|
||||
branch = shark-06032022
|
||||
3
.style.yapf
Normal file
3
.style.yapf
Normal file
@@ -0,0 +1,3 @@
|
||||
[style]
|
||||
based_on_style = google
|
||||
column_limit = 80
|
||||
392
README.md
Normal file
392
README.md
Normal file
@@ -0,0 +1,392 @@
|
||||
# SHARK
|
||||
|
||||
High Performance Machine Learning and Data Analytics for CPUs, GPUs, Accelerators and Heterogeneous Clusters
|
||||
|
||||
[](https://github.com/nod-ai/SHARK/actions/workflows/nightly.yml)
|
||||
[](https://github.com/nod-ai/SHARK/actions/workflows/test-models.yml)
|
||||
|
||||
## Communication Channels
|
||||
|
||||
* [SHARK Discord server](https://discord.gg/RUqY2h2s9u): Real time discussions with the SHARK team and other users
|
||||
* [GitHub issues](https://github.com/nod-ai/SHARK/issues): Feature requests, bugs etc
|
||||
|
||||
|
||||
## Installation
|
||||
|
||||
<details>
|
||||
<summary>Installation (Linux and macOS)</summary>
|
||||
|
||||
### Setup a new pip Virtual Environment
|
||||
|
||||
This step sets up a new VirtualEnv for Python
|
||||
|
||||
```shell
|
||||
python --version #Check you have 3.7->3.10 on Linux or 3.10 on macOS
|
||||
python -m venv shark_venv
|
||||
source shark_venv/bin/activate
|
||||
|
||||
# If you are using conda create and activate a new conda env
|
||||
|
||||
# Some older pip installs may not be able to handle the recent PyTorch deps
|
||||
python -m pip install --upgrade pip
|
||||
```
|
||||
|
||||
*macOS Metal* users please install https://sdk.lunarg.com/sdk/download/latest/mac/vulkan-sdk.dmg and enable "System wide install"
|
||||
|
||||
### Install SHARK
|
||||
|
||||
This step pip installs SHARK and related packages on Linux Python 3.7, 3.8, 3.9, 3.10 and macOS Python 3.10
|
||||
|
||||
```shell
|
||||
pip install nodai-shark -f https://github.com/nod-ai/SHARK/releases -f https://github.com/llvm/torch-mlir/releases -f https://github.com/nod-ai/shark-runtime/releases --extra-index-url https://download.pytorch.org/whl/nightly/cpu
|
||||
```
|
||||
If you are on an Intel macOS machine you need this [workaround](https://github.com/nod-ai/SHARK/issues/102) for an upstream issue.
|
||||
|
||||
### Download and run Resnet50 sample
|
||||
|
||||
```shell
|
||||
curl -O https://raw.githubusercontent.com/nod-ai/SHARK/main/shark/examples/shark_inference/resnet50_script.py
|
||||
#Install deps for test script
|
||||
pip install --pre torch torchvision torchaudio tqdm pillow --extra-index-url https://download.pytorch.org/whl/nightly/cpu
|
||||
python ./resnet50_script.py --device="cpu" #use cuda or vulkan or metal
|
||||
```
|
||||
|
||||
### Download and run BERT (MiniLM) sample
|
||||
```shell
|
||||
curl -O https://raw.githubusercontent.com/nod-ai/SHARK/main/shark/examples/shark_inference/minilm_jit.py
|
||||
#Install deps for test script
|
||||
pip install transformers torch --extra-index-url https://download.pytorch.org/whl/nightly/cpu
|
||||
python ./minilm_jit.py --device="cpu" #use cuda or vulkan or metal
|
||||
```
|
||||
</details>
|
||||
|
||||
|
||||
<details>
|
||||
<summary>Source Installation</summary>
|
||||
|
||||
## Check out the code
|
||||
|
||||
```shell
|
||||
git clone https://github.com/nod-ai/SHARK.git
|
||||
```
|
||||
|
||||
## Setup your Python VirtualEnvironment and Dependencies
|
||||
```shell
|
||||
# Setup venv and install necessary packages (torch-mlir, nodLabs/Shark, ...).
|
||||
./setup_venv.sh
|
||||
source shark.venv/bin/activate
|
||||
```
|
||||
For example if you want to use Python3.10 and upstream IREE with TF Import tools you can use the environment variables like:
|
||||
```
|
||||
# PYTHON=python3.10 VENV_DIR=0617_venv IMPORTER=1 USE_IREE=1 ./setup_venv.sh
|
||||
```
|
||||
|
||||
If you are a Torch-mlir developer or an IREE developer and want to test local changes you can uninstall
|
||||
the provided packages with `pip uninstall torch-mlir` and / or `pip uninstall iree-compiler iree-runtime` and build locally
|
||||
with Python bindings and set your PYTHONPATH as mentioned [here](https://google.github.io/iree/bindings/python/)
|
||||
for IREE and [here](https://github.com/llvm/torch-mlir/blob/main/development.md#setup-python-environment-to-export-the-built-python-packages)
|
||||
for Torch-MLIR.
|
||||
|
||||
### Run a demo script
|
||||
```shell
|
||||
python -m shark.examples.shark_inference.resnet50_script --device="cpu" # Use gpu | vulkan
|
||||
# Or a pytest
|
||||
pytest tank/tf/hf_masked_lm/albert-base-v2_test.py::AlbertBaseModuleTest::test_module_static_cpu
|
||||
```
|
||||
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
<details>
|
||||
<summary>Testing</summary>
|
||||
|
||||
### Run all model tests on CPU/GPU/VULKAN/Metal
|
||||
```shell
|
||||
pytest tank
|
||||
|
||||
# If on Linux for multithreading on CPU (faster results):
|
||||
pytest tank -n auto
|
||||
```
|
||||
|
||||
### Running specific tests
|
||||
```shell
|
||||
# Run tests for a specific model:
|
||||
pytest tank/<MODEL_NAME> #i.e., pytest tank/bert-base-uncased
|
||||
|
||||
# Run tests for a specific case:
|
||||
pytest tank/<MODEL_NAME> -k "keyword"
|
||||
# i.e., pytest tank/bert-base-uncased/bert-base-uncased_test.py -k "static_gpu"
|
||||
|
||||
```
|
||||
|
||||
### Run benchmarks on SHARK tank pytests and generate bench_results.csv with results.
|
||||
|
||||
(requires source installation with `IMPORTER=1 ./setup_venv.sh`)
|
||||
|
||||
```shell
|
||||
pytest --benchmark tank
|
||||
|
||||
# Just do static GPU benchmarks for PyTorch tests:
|
||||
pytest --benchmark tank --ignore-glob="_tf*" -k "static_gpu"
|
||||
```
|
||||
|
||||
### Benchmark Resnet50, MiniLM on CPU
|
||||
|
||||
(requires source installation with `IMPORTER=1 ./setup_venv.sh`)
|
||||
|
||||
```shell
|
||||
# We suggest running the following commands as root before running benchmarks on CPU:
|
||||
|
||||
cat /sys/devices/system/cpu/cpu*/topology/thread_siblings_list | awk -F, '{print $2}' | sort -n | uniq | ( while read X ; do echo $X ; echo 0 > /sys/devices/system/cpu/cpu$X/online ; done )
|
||||
echo 1 > /sys/devices/system/cpu/intel_pstate/no_turbo
|
||||
|
||||
# Benchmark canonical Resnet50 on CPU via pytest
|
||||
pytest --benchmark tank/resnet50/ -k "cpu"
|
||||
|
||||
# Benchmark canonical MiniLM on CPU via pytest
|
||||
pytest --benchmark tank/MiniLM-L12-H384-uncased/ -k "cpu"
|
||||
|
||||
# Benchmark MiniLM on CPU via transformer-benchmarks:
|
||||
git clone --recursive https://github.com/nod-ai/transformer-benchmarks.git
|
||||
cd transformer-benchmarks
|
||||
./perf-ci.sh -n
|
||||
# Check detail.csv for MLIR/IREE results.
|
||||
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
<details>
|
||||
<summary>API Reference</summary>
|
||||
|
||||
### Shark Inference API
|
||||
|
||||
```
|
||||
|
||||
from shark.shark_importer import SharkImporter
|
||||
|
||||
# SharkImporter imports mlir file from the torch, tensorflow or tf-lite module.
|
||||
|
||||
mlir_importer = SharkImporter(
|
||||
torch_module,
|
||||
(input),
|
||||
frontend="torch", #tf, #tf-lite
|
||||
)
|
||||
torch_mlir, func_name = mlir_importer.import_mlir(tracing_required=True)
|
||||
|
||||
# SharkInference accepts mlir in linalg, mhlo, and tosa dialect.
|
||||
|
||||
from shark.shark_inference import SharkInference
|
||||
shark_module = SharkInference(torch_mlir, func_name, device="cpu", mlir_dialect="linalg")
|
||||
shark_module.compile()
|
||||
result = shark_module.forward((input))
|
||||
|
||||
```
|
||||
|
||||
|
||||
### Example demonstrating running MHLO IR.
|
||||
|
||||
```
|
||||
from shark.shark_inference import SharkInference
|
||||
import numpy as np
|
||||
|
||||
mhlo_ir = r"""builtin.module {
|
||||
func.func @forward(%arg0: tensor<1x4xf32>, %arg1: tensor<4x1xf32>) -> tensor<4x4xf32> {
|
||||
%0 = chlo.broadcast_add %arg0, %arg1 : (tensor<1x4xf32>, tensor<4x1xf32>) -> tensor<4x4xf32>
|
||||
%1 = "mhlo.abs"(%0) : (tensor<4x4xf32>) -> tensor<4x4xf32>
|
||||
return %1 : tensor<4x4xf32>
|
||||
}
|
||||
}"""
|
||||
|
||||
arg0 = np.ones((1, 4)).astype(np.float32)
|
||||
arg1 = np.ones((4, 1)).astype(np.float32)
|
||||
shark_module = SharkInference(mhlo_ir, func_name="forward", device="cpu", mlir_dialect="mhlo")
|
||||
shark_module.compile()
|
||||
result = shark_module.forward((arg0, arg1))
|
||||
```
|
||||
</details>
|
||||
|
||||
|
||||
## Supported and Validated Models
|
||||
|
||||
<details>
|
||||
<summary>PyTorch Models</summary>
|
||||
|
||||
### Huggingface PyTorch Models
|
||||
|
||||
| Hugging Face Models | Torch-MLIR lowerable | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|
||||
|---------------------|----------------------|----------|----------|-------------|
|
||||
| BERT | :green_heart: (JIT) | :green_heart: | :green_heart: | :green_heart: |
|
||||
| Albert | :green_heart: (JIT) | :green_heart: | :green_heart: | :green_heart: |
|
||||
| BigBird | :green_heart: (AOT) | | | |
|
||||
| DistilBERT | :green_heart: (JIT) | :green_heart: | :green_heart: | :green_heart: |
|
||||
| GPT2 | :broken_heart: (AOT) | | | |
|
||||
| MobileBert | :green_heart: (JIT) | :green_heart: | :green_heart: | :green_heart: |
|
||||
|
||||
### Torchvision Models
|
||||
|
||||
| TORCHVISION Models | Torch-MLIR lowerable | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|
||||
|--------------------|----------------------|----------|----------|-------------|
|
||||
| AlexNet | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
|
||||
| DenseNet121 | :green_heart: (Script) | | | |
|
||||
| MNasNet1_0 | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
|
||||
| MobileNetV2 | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
|
||||
| MobileNetV3 | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
|
||||
| Unet | :broken_heart: (Script) | | | |
|
||||
| Resnet18 | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
|
||||
| Resnet50 | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
|
||||
| Resnet101 | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
|
||||
| Resnext50_32x4d | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
|
||||
| ShuffleNet_v2 | :broken_heart: (Script) | | | |
|
||||
| SqueezeNet | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
|
||||
| EfficientNet | :green_heart: (Script) | | | |
|
||||
| Regnet | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
|
||||
| Resnest | :broken_heart: (Script) | | | |
|
||||
| Vision Transformer | :green_heart: (Script) | | | |
|
||||
| VGG 16 | :green_heart: (Script) | :green_heart: | :green_heart: | |
|
||||
| Wide Resnet | :green_heart: (Script) | :green_heart: | :green_heart: | :green_heart: |
|
||||
| RAFT | :broken_heart: (JIT) | | | |
|
||||
|
||||
For more information refer to [MODEL TRACKING SHEET](https://docs.google.com/spreadsheets/d/15PcjKeHZIrB5LfDyuw7DGEEE8XnQEX2aX8lm8qbxV8A/edit#gid=0)
|
||||
|
||||
### PyTorch Training Models
|
||||
|
||||
| Models | Torch-MLIR lowerable | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|
||||
|---------------------|----------------------|----------|----------|-------------|
|
||||
| BERT | :broken_heart: | :broken_heart: | | |
|
||||
| FullyConnected | :green_heart: | :green_heart: | | |
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>JAX Models</summary>
|
||||
|
||||
|
||||
### JAX Models
|
||||
|
||||
| Models | JAX-MHLO lowerable | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|
||||
|---------------------|----------------------|----------|----------|-------------|
|
||||
| DALL-E | :broken_heart: | :broken_heart: | | |
|
||||
| FullyConnected | :green_heart: | :green_heart: | | |
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>TFLite Models</summary>
|
||||
|
||||
### TFLite Models
|
||||
|
||||
| Models | TOSA/LinAlg | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|
||||
|---------------------|----------------------|----------|----------|-------------|
|
||||
| BERT | :broken_heart: | :broken_heart: | | |
|
||||
| FullyConnected | :green_heart: | :green_heart: | | |
|
||||
| albert | :green_heart: | :green_heart: | | |
|
||||
| asr_conformer | :green_heart: | :green_heart: | | |
|
||||
| bird_classifier | :green_heart: | :green_heart: | | |
|
||||
| cartoon_gan | :green_heart: | :green_heart: | | |
|
||||
| craft_text | :green_heart: | :green_heart: | | |
|
||||
| deeplab_v3 | :green_heart: | :green_heart: | | |
|
||||
| densenet | :green_heart: | :green_heart: | | |
|
||||
| east_text_detector | :green_heart: | :green_heart: | | |
|
||||
| efficientnet_lite0_int8 | :green_heart: | :green_heart: | | |
|
||||
| efficientnet | :green_heart: | :green_heart: | | |
|
||||
| gpt2 | :green_heart: | :green_heart: | | |
|
||||
| image_stylization | :green_heart: | :green_heart: | | |
|
||||
| inception_v4 | :green_heart: | :green_heart: | | |
|
||||
| inception_v4_uint8 | :green_heart: | :green_heart: | | |
|
||||
| lightning_fp16 | :green_heart: | :green_heart: | | |
|
||||
| lightning_i8 | :green_heart: | :green_heart: | | |
|
||||
| lightning | :green_heart: | :green_heart: | | |
|
||||
| magenta | :green_heart: | :green_heart: | | |
|
||||
| midas | :green_heart: | :green_heart: | | |
|
||||
| mirnet | :green_heart: | :green_heart: | | |
|
||||
| mnasnet | :green_heart: | :green_heart: | | |
|
||||
| mobilebert_edgetpu_s_float | :green_heart: | :green_heart: | | |
|
||||
| mobilebert_edgetpu_s_quant | :green_heart: | :green_heart: | | |
|
||||
| mobilebert | :green_heart: | :green_heart: | | |
|
||||
| mobilebert_tf2_float | :green_heart: | :green_heart: | | |
|
||||
| mobilebert_tf2_quant | :green_heart: | :green_heart: | | |
|
||||
| mobilenet_ssd_quant | :green_heart: | :green_heart: | | |
|
||||
| mobilenet_v1 | :green_heart: | :green_heart: | | |
|
||||
| mobilenet_v1_uint8 | :green_heart: | :green_heart: | | |
|
||||
| mobilenet_v2_int8 | :green_heart: | :green_heart: | | |
|
||||
| mobilenet_v2 | :green_heart: | :green_heart: | | |
|
||||
| mobilenet_v2_uint8 | :green_heart: | :green_heart: | | |
|
||||
| mobilenet_v3-large | :green_heart: | :green_heart: | | |
|
||||
| mobilenet_v3-large_uint8 | :green_heart: | :green_heart: | | |
|
||||
| mobilenet_v35-int8 | :green_heart: | :green_heart: | | |
|
||||
| nasnet | :green_heart: | :green_heart: | | |
|
||||
| person_detect | :green_heart: | :green_heart: | | |
|
||||
| posenet | :green_heart: | :green_heart: | | |
|
||||
| resnet_50_int8 | :green_heart: | :green_heart: | | |
|
||||
| rosetta | :green_heart: | :green_heart: | | |
|
||||
| spice | :green_heart: | :green_heart: | | |
|
||||
| squeezenet | :green_heart: | :green_heart: | | |
|
||||
| ssd_mobilenet_v1 | :green_heart: | :green_heart: | | |
|
||||
| ssd_mobilenet_v1_uint8 | :green_heart: | :green_heart: | | |
|
||||
| ssd_mobilenet_v2_fpnlite | :green_heart: | :green_heart: | | |
|
||||
| ssd_mobilenet_v2_fpnlite_uint8 | :green_heart: | :green_heart: | | |
|
||||
| ssd_mobilenet_v2_int8 | :green_heart: | :green_heart: | | |
|
||||
| ssd_mobilenet_v2 | :green_heart: | :green_heart: | | |
|
||||
| ssd_spaghettinet_large | :green_heart: | :green_heart: | | |
|
||||
| ssd_spaghettinet_large_uint8 | :green_heart: | :green_heart: | | |
|
||||
| visual_wake_words_i8 | :green_heart: | :green_heart: | | |
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>TF Models</summary>
|
||||
|
||||
### Tensorflow Models (Inference)
|
||||
|
||||
| Hugging Face Models | tf-mhlo lowerable | SHARK-CPU | SHARK-CUDA | SHARK-METAL |
|
||||
|---------------------|----------------------|----------|----------|-------------|
|
||||
| BERT | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
|
||||
| albert-base-v2 | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
|
||||
| DistilBERT | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
|
||||
| CamemBert | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
|
||||
| ConvBert | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
|
||||
| Deberta | | | | |
|
||||
| electra | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
|
||||
| funnel | | | | |
|
||||
| layoutlm | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
|
||||
| longformer | | | | |
|
||||
| mobile-bert | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
|
||||
| remembert | | | | |
|
||||
| tapas | | | | |
|
||||
| flaubert | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
|
||||
| roberta | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
|
||||
| xlm-roberta | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
|
||||
| mpnet | :green_heart: | :green_heart: | :green_heart: | :green_heart: |
|
||||
|
||||
</details>
|
||||
|
||||
## Related Projects
|
||||
|
||||
<details>
|
||||
<summary>IREE Project Channels</summary>
|
||||
|
||||
* [Upstream IREE issues](https://github.com/google/iree/issues): Feature requests,
|
||||
bugs, and other work tracking
|
||||
* [Upstream IREE Discord server](https://discord.gg/26P4xW4): Daily development
|
||||
discussions with the core team and collaborators
|
||||
* [iree-discuss email list](https://groups.google.com/forum/#!forum/iree-discuss):
|
||||
Announcements, general and low-priority discussion
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>MLIR and Torch-MLIR Project Channels</summary>
|
||||
|
||||
* `#torch-mlir` channel on the LLVM [Discord](https://discord.gg/xS7Z362) - this is the most active communication channel
|
||||
* Torch-MLIR Github issues [here](https://github.com/llvm/torch-mlir/issues)
|
||||
* [`torch-mlir` section](https://llvm.discourse.group/c/projects-that-want-to-become-official-llvm-projects/torch-mlir/41) of LLVM Discourse
|
||||
* Weekly meetings on Mondays 9AM PST. See [here](https://discourse.llvm.org/t/community-meeting-developer-hour-refactoring-recurring-meetings/62575) for more information.
|
||||
* [MLIR topic within LLVM Discourse](https://llvm.discourse.group/c/llvm-project/mlir/31) SHARK and IREE is enabled by and heavily relies on [MLIR](https://mlir.llvm.org).
|
||||
</details>
|
||||
|
||||
## License
|
||||
|
||||
nod.ai SHARK is licensed under the terms of the Apache 2.0 License with LLVM Exceptions.
|
||||
See [LICENSE](LICENSE) for more information.
|
||||
0
benchmarks/__init__.py
Normal file
0
benchmarks/__init__.py
Normal file
22
benchmarks/hf_model_benchmark.py
Normal file
22
benchmarks/hf_model_benchmark.py
Normal file
@@ -0,0 +1,22 @@
|
||||
import torch
|
||||
from shark.parser import parser
|
||||
from benchmarks.hf_transformer import SharkHFBenchmarkRunner
|
||||
|
||||
parser.add_argument(
|
||||
"--model_name",
|
||||
type=str,
|
||||
required=True,
|
||||
help='Specifies name of HF model to benchmark. (For exmaple "microsoft/MiniLM-L12-H384-uncased"',
|
||||
)
|
||||
load_args, unknown = parser.parse_known_args()
|
||||
|
||||
if __name__ == "__main__":
|
||||
model_name = load_args.model_name
|
||||
test_input = torch.randint(2, (1, 128))
|
||||
shark_module = SharkHFBenchmarkRunner(
|
||||
model_name, (test_input,), jit_trace=True
|
||||
)
|
||||
shark_module.benchmark_c()
|
||||
shark_module.benchmark_python((test_input,))
|
||||
shark_module.benchmark_torch(test_input)
|
||||
shark_module.benchmark_onnx(test_input)
|
||||
181
benchmarks/hf_transformer.py
Normal file
181
benchmarks/hf_transformer.py
Normal file
@@ -0,0 +1,181 @@
|
||||
import torch
|
||||
from shark.shark_benchmark_runner import SharkBenchmarkRunner
|
||||
from shark.parser import shark_args
|
||||
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
||||
from onnxruntime.transformers.benchmark import (
|
||||
run_pytorch,
|
||||
run_tensorflow,
|
||||
run_onnxruntime,
|
||||
)
|
||||
from onnxruntime.transformers.huggingface_models import MODELS
|
||||
from onnxruntime.transformers.benchmark_helper import ConfigModifier, Precision
|
||||
import os
|
||||
import psutil
|
||||
|
||||
|
||||
class OnnxFusionOptions(object):
|
||||
def __init__(self):
|
||||
self.disable_gelu = False
|
||||
self.disable_layer_norm = False
|
||||
self.disable_attention = False
|
||||
self.disable_skip_layer_norm = False
|
||||
self.disable_embed_layer_norm = False
|
||||
self.disable_bias_skip_layer_norm = False
|
||||
self.disable_bias_gelu = False
|
||||
self.enable_gelu_approximation = False
|
||||
self.use_mask_index = False
|
||||
self.no_attention_mask = False
|
||||
|
||||
|
||||
class HuggingFaceLanguage(torch.nn.Module):
|
||||
def __init__(self, hf_model_name):
|
||||
super().__init__()
|
||||
self.model = AutoModelForSequenceClassification.from_pretrained(
|
||||
hf_model_name, # The pretrained model.
|
||||
num_labels=2, # The number of output labels--2 for binary classification.
|
||||
output_attentions=False, # Whether the model returns attentions weights.
|
||||
output_hidden_states=False, # Whether the model returns all hidden-states.
|
||||
torchscript=True,
|
||||
)
|
||||
|
||||
def forward(self, tokens):
|
||||
return self.model.forward(tokens)[0]
|
||||
|
||||
|
||||
class SharkHFBenchmarkRunner(SharkBenchmarkRunner):
|
||||
# SharkRunner derived class with Benchmarking capabilities.
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
input: tuple,
|
||||
dynamic: bool = False,
|
||||
device: str = None,
|
||||
jit_trace: bool = False,
|
||||
from_aot: bool = False,
|
||||
frontend: str = "torch",
|
||||
):
|
||||
self.device = device if device is not None else shark_args.device
|
||||
if self.device == "gpu":
|
||||
raise ValueError(
|
||||
"Currently GPU Benchmarking is not supported due to OOM from ORT."
|
||||
)
|
||||
self.model_name = model_name
|
||||
model = HuggingFaceLanguage(model_name)
|
||||
SharkBenchmarkRunner.__init__(
|
||||
self,
|
||||
model,
|
||||
input,
|
||||
dynamic,
|
||||
self.device,
|
||||
jit_trace,
|
||||
from_aot,
|
||||
frontend,
|
||||
)
|
||||
|
||||
def benchmark_torch(self, inputs):
|
||||
use_gpu = self.device == "gpu"
|
||||
# Set set the model's layer number to automatic.
|
||||
config_modifier = ConfigModifier(None)
|
||||
num_threads = psutil.cpu_count(logical=False)
|
||||
batch_sizes = [inputs.shape[0]]
|
||||
sequence_lengths = [inputs.shape[-1]]
|
||||
cache_dir = os.path.join(".", "cache_models")
|
||||
verbose = False
|
||||
result = run_pytorch(
|
||||
use_gpu,
|
||||
[self.model_name],
|
||||
None,
|
||||
config_modifier,
|
||||
Precision.FLOAT32,
|
||||
num_threads,
|
||||
batch_sizes,
|
||||
sequence_lengths,
|
||||
shark_args.num_iterations,
|
||||
False,
|
||||
cache_dir,
|
||||
verbose,
|
||||
)
|
||||
print(
|
||||
f"ONNX Pytorch-benchmark:{result[0]['QPS']} iter/second, Total Iterations:{shark_args.num_iterations}"
|
||||
)
|
||||
|
||||
# TODO: Currently non-functional due to TF runtime error. There might be some issue with, initializing TF.
|
||||
def benchmark_tf(self, inputs):
|
||||
use_gpu = self.device == "gpu"
|
||||
# Set set the model's layer number to automatic.
|
||||
config_modifier = ConfigModifier(None)
|
||||
num_threads = psutil.cpu_count(logical=False)
|
||||
batch_sizes = [inputs.shape[0]]
|
||||
sequence_lengths = [inputs.shape[-1]]
|
||||
cache_dir = os.path.join(".", "cache_models")
|
||||
verbose = False
|
||||
result = run_tensorflow(
|
||||
use_gpu,
|
||||
[self.model_name],
|
||||
None,
|
||||
config_modifier,
|
||||
Precision.FLOAT32,
|
||||
num_threads,
|
||||
batch_sizes,
|
||||
sequence_lengths,
|
||||
shark_args.num_iterations,
|
||||
cache_dir,
|
||||
verbose,
|
||||
)
|
||||
print(
|
||||
f"ONNX TF-benchmark:{result[0]['QPS']} iter/second, Total Iterations:{shark_args.num_iterations}"
|
||||
)
|
||||
|
||||
def benchmark_onnx(self, inputs):
|
||||
if self.model_name not in MODELS:
|
||||
print(
|
||||
f"{self.model_name} is currently not supported in ORT's HF. Check \
|
||||
https://github.com/microsoft/onnxruntime/blob/master/onnxruntime/python/tools/transformers/huggingface_models.py \
|
||||
for currently supported models. Exiting benchmark ONNX."
|
||||
)
|
||||
return
|
||||
use_gpu = self.device == "gpu"
|
||||
num_threads = psutil.cpu_count(logical=False)
|
||||
batch_sizes = [inputs.shape[0]]
|
||||
sequence_lengths = [inputs.shape[-1]]
|
||||
cache_dir = os.path.join(".", "cache_models")
|
||||
onnx_dir = os.path.join(".", "onnx_models")
|
||||
verbose = False
|
||||
input_counts = [1]
|
||||
optimize_onnx = True
|
||||
validate_onnx = False
|
||||
disable_ort_io_binding = False
|
||||
use_raw_attention_mask = True
|
||||
model_fusion_statistics = {}
|
||||
overwrite = False
|
||||
model_source = "pt" # Either "pt" or "tf"
|
||||
provider = None
|
||||
config_modifier = ConfigModifier(None)
|
||||
onnx_args = OnnxFusionOptions()
|
||||
result = run_onnxruntime(
|
||||
use_gpu,
|
||||
provider,
|
||||
[self.model_name],
|
||||
None,
|
||||
config_modifier,
|
||||
Precision.FLOAT32,
|
||||
num_threads,
|
||||
batch_sizes,
|
||||
sequence_lengths,
|
||||
shark_args.num_iterations,
|
||||
input_counts,
|
||||
optimize_onnx,
|
||||
validate_onnx,
|
||||
cache_dir,
|
||||
onnx_dir,
|
||||
verbose,
|
||||
overwrite,
|
||||
disable_ort_io_binding,
|
||||
use_raw_attention_mask,
|
||||
model_fusion_statistics,
|
||||
model_source,
|
||||
onnx_args,
|
||||
)
|
||||
print(
|
||||
f"ONNX ORT-benchmark:{result[0]['QPS']} iter/second, Total Iterations:{shark_args.num_iterations}"
|
||||
)
|
||||
231
benchmarks/tests/test_benchmark.py
Normal file
231
benchmarks/tests/test_benchmark.py
Normal file
@@ -0,0 +1,231 @@
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.iree_utils._common import check_device_drivers
|
||||
|
||||
import torch
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
import torchvision.models as models
|
||||
from transformers import (
|
||||
AutoModelForSequenceClassification,
|
||||
BertTokenizer,
|
||||
TFBertModel,
|
||||
)
|
||||
import importlib
|
||||
import pytest
|
||||
import unittest
|
||||
|
||||
torch.manual_seed(0)
|
||||
gpus = tf.config.experimental.list_physical_devices("GPU")
|
||||
for gpu in gpus:
|
||||
tf.config.experimental.set_memory_growth(gpu, True)
|
||||
|
||||
##################### Tensorflow Hugging Face LM Models ###################################
|
||||
MAX_SEQUENCE_LENGTH = 512
|
||||
BATCH_SIZE = 1
|
||||
|
||||
# Create a set of 2-dimensional inputs
|
||||
tf_bert_input = [
|
||||
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
|
||||
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
|
||||
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
|
||||
]
|
||||
|
||||
|
||||
class TFHuggingFaceLanguage(tf.Module):
|
||||
def __init__(self, hf_model_name):
|
||||
super(TFHuggingFaceLanguage, self).__init__()
|
||||
# Create a BERT trainer with the created network.
|
||||
self.m = TFBertModel.from_pretrained(hf_model_name, from_pt=True)
|
||||
|
||||
# Invoke the trainer model on the inputs. This causes the layer to be built.
|
||||
self.m.predict = lambda x, y, z: self.m.call(
|
||||
input_ids=x, attention_mask=y, token_type_ids=z, training=False
|
||||
)
|
||||
|
||||
@tf.function(input_signature=tf_bert_input)
|
||||
def forward(self, input_ids, attention_mask, token_type_ids):
|
||||
return self.m.predict(input_ids, attention_mask, token_type_ids)
|
||||
|
||||
|
||||
def get_TFhf_model(name):
|
||||
model = TFHuggingFaceLanguage(name)
|
||||
tokenizer = BertTokenizer.from_pretrained(name)
|
||||
text = "Replace me by any text you'd like."
|
||||
encoded_input = tokenizer(
|
||||
text,
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=MAX_SEQUENCE_LENGTH,
|
||||
)
|
||||
for key in encoded_input:
|
||||
encoded_input[key] = tf.expand_dims(
|
||||
tf.convert_to_tensor(encoded_input[key]), 0
|
||||
)
|
||||
test_input = (
|
||||
encoded_input["input_ids"],
|
||||
encoded_input["attention_mask"],
|
||||
encoded_input["token_type_ids"],
|
||||
)
|
||||
actual_out = model.forward(*test_input)
|
||||
return model, test_input, actual_out
|
||||
|
||||
|
||||
##################### Hugging Face LM Models ###################################
|
||||
|
||||
|
||||
class HuggingFaceLanguage(torch.nn.Module):
|
||||
def __init__(self, hf_model_name):
|
||||
super().__init__()
|
||||
self.model = AutoModelForSequenceClassification.from_pretrained(
|
||||
hf_model_name, # The pretrained model.
|
||||
num_labels=2, # The number of output labels--2 for binary classification.
|
||||
output_attentions=False, # Whether the model returns attentions weights.
|
||||
output_hidden_states=False, # Whether the model returns all hidden-states.
|
||||
torchscript=True,
|
||||
)
|
||||
|
||||
def forward(self, tokens):
|
||||
return self.model.forward(tokens)[0]
|
||||
|
||||
|
||||
def get_hf_model(name):
|
||||
model = HuggingFaceLanguage(name)
|
||||
# TODO: Currently the test input is set to (1,128)
|
||||
test_input = torch.randint(2, (1, 128))
|
||||
actual_out = model(test_input)
|
||||
return model, test_input, actual_out
|
||||
|
||||
|
||||
################################################################################
|
||||
|
||||
##################### Torch Vision Models ###################################
|
||||
|
||||
|
||||
class VisionModule(torch.nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.train(False)
|
||||
|
||||
def forward(self, input):
|
||||
return self.model.forward(input)
|
||||
|
||||
|
||||
def get_vision_model(torch_model):
|
||||
model = VisionModule(torch_model)
|
||||
# TODO: Currently the test input is set to (1,128)
|
||||
test_input = torch.randn(1, 3, 224, 224)
|
||||
actual_out = model(test_input)
|
||||
return model, test_input, actual_out
|
||||
|
||||
|
||||
############################# Benchmark Tests ####################################
|
||||
|
||||
pytest_benchmark_param = pytest.mark.parametrize(
|
||||
("dynamic", "device"),
|
||||
[
|
||||
pytest.param(False, "cpu"),
|
||||
# TODO: Language models are failing for dynamic case..
|
||||
pytest.param(True, "cpu", marks=pytest.mark.skip),
|
||||
pytest.param(
|
||||
False,
|
||||
"gpu",
|
||||
marks=pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason="nvidia-smi not found"
|
||||
),
|
||||
),
|
||||
pytest.param(True, "gpu", marks=pytest.mark.skip),
|
||||
pytest.param(
|
||||
False,
|
||||
"vulkan",
|
||||
marks=pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"),
|
||||
reason="vulkaninfo not found, install from https://github.com/KhronosGroup/MoltenVK/releases",
|
||||
),
|
||||
),
|
||||
pytest.param(
|
||||
True,
|
||||
"vulkan",
|
||||
marks=pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"),
|
||||
reason="vulkaninfo not found, install from https://github.com/KhronosGroup/MoltenVK/releases",
|
||||
),
|
||||
),
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
importlib.util.find_spec("iree.tools") is None,
|
||||
reason="Cannot find tools to import TF",
|
||||
)
|
||||
@pytest_benchmark_param
|
||||
def test_bench_minilm_torch(dynamic, device):
|
||||
model, test_input, act_out = get_hf_model(
|
||||
"microsoft/MiniLM-L12-H384-uncased"
|
||||
)
|
||||
shark_module = SharkInference(
|
||||
model,
|
||||
(test_input,),
|
||||
device=device,
|
||||
dynamic=dynamic,
|
||||
jit_trace=True,
|
||||
benchmark_mode=True,
|
||||
)
|
||||
try:
|
||||
# If becnhmarking succesful, assert success/True.
|
||||
shark_module.compile()
|
||||
shark_module.benchmark_all((test_input,))
|
||||
assert True
|
||||
except Exception as e:
|
||||
# If anything happen during benchmarking, assert False/failure.
|
||||
assert False
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
importlib.util.find_spec("iree.tools") is None,
|
||||
reason="Cannot find tools to import TF",
|
||||
)
|
||||
@pytest_benchmark_param
|
||||
def test_bench_distilbert(dynamic, device):
|
||||
model, test_input, act_out = get_TFhf_model("distilbert-base-uncased")
|
||||
shark_module = SharkInference(
|
||||
model,
|
||||
test_input,
|
||||
device=device,
|
||||
dynamic=dynamic,
|
||||
jit_trace=True,
|
||||
benchmark_mode=True,
|
||||
)
|
||||
try:
|
||||
# If becnhmarking succesful, assert success/True.
|
||||
shark_module.set_frontend("tensorflow")
|
||||
shark_module.compile()
|
||||
shark_module.benchmark_all(test_input)
|
||||
assert True
|
||||
except Exception as e:
|
||||
# If anything happen during benchmarking, assert False/failure.
|
||||
assert False
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="XLM Roberta too large to test.")
|
||||
@pytest_benchmark_param
|
||||
def test_bench_xlm_roberta(dynamic, device):
|
||||
model, test_input, act_out = get_TFhf_model("xlm-roberta-base")
|
||||
shark_module = SharkInference(
|
||||
model,
|
||||
test_input,
|
||||
device=device,
|
||||
dynamic=dynamic,
|
||||
jit_trace=True,
|
||||
benchmark_mode=True,
|
||||
)
|
||||
try:
|
||||
# If becnhmarking succesful, assert success/True.
|
||||
shark_module.set_frontend("tensorflow")
|
||||
shark_module.compile()
|
||||
shark_module.benchmark_all(test_input)
|
||||
assert True
|
||||
except Exception as e:
|
||||
# If anything happen during benchmarking, assert False/failure.
|
||||
assert False
|
||||
45
benchmarks/tests/test_hf_benchmark.py
Normal file
45
benchmarks/tests/test_hf_benchmark.py
Normal file
@@ -0,0 +1,45 @@
|
||||
import torch
|
||||
from benchmarks.hf_transformer import SharkHFBenchmarkRunner
|
||||
import importlib
|
||||
import pytest
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
############################# HF Benchmark Tests ####################################
|
||||
|
||||
# Test running benchmark module without failing.
|
||||
pytest_benchmark_param = pytest.mark.parametrize(
|
||||
("dynamic", "device"),
|
||||
[
|
||||
pytest.param(False, "cpu"),
|
||||
# TODO: Language models are failing for dynamic case..
|
||||
pytest.param(True, "cpu", marks=pytest.mark.skip),
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
importlib.util.find_spec("onnxruntime") is None,
|
||||
reason="Cannot find ONNXRUNTIME.",
|
||||
)
|
||||
@pytest_benchmark_param
|
||||
def test_HFbench_minilm_torch(dynamic, device):
|
||||
model_name = "bert-base-uncased"
|
||||
test_input = torch.randint(2, (1, 128))
|
||||
try:
|
||||
shark_module = SharkHFBenchmarkRunner(
|
||||
model_name,
|
||||
(test_input,),
|
||||
jit_trace=True,
|
||||
dynamic=dynamic,
|
||||
device=device,
|
||||
)
|
||||
shark_module.benchmark_c()
|
||||
shark_module.benchmark_python((test_input,))
|
||||
shark_module.benchmark_torch(test_input)
|
||||
shark_module.benchmark_onnx(test_input)
|
||||
# If becnhmarking succesful, assert success/True.
|
||||
assert True
|
||||
except Exception as e:
|
||||
# If anything happen during benchmarking, assert False/failure.
|
||||
assert False
|
||||
5
build_tools/populate_sharktank_ci.sh
Normal file
5
build_tools/populate_sharktank_ci.sh
Normal file
@@ -0,0 +1,5 @@
|
||||
#!/bin/bash
|
||||
|
||||
IMPORTER=1 ./setup_venv.sh
|
||||
source $GITHUB_WORKSPACE/shark.venv/bin/activate
|
||||
python generate_sharktank.py --upload=False
|
||||
33
conftest.py
Normal file
33
conftest.py
Normal file
@@ -0,0 +1,33 @@
|
||||
def pytest_addoption(parser):
|
||||
# Attaches SHARK command-line arguments to the pytest machinery.
|
||||
parser.addoption(
|
||||
"--benchmark",
|
||||
action="store_true",
|
||||
default="False",
|
||||
help="Pass option to benchmark and write results.csv",
|
||||
)
|
||||
parser.addoption(
|
||||
"--onnx_bench",
|
||||
action="store_true",
|
||||
default="False",
|
||||
help="Add ONNX benchmark results to pytest benchmarks.",
|
||||
)
|
||||
# The following options are deprecated and pending removal.
|
||||
parser.addoption(
|
||||
"--save_mlir",
|
||||
action="store_true",
|
||||
default="False",
|
||||
help="Pass option to save input MLIR",
|
||||
)
|
||||
parser.addoption(
|
||||
"--save_vmfb",
|
||||
action="store_true",
|
||||
default="False",
|
||||
help="Pass option to save IREE output .vmfb",
|
||||
)
|
||||
parser.addoption(
|
||||
"--save_temps",
|
||||
action="store_true",
|
||||
default="False",
|
||||
help="Saves IREE reproduction artifacts for filing upstream issues.",
|
||||
)
|
||||
235
generate_sharktank.py
Normal file
235
generate_sharktank.py
Normal file
@@ -0,0 +1,235 @@
|
||||
# Lint as: python3
|
||||
"""SHARK Tank"""
|
||||
# python generate_sharktank.py, you have to give a csv tile with [model_name, model_download_url]
|
||||
# will generate local shark tank folder like this:
|
||||
# /SHARK
|
||||
# /gen_shark_tank
|
||||
# /albert_lite_base
|
||||
# /...model_name...
|
||||
#
|
||||
|
||||
import os
|
||||
import csv
|
||||
import argparse
|
||||
from shark.shark_importer import SharkImporter
|
||||
import tensorflow as tf
|
||||
import subprocess as sp
|
||||
import hashlib
|
||||
import numpy as np
|
||||
|
||||
visible_default = tf.config.list_physical_devices("GPU")
|
||||
try:
|
||||
tf.config.set_visible_devices([], "GPU")
|
||||
visible_devices = tf.config.get_visible_devices()
|
||||
for device in visible_devices:
|
||||
assert device.device_type != "GPU"
|
||||
except:
|
||||
# Invalid device or cannot modify virtual devices once initialized.
|
||||
pass
|
||||
|
||||
# All generated models and metadata will be saved under this directory.
|
||||
WORKDIR = os.path.join(os.path.dirname(__file__), "gen_shark_tank")
|
||||
|
||||
|
||||
def create_hash(file_name):
|
||||
with open(file_name, "rb") as f:
|
||||
file_hash = hashlib.blake2b()
|
||||
while chunk := f.read(2**20):
|
||||
file_hash.update(chunk)
|
||||
|
||||
return file_hash.hexdigest()
|
||||
|
||||
|
||||
def save_torch_model(torch_model_list):
|
||||
from tank.model_utils import get_hf_model
|
||||
from tank.model_utils import get_vision_model
|
||||
|
||||
with open(torch_model_list) as csvfile:
|
||||
torch_reader = csv.reader(csvfile, delimiter=",")
|
||||
fields = next(torch_reader)
|
||||
for row in torch_reader:
|
||||
torch_model_name = row[0]
|
||||
tracing_required = row[1]
|
||||
model_type = row[2]
|
||||
|
||||
tracing_required = False if tracing_required == "False" else True
|
||||
|
||||
model = None
|
||||
input = None
|
||||
if model_type == "vision":
|
||||
model, input, _ = get_vision_model(torch_model_name)
|
||||
elif model_type == "hf":
|
||||
model, input, _ = get_hf_model(torch_model_name)
|
||||
|
||||
torch_model_name = torch_model_name.replace("/", "_")
|
||||
torch_model_dir = os.path.join(
|
||||
WORKDIR, str(torch_model_name) + "_torch"
|
||||
)
|
||||
os.makedirs(torch_model_dir, exist_ok=True)
|
||||
|
||||
mlir_importer = SharkImporter(
|
||||
model,
|
||||
(input,),
|
||||
frontend="torch",
|
||||
)
|
||||
mlir_importer.import_debug(
|
||||
is_dynamic=False,
|
||||
tracing_required=tracing_required,
|
||||
dir=torch_model_dir,
|
||||
model_name=torch_model_name,
|
||||
)
|
||||
mlir_hash = create_hash(
|
||||
os.path.join(
|
||||
torch_model_dir, torch_model_name + "_torch" + ".mlir"
|
||||
)
|
||||
)
|
||||
np.save(os.path.join(torch_model_dir, "hash"), np.array(mlir_hash))
|
||||
# Generate torch dynamic models.
|
||||
mlir_importer.import_debug(
|
||||
is_dynamic=True,
|
||||
tracing_required=tracing_required,
|
||||
dir=torch_model_dir,
|
||||
model_name=torch_model_name + "_dynamic",
|
||||
)
|
||||
|
||||
|
||||
def save_tf_model(tf_model_list):
|
||||
from tank.model_utils_tf import (
|
||||
get_causal_image_model,
|
||||
get_causal_lm_model,
|
||||
get_keras_model,
|
||||
get_TFhf_model,
|
||||
)
|
||||
|
||||
with open(tf_model_list) as csvfile:
|
||||
tf_reader = csv.reader(csvfile, delimiter=",")
|
||||
fields = next(tf_reader)
|
||||
for row in tf_reader:
|
||||
tf_model_name = row[0]
|
||||
model_type = row[1]
|
||||
|
||||
model = None
|
||||
input = None
|
||||
print(f"Generating artifacts for model {tf_model_name}")
|
||||
if model_type == "hf":
|
||||
model, input, _ = get_causal_lm_model(tf_model_name)
|
||||
if model_type == "img":
|
||||
model, input, _ = get_causal_image_model(tf_model_name)
|
||||
if model_type == "keras":
|
||||
model, input, _ = get_keras_model(tf_model_name)
|
||||
if model_type == "TFhf":
|
||||
model, input, _ = get_TFhf_model(tf_model_name)
|
||||
|
||||
tf_model_name = tf_model_name.replace("/", "_")
|
||||
tf_model_dir = os.path.join(WORKDIR, str(tf_model_name) + "_tf")
|
||||
os.makedirs(tf_model_dir, exist_ok=True)
|
||||
|
||||
mlir_importer = SharkImporter(
|
||||
model,
|
||||
input,
|
||||
frontend="tf",
|
||||
)
|
||||
mlir_importer.import_debug(
|
||||
dir=tf_model_dir,
|
||||
model_name=tf_model_name,
|
||||
)
|
||||
mlir_hash = create_hash(
|
||||
os.path.join(tf_model_dir, tf_model_name + "_tf" + ".mlir")
|
||||
)
|
||||
np.save(os.path.join(tf_model_dir, "hash"), np.array(mlir_hash))
|
||||
|
||||
|
||||
def save_tflite_model(tflite_model_list):
|
||||
from shark.tflite_utils import TFLitePreprocessor
|
||||
|
||||
with open(tflite_model_list) as csvfile:
|
||||
tflite_reader = csv.reader(csvfile, delimiter=",")
|
||||
for row in tflite_reader:
|
||||
print("\n")
|
||||
tflite_model_name = row[0]
|
||||
tflite_model_link = row[1]
|
||||
print("tflite_model_name", tflite_model_name)
|
||||
print("tflite_model_link", tflite_model_link)
|
||||
tflite_model_name_dir = os.path.join(
|
||||
WORKDIR, str(tflite_model_name) + "_tflite"
|
||||
)
|
||||
os.makedirs(tflite_model_name_dir, exist_ok=True)
|
||||
print(f"TMP_TFLITE_MODELNAME_DIR = {tflite_model_name_dir}")
|
||||
|
||||
# Preprocess to get SharkImporter input args
|
||||
tflite_preprocessor = TFLitePreprocessor(str(tflite_model_name))
|
||||
raw_model_file_path = tflite_preprocessor.get_raw_model_file()
|
||||
inputs = tflite_preprocessor.get_inputs()
|
||||
tflite_interpreter = tflite_preprocessor.get_interpreter()
|
||||
|
||||
# Use SharkImporter to get SharkInference input args
|
||||
my_shark_importer = SharkImporter(
|
||||
module=tflite_interpreter,
|
||||
inputs=inputs,
|
||||
frontend="tflite",
|
||||
raw_model_file=raw_model_file_path,
|
||||
)
|
||||
my_shark_importer.import_debug(
|
||||
dir=tflite_model_name_dir,
|
||||
model_name=tflite_model_name,
|
||||
func_name="main",
|
||||
)
|
||||
mlir_hash = create_hash(
|
||||
os.path.join(
|
||||
tflite_model_name_dir,
|
||||
tflite_model_name + "_tflite" + ".mlir",
|
||||
)
|
||||
)
|
||||
np.save(
|
||||
os.path.join(tflite_model_name_dir, "hash"),
|
||||
np.array(mlir_hash),
|
||||
)
|
||||
|
||||
|
||||
# Validates whether the file is present or not.
|
||||
def is_valid_file(arg):
|
||||
if not os.path.exists(arg):
|
||||
return None
|
||||
else:
|
||||
return arg
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--torch_model_csv",
|
||||
type=lambda x: is_valid_file(x),
|
||||
default="./tank/pytorch/torch_model_list.csv",
|
||||
help="""Contains the file with torch_model name and args.
|
||||
Please see: https://github.com/nod-ai/SHARK/blob/main/tank/pytorch/torch_model_list.csv""",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tf_model_csv",
|
||||
type=lambda x: is_valid_file(x),
|
||||
default="./tank/tf/tf_model_list.csv",
|
||||
help="Contains the file with tf model name and args.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tflite_model_csv",
|
||||
type=lambda x: is_valid_file(x),
|
||||
default="./tank/tflite/tflite_model_list.csv",
|
||||
help="Contains the file with tf model name and args.",
|
||||
)
|
||||
parser.add_argument("--upload", type=bool, default=False)
|
||||
|
||||
args = parser.parse_args()
|
||||
if args.torch_model_csv:
|
||||
save_torch_model(args.torch_model_csv)
|
||||
|
||||
if args.tf_model_csv:
|
||||
save_tf_model(args.tf_model_csv)
|
||||
|
||||
if args.tflite_model_csv:
|
||||
save_tflite_model(args.tflite_model_csv)
|
||||
|
||||
if args.upload:
|
||||
git_hash = sp.getoutput("git log -1 --format='%h'") + "/"
|
||||
print("uploading files to gs://shark_tank/" + git_hash)
|
||||
os.system(
|
||||
"gsutil cp -r ./gen_shark_tank/* gs://shark_tank/" + git_hash
|
||||
)
|
||||
192
inference/CMakeLists.txt
Normal file
192
inference/CMakeLists.txt
Normal file
@@ -0,0 +1,192 @@
|
||||
# Copyright 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions
|
||||
# are met:
|
||||
# * Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright
|
||||
# notice, this list of conditions and the following disclaimer in the
|
||||
# documentation and/or other materials provided with the distribution.
|
||||
# * Neither the name of NVIDIA CORPORATION nor the names of its
|
||||
# contributors may be used to endorse or promote products derived
|
||||
# from this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||||
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||||
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
cmake_minimum_required(VERSION 3.17)
|
||||
|
||||
project(sharkbackend LANGUAGES C CXX)
|
||||
|
||||
#
|
||||
# Options
|
||||
#
|
||||
|
||||
option(TRITON_ENABLE_GPU "Enable GPU support in backend" ON)
|
||||
option(TRITON_ENABLE_STATS "Include statistics collections in backend" ON)
|
||||
|
||||
set(TRITON_COMMON_REPO_TAG "main" CACHE STRING "Tag for triton-inference-server/common repo")
|
||||
set(TRITON_CORE_REPO_TAG "main" CACHE STRING "Tag for triton-inference-server/core repo")
|
||||
set(TRITON_BACKEND_REPO_TAG "main" CACHE STRING "Tag for triton-inference-server/backend repo")
|
||||
|
||||
if(NOT CMAKE_BUILD_TYPE)
|
||||
set(CMAKE_BUILD_TYPE Release)
|
||||
endif()
|
||||
|
||||
#
|
||||
# Dependencies
|
||||
#
|
||||
# FetchContent requires us to include the transitive closure of all
|
||||
# repos that we depend on so that we can override the tags.
|
||||
#
|
||||
include(FetchContent)
|
||||
|
||||
FetchContent_Declare(
|
||||
repo-common
|
||||
GIT_REPOSITORY https://github.com/triton-inference-server/common.git
|
||||
GIT_TAG ${TRITON_COMMON_REPO_TAG}
|
||||
GIT_SHALLOW ON
|
||||
)
|
||||
FetchContent_Declare(
|
||||
repo-core
|
||||
GIT_REPOSITORY https://github.com/triton-inference-server/core.git
|
||||
GIT_TAG ${TRITON_CORE_REPO_TAG}
|
||||
GIT_SHALLOW ON
|
||||
)
|
||||
FetchContent_Declare(
|
||||
repo-backend
|
||||
GIT_REPOSITORY https://github.com/triton-inference-server/backend.git
|
||||
GIT_TAG ${TRITON_BACKEND_REPO_TAG}
|
||||
GIT_SHALLOW ON
|
||||
)
|
||||
FetchContent_MakeAvailable(repo-common repo-core repo-backend)
|
||||
|
||||
#
|
||||
# The backend must be built into a shared library. Use an ldscript to
|
||||
# hide all symbols except for the TRITONBACKEND API.
|
||||
#
|
||||
configure_file(src/libtriton_dshark.ldscript libtriton_dshark.ldscript COPYONLY)
|
||||
|
||||
add_library(
|
||||
triton-dshark-backend SHARED
|
||||
src/dshark.cc
|
||||
#src/dshark_driver_module.c
|
||||
)
|
||||
|
||||
add_library(
|
||||
SharkBackend::triton-dshark-backend ALIAS triton-dshark-backend
|
||||
)
|
||||
|
||||
target_include_directories(
|
||||
triton-dshark-backend
|
||||
PRIVATE
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src
|
||||
)
|
||||
|
||||
list(APPEND CMAKE_MODULE_PATH "${PROJECT_BINARY_DIR}/lib/cmake/mlir")
|
||||
|
||||
add_subdirectory(thirdparty/shark-runtime EXCLUDE_FROM_ALL)
|
||||
|
||||
target_link_libraries(triton-dshark-backend PRIVATE iree_base_base
|
||||
iree_hal_hal
|
||||
iree_hal_cuda_cuda
|
||||
iree_hal_cuda_registration_registration
|
||||
iree_hal_vmvx_registration_registration
|
||||
iree_hal_dylib_registration_registration
|
||||
iree_modules_hal_hal
|
||||
iree_vm_vm
|
||||
iree_vm_bytecode_module
|
||||
iree_hal_local_loaders_system_library_loader
|
||||
iree_hal_local_loaders_vmvx_module_loader
|
||||
)
|
||||
|
||||
target_compile_features(triton-dshark-backend PRIVATE cxx_std_11)
|
||||
|
||||
|
||||
target_link_libraries(
|
||||
triton-dshark-backend
|
||||
PRIVATE
|
||||
triton-core-serverapi # from repo-core
|
||||
triton-core-backendapi # from repo-core
|
||||
triton-core-serverstub # from repo-core
|
||||
triton-backend-utils # from repo-backend
|
||||
)
|
||||
|
||||
if(WIN32)
|
||||
set_target_properties(
|
||||
triton-dshark-backend PROPERTIES
|
||||
POSITION_INDEPENDENT_CODE ON
|
||||
OUTPUT_NAME triton_dshark
|
||||
)
|
||||
else()
|
||||
set_target_properties(
|
||||
triton-dshark-backend PROPERTIES
|
||||
POSITION_INDEPENDENT_CODE ON
|
||||
OUTPUT_NAME triton_dshark
|
||||
LINK_DEPENDS ${CMAKE_CURRENT_BINARY_DIR}/libtriton_dshark.ldscript
|
||||
LINK_FLAGS "-Wl,--version-script libtriton_dshark.ldscript"
|
||||
)
|
||||
endif()
|
||||
|
||||
|
||||
|
||||
#
|
||||
# Install
|
||||
#
|
||||
include(GNUInstallDirs)
|
||||
set(INSTALL_CONFIGDIR ${CMAKE_INSTALL_LIBDIR}/cmake/SharkBackend)
|
||||
|
||||
install(
|
||||
TARGETS
|
||||
triton-dshark-backend
|
||||
EXPORT
|
||||
triton-dshark-backend-targets
|
||||
LIBRARY DESTINATION ${CMAKE_INSTALL_PREFIX}/backends/dshark
|
||||
RUNTIME DESTINATION ${CMAKE_INSTALL_PREFIX}/backends/dshark
|
||||
)
|
||||
|
||||
install(
|
||||
EXPORT
|
||||
triton-dshark-backend-targets
|
||||
FILE
|
||||
SharkBackendTargets.cmake
|
||||
NAMESPACE
|
||||
SharkBackend::
|
||||
DESTINATION
|
||||
${INSTALL_CONFIGDIR}
|
||||
)
|
||||
|
||||
include(CMakePackageConfigHelpers)
|
||||
configure_package_config_file(
|
||||
${CMAKE_CURRENT_LIST_DIR}/cmake/SharkBackendConfig.cmake.in
|
||||
${CMAKE_CURRENT_BINARY_DIR}/SharkBackendConfig.cmake
|
||||
INSTALL_DESTINATION ${INSTALL_CONFIGDIR}
|
||||
)
|
||||
|
||||
install(
|
||||
FILES
|
||||
${CMAKE_CURRENT_BINARY_DIR}/SharkBackendConfig.cmake
|
||||
DESTINATION ${INSTALL_CONFIGDIR}
|
||||
)
|
||||
|
||||
#
|
||||
# Export from build tree
|
||||
#
|
||||
export(
|
||||
EXPORT triton-dshark-backend-targets
|
||||
FILE ${CMAKE_CURRENT_BINARY_DIR}/SharkBackendTargets.cmake
|
||||
NAMESPACE SharkBackend::
|
||||
)
|
||||
|
||||
export(PACKAGE SharkBackend)
|
||||
|
||||
100
inference/README.md
Normal file
100
inference/README.md
Normal file
@@ -0,0 +1,100 @@
|
||||
# SHARK Triton Backend
|
||||
|
||||
The triton backend for shark.
|
||||
|
||||
# Build
|
||||
|
||||
Install SHARK
|
||||
|
||||
```
|
||||
git clone https://github.com/nod-ai/SHARK.git
|
||||
# skip above step if dshark is already installed
|
||||
cd SHARK/inference
|
||||
```
|
||||
|
||||
install dependancies
|
||||
|
||||
```
|
||||
apt-get install patchelf rapidjson-dev python3-dev
|
||||
git submodule update --init
|
||||
```
|
||||
|
||||
update the submodules of iree
|
||||
|
||||
```
|
||||
cd thirdparty/shark-runtime
|
||||
git submodule update --init
|
||||
```
|
||||
|
||||
Next, make the backend and install it
|
||||
|
||||
```
|
||||
cd ../..
|
||||
mkdir build && cd build
|
||||
cmake -DTRITON_ENABLE_GPU=ON \
|
||||
-DIREE_HAL_DRIVER_CUDA=ON \
|
||||
-DIREE_TARGET_BACKEND_CUDA=ON \
|
||||
-DMLIR_ENABLE_CUDA_RUNNER=ON \
|
||||
-DCMAKE_INSTALL_PREFIX:PATH=`pwd`/install \
|
||||
-DTRITON_BACKEND_REPO_TAG=r22.02 \
|
||||
-DTRITON_CORE_REPO_TAG=r22.02 \
|
||||
-DTRITON_COMMON_REPO_TAG=r22.02 ..
|
||||
make install
|
||||
```
|
||||
|
||||
# Incorporating into Triton
|
||||
|
||||
There are much more in depth explenations for the following steps in triton's documentation:
|
||||
https://github.com/triton-inference-server/server/blob/main/docs/compose.md#triton-with-unsupported-and-custom-backends
|
||||
|
||||
There should be a file at /build/install/backends/dshark/libtriton_dshark.so. You will need to copy it into your triton server image.
|
||||
More documentation is in the link above, but to create the docker image, you need to run the compose.py command in the triton-backend server repo
|
||||
|
||||
|
||||
To first build your image, clone the tritonserver repo.
|
||||
|
||||
```
|
||||
git clone https://github.com/triton-inference-server/server.git
|
||||
```
|
||||
|
||||
then run `compose.py` to build a docker compose file
|
||||
```
|
||||
cd server
|
||||
python3 compose.py --repoagent checksum --dry-run
|
||||
```
|
||||
|
||||
Because dshark is a third party backend, you will need to manually modify the `Dockerfile.compose` to include the dshark backend. To do this, in the Dockerfile.compose file produced, copy this line.
|
||||
the dshark backend will be located in the build folder from earlier under `/build/install/backends`
|
||||
|
||||
```
|
||||
COPY /path/to/build/install/backends/dshark /opt/tritonserver/backends/dshark
|
||||
```
|
||||
|
||||
Next run
|
||||
```
|
||||
docker build -t tritonserver_custom -f Dockerfile.compose .
|
||||
docker run -it --gpus=1 --net=host -v/path/to/model_repos:/models tritonserver_custom:latest tritonserver --model-repository=/models
|
||||
```
|
||||
|
||||
where `path/to/model_repos` is where you are storing the models you want to run
|
||||
|
||||
if your not using gpus, omit `--gpus=1`
|
||||
|
||||
```
|
||||
docker run -it --net=host -v/path/to/model_repos:/models tritonserver_custom:latest tritonserver --model-repository=/models
|
||||
```
|
||||
|
||||
# Setting up a model
|
||||
|
||||
to include a model in your backend, add a directory with your model name to your model repository directory. examples of models can be seen here: https://github.com/triton-inference-server/backend/tree/main/examples/model_repos/minimal_models
|
||||
|
||||
make sure to adjust the input correctly in the config.pbtxt file, and save a vmfb file under 1/model.vmfb
|
||||
|
||||
# CUDA
|
||||
|
||||
if you're having issues with cuda, make sure your correct drivers are installed, and that `nvidia-smi` works, and also make sure that the nvcc compiler is on the path.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
39
inference/cmake/SharkBackendConfig.cmake.in
Normal file
39
inference/cmake/SharkBackendConfig.cmake.in
Normal file
@@ -0,0 +1,39 @@
|
||||
# Copyright 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions
|
||||
# are met:
|
||||
# * Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright
|
||||
# notice, this list of conditions and the following disclaimer in the
|
||||
# documentation and/or other materials provided with the distribution.
|
||||
# * Neither the name of NVIDIA CORPORATION nor the names of its
|
||||
# contributors may be used to endorse or promote products derived
|
||||
# from this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||||
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||||
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
include(CMakeFindDependencyMacro)
|
||||
|
||||
get_filename_component(
|
||||
SHARKBACKEND_CMAKE_DIR "${CMAKE_CURRENT_LIST_FILE}" PATH
|
||||
)
|
||||
|
||||
list(APPEND CMAKE_MODULE_PATH ${SHARKBACKEND_CMAKE_DIR})
|
||||
|
||||
if(NOT TARGET SharkBackend::triton-dshark-backend)
|
||||
include("${SHARKBACKEND_CMAKE_DIR}/SharkBackendTargets.cmake")
|
||||
endif()
|
||||
|
||||
set(SHARKBACKEND_LIBRARIES SharkBackend::triton-dshark-backend)
|
||||
1409
inference/src/dshark.cc
Normal file
1409
inference/src/dshark.cc
Normal file
File diff suppressed because it is too large
Load Diff
30
inference/src/libtriton_dshark.ldscript
Normal file
30
inference/src/libtriton_dshark.ldscript
Normal file
@@ -0,0 +1,30 @@
|
||||
# Copyright 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions
|
||||
# are met:
|
||||
# * Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright
|
||||
# notice, this list of conditions and the following disclaimer in the
|
||||
# documentation and/or other materials provided with the distribution.
|
||||
# * Neither the name of NVIDIA CORPORATION nor the names of its
|
||||
# contributors may be used to endorse or promote products derived
|
||||
# from this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||||
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||||
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
{
|
||||
global:
|
||||
TRITONBACKEND_*;
|
||||
local: *;
|
||||
};
|
||||
1
inference/thirdparty/shark-runtime
vendored
Submodule
1
inference/thirdparty/shark-runtime
vendored
Submodule
Submodule inference/thirdparty/shark-runtime added at 7b82d90c72
@@ -1,45 +0,0 @@
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<body>
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230130.481/shark_sd_20230130_481.exe'>shark_sd_20230130_481.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230130.481/shark_sd_cli_20230130_481.exe'>shark_sd_cli_20230130_481.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230129.479/shark_sd_20230129_479.exe'>shark_sd_20230129_479.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230129.479/shark_sd_cli_20230129_479.exe'>shark_sd_cli_20230129_479.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230129.480/shark_sd_20230129_480.exe'>shark_sd_20230129_480.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230129.480/shark_sd_cli_20230129_480.exe'>shark_sd_cli_20230129_480.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230129.478/shark_sd_20230129_478.exe'>shark_sd_20230129_478.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230129.478/shark_sd_cli_20230129_478.exe'>shark_sd_cli_20230129_478.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230128.477/shark_sd_20230128_477.exe'>shark_sd_20230128_477.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230128.477/shark_sd_cli_20230128_477.exe'>shark_sd_cli_20230128_477.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230127.476/shark_sd_20230127_476.exe'>shark_sd_20230127_476.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230127.476/shark_sd_cli_20230127_476.exe'>shark_sd_cli_20230127_476.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230126.475/shark_sd_20230126_475.exe'>shark_sd_20230126_475.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230126.475/shark_sd_cli_20230126_475.exe'>shark_sd_cli_20230126_475.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230125.474/shark_sd_20230125_474.exe'>shark_sd_20230125_474.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230125.474/shark_sd_cli_20230125_474.exe'>shark_sd_cli_20230125_474.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230125.473/shark_sd_20230125_473.exe'>shark_sd_20230125_473.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230125.473/shark_sd_cli_20230125_473.exe'>shark_sd_cli_20230125_473.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230125.472/shark_sd_20230125_472.exe'>shark_sd_20230125_472.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230125.471/shark_sd_20230125_471.exe'>shark_sd_20230125_471.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230125.468/shark_sd_20230125_468.exe'>shark_sd_20230125_468.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230124.470/shark_sd_20230124_470.exe'>shark_sd_20230124_470.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230124.470/shark_sd_cli_20230124_470.exe'>shark_sd_cli_20230124_470.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230124.469/shark_sd_20230124_469.exe'>shark_sd_20230124_469.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230124.467/shark_sd_20230124_467.exe'>shark_sd_20230124_467.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230124.466/shark_sd_20230124_466.exe'>shark_sd_20230124_466.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230124.462/shark_sd_20230124_462.exe'>shark_sd_20230124_462.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230123.461/shark_sd_20230123_461.exe'>shark_sd_20230123_461.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230123.460/shark_sd_20230123_460.exe'>shark_sd_20230123_460.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230122.459/shark_sd_20230122_459.exe'>shark_sd_20230122_459.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230122.458/shark_sd_20230122_458.exe'>shark_sd_20230122_458.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230122.457/shark_sd_20230122_457.exe'>shark_sd_20230122_457.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230121.456/shark_sd_20230121_456.exe'>shark_sd_20230121_456.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230120.455/shark_sd_20230120_455.exe'>shark_sd_20230120_455.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230119.454/shark_sd_20230119_454.exe'>shark_sd_20230119_454.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230118.453/shark_sd_20230118_453.exe'>shark_sd_20230118_453.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230117.452/shark_sd_20230117_452.exe'>shark_sd_20230117_452.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230116.451/shark_sd_20230116_451.exe'>shark_sd_20230116_451.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230115.450/shark_sd_20230115_450.exe'>shark_sd_20230115_450.exe</a><br />
|
||||
<a href='https://github.com/nod-ai/SHARK/releases/download/20230114.449/shark_sd_20230114_449.exe'>shark_sd_20230114_449.exe</a><br />
|
||||
</body>
|
||||
</html>
|
||||
12
pyproject.toml
Normal file
12
pyproject.toml
Normal file
@@ -0,0 +1,12 @@
|
||||
[build-system]
|
||||
requires = [
|
||||
"setuptools>=42",
|
||||
"wheel",
|
||||
"packaging",
|
||||
|
||||
"numpy==1.22.4",
|
||||
"torch-mlir>=20220428.420",
|
||||
"iree-compiler>=20220427.13",
|
||||
"iree-runtime>=20220427.13",
|
||||
]
|
||||
build-backend = "setuptools.build_meta"
|
||||
3
pytest.ini
Normal file
3
pytest.ini
Normal file
@@ -0,0 +1,3 @@
|
||||
[pytest]
|
||||
addopts = --verbose -p no:warnings
|
||||
norecursedirs = inference tank/tflite
|
||||
@@ -0,0 +1,109 @@
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.iree_utils._common import check_device_drivers, device_driver_info
|
||||
from tank.model_utils import compare_tensors
|
||||
from shark.shark_downloader import download_torch_model
|
||||
from shark.parser import shark_args
|
||||
|
||||
import torch
|
||||
import unittest
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
|
||||
class BertBaseUncasedModuleTester:
|
||||
def __init__(
|
||||
self,
|
||||
benchmark=False,
|
||||
onnx_bench=False,
|
||||
):
|
||||
self.benchmark = benchmark
|
||||
self.onnx_bench = onnx_bench
|
||||
|
||||
def create_and_check_module(self, dynamic, device):
|
||||
model_mlir, func_name, input, act_out = download_torch_model(
|
||||
"bert-base-uncased", dynamic
|
||||
)
|
||||
|
||||
shark_module = SharkInference(
|
||||
model_mlir,
|
||||
func_name,
|
||||
device=device,
|
||||
mlir_dialect="linalg",
|
||||
is_benchmark=self.benchmark,
|
||||
)
|
||||
shark_module.compile()
|
||||
results = shark_module.forward(input)
|
||||
assert True == compare_tensors(act_out, results)
|
||||
|
||||
if self.benchmark == True:
|
||||
shark_args.onnx_bench = self.onnx_bench
|
||||
shark_module.shark_runner.benchmark_all_csv(
|
||||
(input),
|
||||
"bert-base-uncased",
|
||||
dynamic,
|
||||
device,
|
||||
"torch",
|
||||
)
|
||||
|
||||
|
||||
class BertBaseUncasedModuleTest(unittest.TestCase):
|
||||
@pytest.fixture(autouse=True)
|
||||
def configure(self, pytestconfig):
|
||||
self.module_tester = BertBaseUncasedModuleTester(self)
|
||||
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
|
||||
self.module_tester.onnx_bench = pytestconfig.getoption("onnx_bench")
|
||||
|
||||
def test_module_static_cpu(self):
|
||||
dynamic = False
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
def test_module_dynamic_cpu(self):
|
||||
dynamic = True
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_static_gpu(self):
|
||||
dynamic = False
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_dynamic_gpu(self):
|
||||
dynamic = True
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
def test_module_static_vulkan(self):
|
||||
dynamic = False
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
def test_module_dynamic_vulkan(self):
|
||||
dynamic = True
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("intel-gpu"),
|
||||
reason=device_driver_info("intel-gpu"),
|
||||
)
|
||||
def test_module_static_intel_gpu(self):
|
||||
dynamic = False
|
||||
device = "intel-gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
@@ -0,0 +1,71 @@
|
||||
from shark.iree_utils._common import check_device_drivers, device_driver_info
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.shark_downloader import download_tf_model
|
||||
|
||||
import iree.compiler as ireec
|
||||
import unittest
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
|
||||
class DistilBertModuleTester:
|
||||
def __init__(
|
||||
self,
|
||||
benchmark=False,
|
||||
):
|
||||
self.benchmark = benchmark
|
||||
|
||||
def create_and_check_module(self, dynamic, device):
|
||||
model, func_name, inputs, golden_out = download_tf_model(
|
||||
"distilbert-base-uncased"
|
||||
)
|
||||
|
||||
shark_module = SharkInference(
|
||||
model, func_name, device=device, mlir_dialect="mhlo"
|
||||
)
|
||||
shark_module.compile()
|
||||
result = shark_module.forward(inputs)
|
||||
np.testing.assert_allclose(golden_out, result, rtol=1e-02, atol=1e-03)
|
||||
|
||||
|
||||
class DistilBertModuleTest(unittest.TestCase):
|
||||
@pytest.fixture(autouse=True)
|
||||
def configure(self, pytestconfig):
|
||||
self.module_tester = DistilBertModuleTester(self)
|
||||
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
|
||||
|
||||
@pytest.mark.xfail(reason="shark_tank hash issues -- awaiting triage")
|
||||
def test_module_static_cpu(self):
|
||||
dynamic = False
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.xfail(reason="shark_tank hash issues -- awaiting triage")
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_static_gpu(self):
|
||||
dynamic = False
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.xfail(reason="shark_tank hash issues -- awaiting triage")
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
def test_module_static_vulkan(self):
|
||||
dynamic = False
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("intel-gpu"),
|
||||
reason=device_driver_info("intel-gpu"),
|
||||
)
|
||||
def test_module_static_intel_gpu(self):
|
||||
dynamic = False
|
||||
device = "intel-gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
@@ -0,0 +1,95 @@
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.iree_utils._common import check_device_drivers, device_driver_info
|
||||
from tank.model_utils import compare_tensors
|
||||
from shark.parser import shark_args
|
||||
from shark.shark_downloader import download_torch_model
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
|
||||
class DistilBertModuleTester:
|
||||
def __init__(
|
||||
self,
|
||||
benchmark=False,
|
||||
):
|
||||
self.benchmark = benchmark
|
||||
|
||||
def create_and_check_module(self, dynamic, device):
|
||||
model_mlir, func_name, input, act_out = download_torch_model(
|
||||
"distilbert-base-uncased", dynamic
|
||||
)
|
||||
|
||||
# from shark.shark_importer import SharkImporter
|
||||
# mlir_importer = SharkImporter(
|
||||
# model,
|
||||
# (input,),
|
||||
# frontend="torch",
|
||||
# )
|
||||
# minilm_mlir, func_name = mlir_importer.import_mlir(
|
||||
# is_dynamic=dynamic, tracing_required=True
|
||||
# )
|
||||
|
||||
shark_module = SharkInference(
|
||||
model_mlir,
|
||||
func_name,
|
||||
device=device,
|
||||
mlir_dialect="linalg",
|
||||
is_benchmark=self.benchmark,
|
||||
)
|
||||
shark_module.compile()
|
||||
results = shark_module.forward(input)
|
||||
assert True == compare_tensors(act_out, results)
|
||||
|
||||
if self.benchmark == True:
|
||||
shark_module.shark_runner.benchmark_all_csv(
|
||||
(input),
|
||||
"distilbert-base-uncased",
|
||||
dynamic,
|
||||
device,
|
||||
"torch",
|
||||
)
|
||||
|
||||
|
||||
class DistilBertModuleTest(unittest.TestCase):
|
||||
@pytest.fixture(autouse=True)
|
||||
def configure(self, pytestconfig):
|
||||
self.module_tester = DistilBertModuleTester(self)
|
||||
self.module_tester.save_mlir = pytestconfig.getoption("save_mlir")
|
||||
self.module_tester.save_vmfb = pytestconfig.getoption("save_vmfb")
|
||||
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
|
||||
|
||||
def test_module_static_cpu(self):
|
||||
dynamic = False
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_static_gpu(self):
|
||||
dynamic = False
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
def test_module_static_vulkan(self):
|
||||
dynamic = False
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("intel-gpu"),
|
||||
reason=device_driver_info("intel-gpu"),
|
||||
)
|
||||
def test_module_static_intel_gpu(self):
|
||||
dynamic = False
|
||||
device = "intel-gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
@@ -0,0 +1,114 @@
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.iree_utils._common import check_device_drivers, device_driver_info
|
||||
from shark.shark_downloader import download_torch_model
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
|
||||
class MobileNetV3ModuleTester:
|
||||
def __init__(
|
||||
self,
|
||||
benchmark=False,
|
||||
):
|
||||
self.benchmark = benchmark
|
||||
|
||||
def create_and_check_module(self, dynamic, device):
|
||||
model_mlir, func_name, input, act_out = download_torch_model(
|
||||
"mobilenet_v3_small", dynamic
|
||||
)
|
||||
|
||||
# from shark.shark_importer import SharkImporter
|
||||
# mlir_importer = SharkImporter(
|
||||
# model,
|
||||
# (input,),
|
||||
# frontend="torch",
|
||||
# )
|
||||
# minilm_mlir, func_name = mlir_importer.import_mlir(
|
||||
# is_dynamic=dynamic, tracing_required=True
|
||||
# )
|
||||
|
||||
shark_module = SharkInference(
|
||||
model_mlir,
|
||||
func_name,
|
||||
device=device,
|
||||
mlir_dialect="linalg",
|
||||
is_benchmark=self.benchmark,
|
||||
)
|
||||
shark_module.compile()
|
||||
results = shark_module.forward(input)
|
||||
np.testing.assert_allclose(act_out, results, rtol=1e-02, atol=1e-03)
|
||||
|
||||
if self.benchmark == True:
|
||||
shark_module.shark_runner.benchmark_all_csv(
|
||||
(input),
|
||||
"alexnet",
|
||||
dynamic,
|
||||
device,
|
||||
"torch",
|
||||
)
|
||||
|
||||
|
||||
class MobileNetV3ModuleTest(unittest.TestCase):
|
||||
@pytest.fixture(autouse=True)
|
||||
def configure(self, pytestconfig):
|
||||
self.module_tester = MobileNetV3ModuleTester(self)
|
||||
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
|
||||
|
||||
def test_module_static_cpu(self):
|
||||
dynamic = False
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
def test_module_dynamic_cpu(self):
|
||||
dynamic = True
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.xfail(reason="golden results don't match.")
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_static_gpu(self):
|
||||
dynamic = False
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.xfail(reason="golden results don't match.")
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_dynamic_gpu(self):
|
||||
dynamic = True
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.xfail(reason="stuck in the pipeline.")
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
def test_module_static_vulkan(self):
|
||||
dynamic = False
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
def test_module_dynamic_vulkan(self):
|
||||
dynamic = True
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("intel-gpu"),
|
||||
reason=device_driver_info("intel-gpu"),
|
||||
)
|
||||
def test_module_static_intel_gpu(self):
|
||||
dynamic = False
|
||||
device = "intel-gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
114
reference_models/resnet101_torch/resnet101_torch_test.py
Normal file
114
reference_models/resnet101_torch/resnet101_torch_test.py
Normal file
@@ -0,0 +1,114 @@
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.iree_utils._common import check_device_drivers, device_driver_info
|
||||
from tank.model_utils import compare_tensors
|
||||
from shark.shark_downloader import download_torch_model
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
|
||||
class Resnet101ModuleTester:
|
||||
def __init__(
|
||||
self,
|
||||
benchmark=False,
|
||||
):
|
||||
self.benchmark = benchmark
|
||||
|
||||
def create_and_check_module(self, dynamic, device):
|
||||
model_mlir, func_name, input, act_out = download_torch_model(
|
||||
"resnet101", dynamic
|
||||
)
|
||||
|
||||
# from shark.shark_importer import SharkImporter
|
||||
# mlir_importer = SharkImporter(
|
||||
# model,
|
||||
# (input,),
|
||||
# frontend="torch",
|
||||
# )
|
||||
# minilm_mlir, func_name = mlir_importer.import_mlir(
|
||||
# is_dynamic=dynamic, tracing_required=True
|
||||
# )
|
||||
|
||||
shark_module = SharkInference(
|
||||
model_mlir,
|
||||
func_name,
|
||||
device=device,
|
||||
mlir_dialect="linalg",
|
||||
is_benchmark=self.benchmark,
|
||||
)
|
||||
shark_module.compile()
|
||||
results = shark_module.forward(input)
|
||||
assert True == compare_tensors(act_out, results)
|
||||
|
||||
if self.benchmark == True:
|
||||
shark_module.shark_runner.benchmark_all_csv(
|
||||
(input),
|
||||
"resnet101",
|
||||
dynamic,
|
||||
device,
|
||||
"torch",
|
||||
)
|
||||
|
||||
|
||||
class Resnet101ModuleTest(unittest.TestCase):
|
||||
@pytest.fixture(autouse=True)
|
||||
def configure(self, pytestconfig):
|
||||
self.module_tester = Resnet101ModuleTester(self)
|
||||
self.module_tester.save_mlir = pytestconfig.getoption("save_mlir")
|
||||
self.module_tester.save_vmfb = pytestconfig.getoption("save_vmfb")
|
||||
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
|
||||
|
||||
def test_module_static_cpu(self):
|
||||
dynamic = False
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
def test_module_dynamic_cpu(self):
|
||||
dynamic = True
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_static_gpu(self):
|
||||
dynamic = False
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_dynamic_gpu(self):
|
||||
dynamic = True
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
def test_module_static_vulkan(self):
|
||||
dynamic = False
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
def test_module_dynamic_vulkan(self):
|
||||
dynamic = True
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("intel-gpu"),
|
||||
reason=device_driver_info("intel-gpu"),
|
||||
)
|
||||
def test_module_static_intel_gpu(self):
|
||||
dynamic = False
|
||||
device = "intel-gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
114
reference_models/resnet50_torch/resnet50_torch_test.py
Normal file
114
reference_models/resnet50_torch/resnet50_torch_test.py
Normal file
@@ -0,0 +1,114 @@
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.iree_utils._common import check_device_drivers, device_driver_info
|
||||
from tank.model_utils import get_vision_model, compare_tensors
|
||||
from shark.shark_downloader import download_torch_model
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
|
||||
class Resnet50ModuleTester:
|
||||
def __init__(
|
||||
self,
|
||||
benchmark=False,
|
||||
):
|
||||
self.benchmark = benchmark
|
||||
|
||||
def create_and_check_module(self, dynamic, device):
|
||||
model_mlir, func_name, input, act_out = download_torch_model(
|
||||
"resnet50", dynamic
|
||||
)
|
||||
|
||||
# from shark.shark_importer import SharkImporter
|
||||
# mlir_importer = SharkImporter(
|
||||
# model,
|
||||
# (input,),
|
||||
# frontend="torch",
|
||||
# )
|
||||
# minilm_mlir, func_name = mlir_importer.import_mlir(
|
||||
# is_dynamic=dynamic, tracing_required=True
|
||||
# )
|
||||
|
||||
shark_module = SharkInference(
|
||||
model_mlir,
|
||||
func_name,
|
||||
device=device,
|
||||
mlir_dialect="linalg",
|
||||
is_benchmark=self.benchmark,
|
||||
)
|
||||
shark_module.compile()
|
||||
results = shark_module.forward(input)
|
||||
assert True == compare_tensors(act_out, results)
|
||||
|
||||
if self.benchmark == True:
|
||||
shark_module.shark_runner.benchmark_all_csv(
|
||||
(input),
|
||||
"resnet50",
|
||||
dynamic,
|
||||
device,
|
||||
"torch",
|
||||
)
|
||||
|
||||
|
||||
class Resnet50ModuleTest(unittest.TestCase):
|
||||
@pytest.fixture(autouse=True)
|
||||
def configure(self, pytestconfig):
|
||||
self.module_tester = Resnet50ModuleTester(self)
|
||||
self.module_tester.save_mlir = pytestconfig.getoption("save_mlir")
|
||||
self.module_tester.save_vmfb = pytestconfig.getoption("save_vmfb")
|
||||
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
|
||||
|
||||
def test_module_static_cpu(self):
|
||||
dynamic = False
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
def test_module_dynamic_cpu(self):
|
||||
dynamic = True
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_static_gpu(self):
|
||||
dynamic = False
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_dynamic_gpu(self):
|
||||
dynamic = True
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
def test_module_static_vulkan(self):
|
||||
dynamic = False
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
def test_module_dynamic_vulkan(self):
|
||||
dynamic = True
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("intel-gpu"),
|
||||
reason=device_driver_info("intel-gpu"),
|
||||
)
|
||||
def test_module_static_intel_gpu(self):
|
||||
dynamic = False
|
||||
device = "intel-gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
91
reference_models/unet_torch/unet_torch_test.py
Normal file
91
reference_models/unet_torch/unet_torch_test.py
Normal file
@@ -0,0 +1,91 @@
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.iree_utils._common import check_device_drivers, device_driver_info
|
||||
from shark.shark_downloader import download_torch_model
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
|
||||
class UnetModuleTester:
|
||||
def __init__(
|
||||
self,
|
||||
benchmark=False,
|
||||
):
|
||||
self.benchmark = benchmark
|
||||
|
||||
def create_and_check_module(self, dynamic, device):
|
||||
model_mlir, func_name, input, act_out = download_torch_model(
|
||||
"unet", dynamic
|
||||
)
|
||||
|
||||
# from shark.shark_importer import SharkImporter
|
||||
# mlir_importer = SharkImporter(
|
||||
# model,
|
||||
# (input,),
|
||||
# frontend="torch",
|
||||
# )
|
||||
# minilm_mlir, func_name = mlir_importer.import_mlir(
|
||||
# is_dynamic=dynamic, tracing_required=True
|
||||
# )
|
||||
|
||||
shark_module = SharkInference(
|
||||
model_mlir,
|
||||
func_name,
|
||||
device=device,
|
||||
mlir_dialect="linalg",
|
||||
is_benchmark=self.benchmark,
|
||||
)
|
||||
shark_module.compile()
|
||||
results = shark_module.forward(input)
|
||||
np.testing.assert_allclose(act_out, results, rtol=1e-02, atol=1e-03)
|
||||
|
||||
if self.benchmark == True:
|
||||
shark_module.shark_runner.benchmark_all_csv(
|
||||
(input),
|
||||
"unet",
|
||||
dynamic,
|
||||
device,
|
||||
"torch",
|
||||
)
|
||||
|
||||
|
||||
class UnetModuleTest(unittest.TestCase):
|
||||
@pytest.fixture(autouse=True)
|
||||
def configure(self, pytestconfig):
|
||||
self.module_tester = UnetModuleTester(self)
|
||||
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
|
||||
|
||||
def test_module_static_cpu(self):
|
||||
dynamic = False
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_static_gpu(self):
|
||||
dynamic = False
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
def test_module_static_vulkan(self):
|
||||
dynamic = False
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("intel-gpu"),
|
||||
reason=device_driver_info("intel-gpu"),
|
||||
)
|
||||
def test_module_static_intel_gpu(self):
|
||||
dynamic = False
|
||||
device = "intel-gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
41
requirements-importer-macos.txt
Normal file
41
requirements-importer-macos.txt
Normal file
@@ -0,0 +1,41 @@
|
||||
-f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html
|
||||
--pre
|
||||
|
||||
numpy
|
||||
torch
|
||||
torchvision
|
||||
|
||||
tqdm
|
||||
|
||||
#iree-compiler | iree-runtime should already be installed
|
||||
#these dont work ok osx
|
||||
#iree-tools-tflite
|
||||
#iree-tools-xla
|
||||
#iree-tools-tf
|
||||
|
||||
# TensorFlow and JAX.
|
||||
gin-config
|
||||
tensorflow-macos
|
||||
tensorflow-metal
|
||||
#tf-models-nightly
|
||||
#tensorflow-text-nightly
|
||||
transformers==4.18.0
|
||||
tensorflow-probability
|
||||
#jax[cpu]
|
||||
|
||||
# tflitehub dependencies.
|
||||
Pillow
|
||||
|
||||
# Testing and support.
|
||||
#lit
|
||||
#pyyaml
|
||||
|
||||
#ONNX and ORT for benchmarking
|
||||
#--extra-index-url https://test.pypi.org/simple/
|
||||
#protobuf
|
||||
#coloredlogs
|
||||
#flatbuffers
|
||||
#sympy
|
||||
#psutil
|
||||
#onnx-weekly
|
||||
#ort-nightly
|
||||
40
requirements-importer.txt
Normal file
40
requirements-importer.txt
Normal file
@@ -0,0 +1,40 @@
|
||||
-f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html
|
||||
--pre
|
||||
|
||||
numpy==1.22.4
|
||||
torch
|
||||
torchvision
|
||||
|
||||
tqdm
|
||||
|
||||
#iree-compiler | iree-runtime should already be installed
|
||||
iree-tools-tflite
|
||||
iree-tools-xla
|
||||
iree-tools-tf
|
||||
|
||||
# TensorFlow and JAX.
|
||||
gin-config
|
||||
tensorflow
|
||||
#tf-models-nightly
|
||||
#tensorflow-text-nightly
|
||||
transformers==4.18.0
|
||||
#tensorflow-probability
|
||||
#jax[cpu]
|
||||
|
||||
|
||||
# tflitehub dependencies.
|
||||
Pillow
|
||||
|
||||
# Testing and support.
|
||||
lit
|
||||
pyyaml
|
||||
|
||||
#ONNX and ORT for benchmarking
|
||||
#--extra-index-url https://test.pypi.org/simple/
|
||||
#protobuf
|
||||
#coloredlogs
|
||||
#flatbuffers
|
||||
#sympy
|
||||
#psutil
|
||||
#onnx-weekly
|
||||
#ort-nightly
|
||||
13
requirements.txt
Normal file
13
requirements.txt
Normal file
@@ -0,0 +1,13 @@
|
||||
setuptools
|
||||
wheel
|
||||
|
||||
# SHARK Runner
|
||||
tqdm
|
||||
|
||||
# SHARK Downloader
|
||||
gsutil
|
||||
|
||||
# Testing
|
||||
pytest
|
||||
pytest-xdist
|
||||
Pillow
|
||||
38
setup.py
Normal file
38
setup.py
Normal file
@@ -0,0 +1,38 @@
|
||||
from setuptools import find_packages
|
||||
from setuptools import setup
|
||||
|
||||
import os
|
||||
|
||||
with open("README.md", "r", encoding="utf-8") as fh:
|
||||
long_description = fh.read()
|
||||
|
||||
PACKAGE_VERSION = os.environ.get("SHARK_PACKAGE_VERSION") or "0.0.4"
|
||||
|
||||
setup(
|
||||
name="nodai-SHARK",
|
||||
version=f"{PACKAGE_VERSION}",
|
||||
description="SHARK provides a High Performance Machine Learning Framework",
|
||||
author="nod.ai",
|
||||
author_email="stdin@nod.ai",
|
||||
url="https://nod.ai",
|
||||
long_description=long_description,
|
||||
long_description_content_type="text/markdown",
|
||||
project_urls={
|
||||
"Code": "https://github.com/nod-ai/SHARK",
|
||||
"Bug Tracker": "https://github.com/nod-ai/SHARK/issues",
|
||||
},
|
||||
classifiers=[
|
||||
"Programming Language :: Python :: 3",
|
||||
"License :: OSI Approved :: MIT License",
|
||||
"Operating System :: OS Independent",
|
||||
],
|
||||
packages=find_packages(exclude=("examples")),
|
||||
python_requires=">=3.7",
|
||||
install_requires=[
|
||||
"numpy",
|
||||
"PyYAML",
|
||||
"torch-mlir>=20220428.420",
|
||||
"iree-compiler>=20220427.13",
|
||||
"iree-runtime>=20220427.13",
|
||||
],
|
||||
)
|
||||
135
setup_venv.sh
Executable file
135
setup_venv.sh
Executable file
@@ -0,0 +1,135 @@
|
||||
#!/bin/bash
|
||||
# Sets up a venv suitable for running samples.
|
||||
# e.g:
|
||||
# ./setup_venv.sh #setup a default $PYTHON3 shark.venv
|
||||
# Environment Variables by the script.
|
||||
# PYTHON=$PYTHON3.10 ./setup_venv.sh #pass a version of $PYTHON to use
|
||||
# VENV_DIR=myshark.venv #create a venv called myshark.venv
|
||||
# USE_IREE=1 #use stock IREE instead of Nod.ai's SHARK build
|
||||
# IMPORTER=1 #Install importer deps
|
||||
# if you run the script from a conda env it will install in your conda env
|
||||
|
||||
TD="$(cd $(dirname $0) && pwd)"
|
||||
if [ -z "$PYTHON" ]; then
|
||||
PYTHON="$(which python3)"
|
||||
fi
|
||||
|
||||
function die() {
|
||||
echo "Error executing command: $*"
|
||||
exit 1
|
||||
}
|
||||
|
||||
PYTHON_VERSION_X_Y=`${PYTHON} -c 'import sys; version=sys.version_info[:2]; print("{0}.{1}".format(*version))'`
|
||||
|
||||
echo "Python: $PYTHON"
|
||||
echo "Python version: $PYTHON_VERSION_X_Y"
|
||||
|
||||
if [[ -z "${CONDA_PREFIX}" ]]; then
|
||||
# Not a conda env. So create a new VENV dir
|
||||
VENV_DIR=${VENV_DIR:-shark.venv}
|
||||
echo "Using pip venv.. Setting up venv dir: $VENV_DIR"
|
||||
$PYTHON -m venv "$VENV_DIR" || die "Could not create venv."
|
||||
source "$VENV_DIR/bin/activate" || die "Could not activate venv"
|
||||
PYTHON="$(which python3)"
|
||||
else
|
||||
echo "Found conda env $CONDA_DEFAULT_ENV. Running pip install inside the conda env"
|
||||
fi
|
||||
|
||||
Red=`tput setaf 1`
|
||||
Green=`tput setaf 2`
|
||||
Yellow=`tput setaf 3`
|
||||
|
||||
# Assume no binary torch-mlir.
|
||||
# Currently available for macOS m1&intel (3.10) and Linux(3.7,3.8,3.9,3.10)
|
||||
torch_mlir_bin=false
|
||||
if [[ $(uname -s) = 'Darwin' ]]; then
|
||||
echo "${Yellow}Apple macOS detected"
|
||||
if [[ $(uname -m) == 'arm64' ]]; then
|
||||
echo "${Yellow}Apple M1 Detected"
|
||||
hash rustc 2>/dev/null
|
||||
if [ $? -eq 0 ];then
|
||||
echo "${Green}rustc found to compile HF tokenizers"
|
||||
else
|
||||
echo "${Red}Could not find rustc" >&2
|
||||
echo "${Red}Please run:"
|
||||
echo "${Red}curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
echo "${Yellow}Run the following commands to setup your SSL certs for your Python version if you see SSL errors with tests"
|
||||
echo "${Yellow}/Applications/Python\ 3.XX/Install\ Certificates.command"
|
||||
if [ "$PYTHON_VERSION_X_Y" == "3.10" ]; then
|
||||
torch_mlir_bin=true
|
||||
fi
|
||||
elif [[ $(uname -s) = 'Linux' ]]; then
|
||||
echo "${Yellow}Linux detected"
|
||||
if [ "$PYTHON_VERSION_X_Y" == "3.7" ] || [ "$PYTHON_VERSION_X_Y" == "3.8" ] || [ "$PYTHON_VERSION_X_Y" == "3.9" ] || [ "$PYTHON_VERSION_X_Y" == "3.10" ] ; then
|
||||
torch_mlir_bin=true
|
||||
fi
|
||||
else
|
||||
echo "${Red}OS not detected. Pray and Play"
|
||||
fi
|
||||
|
||||
# Upgrade pip and install requirements.
|
||||
$PYTHON -m pip install --upgrade pip || die "Could not upgrade pip"
|
||||
$PYTHON -m pip install --upgrade -r "$TD/requirements.txt"
|
||||
if [ "$torch_mlir_bin" = true ]; then
|
||||
$PYTHON -m pip install --find-links https://github.com/llvm/torch-mlir/releases torch-mlir --extra-index-url https://download.pytorch.org/whl/nightly/cpu
|
||||
if [ $? -eq 0 ];then
|
||||
echo "Successfully Installed torch-mlir"
|
||||
else
|
||||
echo "Could not install torch-mlir" >&2
|
||||
fi
|
||||
else
|
||||
echo "${Red}No binaries found for Python $PYTHON_VERSION_X_Y on $(uname -s)"
|
||||
echo "${Yello}Python 3.10 supported on macOS and 3.7,3.8,3.9 and 3.10 on Linux"
|
||||
echo "${Red}Please build torch-mlir from source in your environment"
|
||||
exit 1
|
||||
fi
|
||||
if [[ -z "${USE_IREE}" ]]; then
|
||||
RUNTIME="nod-ai/SHARK-Runtime"
|
||||
else
|
||||
RUNTIME="google/iree"
|
||||
fi
|
||||
echo "Installing ${RUNTIME}..."
|
||||
$PYTHON -m pip install --find-links https://github.com/${RUNTIME}/releases iree-compiler iree-runtime
|
||||
|
||||
if [[ ! -z "${IMPORTER}" ]]; then
|
||||
echo "${Yellow}Installing importer tools.."
|
||||
if [[ $(uname -s) = 'Linux' ]]; then
|
||||
echo "${Yellow}Linux detected.. installing Linux importer tools"
|
||||
$PYTHON -m pip install --upgrade -r "$TD/requirements-importer.txt" -f https://github.com/${RUNTIME}/releases --extra-index-url https://test.pypi.org/simple/ --extra-index-url https://download.pytorch.org/whl/nightly/cu116
|
||||
elif [[ $(uname -s) = 'Darwin' ]]; then
|
||||
echo "${Yellow}macOS detected.. installing macOS importer tools"
|
||||
#Conda seems to have some problems installing these packages and hope they get resolved upstream.
|
||||
$PYTHON -m pip install --upgrade -r "$TD/requirements-importer-macos.txt" -f https://github.com/${RUNTIME}/releases --extra-index-url https://download.pytorch.org/whl/nightly/cpu
|
||||
fi
|
||||
fi
|
||||
|
||||
$PYTHON -m pip install -e . --extra-index-url https://download.pytorch.org/whl/nightly/cpu -f https://github.com/llvm/torch-mlir/releases -f https://github.com/${RUNTIME}/releases
|
||||
|
||||
if [[ $(uname -s) = 'Linux' && ! -z "${IMPORTER}" ]]; then
|
||||
$PYTHON -m pip uninstall -y torch torchvision
|
||||
$PYTHON -m pip install --pre torch torchvision --extra-index-url https://download.pytorch.org/whl/nightly/cu116
|
||||
if [ $? -eq 0 ];then
|
||||
echo "Successfully Installed torch + cu116."
|
||||
else
|
||||
echo "Could not install torch + cu116." >&2
|
||||
fi
|
||||
fi
|
||||
|
||||
if [[ ! -z "${ONNX}" ]]; then
|
||||
echo "${Yellow}Installing ONNX and onnxruntime for benchmarks..."
|
||||
$PYTHON -m pip install onnx onnxruntime psutil
|
||||
if [ $? -eq 0 ];then
|
||||
echo "Successfully installed ONNX and ONNX runtime."
|
||||
else
|
||||
echo "Could not install ONNX." >&2
|
||||
fi
|
||||
fi
|
||||
|
||||
if [[ -z "${CONDA_PREFIX}" ]]; then
|
||||
echo "${Green}Before running examples activate venv with:"
|
||||
echo " ${Green}source $VENV_DIR/bin/activate"
|
||||
fi
|
||||
|
||||
0
shark/__init__.py
Normal file
0
shark/__init__.py
Normal file
78
shark/backward_makefx.py
Normal file
78
shark/backward_makefx.py
Normal file
@@ -0,0 +1,78 @@
|
||||
# Copyright 2020 The Nod Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
from torch._decomp import get_decompositions
|
||||
from torch.fx.experimental.proxy_tensor import make_fx
|
||||
from torch.nn.utils import _stateless
|
||||
|
||||
from torch import fx
|
||||
import tempfile
|
||||
|
||||
|
||||
class MakeFxModule:
|
||||
def __init__(self, model, inputs, labels=None, custom_inference_fn=None):
|
||||
self.model = model
|
||||
self.inputs = inputs
|
||||
self.custom_inference_fn = custom_inference_fn
|
||||
self.training_graph = None
|
||||
|
||||
# Doesn't replace the None type.
|
||||
def change_fx_graph_return_to_tuple(self, fx_g: fx.GraphModule):
|
||||
for node in fx_g.graph.nodes:
|
||||
if node.op == "output":
|
||||
# output nodes always have one argument
|
||||
node_arg = node.args[0]
|
||||
out_nodes = []
|
||||
if isinstance(node_arg, list):
|
||||
# Don't return NoneType elements.
|
||||
for out_node in node_arg:
|
||||
if not isinstance(out_node, type(None)):
|
||||
out_nodes.append(out_node)
|
||||
# If there is a single tensor/element to be returned don't
|
||||
# a tuple for it.
|
||||
if len(out_nodes) == 1:
|
||||
node.args = out_nodes
|
||||
else:
|
||||
node.args = (tuple(out_nodes),)
|
||||
fx_g.graph.lint()
|
||||
fx_g.recompile()
|
||||
return fx_g
|
||||
|
||||
def generate_graph(self):
|
||||
fx_g = make_fx(
|
||||
self.custom_inference_fn,
|
||||
decomposition_table=get_decompositions(
|
||||
[
|
||||
torch.ops.aten.embedding_dense_backward,
|
||||
torch.ops.aten.native_layer_norm_backward,
|
||||
torch.ops.aten.slice_backward,
|
||||
torch.ops.aten.select_backward,
|
||||
]
|
||||
),
|
||||
)(
|
||||
dict(self.model.named_parameters()),
|
||||
dict(self.model.named_buffers()),
|
||||
self.inputs,
|
||||
)
|
||||
fx_g.graph.set_codegen(torch.fx.graph.CodeGen())
|
||||
fx_g.recompile()
|
||||
fx_g = self.change_fx_graph_return_to_tuple(fx_g)
|
||||
ts_g = torch.jit.script(fx_g)
|
||||
temp = tempfile.NamedTemporaryFile(
|
||||
suffix="_shark_ts", prefix="temp_ts_"
|
||||
)
|
||||
ts_g.save(temp.name)
|
||||
new_ts = torch.jit.load(temp.name)
|
||||
self.training_graph = new_ts
|
||||
300
shark/examples/shark_eager/dynamo_demo.ipynb
Normal file
300
shark/examples/shark_eager/dynamo_demo.ipynb
Normal file
@@ -0,0 +1,300 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/home/mlevental/miniconda3/envs/torch-mlir/lib/python3.9/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
||||
" from .autonotebook import tqdm as notebook_tqdm\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# standard imports\n",
|
||||
"import torch\n",
|
||||
"from shark.iree_utils import get_iree_compiled_module"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# torch dynamo related imports\n",
|
||||
"try:\n",
|
||||
" import torchdynamo\n",
|
||||
" from torchdynamo.optimizations.backends import create_backend\n",
|
||||
" from torchdynamo.optimizations.subgraph import SubGraph\n",
|
||||
"except ModuleNotFoundError:\n",
|
||||
" print(\"Please install TorchDynamo using pip install git+https://github.com/pytorch/torchdynamo\")\n",
|
||||
" exit()\n",
|
||||
"\n",
|
||||
"# torch-mlir imports for compiling\n",
|
||||
"from torch_mlir import compile, OutputType"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"[TorchDynamo](https://github.com/pytorch/torchdynamo) is a compiler for PyTorch programs that uses the [frame evaluation API](https://www.python.org/dev/peps/pep-0523/) in CPython to dynamically modify Python bytecode right before it is executed. It creates this FX Graph through bytecode analysis and is designed to mix Python execution with compiled backends."
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%% md\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def toy_example(*args):\n",
|
||||
" a, b = args\n",
|
||||
"\n",
|
||||
" x = a / (torch.abs(a) + 1)\n",
|
||||
" if b.sum() < 0:\n",
|
||||
" b = b * -1\n",
|
||||
" return x * b"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# compiler that lowers fx_graph to through MLIR\n",
|
||||
"def __torch_mlir(fx_graph, *args, **kwargs):\n",
|
||||
" assert isinstance(\n",
|
||||
" fx_graph, torch.fx.GraphModule\n",
|
||||
" ), \"Model must be an FX GraphModule.\"\n",
|
||||
"\n",
|
||||
" def _unwrap_single_tuple_return(fx_g: torch.fx.GraphModule):\n",
|
||||
" \"\"\"Replace tuple with tuple element in functions that return one-element tuples.\"\"\"\n",
|
||||
"\n",
|
||||
" for node in fx_g.graph.nodes:\n",
|
||||
" if node.op == \"output\":\n",
|
||||
" assert len(node.args) == 1, \"Output node must have a single argument\"\n",
|
||||
" node_arg = node.args[0]\n",
|
||||
" if isinstance(node_arg, tuple) and len(node_arg) == 1:\n",
|
||||
" node.args = (node_arg[0],)\n",
|
||||
" fx_g.graph.lint()\n",
|
||||
" fx_g.recompile()\n",
|
||||
" return fx_g\n",
|
||||
"\n",
|
||||
" fx_graph = _unwrap_single_tuple_return(fx_graph)\n",
|
||||
" ts_graph = torch.jit.script(fx_graph)\n",
|
||||
"\n",
|
||||
" # torchdynamo does munges the args differently depending on whether you use\n",
|
||||
" # the @torchdynamo.optimize decorator or the context manager\n",
|
||||
" if isinstance(args, tuple):\n",
|
||||
" args = list(args)\n",
|
||||
" assert isinstance(args, list)\n",
|
||||
" if len(args) == 1 and isinstance(args[0], list):\n",
|
||||
" args = args[0]\n",
|
||||
"\n",
|
||||
" linalg_module = compile(ts_graph, args, output_type=OutputType.LINALG_ON_TENSORS)\n",
|
||||
" callable, _ = get_iree_compiled_module(linalg_module, \"cuda\", func_name=\"forward\")\n",
|
||||
"\n",
|
||||
" def forward(*inputs):\n",
|
||||
" return callable(*inputs)\n",
|
||||
"\n",
|
||||
" return forward"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"Simplest way to use TorchDynamo with the `torchdynamo.optimize` context manager:"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%% md\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Found 1 device(s).\n",
|
||||
"Device: 0\n",
|
||||
" Name: NVIDIA GeForce RTX 3080\n",
|
||||
" Compute Capability: 8.6\n",
|
||||
"[-0.40066046 -0.4210303 0.03225489 -0.44849953 0.10370405 -0.04422468\n",
|
||||
" 0.33262825 -0.20109026 0.02102537 -0.24882983]\n",
|
||||
"[-0.07824923 -0.17004533 0.06439921 -0.06163602 0.26633525 -1.1560082\n",
|
||||
" -0.06660341 0.24227881 0.1462235 -0.32055548]\n",
|
||||
"[-0.01464001 0.442209 -0.0607936 -0.5477967 -0.25226554 -0.08588809\n",
|
||||
" -0.30497575 0.00061084 -0.50069696 0.2317973 ]\n",
|
||||
"[ 0.25726247 0.39388427 -0.24093066 0.12316308 -0.01981307 0.5661146\n",
|
||||
" 0.26199922 0.8123446 -0.01576749 0.30846444]\n",
|
||||
"[ 0.7878203 -0.45975062 -0.29956317 -0.07032048 -0.55817443 -0.62506855\n",
|
||||
" -1.6837492 -0.38442805 0.28220773 -1.5325156 ]\n",
|
||||
"[ 0.07975311 0.67754704 -0.30927914 0.00347631 -0.07326564 0.01893554\n",
|
||||
" -0.7518105 -0.03078967 -0.07623022 0.38865626]\n",
|
||||
"[-0.7751679 -0.5841397 -0.6622711 0.18574935 -0.6049372 0.02844244\n",
|
||||
" -0.20471913 0.3337415 -0.3619432 -0.35087156]\n",
|
||||
"[-0.08569919 -0.10775139 -0.02338934 0.21933547 -0.46712473 0.00062137\n",
|
||||
" -0.58207744 0.06457533 0.18276742 0.03866556]\n",
|
||||
"[-0.2311981 -0.43036282 0.20561649 -0.10363232 -0.13248594 0.02885137\n",
|
||||
" -0.31241602 -0.36907142 0.08861586 0.2331427 ]\n",
|
||||
"[-0.07273526 -0.31246194 -0.24218291 -0.24145737 0.0364486 0.14382267\n",
|
||||
" -0.00531162 0.15447603 -0.5220248 -0.09016377]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"with torchdynamo.optimize(__torch_mlir):\n",
|
||||
" for _ in range(10):\n",
|
||||
" print(toy_example(torch.randn(10), torch.randn(10)))"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"It can also be used through a decorator:"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%% md\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"@create_backend\n",
|
||||
"def torch_mlir(subgraph, *args, **kwargs):\n",
|
||||
" assert isinstance(subgraph, SubGraph), \"Model must be a dynamo SubGraph.\"\n",
|
||||
" return __torch_mlir(subgraph.model, *list(subgraph.example_inputs))\n",
|
||||
"\n",
|
||||
"@torchdynamo.optimize(\"torch_mlir\")\n",
|
||||
"def toy_example2(*args):\n",
|
||||
" a, b = args\n",
|
||||
"\n",
|
||||
" x = a / (torch.abs(a) + 1)\n",
|
||||
" if b.sum() < 0:\n",
|
||||
" b = b * -1\n",
|
||||
" return x * b"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Found 1 device(s).\n",
|
||||
"Device: 0\n",
|
||||
" Name: NVIDIA GeForce RTX 3080\n",
|
||||
" Compute Capability: 8.6\n",
|
||||
"[-0.35494277 0.03409214 -0.02271946 0.7335942 0.03122527 -0.41881397\n",
|
||||
" -0.6609761 -0.6418614 0.29336175 -0.01973678]\n",
|
||||
"[-2.7246824e-01 -3.5543957e-01 6.0087401e-01 -7.4570496e-03\n",
|
||||
" -4.2481605e-02 -5.0296803e-04 7.2928613e-01 -1.4673788e-03\n",
|
||||
" -2.7621329e-01 -6.0995776e-02]\n",
|
||||
"[-0.03165906 0.3889693 0.24052973 0.27279532 -0.02773128 -0.12602475\n",
|
||||
" -1.0124422 0.5720256 -0.35437614 -0.20992722]\n",
|
||||
"[-0.41831446 0.5525326 -0.29749998 -0.17044766 0.11804754 -0.05210691\n",
|
||||
" -0.46145165 -0.8776549 0.10090438 0.17463352]\n",
|
||||
"[ 0.02194221 0.20959911 0.26973712 0.12551276 -0.0020404 0.1490246\n",
|
||||
" -0.04456685 1.1100804 0.8105744 0.6676846 ]\n",
|
||||
"[ 0.06528181 -0.13591261 0.5370964 -0.4398162 -0.03372452 0.9691372\n",
|
||||
" -0.01120087 0.2947028 0.4804801 -0.3324341 ]\n",
|
||||
"[ 0.33549032 -0.23001772 -0.08681437 0.16490957 -0.11223086 0.09168988\n",
|
||||
" 0.02403045 0.17344482 0.46406478 -0.00129451]\n",
|
||||
"[-0.27475086 0.42384806 1.9090122 -0.41147137 -0.6888369 0.08435658\n",
|
||||
" -0.26628923 -0.17436793 -0.8058869 -0.02582378]\n",
|
||||
"[-0.10109414 0.08681287 -0.10055986 0.6858881 0.29267687 -0.02797117\n",
|
||||
" -0.01425194 0.4882803 0.3551982 -0.858935 ]\n",
|
||||
"[-0.22086617 0.524994 0.17721705 -0.03813264 -0.54570735 -0.4421502\n",
|
||||
" 0.11938014 -0.01122053 0.39294165 -0.61770755]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for _ in range(10):\n",
|
||||
" print(toy_example2(torch.randn(10), torch.randn(10)))"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 2
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython2",
|
||||
"version": "2.7.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
||||
92
shark/examples/shark_eager/dynamo_demo.py
Normal file
92
shark/examples/shark_eager/dynamo_demo.py
Normal file
@@ -0,0 +1,92 @@
|
||||
import torch
|
||||
from torch_mlir import compile, OutputType
|
||||
|
||||
from shark.iree_utils import get_iree_compiled_module
|
||||
|
||||
try:
|
||||
import torchdynamo
|
||||
from torchdynamo.optimizations.backends import create_backend
|
||||
from torchdynamo.optimizations.subgraph import SubGraph
|
||||
except ModuleNotFoundError:
|
||||
print(
|
||||
"Please install TorchDynamo using pip install git+https://github.com/pytorch/torchdynamo"
|
||||
)
|
||||
exit()
|
||||
|
||||
NUM_ITERS = 10
|
||||
|
||||
|
||||
def __torch_mlir(fx_graph, *args, **kwargs):
|
||||
assert isinstance(
|
||||
fx_graph, torch.fx.GraphModule
|
||||
), "Model must be an FX GraphModule."
|
||||
|
||||
def _unwrap_single_tuple_return(fx_g: torch.fx.GraphModule):
|
||||
"""Replace tuple with tuple element in functions that return one-element tuples."""
|
||||
|
||||
for node in fx_g.graph.nodes:
|
||||
if node.op == "output":
|
||||
assert (
|
||||
len(node.args) == 1
|
||||
), "Output node must have a single argument"
|
||||
node_arg = node.args[0]
|
||||
if isinstance(node_arg, tuple) and len(node_arg) == 1:
|
||||
node.args = (node_arg[0],)
|
||||
fx_g.graph.lint()
|
||||
fx_g.recompile()
|
||||
return fx_g
|
||||
|
||||
fx_graph = _unwrap_single_tuple_return(fx_graph)
|
||||
ts_graph = torch.jit.script(fx_graph)
|
||||
|
||||
if isinstance(args, tuple):
|
||||
args = list(args)
|
||||
assert isinstance(args, list)
|
||||
if len(args) == 1 and isinstance(args[0], list):
|
||||
args = args[0]
|
||||
|
||||
linalg_module = compile(
|
||||
ts_graph, args, output_type=OutputType.LINALG_ON_TENSORS
|
||||
)
|
||||
callable, _ = get_iree_compiled_module(
|
||||
linalg_module, "cuda", func_name="forward"
|
||||
)
|
||||
|
||||
def forward(*inputs):
|
||||
return callable(*inputs)
|
||||
|
||||
return forward
|
||||
|
||||
|
||||
def toy_example(*args):
|
||||
a, b = args
|
||||
|
||||
x = a / (torch.abs(a) + 1)
|
||||
if b.sum() < 0:
|
||||
b = b * -1
|
||||
return x * b
|
||||
|
||||
|
||||
with torchdynamo.optimize(__torch_mlir):
|
||||
for _ in range(10):
|
||||
print(toy_example(torch.randn(10), torch.randn(10)))
|
||||
|
||||
|
||||
@create_backend
|
||||
def torch_mlir(subgraph, *args, **kwargs):
|
||||
assert isinstance(subgraph, SubGraph), "Model must be a dynamo SubGraph."
|
||||
return __torch_mlir(subgraph.model, *list(subgraph.example_inputs))
|
||||
|
||||
|
||||
@torchdynamo.optimize("torch_mlir")
|
||||
def toy_example2(*args):
|
||||
a, b = args
|
||||
|
||||
x = a / (torch.abs(a) + 1)
|
||||
if b.sum() < 0:
|
||||
b = b * -1
|
||||
return x * b
|
||||
|
||||
|
||||
for _ in range(10):
|
||||
print(toy_example2(torch.randn(10), torch.randn(10)))
|
||||
805
shark/examples/shark_eager/eager_mode.ipynb
Normal file
805
shark/examples/shark_eager/eager_mode.ipynb
Normal file
@@ -0,0 +1,805 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/home/mlevental/miniconda3/envs/torch-mlir/lib/python3.9/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
||||
" from .autonotebook import tqdm as notebook_tqdm\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# standard imports\n",
|
||||
"import torch\n",
|
||||
"from torch_mlir.eager_mode import torch_mlir_tensor"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# eager mode imports\n",
|
||||
"from torch_mlir.eager_mode.torch_mlir_tensor import TorchMLIRTensor\n",
|
||||
"from shark.iree_eager_backend import EagerModeIREELinalgOnTensorsBackend"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"The simplest way of using Eager Mode (through IREE) requires setting a \"backend\":"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%% md\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"torch_mlir_tensor.backend = EagerModeIREELinalgOnTensorsBackend(\"cpu\")"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"and wrapping all your `torch.Tensor`s:"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%% md\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"TorchMLIRTensor(<IREE DeviceArray: shape=[10, 10], dtype=float32>, backend=EagerModeIREELinalgOnTensorsBackend)\n",
|
||||
"TorchMLIRTensor(<IREE DeviceArray: shape=[10, 10], dtype=float32>, backend=EagerModeIREELinalgOnTensorsBackend)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"NUM_ITERS = 10\n",
|
||||
"\n",
|
||||
"t = torch.ones((10, 10))\n",
|
||||
"u = 2 * torch.ones((10, 10))\n",
|
||||
"\n",
|
||||
"tt = TorchMLIRTensor(t)\n",
|
||||
"print(tt)\n",
|
||||
"uu = TorchMLIRTensor(u)\n",
|
||||
"print(uu)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"`TorchMLIRTensor` is a \"tensor wrapper subclass\" (more info [here](https://github.com/albanD/subclass_zoo)) that keeps the IREE `DeviceArray` in a field `elem`:"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%% md\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for i in range(NUM_ITERS):\n",
|
||||
" yy = tt + uu\n",
|
||||
" print(type(yy))\n",
|
||||
" print(yy.elem.to_host())\n",
|
||||
" yy = tt * uu\n",
|
||||
" print(type(yy))\n",
|
||||
" print(yy.elem.to_host())"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"If you have a GPU (and CUDA installed) that works too (you can verify by having `watch -n1 nvidia-smi` up in a terminal while running the next cell):"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%% md\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"TorchMLIRTensor(<IREE DeviceArray: shape=[10, 10], dtype=float32>, backend=EagerModeIREELinalgOnTensorsBackend)\n",
|
||||
"TorchMLIRTensor(<IREE DeviceArray: shape=[10, 10], dtype=float32>, backend=EagerModeIREELinalgOnTensorsBackend)\n",
|
||||
"[[3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]\n",
|
||||
" [3. 3. 3. 3. 3. 3. 3. 3. 3. 3.]]\n",
|
||||
"[[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"torch_mlir_tensor.backend = EagerModeIREELinalgOnTensorsBackend(\"gpu\")\n",
|
||||
"\n",
|
||||
"t = torch.ones((10, 10))\n",
|
||||
"u = 2 * torch.ones((10, 10))\n",
|
||||
"\n",
|
||||
"tt = TorchMLIRTensor(t)\n",
|
||||
"print(tt)\n",
|
||||
"uu = TorchMLIRTensor(u)\n",
|
||||
"print(uu)\n",
|
||||
"\n",
|
||||
"yy = tt + uu\n",
|
||||
"print(yy.elem.to_host())\n",
|
||||
"yy = tt * uu\n",
|
||||
"print(yy.elem.to_host())"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"There is a convenience class `SharkEagerMode` that will handle both the installation of the backend and the wrapping of `torch.Tensor`s:"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%% md\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"TorchMLIRTensor(<IREE DeviceArray: shape=[10, 10], dtype=float32>, backend=EagerModeIREELinalgOnTensorsBackend)\n",
|
||||
"TorchMLIRTensor(<IREE DeviceArray: shape=[10, 10], dtype=float32>, backend=EagerModeIREELinalgOnTensorsBackend)\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# eager mode RAII\n",
|
||||
"from shark.shark_runner import SharkEagerMode\n",
|
||||
"\n",
|
||||
"shark_eager_mode = SharkEagerMode(\"cpu\")\n",
|
||||
"\n",
|
||||
"t = torch.ones((10, 10))\n",
|
||||
"u = torch.ones((10, 10))\n",
|
||||
"\n",
|
||||
"print(t)\n",
|
||||
"print(u)\n",
|
||||
"\n",
|
||||
"for i in range(NUM_ITERS):\n",
|
||||
" yy = t + u\n",
|
||||
" print(type(yy))\n",
|
||||
" print(yy.elem.to_host())\n",
|
||||
" yy = t * u\n",
|
||||
" print(type(yy))\n",
|
||||
" print(yy.elem.to_host())"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"The `SharkEagerMode` class is a hacky take on [RAII](https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization) that defines a \"deleter\" that runs when an instantiation (of `SharkEagerMode`) is garbage collected. Takeaway is that if you want to turn off `SharkEagerMode`, or switch backends, you need to `del` the instance:"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%% md\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"TorchMLIRTensor(<IREE DeviceArray: shape=[10, 10], dtype=float32>, backend=EagerModeIREELinalgOnTensorsBackend)\n",
|
||||
"TorchMLIRTensor(<IREE DeviceArray: shape=[10, 10], dtype=float32>, backend=EagerModeIREELinalgOnTensorsBackend)\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]\n",
|
||||
" [2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]\n",
|
||||
"<class 'torch_mlir.eager_mode.torch_mlir_tensor.TorchMLIRTensor'>\n",
|
||||
"[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]\n",
|
||||
" [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"del shark_eager_mode\n",
|
||||
"shark_eager_mode = SharkEagerMode(\"cuda\")\n",
|
||||
"\n",
|
||||
"t = torch.ones((10, 10))\n",
|
||||
"u = torch.ones((10, 10))\n",
|
||||
"\n",
|
||||
"print(t)\n",
|
||||
"print(u)\n",
|
||||
"\n",
|
||||
"yy = t + u\n",
|
||||
"print(type(yy))\n",
|
||||
"print(yy.elem.to_host())\n",
|
||||
"yy = t * u\n",
|
||||
"print(type(yy))\n",
|
||||
"print(yy.elem.to_host())"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 2
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython2",
|
||||
"version": "2.7.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
||||
148
shark/examples/shark_eager/eager_mode.py
Normal file
148
shark/examples/shark_eager/eager_mode.py
Normal file
@@ -0,0 +1,148 @@
|
||||
# Copyright 2020 The Nod Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
from torch.utils.cpp_extension import load_inline, include_paths
|
||||
from torch_mlir.eager_mode import torch_mlir_tensor
|
||||
from torch_mlir.eager_mode.torch_mlir_tensor import TorchMLIRTensor
|
||||
|
||||
from shark.iree_eager_backend import EagerModeIREELinalgOnTensorsBackend
|
||||
from shark.shark_runner import SharkEagerMode
|
||||
|
||||
|
||||
def test_cpu():
|
||||
torch_mlir_tensor.backend = EagerModeIREELinalgOnTensorsBackend("cpu")
|
||||
|
||||
t = torch.ones((10, 10), device="cpu")
|
||||
u = 2 * torch.ones((10, 10), device="cpu")
|
||||
|
||||
tt = TorchMLIRTensor(t)
|
||||
print(tt)
|
||||
uu = TorchMLIRTensor(u)
|
||||
print(uu)
|
||||
|
||||
for i in range(NUM_ITERS):
|
||||
yy = tt + uu
|
||||
print(type(yy))
|
||||
print(yy.elem.to_host())
|
||||
yy = tt * uu
|
||||
print(type(yy))
|
||||
print(yy.elem.to_host())
|
||||
|
||||
|
||||
def test_gpu():
|
||||
source = """
|
||||
#include <iostream>
|
||||
#include "cuda.h"
|
||||
#include "cuda_runtime_api.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
void print_free_mem() {
|
||||
int num_gpus;
|
||||
size_t free, total;
|
||||
cudaSetDevice(0);
|
||||
int id;
|
||||
cudaGetDevice(&id);
|
||||
cudaMemGetInfo(&free, &total);
|
||||
cout << "GPU " << id << " memory: used=" << (total-free)/(1<<20) << endl;
|
||||
}
|
||||
"""
|
||||
gpu_stats = load_inline(
|
||||
name="inline_extension",
|
||||
cpp_sources=[source],
|
||||
extra_include_paths=include_paths(cuda=True),
|
||||
functions=["print_free_mem"],
|
||||
)
|
||||
torch_mlir_tensor.backend = EagerModeIREELinalgOnTensorsBackend("gpu")
|
||||
|
||||
t = torch.ones((10, 10), device="cpu")
|
||||
u = 2 * torch.ones((10, 10), device="cpu")
|
||||
|
||||
tt = TorchMLIRTensor(t)
|
||||
print(tt)
|
||||
uu = TorchMLIRTensor(u)
|
||||
print(uu)
|
||||
|
||||
for i in range(NUM_ITERS):
|
||||
yy = tt + uu
|
||||
print(yy.elem.to_host())
|
||||
yy = tt * uu
|
||||
print(yy.elem.to_host())
|
||||
gpu_stats.print_free_mem()
|
||||
|
||||
|
||||
def test_python_mode_ref_backend():
|
||||
# hide this wherever you want?
|
||||
_ = SharkEagerMode("refbackend")
|
||||
|
||||
t = torch.ones((10, 10), device="cpu")
|
||||
u = torch.ones((10, 10), device="cpu")
|
||||
|
||||
print(t)
|
||||
print(u)
|
||||
|
||||
for i in range(NUM_ITERS):
|
||||
print(i)
|
||||
yy = t + u
|
||||
print(yy.elem)
|
||||
yy = t * u
|
||||
print(yy.elem)
|
||||
|
||||
|
||||
def test_python_mode_iree_cpu():
|
||||
# hide this wherever you want?
|
||||
_ = SharkEagerMode("cpu")
|
||||
|
||||
t = torch.ones((10, 10), device="cpu")
|
||||
u = torch.ones((10, 10), device="cpu")
|
||||
|
||||
print(t)
|
||||
print(u)
|
||||
|
||||
for i in range(NUM_ITERS):
|
||||
yy = t + u
|
||||
print(type(yy))
|
||||
print(yy.elem.to_host())
|
||||
yy = t * u
|
||||
print(type(yy))
|
||||
print(yy.elem.to_host())
|
||||
|
||||
|
||||
def test_python_mode_iree_gpu():
|
||||
_ = SharkEagerMode("gpu")
|
||||
|
||||
t = torch.ones((10, 10), device="cpu")
|
||||
u = torch.ones((10, 10), device="cpu")
|
||||
|
||||
print(t)
|
||||
print(u)
|
||||
|
||||
for i in range(NUM_ITERS):
|
||||
yy = t + u
|
||||
print(type(yy))
|
||||
print(yy.elem.to_host())
|
||||
yy = t * u
|
||||
print(type(yy))
|
||||
print(yy.elem.to_host())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
NUM_ITERS = 10
|
||||
test_cpu()
|
||||
if torch.cuda.is_available():
|
||||
test_gpu()
|
||||
test_python_mode_ref_backend()
|
||||
test_python_mode_iree_cpu()
|
||||
test_python_mode_iree_gpu()
|
||||
65
shark/examples/shark_inference/CLIPModel_tf.py
Normal file
65
shark/examples/shark_inference/CLIPModel_tf.py
Normal file
@@ -0,0 +1,65 @@
|
||||
from PIL import Image
|
||||
import requests
|
||||
|
||||
from transformers import CLIPProcessor, TFCLIPModel
|
||||
import tensorflow as tf
|
||||
from shark.shark_inference import SharkInference
|
||||
|
||||
# Create a set of inputs
|
||||
clip_vit_inputs = [
|
||||
tf.TensorSpec(shape=[2, 7], dtype=tf.int32),
|
||||
tf.TensorSpec(shape=[2, 7], dtype=tf.int32),
|
||||
tf.TensorSpec(shape=[1, 3, 224, 224], dtype=tf.float32),
|
||||
]
|
||||
|
||||
|
||||
class CLIPModule(tf.Module):
|
||||
def __init__(self):
|
||||
super(CLIPModule, self).__init__()
|
||||
self.m = TFCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
||||
|
||||
self.m.predict = lambda x, y, z: self.m(
|
||||
input_ids=x, attention_mask=y, pixel_values=z
|
||||
)
|
||||
|
||||
@tf.function(input_signature=clip_vit_inputs)
|
||||
def forward(self, input_ids, attention_mask, pixel_values):
|
||||
return self.m.predict(
|
||||
input_ids, attention_mask, pixel_values
|
||||
).logits_per_image
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Prepping Data
|
||||
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
||||
|
||||
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
inputs = processor(
|
||||
text=["a photo of a cat", "a photo of a dog"],
|
||||
images=image,
|
||||
return_tensors="tf",
|
||||
padding=True,
|
||||
)
|
||||
|
||||
shark_module = SharkInference(
|
||||
CLIPModule(),
|
||||
(
|
||||
inputs["input_ids"],
|
||||
inputs["attention_mask"],
|
||||
inputs["pixel_values"],
|
||||
),
|
||||
)
|
||||
shark_module.set_frontend("tensorflow")
|
||||
shark_module.compile()
|
||||
|
||||
print(
|
||||
shark_module.forward(
|
||||
(
|
||||
inputs["input_ids"],
|
||||
inputs["attention_mask"],
|
||||
inputs["pixel_values"],
|
||||
)
|
||||
)
|
||||
)
|
||||
88
shark/examples/shark_inference/albert_maskfill_pt.py
Normal file
88
shark/examples/shark_inference/albert_maskfill_pt.py
Normal file
@@ -0,0 +1,88 @@
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
import torch
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.shark_importer import SharkImporter
|
||||
from iree.compiler import compile_str
|
||||
from iree import runtime as ireert
|
||||
import os
|
||||
import numpy as np
|
||||
|
||||
MAX_SEQUENCE_LENGTH = 512
|
||||
BATCH_SIZE = 1
|
||||
|
||||
|
||||
class AlbertModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.model = AutoModelForMaskedLM.from_pretrained("albert-base-v2")
|
||||
self.model.eval()
|
||||
|
||||
def forward(self, input_ids, attention_mask):
|
||||
return self.model(
|
||||
input_ids=input_ids, attention_mask=attention_mask
|
||||
).logits
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Prepping Data
|
||||
tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
|
||||
text = "This [MASK] is very tasty."
|
||||
encoded_inputs = tokenizer(
|
||||
text,
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=MAX_SEQUENCE_LENGTH,
|
||||
return_tensors="pt",
|
||||
)
|
||||
inputs = (encoded_inputs["input_ids"], encoded_inputs["attention_mask"])
|
||||
mlir_importer = SharkImporter(
|
||||
AlbertModule(),
|
||||
inputs,
|
||||
frontend="torch",
|
||||
)
|
||||
minilm_mlir, func_name = mlir_importer.import_mlir(
|
||||
is_dynamic=False, tracing_required=True
|
||||
)
|
||||
shark_module = SharkInference(
|
||||
minilm_mlir, func_name, mlir_dialect="linalg"
|
||||
)
|
||||
shark_module.compile()
|
||||
token_logits = torch.tensor(shark_module.forward(inputs))
|
||||
mask_id = torch.where(
|
||||
encoded_inputs["input_ids"] == tokenizer.mask_token_id
|
||||
)[1]
|
||||
mask_token_logits = token_logits[0, mask_id, :]
|
||||
top_5_tokens = torch.topk(mask_token_logits, 5, dim=1).indices[0].tolist()
|
||||
for token in top_5_tokens:
|
||||
print(
|
||||
f"'>>> Sample/Warmup output: {text.replace(tokenizer.mask_token, tokenizer.decode(token))}'"
|
||||
)
|
||||
while True:
|
||||
try:
|
||||
new_text = input("Give me a sentence with [MASK] to fill: ")
|
||||
encoded_inputs = tokenizer(
|
||||
new_text,
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=MAX_SEQUENCE_LENGTH,
|
||||
return_tensors="pt",
|
||||
)
|
||||
inputs = (
|
||||
encoded_inputs["input_ids"],
|
||||
encoded_inputs["attention_mask"],
|
||||
)
|
||||
token_logits = torch.tensor(shark_module.forward(inputs))
|
||||
mask_id = torch.where(
|
||||
encoded_inputs["input_ids"] == tokenizer.mask_token_id
|
||||
)[1]
|
||||
mask_token_logits = token_logits[0, mask_id, :]
|
||||
top_5_tokens = (
|
||||
torch.topk(mask_token_logits, 5, dim=1).indices[0].tolist()
|
||||
)
|
||||
for token in top_5_tokens:
|
||||
print(
|
||||
f"'>>> {new_text.replace(tokenizer.mask_token, tokenizer.decode(token))}'"
|
||||
)
|
||||
except KeyboardInterrupt:
|
||||
print("Exiting program.")
|
||||
break
|
||||
100
shark/examples/shark_inference/albert_maskfill_tf.py
Normal file
100
shark/examples/shark_inference/albert_maskfill_tf.py
Normal file
@@ -0,0 +1,100 @@
|
||||
from PIL import Image
|
||||
import requests
|
||||
|
||||
from transformers import TFAutoModelForMaskedLM, AutoTokenizer
|
||||
import tensorflow as tf
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.shark_importer import SharkImporter
|
||||
from iree.compiler import tf as tfc
|
||||
from iree.compiler import compile_str
|
||||
from iree import runtime as ireert
|
||||
import os
|
||||
import numpy as np
|
||||
import sys
|
||||
|
||||
MAX_SEQUENCE_LENGTH = 512
|
||||
BATCH_SIZE = 1
|
||||
|
||||
# Create a set of inputs
|
||||
t5_inputs = [
|
||||
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
|
||||
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
|
||||
]
|
||||
|
||||
|
||||
class AlbertModule(tf.Module):
|
||||
def __init__(self):
|
||||
super(AlbertModule, self).__init__()
|
||||
self.m = TFAutoModelForMaskedLM.from_pretrained("albert-base-v2")
|
||||
self.m.predict = lambda x, y: self.m(input_ids=x, attention_mask=y)
|
||||
|
||||
@tf.function(input_signature=t5_inputs)
|
||||
def forward(self, input_ids, attention_mask):
|
||||
return self.m.predict(input_ids, attention_mask)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Prepping Data
|
||||
tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
|
||||
# text = "This is a great [MASK]."
|
||||
text = "This [MASK] is very tasty."
|
||||
encoded_inputs = tokenizer(
|
||||
text,
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=MAX_SEQUENCE_LENGTH,
|
||||
return_tensors="tf",
|
||||
)
|
||||
inputs = (encoded_inputs["input_ids"], encoded_inputs["attention_mask"])
|
||||
mlir_importer = SharkImporter(
|
||||
AlbertModule(),
|
||||
inputs,
|
||||
frontend="tf",
|
||||
)
|
||||
minilm_mlir, func_name = mlir_importer.import_mlir(
|
||||
is_dynamic=False, tracing_required=False
|
||||
)
|
||||
shark_module = SharkInference(minilm_mlir, func_name, mlir_dialect="mhlo")
|
||||
shark_module.compile()
|
||||
output_idx = 0
|
||||
data_idx = 1
|
||||
token_logits = shark_module.forward(inputs)[output_idx][data_idx]
|
||||
mask_id = np.where(
|
||||
tf.squeeze(encoded_inputs["input_ids"]) == tokenizer.mask_token_id
|
||||
)
|
||||
mask_token_logits = token_logits[0, mask_id, :]
|
||||
top_5_tokens = np.flip(np.argsort(mask_token_logits)).squeeze()[0:5]
|
||||
for token in top_5_tokens:
|
||||
print(
|
||||
f"'>>> Sample/Warmup output: {text.replace(tokenizer.mask_token, tokenizer.decode(token))}'"
|
||||
)
|
||||
while True:
|
||||
try:
|
||||
new_text = input("Give me a sentence with [MASK] to fill: ")
|
||||
encoded_inputs = tokenizer(
|
||||
new_text,
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=MAX_SEQUENCE_LENGTH,
|
||||
return_tensors="tf",
|
||||
)
|
||||
inputs = (
|
||||
encoded_inputs["input_ids"],
|
||||
encoded_inputs["attention_mask"],
|
||||
)
|
||||
token_logits = shark_module.forward(inputs)[output_idx][data_idx]
|
||||
mask_id = np.where(
|
||||
tf.squeeze(encoded_inputs["input_ids"])
|
||||
== tokenizer.mask_token_id
|
||||
)
|
||||
mask_token_logits = token_logits[0, mask_id, :]
|
||||
top_5_tokens = np.flip(np.argsort(mask_token_logits)).squeeze()[
|
||||
0:5
|
||||
]
|
||||
for token in top_5_tokens:
|
||||
print(
|
||||
f"'>>> {new_text.replace(tokenizer.mask_token, tokenizer.decode(token))}'"
|
||||
)
|
||||
except KeyboardInterrupt:
|
||||
print("Exiting program.")
|
||||
sys.exit()
|
||||
40
shark/examples/shark_inference/gpt2_tf.py
Normal file
40
shark/examples/shark_inference/gpt2_tf.py
Normal file
@@ -0,0 +1,40 @@
|
||||
from PIL import Image
|
||||
import requests
|
||||
|
||||
from transformers import GPT2Tokenizer, TFGPT2Model
|
||||
import tensorflow as tf
|
||||
from shark.shark_inference import SharkInference
|
||||
|
||||
# Create a set of inputs
|
||||
gpt2_inputs = [
|
||||
tf.TensorSpec(shape=[1, 8], dtype=tf.int32),
|
||||
tf.TensorSpec(shape=[1, 8], dtype=tf.int32),
|
||||
]
|
||||
|
||||
|
||||
class GPT2Module(tf.Module):
|
||||
def __init__(self):
|
||||
super(GPT2Module, self).__init__()
|
||||
self.m = TFGPT2Model.from_pretrained("distilgpt2")
|
||||
|
||||
self.m.predict = lambda x, y: self.m(input_ids=x, attention_mask=y)
|
||||
|
||||
@tf.function(input_signature=gpt2_inputs)
|
||||
def forward(self, input_ids, attention_mask):
|
||||
return self.m.predict(input_ids, attention_mask)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Prepping Data
|
||||
tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")
|
||||
text = "I love the distilled version of models."
|
||||
|
||||
inputs = tokenizer(text, return_tensors="tf")
|
||||
shark_module = SharkInference(
|
||||
GPT2Module(), (inputs["input_ids"], inputs["attention_mask"])
|
||||
)
|
||||
shark_module.set_frontend("tensorflow")
|
||||
shark_module.compile()
|
||||
print(
|
||||
shark_module.forward((inputs["input_ids"], inputs["attention_mask"]))
|
||||
)
|
||||
37
shark/examples/shark_inference/mhlo_example.py
Normal file
37
shark/examples/shark_inference/mhlo_example.py
Normal file
@@ -0,0 +1,37 @@
|
||||
from shark.shark_inference import SharkInference
|
||||
import numpy as np
|
||||
|
||||
mhlo_ir = r"""builtin.module {
|
||||
func.func @forward(%arg0: tensor<1x4xf32>, %arg1: tensor<4x1xf32>) -> tensor<4x4xf32> {
|
||||
%0 = chlo.broadcast_add %arg0, %arg1 : (tensor<1x4xf32>, tensor<4x1xf32>) -> tensor<4x4xf32>
|
||||
%1 = "mhlo.abs"(%0) : (tensor<4x4xf32>) -> tensor<4x4xf32>
|
||||
return %1 : tensor<4x4xf32>
|
||||
}
|
||||
}"""
|
||||
|
||||
arg0 = np.ones((1, 4)).astype(np.float32)
|
||||
arg1 = np.ones((4, 1)).astype(np.float32)
|
||||
|
||||
print("Running shark on cpu backend")
|
||||
shark_module = SharkInference(
|
||||
mhlo_ir, function_name="forward", device="cpu", mlir_dialect="mhlo"
|
||||
)
|
||||
|
||||
# Generate the random inputs and feed into the graph.
|
||||
x = shark_module.generate_random_inputs()
|
||||
shark_module.compile()
|
||||
print(shark_module.forward(x))
|
||||
|
||||
print("Running shark on cuda backend")
|
||||
shark_module = SharkInference(
|
||||
mhlo_ir, function_name="forward", device="cuda", mlir_dialect="mhlo"
|
||||
)
|
||||
shark_module.compile()
|
||||
print(shark_module.forward(x))
|
||||
|
||||
print("Running shark on vulkan backend")
|
||||
shark_module = SharkInference(
|
||||
mhlo_ir, function_name="forward", device="vulkan", mlir_dialect="mhlo"
|
||||
)
|
||||
shark_module.compile()
|
||||
print(shark_module.forward(x))
|
||||
35
shark/examples/shark_inference/minilm_benchmark.py
Normal file
35
shark/examples/shark_inference/minilm_benchmark.py
Normal file
@@ -0,0 +1,35 @@
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
||||
from shark.shark_inference import SharkInference
|
||||
|
||||
torch.manual_seed(0)
|
||||
tokenizer = AutoTokenizer.from_pretrained("microsoft/MiniLM-L12-H384-uncased")
|
||||
|
||||
|
||||
class MiniLMSequenceClassification(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.model = AutoModelForSequenceClassification.from_pretrained(
|
||||
"microsoft/MiniLM-L12-H384-uncased", # The pretrained model.
|
||||
num_labels=2, # The number of output labels--2 for binary classification.
|
||||
output_attentions=False, # Whether the model returns attentions weights.
|
||||
output_hidden_states=False, # Whether the model returns all hidden-states.
|
||||
torchscript=True,
|
||||
)
|
||||
|
||||
def forward(self, tokens):
|
||||
return self.model.forward(tokens)[0]
|
||||
|
||||
|
||||
test_input = torch.randint(2, (1, 128))
|
||||
|
||||
shark_module = SharkInference(
|
||||
MiniLMSequenceClassification(),
|
||||
(test_input,),
|
||||
jit_trace=True,
|
||||
benchmark_mode=True,
|
||||
)
|
||||
|
||||
shark_module.compile()
|
||||
shark_module.forward((test_input,))
|
||||
shark_module.benchmark_all((test_input,))
|
||||
61
shark/examples/shark_inference/minilm_benchmark_tf.py
Normal file
61
shark/examples/shark_inference/minilm_benchmark_tf.py
Normal file
@@ -0,0 +1,61 @@
|
||||
import tensorflow as tf
|
||||
from transformers import BertModel, BertTokenizer, TFBertModel
|
||||
from shark.shark_inference import SharkInference
|
||||
|
||||
MAX_SEQUENCE_LENGTH = 512
|
||||
BATCH_SIZE = 1
|
||||
|
||||
# Create a set of 2-dimensional inputs
|
||||
bert_input = [
|
||||
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
|
||||
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
|
||||
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
|
||||
]
|
||||
|
||||
|
||||
class BertModule(tf.Module):
|
||||
def __init__(self):
|
||||
super(BertModule, self).__init__()
|
||||
# Create a BERT trainer with the created network.
|
||||
self.m = TFBertModel.from_pretrained(
|
||||
"microsoft/MiniLM-L12-H384-uncased", from_pt=True
|
||||
)
|
||||
|
||||
# Invoke the trainer model on the inputs. This causes the layer to be built.
|
||||
self.m.predict = lambda x, y, z: self.m.call(
|
||||
input_ids=x, attention_mask=y, token_type_ids=z, training=False
|
||||
)
|
||||
|
||||
@tf.function(input_signature=bert_input)
|
||||
def forward(self, input_ids, attention_mask, token_type_ids):
|
||||
return self.m.predict(input_ids, attention_mask, token_type_ids)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Prepping Data
|
||||
tokenizer = BertTokenizer.from_pretrained(
|
||||
"microsoft/MiniLM-L12-H384-uncased"
|
||||
)
|
||||
text = "Replace me by any text you'd like."
|
||||
encoded_input = tokenizer(
|
||||
text,
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=MAX_SEQUENCE_LENGTH,
|
||||
)
|
||||
for key in encoded_input:
|
||||
encoded_input[key] = tf.expand_dims(
|
||||
tf.convert_to_tensor(encoded_input[key]), 0
|
||||
)
|
||||
|
||||
test_input = (
|
||||
encoded_input["input_ids"],
|
||||
encoded_input["attention_mask"],
|
||||
encoded_input["token_type_ids"],
|
||||
)
|
||||
shark_module = SharkInference(
|
||||
BertModule(), test_input, benchmark_mode=True
|
||||
)
|
||||
shark_module.set_frontend("tensorflow")
|
||||
shark_module.compile()
|
||||
shark_module.benchmark_all(test_input)
|
||||
24
shark/examples/shark_inference/minilm_jit.py
Normal file
24
shark/examples/shark_inference/minilm_jit.py
Normal file
@@ -0,0 +1,24 @@
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.shark_downloader import download_torch_model
|
||||
|
||||
|
||||
mlir_model, func_name, inputs, golden_out = download_torch_model(
|
||||
"microsoft/MiniLM-L12-H384-uncased"
|
||||
)
|
||||
|
||||
|
||||
shark_module = SharkInference(
|
||||
mlir_model, func_name, device="cpu", mlir_dialect="linalg"
|
||||
)
|
||||
shark_module.compile()
|
||||
result = shark_module.forward(inputs)
|
||||
print("The obtained result via shark is: ", result)
|
||||
print("The golden result is:", golden_out)
|
||||
|
||||
|
||||
# Let's generate random inputs, currently supported
|
||||
# for static models.
|
||||
rand_inputs = shark_module.generate_random_inputs()
|
||||
rand_results = shark_module.forward(rand_inputs)
|
||||
|
||||
print("Running shark_module with random_inputs is: ", rand_results)
|
||||
70
shark/examples/shark_inference/minilm_tf.py
Normal file
70
shark/examples/shark_inference/minilm_tf.py
Normal file
@@ -0,0 +1,70 @@
|
||||
import tensorflow as tf
|
||||
from transformers import BertModel, BertTokenizer, TFBertModel
|
||||
from shark.shark_inference import SharkInference
|
||||
|
||||
MAX_SEQUENCE_LENGTH = 512
|
||||
BATCH_SIZE = 1
|
||||
|
||||
# Create a set of 2-dimensional inputs
|
||||
bert_input = [
|
||||
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
|
||||
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
|
||||
tf.TensorSpec(shape=[BATCH_SIZE, MAX_SEQUENCE_LENGTH], dtype=tf.int32),
|
||||
]
|
||||
|
||||
|
||||
class BertModule(tf.Module):
|
||||
def __init__(self):
|
||||
super(BertModule, self).__init__()
|
||||
# Create a BERT trainer with the created network.
|
||||
self.m = TFBertModel.from_pretrained(
|
||||
"microsoft/MiniLM-L12-H384-uncased", from_pt=True
|
||||
)
|
||||
|
||||
# Invoke the trainer model on the inputs. This causes the layer to be built.
|
||||
self.m.predict = lambda x, y, z: self.m.call(
|
||||
input_ids=x, attention_mask=y, token_type_ids=z, training=False
|
||||
)
|
||||
|
||||
@tf.function(input_signature=bert_input)
|
||||
def forward(self, input_ids, attention_mask, token_type_ids):
|
||||
return self.m.predict(input_ids, attention_mask, token_type_ids)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Prepping Data
|
||||
tokenizer = BertTokenizer.from_pretrained(
|
||||
"microsoft/MiniLM-L12-H384-uncased"
|
||||
)
|
||||
text = "Replace me by any text you'd like."
|
||||
encoded_input = tokenizer(
|
||||
text,
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=MAX_SEQUENCE_LENGTH,
|
||||
)
|
||||
for key in encoded_input:
|
||||
encoded_input[key] = tf.expand_dims(
|
||||
tf.convert_to_tensor(encoded_input[key]), 0
|
||||
)
|
||||
|
||||
shark_module = SharkInference(
|
||||
BertModule(),
|
||||
(
|
||||
encoded_input["input_ids"],
|
||||
encoded_input["attention_mask"],
|
||||
encoded_input["token_type_ids"],
|
||||
),
|
||||
)
|
||||
shark_module.set_frontend("tensorflow")
|
||||
shark_module.compile()
|
||||
|
||||
print(
|
||||
shark_module.forward(
|
||||
(
|
||||
encoded_input["input_ids"],
|
||||
encoded_input["attention_mask"],
|
||||
encoded_input["token_type_ids"],
|
||||
)
|
||||
)
|
||||
)
|
||||
1
shark/examples/shark_inference/minilm_tf_gpu_config.json
Normal file
1
shark/examples/shark_inference/minilm_tf_gpu_config.json
Normal file
File diff suppressed because one or more lines are too long
39
shark/examples/shark_inference/resnest.py
Normal file
39
shark/examples/shark_inference/resnest.py
Normal file
@@ -0,0 +1,39 @@
|
||||
import torch
|
||||
import torchvision.models as models
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.shark_importer import SharkImporter
|
||||
|
||||
torch.hub.list("zhanghang1989/ResNeSt", force_reload=True)
|
||||
|
||||
|
||||
class ResnestModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.model = torch.hub.load(
|
||||
"zhanghang1989/ResNeSt", "resnest50", pretrained=True
|
||||
)
|
||||
self.model.eval()
|
||||
|
||||
def forward(self, input):
|
||||
return self.model.forward(input)
|
||||
|
||||
|
||||
input = torch.randn(1, 3, 224, 224)
|
||||
|
||||
|
||||
mlir_importer = SharkImporter(
|
||||
ResnestModule(),
|
||||
(input,),
|
||||
frontend="torch",
|
||||
)
|
||||
|
||||
(vision_mlir, func_name), inputs, golden_out = mlir_importer.import_debug(
|
||||
tracing_required=True
|
||||
)
|
||||
|
||||
print(golden_out)
|
||||
|
||||
shark_module = SharkInference(vision_mlir, func_name, mlir_dialect="linalg")
|
||||
shark_module.compile()
|
||||
result = shark_module.forward((input,))
|
||||
print("Obtained result", result)
|
||||
81
shark/examples/shark_inference/resnet50_script.py
Normal file
81
shark/examples/shark_inference/resnet50_script.py
Normal file
@@ -0,0 +1,81 @@
|
||||
from PIL import Image
|
||||
import requests
|
||||
import torch
|
||||
import torchvision.models as models
|
||||
from torchvision import transforms
|
||||
import sys
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.shark_downloader import download_torch_model
|
||||
|
||||
|
||||
################################## Preprocessing inputs and model ############
|
||||
def load_and_preprocess_image(url: str):
|
||||
headers = {
|
||||
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36"
|
||||
}
|
||||
img = Image.open(
|
||||
requests.get(url, headers=headers, stream=True).raw
|
||||
).convert("RGB")
|
||||
# preprocessing pipeline
|
||||
preprocess = transforms.Compose(
|
||||
[
|
||||
transforms.Resize(256),
|
||||
transforms.CenterCrop(224),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(
|
||||
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
||||
),
|
||||
]
|
||||
)
|
||||
img_preprocessed = preprocess(img)
|
||||
return torch.unsqueeze(img_preprocessed, 0)
|
||||
|
||||
|
||||
def load_labels():
|
||||
classes_text = requests.get(
|
||||
"https://raw.githubusercontent.com/cathyzhyi/ml-data/main/imagenet-classes.txt",
|
||||
stream=True,
|
||||
).text
|
||||
labels = [line.strip() for line in classes_text.splitlines()]
|
||||
return labels
|
||||
|
||||
|
||||
def top3_possibilities(res):
|
||||
_, indexes = torch.sort(res, descending=True)
|
||||
percentage = torch.nn.functional.softmax(res, dim=1)[0] * 100
|
||||
top3 = [(labels[idx], percentage[idx].item()) for idx in indexes[0][:3]]
|
||||
return top3
|
||||
|
||||
|
||||
class Resnet50Module(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.resnet = models.resnet50(pretrained=True)
|
||||
self.train(False)
|
||||
|
||||
def forward(self, img):
|
||||
return self.resnet.forward(img)
|
||||
|
||||
|
||||
image_url = "https://upload.wikimedia.org/wikipedia/commons/2/26/YellowLabradorLooking_new.jpg"
|
||||
print("load image from " + image_url, file=sys.stderr)
|
||||
img = load_and_preprocess_image(image_url)
|
||||
labels = load_labels()
|
||||
|
||||
##############################################################################
|
||||
|
||||
|
||||
## Can pass any img or input to the forward module.
|
||||
mlir_model, func_name, inputs, golden_out = download_torch_model("resnet50")
|
||||
|
||||
shark_module = SharkInference(mlir_model, func_name, mlir_dialect="linalg")
|
||||
shark_module.compile()
|
||||
result = shark_module.forward((img.detach().numpy(),))
|
||||
|
||||
print("The top 3 results obtained via shark_runner is:")
|
||||
print(top3_possibilities(torch.from_numpy(result)))
|
||||
|
||||
print()
|
||||
|
||||
print("The top 3 results obtained via torch is:")
|
||||
print(top3_possibilities(Resnet50Module()(img)))
|
||||
35
shark/examples/shark_inference/t5_tf.py
Normal file
35
shark/examples/shark_inference/t5_tf.py
Normal file
@@ -0,0 +1,35 @@
|
||||
from PIL import Image
|
||||
import requests
|
||||
|
||||
from transformers import T5Tokenizer, TFT5Model
|
||||
import tensorflow as tf
|
||||
from shark.shark_inference import SharkInference
|
||||
|
||||
# Create a set of inputs
|
||||
t5_inputs = [
|
||||
tf.TensorSpec(shape=[1, 10], dtype=tf.int32),
|
||||
tf.TensorSpec(shape=[1, 10], dtype=tf.int32),
|
||||
]
|
||||
|
||||
|
||||
class T5Module(tf.Module):
|
||||
def __init__(self):
|
||||
super(T5Module, self).__init__()
|
||||
self.m = TFT5Model.from_pretrained("t5-small")
|
||||
self.m.predict = lambda x, y: self.m(input_ids=x, decoder_input_ids=y)
|
||||
|
||||
@tf.function(input_signature=t5_inputs)
|
||||
def forward(self, input_ids, decoder_input_ids):
|
||||
return self.m.predict(input_ids, decoder_input_ids)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Prepping Data
|
||||
tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
||||
text = "I love the distilled version of models."
|
||||
inputs = tokenizer(text, return_tensors="tf").input_ids
|
||||
|
||||
shark_module = SharkInference(T5Module(), (inputs, inputs))
|
||||
shark_module.set_frontend("tensorflow")
|
||||
shark_module.compile()
|
||||
print(shark_module.forward((inputs, inputs)))
|
||||
43
shark/examples/shark_inference/torch_vision_models_script.py
Normal file
43
shark/examples/shark_inference/torch_vision_models_script.py
Normal file
@@ -0,0 +1,43 @@
|
||||
import torch
|
||||
import torchvision.models as models
|
||||
from shark.shark_inference import SharkInference
|
||||
|
||||
|
||||
class VisionModule(torch.nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.train(False)
|
||||
|
||||
def forward(self, input):
|
||||
return self.model.forward(input)
|
||||
|
||||
|
||||
input = torch.randn(1, 3, 224, 224)
|
||||
|
||||
## The vision models present here: https://pytorch.org/vision/stable/models.html
|
||||
vision_models_list = [
|
||||
models.resnet18(pretrained=True),
|
||||
models.alexnet(pretrained=True),
|
||||
models.vgg16(pretrained=True),
|
||||
models.squeezenet1_0(pretrained=True),
|
||||
models.densenet161(pretrained=True),
|
||||
models.inception_v3(pretrained=True),
|
||||
models.shufflenet_v2_x1_0(pretrained=True),
|
||||
models.mobilenet_v2(pretrained=True),
|
||||
models.mobilenet_v3_small(pretrained=True),
|
||||
models.resnext50_32x4d(pretrained=True),
|
||||
models.wide_resnet50_2(pretrained=True),
|
||||
models.mnasnet1_0(pretrained=True),
|
||||
models.efficientnet_b0(pretrained=True),
|
||||
models.regnet_y_400mf(pretrained=True),
|
||||
models.regnet_x_400mf(pretrained=True),
|
||||
]
|
||||
|
||||
for i, vision_model in enumerate(vision_models_list):
|
||||
shark_module = SharkInference(
|
||||
VisionModule(vision_model),
|
||||
(input,),
|
||||
)
|
||||
shark_module.compile()
|
||||
shark_module.forward((input,))
|
||||
39
shark/examples/shark_inference/unet_script.py
Normal file
39
shark/examples/shark_inference/unet_script.py
Normal file
@@ -0,0 +1,39 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.shark_importer import SharkImporter
|
||||
|
||||
|
||||
class UnetModule(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.model = torch.hub.load(
|
||||
"mateuszbuda/brain-segmentation-pytorch",
|
||||
"unet",
|
||||
in_channels=3,
|
||||
out_channels=1,
|
||||
init_features=32,
|
||||
pretrained=True,
|
||||
)
|
||||
self.model.eval()
|
||||
|
||||
def forward(self, input):
|
||||
return self.model(input)
|
||||
|
||||
|
||||
input = torch.randn(1, 3, 224, 224)
|
||||
|
||||
mlir_importer = SharkImporter(
|
||||
UnetModule(),
|
||||
(input,),
|
||||
frontend="torch",
|
||||
)
|
||||
|
||||
(vision_mlir, func_name), inputs, golden_out = mlir_importer.import_debug(
|
||||
tracing_required=False
|
||||
)
|
||||
|
||||
shark_module = SharkInference(vision_mlir, func_name, mlir_dialect="linalg")
|
||||
shark_module.compile()
|
||||
result = shark_module.forward((input,))
|
||||
np.testing.assert_allclose(golden_out, result, rtol=1e-02, atol=1e-03)
|
||||
13
shark/examples/shark_inference/v_diffusion.py
Normal file
13
shark/examples/shark_inference/v_diffusion.py
Normal file
@@ -0,0 +1,13 @@
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.shark_downloader import download_torch_model
|
||||
|
||||
|
||||
mlir_model, func_name, inputs, golden_out = download_torch_model("v_diffusion")
|
||||
|
||||
shark_module = SharkInference(
|
||||
mlir_model, func_name, device="vulkan", mlir_dialect="linalg"
|
||||
)
|
||||
shark_module.compile()
|
||||
result = shark_module.forward(inputs)
|
||||
print("The obtained result via shark is: ", result)
|
||||
print("The golden result is:", golden_out)
|
||||
47
shark/examples/shark_training/bert_training.py
Normal file
47
shark/examples/shark_training/bert_training.py
Normal file
@@ -0,0 +1,47 @@
|
||||
import torch
|
||||
from torch.nn.utils import _stateless
|
||||
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
||||
from shark.shark_runner import SharkTrainer
|
||||
|
||||
|
||||
class MiniLMSequenceClassification(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.model = AutoModelForSequenceClassification.from_pretrained(
|
||||
"microsoft/MiniLM-L12-H384-uncased", # The pretrained model.
|
||||
num_labels=2, # The number of output labels--2 for binary classification.
|
||||
output_attentions=False, # Whether the model returns attentions weights.
|
||||
output_hidden_states=False, # Whether the model returns all hidden-states.
|
||||
torchscript=True,
|
||||
)
|
||||
|
||||
def forward(self, tokens):
|
||||
return self.model.forward(tokens)[0]
|
||||
|
||||
|
||||
mod = MiniLMSequenceClassification()
|
||||
|
||||
|
||||
def get_sorted_params(named_params):
|
||||
return [i[1] for i in sorted(named_params.items())]
|
||||
|
||||
|
||||
print(dict(mod.named_buffers()))
|
||||
|
||||
inp = (torch.randint(2, (1, 128)),)
|
||||
|
||||
|
||||
def forward(params, buffers, args):
|
||||
params_and_buffers = {**params, **buffers}
|
||||
_stateless.functional_call(
|
||||
mod, params_and_buffers, args, {}
|
||||
).sum().backward()
|
||||
optim = torch.optim.SGD(get_sorted_params(params), lr=0.01)
|
||||
# optim.load_state_dict(optim_state)
|
||||
optim.step()
|
||||
return params, buffers
|
||||
|
||||
|
||||
shark_module = SharkTrainer(mod, inp, custom_inference_fn=forward)
|
||||
|
||||
print(shark_module.forward())
|
||||
60
shark/examples/shark_training/bert_training_load_tf.py
Normal file
60
shark/examples/shark_training/bert_training_load_tf.py
Normal file
@@ -0,0 +1,60 @@
|
||||
import numpy as np
|
||||
import os
|
||||
import time
|
||||
import tensorflow as tf
|
||||
|
||||
from shark.shark_trainer import SharkTrainer
|
||||
from shark.parser import parser
|
||||
from urllib import request
|
||||
|
||||
parser.add_argument(
|
||||
"--download_mlir_path",
|
||||
type=str,
|
||||
default="bert_tf_training.mlir",
|
||||
help="Specifies path to target mlir file that will be loaded.",
|
||||
)
|
||||
load_args, unknown = parser.parse_known_args()
|
||||
|
||||
tf.random.set_seed(0)
|
||||
vocab_size = 100
|
||||
NUM_CLASSES = 5
|
||||
SEQUENCE_LENGTH = 512
|
||||
BATCH_SIZE = 1
|
||||
|
||||
# Download BERT model from tank and train.
|
||||
if __name__ == "__main__":
|
||||
predict_sample_input = [
|
||||
np.random.randint(5, size=(BATCH_SIZE, SEQUENCE_LENGTH)),
|
||||
np.random.randint(5, size=(BATCH_SIZE, SEQUENCE_LENGTH)),
|
||||
np.random.randint(5, size=(BATCH_SIZE, SEQUENCE_LENGTH)),
|
||||
]
|
||||
file_link = "https://storage.googleapis.com/shark_tank/users/stanley/bert_tf_training.mlir"
|
||||
response = request.urlretrieve(file_link, load_args.download_mlir_path)
|
||||
sample_input_tensors = [
|
||||
tf.convert_to_tensor(val, dtype=tf.int32)
|
||||
for val in predict_sample_input
|
||||
]
|
||||
num_iter = 10
|
||||
if not os.path.isfile(load_args.download_mlir_path):
|
||||
raise ValueError(
|
||||
f"Tried looking for target mlir in {load_args.download_mlir_path}, but cannot be found."
|
||||
)
|
||||
with open(load_args.download_mlir_path, "rb") as input_file:
|
||||
bert_mlir = input_file.read()
|
||||
shark_module = SharkTrainer(
|
||||
bert_mlir,
|
||||
(
|
||||
sample_input_tensors,
|
||||
tf.convert_to_tensor(
|
||||
np.random.randint(5, size=(BATCH_SIZE)), dtype=tf.int32
|
||||
),
|
||||
),
|
||||
)
|
||||
shark_module.set_frontend("mhlo")
|
||||
shark_module.compile()
|
||||
start = time.time()
|
||||
print(shark_module.train(num_iter))
|
||||
end = time.time()
|
||||
total_time = end - start
|
||||
print("time: " + str(total_time))
|
||||
print("time/iter: " + str(total_time / num_iter))
|
||||
97
shark/examples/shark_training/bert_training_tf.py
Normal file
97
shark/examples/shark_training/bert_training_tf.py
Normal file
@@ -0,0 +1,97 @@
|
||||
from absl import app
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from official.nlp.modeling import layers
|
||||
from official.nlp.modeling import networks
|
||||
from official.nlp.modeling.models import bert_classifier
|
||||
|
||||
from shark.shark_trainer import SharkTrainer
|
||||
|
||||
|
||||
tf.random.set_seed(0)
|
||||
vocab_size = 100
|
||||
NUM_CLASSES = 5
|
||||
SEQUENCE_LENGTH = 512
|
||||
BATCH_SIZE = 1
|
||||
# Create a set of 2-dimensional inputs
|
||||
bert_input = [
|
||||
tf.TensorSpec(shape=[BATCH_SIZE, SEQUENCE_LENGTH], dtype=tf.int32),
|
||||
tf.TensorSpec(shape=[BATCH_SIZE, SEQUENCE_LENGTH], dtype=tf.int32),
|
||||
tf.TensorSpec(shape=[BATCH_SIZE, SEQUENCE_LENGTH], dtype=tf.int32),
|
||||
]
|
||||
|
||||
|
||||
class BertModule(tf.Module):
|
||||
def __init__(self):
|
||||
super(BertModule, self).__init__()
|
||||
dict_outputs = False
|
||||
test_network = networks.BertEncoder(
|
||||
vocab_size=vocab_size, num_layers=2, dict_outputs=dict_outputs
|
||||
)
|
||||
|
||||
# Create a BERT trainer with the created network.
|
||||
bert_trainer_model = bert_classifier.BertClassifier(
|
||||
test_network, num_classes=NUM_CLASSES
|
||||
)
|
||||
bert_trainer_model.summary()
|
||||
|
||||
# Invoke the trainer model on the inputs. This causes the layer to be built.
|
||||
self.m = bert_trainer_model
|
||||
self.m.predict = lambda x: self.m.call(x, training=False)
|
||||
self.predict = tf.function(input_signature=[bert_input])(
|
||||
self.m.predict
|
||||
)
|
||||
self.m.learn = lambda x, y: self.m.call(x, training=False)
|
||||
self.loss = tf.keras.losses.SparseCategoricalCrossentropy()
|
||||
self.optimizer = tf.keras.optimizers.SGD(learning_rate=1e-2)
|
||||
|
||||
@tf.function(
|
||||
input_signature=[
|
||||
bert_input, # inputs
|
||||
tf.TensorSpec(shape=[BATCH_SIZE], dtype=tf.int32), # labels
|
||||
]
|
||||
)
|
||||
def forward(self, inputs, labels):
|
||||
with tf.GradientTape() as tape:
|
||||
# Capture the gradients from forward prop...
|
||||
probs = self.m(inputs, training=True)
|
||||
loss = self.loss(labels, probs)
|
||||
|
||||
# ...and use them to update the model's weights.
|
||||
variables = self.m.trainable_variables
|
||||
gradients = tape.gradient(loss, variables)
|
||||
self.optimizer.apply_gradients(zip(gradients, variables))
|
||||
return loss
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
predict_sample_input = [
|
||||
np.random.randint(5, size=(BATCH_SIZE, SEQUENCE_LENGTH)),
|
||||
np.random.randint(5, size=(BATCH_SIZE, SEQUENCE_LENGTH)),
|
||||
np.random.randint(5, size=(BATCH_SIZE, SEQUENCE_LENGTH)),
|
||||
]
|
||||
sample_input_tensors = [
|
||||
tf.convert_to_tensor(val, dtype=tf.int32)
|
||||
for val in predict_sample_input
|
||||
]
|
||||
num_iter = 10
|
||||
shark_module = SharkTrainer(
|
||||
BertModule(),
|
||||
(
|
||||
sample_input_tensors,
|
||||
tf.convert_to_tensor(
|
||||
np.random.randint(5, size=(BATCH_SIZE)), dtype=tf.int32
|
||||
),
|
||||
),
|
||||
)
|
||||
shark_module.set_frontend("tensorflow")
|
||||
shark_module.compile()
|
||||
start = time.time()
|
||||
print(shark_module.train(num_iter))
|
||||
end = time.time()
|
||||
total_time = end - start
|
||||
print("time: " + str(total_time))
|
||||
print("time/iter: " + str(total_time / num_iter))
|
||||
44
shark/examples/shark_training/neural_net_training.py
Normal file
44
shark/examples/shark_training/neural_net_training.py
Normal file
@@ -0,0 +1,44 @@
|
||||
import torch
|
||||
from torch.nn.utils import _stateless
|
||||
from shark.shark_trainer import SharkTrainer
|
||||
|
||||
|
||||
class Foo(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super(Foo, self).__init__()
|
||||
self.l1 = torch.nn.Linear(10, 16)
|
||||
self.relu = torch.nn.ReLU()
|
||||
self.l2 = torch.nn.Linear(16, 2)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.l1(x)
|
||||
out = self.relu(out)
|
||||
out = self.l2(out)
|
||||
return out
|
||||
|
||||
|
||||
mod = Foo()
|
||||
inp = (torch.randn(10, 10),)
|
||||
|
||||
|
||||
def get_sorted_params(named_params):
|
||||
return [i[1] for i in sorted(named_params.items())]
|
||||
|
||||
|
||||
def forward(params, buffers, args):
|
||||
params_and_buffers = {**params, **buffers}
|
||||
_stateless.functional_call(
|
||||
mod, params_and_buffers, args, {}
|
||||
).sum().backward()
|
||||
optim = torch.optim.SGD(get_sorted_params(params), lr=0.01)
|
||||
optim.step()
|
||||
return params, buffers
|
||||
|
||||
|
||||
# fx_graph = forward(dict(mod.named_parameters()), dict(mod.named_buffers()), inp)
|
||||
|
||||
shark_module = SharkTrainer(mod, inp)
|
||||
# Pass the training function in case of torch
|
||||
shark_module.compile(training_fn=forward)
|
||||
|
||||
shark_module.train(num_iters=10)
|
||||
88
shark/iree_eager_backend.py
Normal file
88
shark/iree_eager_backend.py
Normal file
@@ -0,0 +1,88 @@
|
||||
# Copyright 2020 The Nod Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Dict, Any
|
||||
|
||||
import iree
|
||||
import iree.runtime as ireert
|
||||
import numpy as np
|
||||
import torch
|
||||
from iree.runtime import DeviceArray
|
||||
from torch_mlir._mlir_libs._mlir.ir import Module
|
||||
from torch_mlir.compiler_utils import (
|
||||
get_module_name_for_debug_dump,
|
||||
run_pipeline_with_repro_report,
|
||||
)
|
||||
from torch_mlir.eager_mode.torch_mlir_eager_backend import (
|
||||
TorchMLIREagerBackend,
|
||||
TensorMetaData,
|
||||
)
|
||||
from torch_mlir_e2e_test.eager_backends.refbackend import (
|
||||
NUMPY_TO_TORCH_DTYPE_DICT,
|
||||
)
|
||||
|
||||
from shark.iree_utils.compile_utils import (
|
||||
get_iree_compiled_module,
|
||||
IREE_DEVICE_MAP,
|
||||
)
|
||||
|
||||
|
||||
class EagerModeIREELinalgOnTensorsBackend(TorchMLIREagerBackend):
|
||||
"""Main entry-point for the iree backend for torch-mlir eager mode.
|
||||
|
||||
EagerModeIREELinalgOnTensorsBackend uses iree.DeviceArray representations of tensors and
|
||||
thus all of the wrapping and unwrapping and munging here is done to between torch.Tensor and iree.DeviceArray,
|
||||
with np.ndarray as an intermediary.
|
||||
"""
|
||||
|
||||
def __init__(self, device: str):
|
||||
self.torch_device_str = device
|
||||
self.config = ireert.Config(IREE_DEVICE_MAP[device])
|
||||
self.raw_device_str = device
|
||||
|
||||
def get_torch_metadata(
|
||||
self, tensor: DeviceArray, kwargs: Dict[str, Any]
|
||||
) -> TensorMetaData:
|
||||
return TensorMetaData(
|
||||
size=tensor.shape,
|
||||
dtype=NUMPY_TO_TORCH_DTYPE_DICT[tensor.dtype.type],
|
||||
device=torch.device(self.torch_device_str),
|
||||
requires_grad=tensor.dtype.type
|
||||
in {np.float, np.float32, np.float64}
|
||||
and kwargs.get("requires_grad", False),
|
||||
)
|
||||
|
||||
def compile(self, imported_module: Module):
|
||||
fn_name = get_module_name_for_debug_dump(imported_module)
|
||||
run_pipeline_with_repro_report(
|
||||
imported_module,
|
||||
"torch-function-to-torch-backend-pipeline,torch-backend-to-linalg-on-tensors-backend-pipeline",
|
||||
"EagerMode",
|
||||
)
|
||||
callable, _ = get_iree_compiled_module(
|
||||
imported_module, self.raw_device_str, func_name=fn_name
|
||||
)
|
||||
return callable
|
||||
|
||||
def copy_into(self, dst, src):
|
||||
"""Copy output back to appropriate arg that it should alias."""
|
||||
np.copyto(dst, src)
|
||||
|
||||
def transfer_from_device_to_torch(self, e):
|
||||
return torch.from_numpy(e.to_host())
|
||||
|
||||
def transfer_from_torch_to_device(
|
||||
self, tensor: torch.Tensor
|
||||
) -> DeviceArray:
|
||||
return iree.runtime.asdevicearray(self.config.device, tensor.numpy())
|
||||
0
shark/iree_utils/__init__.py
Normal file
0
shark/iree_utils/__init__.py
Normal file
95
shark/iree_utils/_common.py
Normal file
95
shark/iree_utils/_common.py
Normal file
@@ -0,0 +1,95 @@
|
||||
# Copyright 2020 The Nod Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
## Common utilities to be shared by iree utilities.
|
||||
|
||||
import os
|
||||
import sys
|
||||
import subprocess
|
||||
|
||||
|
||||
def run_cmd(cmd):
|
||||
"""
|
||||
Inputs: cli command string.
|
||||
"""
|
||||
try:
|
||||
result = subprocess.run(
|
||||
cmd,
|
||||
shell=True,
|
||||
stdout=subprocess.PIPE,
|
||||
stderr=subprocess.PIPE,
|
||||
check=True,
|
||||
)
|
||||
result_str = result.stdout.decode()
|
||||
return result_str
|
||||
except Exception:
|
||||
sys.exit("Exiting program due to error running:", cmd)
|
||||
|
||||
|
||||
IREE_DEVICE_MAP = {
|
||||
"cpu": "local-task",
|
||||
"gpu": "cuda",
|
||||
"cuda": "cuda",
|
||||
"vulkan": "vulkan",
|
||||
"metal": "vulkan",
|
||||
"rocm": "rocm",
|
||||
"intel-gpu": "level_zero",
|
||||
}
|
||||
|
||||
IREE_TARGET_MAP = {
|
||||
"cpu": "llvm-cpu",
|
||||
"gpu": "cuda",
|
||||
"cuda": "cuda",
|
||||
"vulkan": "vulkan",
|
||||
"metal": "vulkan",
|
||||
"rocm": "rocm",
|
||||
"intel-gpu": "opencl-spirv",
|
||||
}
|
||||
|
||||
# Finds whether the required drivers are installed for the given device.
|
||||
def check_device_drivers(device):
|
||||
"""Checks necessary drivers present for gpu and vulkan devices"""
|
||||
if device in ["gpu", "cuda"]:
|
||||
try:
|
||||
subprocess.check_output("nvidia-smi")
|
||||
except Exception:
|
||||
return True
|
||||
elif device in ["metal", "vulkan"]:
|
||||
try:
|
||||
subprocess.check_output("vulkaninfo")
|
||||
except Exception:
|
||||
return True
|
||||
elif device in ["intel-gpu"]:
|
||||
try:
|
||||
subprocess.check_output(["dpkg", "-L", "intel-level-zero-gpu"])
|
||||
return False
|
||||
except Exception:
|
||||
return True
|
||||
elif device == "cpu":
|
||||
return False
|
||||
# Unknown device.
|
||||
else:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
# Installation info for the missing device drivers.
|
||||
def device_driver_info(device):
|
||||
if device in ["gpu", "cuda"]:
|
||||
return "nvidia-smi not found, please install the required drivers from https://www.nvidia.in/Download/index.aspx?lang=en-in"
|
||||
elif device in ["metal", "vulkan"]:
|
||||
return "vulkaninfo not found, Install from https://vulkan.lunarg.com/sdk/home or your distribution"
|
||||
else:
|
||||
return f"{device} is not supported."
|
||||
97
shark/iree_utils/benchmark_utils.py
Normal file
97
shark/iree_utils/benchmark_utils.py
Normal file
@@ -0,0 +1,97 @@
|
||||
# Copyright 2020 The Nod Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import iree.runtime.scripts.iree_benchmark_module as benchmark_module
|
||||
from shark.iree_utils._common import run_cmd, IREE_DEVICE_MAP
|
||||
import numpy as np
|
||||
import os
|
||||
import re
|
||||
|
||||
UNIT_TO_SECOND_MAP = {"ms": 0.001, "s": 1}
|
||||
|
||||
|
||||
def tensor_to_type_str(input_tensors: tuple, mlir_dialect: str):
|
||||
"""
|
||||
Input: A tuple of input tensors i.e tuple(torch.tensor)
|
||||
Output: list of string that represent mlir types (i.e 1x24xf64)
|
||||
# TODO: Support more than floats, and ints
|
||||
"""
|
||||
list_of_type = []
|
||||
for input_tensor in input_tensors:
|
||||
type_string = "x".join([str(dim) for dim in input_tensor.shape])
|
||||
if mlir_dialect in ["linalg", "tosa"]:
|
||||
dtype_string = str(input_tensor.dtype).replace("torch.", "")
|
||||
elif mlir_dialect in ["mhlo", "tflite"]:
|
||||
dtype = input_tensor.dtype
|
||||
try:
|
||||
dtype_string = re.findall("'[^\"]*'", str(dtype))[0].replace(
|
||||
"'", ""
|
||||
)
|
||||
except IndexError:
|
||||
dtype_string = str(dtype)
|
||||
regex_split = re.compile("([a-zA-Z]+)([0-9]+)")
|
||||
match = regex_split.match(dtype_string)
|
||||
mlir_type_string = str(match.group(1)[0]) + str(match.group(2))
|
||||
type_string += f"x{mlir_type_string}"
|
||||
list_of_type.append(type_string)
|
||||
return list_of_type
|
||||
|
||||
|
||||
def build_benchmark_args(
|
||||
input_file: str,
|
||||
device: str,
|
||||
input_tensors: tuple,
|
||||
mlir_dialect: str,
|
||||
training=False,
|
||||
):
|
||||
"""
|
||||
Inputs: input_file leading to vmfb, input_tensor to function, target device,
|
||||
and whether it is training or not.
|
||||
Outputs: string that execute benchmark-module on target model.
|
||||
"""
|
||||
path = benchmark_module.__path__[0]
|
||||
benchmarker_path = os.path.join(path, "..", "..", "iree-benchmark-module")
|
||||
benchmark_cl = [benchmarker_path, f"--module_file={input_file}"]
|
||||
# TODO: The function named can be passed as one of the args.
|
||||
fn_name = "forward"
|
||||
if training == True:
|
||||
# TODO: Replace name of train with actual train fn name.
|
||||
fn_name = "train"
|
||||
benchmark_cl.append(f"--entry_function={fn_name}")
|
||||
benchmark_cl.append(f"--device={IREE_DEVICE_MAP[device]}")
|
||||
mlir_input_types = tensor_to_type_str(input_tensors, mlir_dialect)
|
||||
for mlir_input in mlir_input_types:
|
||||
benchmark_cl.append(f"--function_input={mlir_input}")
|
||||
time_extractor = "| awk 'END{{print $2 $3}}'"
|
||||
benchmark_cl.append(time_extractor)
|
||||
return benchmark_cl
|
||||
|
||||
|
||||
def run_benchmark_module(benchmark_cl):
|
||||
"""
|
||||
Run benchmark command, extract result and return iteration/seconds.
|
||||
|
||||
# TODO: Add an example of the benchmark command.
|
||||
Input: benchmark command.
|
||||
"""
|
||||
benchmark_path = benchmark_cl[0]
|
||||
assert os.path.exists(
|
||||
benchmark_path
|
||||
), "Cannot find benchmark_module, Please contact SHARK maintainer on discord."
|
||||
bench_result = run_cmd(" ".join(benchmark_cl))
|
||||
regex_split = re.compile("([0-9]+[.]*[0-9]*)([a-zA-Z]+)")
|
||||
match = regex_split.match(bench_result)
|
||||
time = float(match.group(1))
|
||||
unit = match.group(2)
|
||||
return 1.0 / (time * UNIT_TO_SECOND_MAP[unit])
|
||||
173
shark/iree_utils/compile_utils.py
Normal file
173
shark/iree_utils/compile_utils.py
Normal file
@@ -0,0 +1,173 @@
|
||||
# Copyright 2020 The Nod Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import iree.runtime as ireert
|
||||
import iree.compiler as ireec
|
||||
from shark.iree_utils._common import IREE_DEVICE_MAP, IREE_TARGET_MAP
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
# Get the iree-compile arguments given device.
|
||||
def get_iree_device_args(device):
|
||||
if device == "cpu":
|
||||
from shark.iree_utils.cpu_utils import get_iree_cpu_args
|
||||
|
||||
return get_iree_cpu_args()
|
||||
if device in ["gpu", "cuda"]:
|
||||
from shark.iree_utils.gpu_utils import get_iree_gpu_args
|
||||
|
||||
return get_iree_gpu_args()
|
||||
if device in ["metal", "vulkan"]:
|
||||
from shark.iree_utils.vulkan_utils import get_iree_vulkan_args
|
||||
|
||||
return get_iree_vulkan_args()
|
||||
return []
|
||||
|
||||
|
||||
# Get the iree-compiler arguments given frontend.
|
||||
def get_iree_frontend_args(frontend):
|
||||
if frontend in ["torch", "pytorch", "linalg"]:
|
||||
return ["--iree-llvm-target-cpu-features=host"]
|
||||
elif frontend in ["tensorflow", "tf", "mhlo"]:
|
||||
return [
|
||||
"--iree-llvm-target-cpu-features=host",
|
||||
"--iree-mhlo-demote-i64-to-i32=false",
|
||||
"--iree-flow-demote-i64-to-i32",
|
||||
]
|
||||
else:
|
||||
# Frontend not found.
|
||||
return []
|
||||
|
||||
|
||||
# Common args to be used given any frontend or device.
|
||||
def get_iree_common_args():
|
||||
return [
|
||||
"--iree-stream-resource-index-bits=64",
|
||||
"--iree-vm-target-index-bits=64",
|
||||
]
|
||||
|
||||
|
||||
def compile_module_to_flatbuffer(
|
||||
module, device, frontend, func_name, model_config_path
|
||||
):
|
||||
# Setup Compile arguments wrt to frontends.
|
||||
input_type = ""
|
||||
args = get_iree_frontend_args(frontend)
|
||||
args += get_iree_device_args(device)
|
||||
args += get_iree_common_args()
|
||||
|
||||
if frontend in ["tensorflow", "tf"]:
|
||||
input_type = "mhlo"
|
||||
elif frontend in ["mhlo", "tosa"]:
|
||||
input_type = frontend
|
||||
elif frontend in ["tflite", "tflite-tosa"]:
|
||||
input_type = "tosa"
|
||||
|
||||
# TODO: make it simpler.
|
||||
# Compile according to the input type, else just try compiling.
|
||||
if input_type not in ["mhlo", "tosa"]:
|
||||
module = str(module)
|
||||
if input_type != "":
|
||||
# Currently for MHLO/TOSA.
|
||||
flatbuffer_blob = ireec.compile_str(
|
||||
module,
|
||||
target_backends=[IREE_TARGET_MAP[device]],
|
||||
extra_args=args,
|
||||
input_type=input_type,
|
||||
)
|
||||
else:
|
||||
# Currently for Torch.
|
||||
flatbuffer_blob = ireec.compile_str(
|
||||
str(module),
|
||||
target_backends=[IREE_TARGET_MAP[device]],
|
||||
extra_args=args,
|
||||
)
|
||||
|
||||
return flatbuffer_blob
|
||||
|
||||
|
||||
def get_iree_module(flatbuffer_blob, device, func_name):
|
||||
# Returns the compiled module and the configs.
|
||||
config = ireert.Config(IREE_DEVICE_MAP[device])
|
||||
vm_module = ireert.VmModule.from_flatbuffer(
|
||||
config.vm_instance, flatbuffer_blob
|
||||
)
|
||||
ctx = ireert.SystemContext(config=config)
|
||||
ctx.add_vm_module(vm_module)
|
||||
ModuleCompiled = ctx.modules.module[func_name]
|
||||
return ModuleCompiled, config
|
||||
|
||||
|
||||
def get_iree_compiled_module(
|
||||
module,
|
||||
device: str,
|
||||
frontend: str = "torch",
|
||||
func_name: str = "forward",
|
||||
model_config_path: str = None,
|
||||
):
|
||||
"""Given a module returns the compiled .vmfb and configs"""
|
||||
flatbuffer_blob = compile_module_to_flatbuffer(
|
||||
module, device, frontend, func_name, model_config_path
|
||||
)
|
||||
return get_iree_module(flatbuffer_blob, device, func_name)
|
||||
|
||||
|
||||
def export_iree_module_to_vmfb(
|
||||
module,
|
||||
device: str,
|
||||
directory: str,
|
||||
mlir_dialect: str = "linalg",
|
||||
func_name: str = "forward",
|
||||
model_config_path: str = None,
|
||||
):
|
||||
# Compiles the module given specs and saves it as .vmfb file.
|
||||
flatbuffer_blob = compile_module_to_flatbuffer(
|
||||
module, device, mlir_dialect, func_name, model_config_path
|
||||
)
|
||||
module_name = f"{mlir_dialect}_{func_name}_{device}"
|
||||
filename = os.path.join(directory, module_name + ".vmfb")
|
||||
print(f"Saved vmfb in {filename}.")
|
||||
with open(filename, "wb") as f:
|
||||
f.write(flatbuffer_blob)
|
||||
return filename
|
||||
|
||||
|
||||
def export_module_to_mlir_file(module, frontend, directory: str):
|
||||
# TODO: write proper documentation.
|
||||
mlir_str = module
|
||||
if frontend in ["tensorflow", "tf", "mhlo", "tflite"]:
|
||||
mlir_str = module.decode("utf-8")
|
||||
elif frontend in ["pytorch", "torch"]:
|
||||
mlir_str = module.operation.get_asm()
|
||||
filename = os.path.join(directory, "model.mlir")
|
||||
with open(filename, "w") as f:
|
||||
f.write(mlir_str)
|
||||
print(f"Saved mlir in {filename}.")
|
||||
return filename
|
||||
|
||||
|
||||
def get_results(compiled_vm, input, config, frontend="torch"):
|
||||
"""Runs a .vmfb file given inputs and config and returns output."""
|
||||
device_inputs = [ireert.asdevicearray(config.device, a) for a in input]
|
||||
result = compiled_vm(*device_inputs)
|
||||
result_tensors = []
|
||||
if isinstance(result, tuple):
|
||||
for val in result:
|
||||
result_tensors.append(np.copy(np.asarray(val, val.dtype)))
|
||||
return result_tensors
|
||||
elif isinstance(result, dict):
|
||||
data = list(result.items())
|
||||
res = np.array(data, dtype=object)
|
||||
return np.copy(res)
|
||||
else:
|
||||
return np.copy(np.asarray(result, dtype=result.dtype))
|
||||
44
shark/iree_utils/cpu_utils.py
Normal file
44
shark/iree_utils/cpu_utils.py
Normal file
@@ -0,0 +1,44 @@
|
||||
# Copyright 2020 The Nod Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# All the iree_cpu related functionalities go here.
|
||||
|
||||
import subprocess
|
||||
|
||||
# Get the default cpu args.
|
||||
def get_iree_cpu_args():
|
||||
find_triple_cmd = "uname -s -m"
|
||||
os_name, proc_name = (
|
||||
subprocess.run(
|
||||
find_triple_cmd, shell=True, stdout=subprocess.PIPE, check=True
|
||||
)
|
||||
.stdout.decode("utf-8")
|
||||
.split()
|
||||
)
|
||||
if os_name == "Darwin":
|
||||
find_kernel_version_cmd = "uname -r"
|
||||
kernel_version = subprocess.run(
|
||||
find_kernel_version_cmd,
|
||||
shell=True,
|
||||
stdout=subprocess.PIPE,
|
||||
check=True,
|
||||
).stdout.decode("utf-8")
|
||||
target_triple = f"{proc_name}-apple-darwin{kernel_version}"
|
||||
elif os_name == "Linux":
|
||||
target_triple = f"{proc_name}-linux-gnu"
|
||||
else:
|
||||
error_message = f"OS Type f{os_name} not supported and triple can't be determined, open issue to dSHARK team please :)"
|
||||
raise Exception(error_message)
|
||||
print(f"Target triple found:{target_triple}")
|
||||
return [f"-iree-llvm-target-triple={target_triple}"]
|
||||
111
shark/iree_utils/gpu_utils.py
Normal file
111
shark/iree_utils/gpu_utils.py
Normal file
@@ -0,0 +1,111 @@
|
||||
# Copyright 2020 The Nod Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# All the iree_gpu related functionalities go here.
|
||||
|
||||
import iree.runtime as ireert
|
||||
import ctypes
|
||||
from shark.parser import shark_args
|
||||
|
||||
# Get the default gpu args given the architecture.
|
||||
def get_iree_gpu_args():
|
||||
ireert.flags.FUNCTION_INPUT_VALIDATION = False
|
||||
ireert.flags.parse_flags("--cuda_allow_inline_execution")
|
||||
# TODO: Give the user_interface to pass the sm_arch.
|
||||
sm_arch = get_cuda_sm_cc()
|
||||
if (
|
||||
sm_arch in ["sm_70", "sm_72", "sm_75", "sm_80", "sm_84", "sm_86"]
|
||||
) and (shark_args.enable_tf32 == True):
|
||||
return [
|
||||
"--iree-hal-cuda-disable-loop-nounroll-wa",
|
||||
f"--iree-hal-cuda-llvm-target-arch={sm_arch}",
|
||||
]
|
||||
else:
|
||||
return ["--iree-hal-cuda-disable-loop-nounroll-wa"]
|
||||
|
||||
|
||||
# Some constants taken from cuda.h
|
||||
CUDA_SUCCESS = 0
|
||||
CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT = 16
|
||||
CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR = 39
|
||||
CU_DEVICE_ATTRIBUTE_CLOCK_RATE = 13
|
||||
CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE = 36
|
||||
|
||||
|
||||
def get_cuda_sm_cc():
|
||||
libnames = ("libcuda.so", "libcuda.dylib", "cuda.dll")
|
||||
for libname in libnames:
|
||||
try:
|
||||
cuda = ctypes.CDLL(libname)
|
||||
except OSError:
|
||||
continue
|
||||
else:
|
||||
break
|
||||
else:
|
||||
raise OSError("could not load any of: " + " ".join(libnames))
|
||||
|
||||
nGpus = ctypes.c_int()
|
||||
name = b" " * 100
|
||||
cc_major = ctypes.c_int()
|
||||
cc_minor = ctypes.c_int()
|
||||
|
||||
result = ctypes.c_int()
|
||||
device = ctypes.c_int()
|
||||
context = ctypes.c_void_p()
|
||||
error_str = ctypes.c_char_p()
|
||||
|
||||
result = cuda.cuInit(0)
|
||||
if result != CUDA_SUCCESS:
|
||||
cuda.cuGetErrorString(result, ctypes.byref(error_str))
|
||||
print(
|
||||
"cuInit failed with error code %d: %s"
|
||||
% (result, error_str.value.decode())
|
||||
)
|
||||
return 1
|
||||
result = cuda.cuDeviceGetCount(ctypes.byref(nGpus))
|
||||
if result != CUDA_SUCCESS:
|
||||
cuda.cuGetErrorString(result, ctypes.byref(error_str))
|
||||
print(
|
||||
"cuDeviceGetCount failed with error code %d: %s"
|
||||
% (result, error_str.value.decode())
|
||||
)
|
||||
return 1
|
||||
print("Found %d device(s)." % nGpus.value)
|
||||
for i in range(nGpus.value):
|
||||
result = cuda.cuDeviceGet(ctypes.byref(device), i)
|
||||
if result != CUDA_SUCCESS:
|
||||
cuda.cuGetErrorString(result, ctypes.byref(error_str))
|
||||
print(
|
||||
"cuDeviceGet failed with error code %d: %s"
|
||||
% (result, error_str.value.decode())
|
||||
)
|
||||
return 1
|
||||
print("Device: %d" % i)
|
||||
if (
|
||||
cuda.cuDeviceGetName(ctypes.c_char_p(name), len(name), device)
|
||||
== CUDA_SUCCESS
|
||||
):
|
||||
print(" Name: %s" % (name.split(b"\0", 1)[0].decode()))
|
||||
if (
|
||||
cuda.cuDeviceComputeCapability(
|
||||
ctypes.byref(cc_major), ctypes.byref(cc_minor), device
|
||||
)
|
||||
== CUDA_SUCCESS
|
||||
):
|
||||
print(
|
||||
" Compute Capability: %d.%d"
|
||||
% (cc_major.value, cc_minor.value)
|
||||
)
|
||||
sm = f"sm_{cc_major.value}{cc_minor.value}"
|
||||
return sm
|
||||
60
shark/iree_utils/vulkan_utils.py
Normal file
60
shark/iree_utils/vulkan_utils.py
Normal file
@@ -0,0 +1,60 @@
|
||||
# Copyright 2020 The Nod Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# All the iree_vulkan related functionalities go here.
|
||||
|
||||
from shark.iree_utils._common import run_cmd
|
||||
|
||||
|
||||
def get_vulkan_triple_flag():
|
||||
vulkan_device_cmd = "vulkaninfo | grep deviceName | awk 'END{{print $NF}}'"
|
||||
vulkan_device = run_cmd(vulkan_device_cmd).strip()
|
||||
if vulkan_device == "Ultra":
|
||||
print("Found MacStudio M1 Device. Using m1-moltenvk-macos")
|
||||
return "-iree-vulkan-target-triple=m1-moltenvk-macos"
|
||||
elif vulkan_device == "M2":
|
||||
print("Found Apple M2 Device. Using m1-moltenvk-macos")
|
||||
return "-iree-vulkan-target-triple=m1-moltenvk-macos"
|
||||
elif vulkan_device == "Max":
|
||||
print("Found Apple M1 Max Device. Using m1-moltenvk-macos")
|
||||
return "-iree-vulkan-target-triple=m1-moltenvk-macos"
|
||||
elif vulkan_device == "Pro":
|
||||
print("Found Apple M1 Pro Device. Using m1-moltenvk-macos")
|
||||
return "-iree-vulkan-target-triple=m1-moltenvk-macos"
|
||||
elif vulkan_device == "M1":
|
||||
print("Found Apple M1 Device. Using m1-moltenvk-macos")
|
||||
return "-iree-vulkan-target-triple=m1-moltenvk-macos"
|
||||
elif vulkan_device == "A100-SXM4-40GB":
|
||||
print("Found Nvidia Device. Using ampere-rtx3080-linux")
|
||||
return "-iree-vulkan-target-triple=ampere-rtx3080-linux"
|
||||
elif vulkan_device == "3090":
|
||||
print("Found Nvidia Device. Using ampere-rtx3090-linux")
|
||||
return "-iree-vulkan-target-triple=ampere-rtx3090-linux"
|
||||
else:
|
||||
print(
|
||||
"""Optimized kernel for your target device is not added yet.
|
||||
Contact SHARK Admin on discord[https://discord.com/invite/RUqY2h2s9u]
|
||||
or pull up an issue."""
|
||||
)
|
||||
print(f"Target : {vulkan_device}")
|
||||
return None
|
||||
|
||||
|
||||
def get_iree_vulkan_args():
|
||||
# vulkan_flag = ["--iree-flow-demote-i64-to-i32"]
|
||||
vulkan_flag = []
|
||||
vulkan_triple_flag = get_vulkan_triple_flag()
|
||||
if vulkan_triple_flag is not None:
|
||||
vulkan_flag.append(vulkan_triple_flag)
|
||||
return vulkan_flag
|
||||
164
shark/model_annotation.py
Normal file
164
shark/model_annotation.py
Normal file
@@ -0,0 +1,164 @@
|
||||
# Copyright 2020 The Nod Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import sys
|
||||
import json
|
||||
import os
|
||||
from typing import List, Dict
|
||||
|
||||
from iree.compiler import ir
|
||||
from iree.compiler.transforms import ireec as ireec_trans
|
||||
|
||||
MATMUL_OP_NAMES = set(
|
||||
["linalg.matmul", "linalg.batch_matmul", "mhlo.dot", "mhlo.dot_general"]
|
||||
)
|
||||
idx = 0
|
||||
|
||||
|
||||
def model_annotation(
|
||||
ctx: ir.Context, *, input_contents: str, config_path: str
|
||||
):
|
||||
if os.path.isfile(input_contents):
|
||||
with open(input_contents, "rb") as f:
|
||||
input_contents = f.read()
|
||||
|
||||
module = ir.Module.parse(input_contents)
|
||||
|
||||
with open(config_path, "r") as f:
|
||||
data = json.load(f)
|
||||
configs = data["options"]
|
||||
|
||||
# The Python API does not expose a general walk() function, so we just
|
||||
# do it ourselves.
|
||||
walk_children(module.operation, configs)
|
||||
|
||||
if not module.operation.verify():
|
||||
raise RuntimeError("Modified program does not verify!")
|
||||
|
||||
# More efficient than: print(module)
|
||||
# - Disables verification (already done above)
|
||||
# - Writes as binary, avoiding costly unicode conversions
|
||||
sys.stdout.buffer.write(
|
||||
module.operation.get_asm(assume_verified=True, binary=True)
|
||||
)
|
||||
return module
|
||||
|
||||
|
||||
def walk_children(op: ir.Operation, configs: List[Dict]):
|
||||
for region in op.regions:
|
||||
for block in region.blocks:
|
||||
for child_op in block.operations:
|
||||
# TODO: This is dumb. Both Operation and OpView should expose
|
||||
# 'operation' and 'name' attributes.
|
||||
if isinstance(child_op, ir.OpView):
|
||||
child_op = child_op.operation
|
||||
if child_op.name in MATMUL_OP_NAMES:
|
||||
global idx
|
||||
(
|
||||
tile_sizes,
|
||||
pipeline,
|
||||
workgroup_size,
|
||||
split_k,
|
||||
pipeline_depth,
|
||||
) = parse_config(configs[idx])
|
||||
|
||||
add_compilation_info(
|
||||
child_op,
|
||||
tile_sizes=tile_sizes,
|
||||
pipeline=pipeline,
|
||||
workgroup_size=workgroup_size,
|
||||
pipeline_depth=pipeline_depth,
|
||||
)
|
||||
|
||||
if split_k:
|
||||
add_split_k(child_op, split_k)
|
||||
|
||||
idx = idx + 1
|
||||
print(f"Updated op {child_op}", file=sys.stderr)
|
||||
walk_children(child_op, configs)
|
||||
|
||||
|
||||
def parse_config(config: Dict):
|
||||
if config["pipeline"] == "GPU" or config["pipeline"] == "GPU_TENSORCORE":
|
||||
pipeline = (
|
||||
"LLVMGPUMatmulSimt"
|
||||
if config["pipeline"] == "GPU"
|
||||
else "LLVMGPUMatmulTensorCore"
|
||||
)
|
||||
tile_sizes = [config["work_group_tile_sizes"]]
|
||||
workgroup_size = config["work_group_sizes"]
|
||||
try:
|
||||
pipeline_depth = config["pipeline_depth"]
|
||||
except:
|
||||
pipeline_depth = None
|
||||
try:
|
||||
split_k = config["split_k"]
|
||||
except:
|
||||
split_k = None
|
||||
else:
|
||||
pipeline = config["pipeline"]
|
||||
tile_sizes = [
|
||||
config["work_group_tile_sizes"],
|
||||
config["l1_tile_sizes"],
|
||||
config["vector_tile_sizes"],
|
||||
]
|
||||
workgroup_size = []
|
||||
split_k = None
|
||||
pipeline_depth = None
|
||||
return tile_sizes, pipeline, workgroup_size, split_k, pipeline_depth
|
||||
|
||||
|
||||
def add_compilation_info(
|
||||
op: ir.Operation,
|
||||
tile_sizes: List[List[int]],
|
||||
pipeline: str,
|
||||
workgroup_size: List[int],
|
||||
pipeline_depth: int,
|
||||
):
|
||||
# We don't have a Python binding for CompilationInfo, so we just parse
|
||||
# its string form.
|
||||
if pipeline_depth:
|
||||
attr = ir.Attribute.parse(
|
||||
f"#iree_codegen.compilation_info<"
|
||||
f"lowering_config = <tile_sizes = {repr(tile_sizes)}>, "
|
||||
f"translation_info = <{pipeline} pipeline_depth = {pipeline_depth}>, "
|
||||
f"workgroup_size = {repr(workgroup_size)}>"
|
||||
)
|
||||
else:
|
||||
attr = ir.Attribute.parse(
|
||||
f"#iree_codegen.compilation_info<"
|
||||
f"lowering_config = <tile_sizes = {repr(tile_sizes)}>, "
|
||||
f"translation_info = <{pipeline}>, "
|
||||
f"workgroup_size = {repr(workgroup_size)}>"
|
||||
)
|
||||
op.attributes["compilation_info"] = attr
|
||||
|
||||
|
||||
def add_split_k(op: ir.Operation, k: int):
|
||||
attr = ir.IntegerAttr.get(ir.IntegerType.get_signless(64), k)
|
||||
op.attributes["iree_flow_split_k"] = attr
|
||||
|
||||
|
||||
def create_context() -> ir.Context:
|
||||
context = ir.Context()
|
||||
ireec_trans.register_all_dialects(context)
|
||||
context.allow_unregistered_dialects = True
|
||||
return context
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
with create_context() as ctx:
|
||||
model_annotation(
|
||||
ctx, input_contents=sys.argv[1], config_path=sys.argv[2]
|
||||
)
|
||||
80
shark/parser.py
Normal file
80
shark/parser.py
Normal file
@@ -0,0 +1,80 @@
|
||||
# Copyright 2020 The Nod Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import os
|
||||
|
||||
|
||||
def dir_path(path):
|
||||
if os.path.isdir(path):
|
||||
return path
|
||||
else:
|
||||
os.mkdir(path)
|
||||
return path
|
||||
|
||||
|
||||
def dir_file(path):
|
||||
if os.path.isfile(path):
|
||||
return path
|
||||
else:
|
||||
raise argparse.ArgumentTypeError(
|
||||
f"readable_file:{path} is not a valid file"
|
||||
)
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser(description="SHARK runner.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default="cpu",
|
||||
help="Device on which shark_runner runs. options are cpu, gpu, and vulkan",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--repro_dir",
|
||||
help="Directory to which module files will be saved for reproduction or debugging.",
|
||||
type=dir_path,
|
||||
default="./shark_tmp",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--enable_tf32",
|
||||
type=bool,
|
||||
default=False,
|
||||
help="Enables TF32 precision calculations on supported GPUs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model_config_path",
|
||||
help="Directory to where the tuned model config file is located.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num_warmup_iterations",
|
||||
type=int,
|
||||
default=5,
|
||||
help="Run the model for the specified number of warmup iterations.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num_iterations",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Run the model for the specified number of iterations.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--onnx_bench",
|
||||
default=False,
|
||||
action="store_true",
|
||||
help="When enabled, pytest bench results will include ONNX benchmark results.",
|
||||
)
|
||||
|
||||
shark_args, unknown = parser.parse_known_args()
|
||||
301
shark/shark_benchmark_runner.py
Normal file
301
shark/shark_benchmark_runner.py
Normal file
@@ -0,0 +1,301 @@
|
||||
# Copyright 2020 The Nod Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from shark.shark_runner import SharkRunner
|
||||
from shark.iree_utils.compile_utils import export_iree_module_to_vmfb
|
||||
from shark.iree_utils.benchmark_utils import (
|
||||
build_benchmark_args,
|
||||
run_benchmark_module,
|
||||
)
|
||||
from shark.parser import shark_args
|
||||
from datetime import datetime
|
||||
import time
|
||||
import csv
|
||||
import os
|
||||
|
||||
|
||||
class OnnxFusionOptions(object):
|
||||
def __init__(self):
|
||||
self.disable_gelu = False
|
||||
self.disable_layer_norm = False
|
||||
self.disable_attention = False
|
||||
self.disable_skip_layer_norm = False
|
||||
self.disable_embed_layer_norm = False
|
||||
self.disable_bias_skip_layer_norm = False
|
||||
self.disable_bias_gelu = False
|
||||
self.enable_gelu_approximation = False
|
||||
self.use_mask_index = False
|
||||
self.no_attention_mask = False
|
||||
|
||||
|
||||
class SharkBenchmarkRunner(SharkRunner):
|
||||
# SharkRunner derived class with Benchmarking capabilities.
|
||||
def __init__(
|
||||
self,
|
||||
mlir_module: str,
|
||||
function_name: str = "forward",
|
||||
device: str = "none",
|
||||
mlir_dialect: str = "linalg",
|
||||
):
|
||||
self.device = shark_args.device if device == "none" else device
|
||||
self.frontend_model = None
|
||||
self.vmfb_file = None
|
||||
self.mlir_dialect = mlir_dialect
|
||||
SharkRunner.__init__(
|
||||
self,
|
||||
mlir_module,
|
||||
function_name,
|
||||
device,
|
||||
self.mlir_dialect,
|
||||
)
|
||||
if self.vmfb_file == None:
|
||||
self.vmfb_file = export_iree_module_to_vmfb(
|
||||
mlir_module, device, shark_args.repro_dir, self.mlir_dialect
|
||||
)
|
||||
|
||||
def setup_cl(self, input_tensors):
|
||||
self.benchmark_cl = build_benchmark_args(
|
||||
self.vmfb_file,
|
||||
self.device,
|
||||
input_tensors,
|
||||
mlir_dialect=self.mlir_dialect,
|
||||
)
|
||||
# print(self.benchmark_cl)
|
||||
|
||||
def benchmark_frontend(self, modelname):
|
||||
if self.mlir_dialect in ["linalg", "torch"]:
|
||||
return self.benchmark_torch(modelname)
|
||||
elif self.mlir_dialect in ["mhlo", "tf"]:
|
||||
return self.benchmark_tf(modelname)
|
||||
|
||||
def benchmark_torch(self, modelname):
|
||||
import torch
|
||||
from tank.model_utils import get_torch_model
|
||||
|
||||
if self.device == "gpu":
|
||||
torch.set_default_tensor_type(torch.cuda.FloatTensor)
|
||||
else:
|
||||
torch.set_default_tensor_type(torch.FloatTensor)
|
||||
torch_device = torch.device(
|
||||
"cuda:0" if self.device == "gpu" else "cpu"
|
||||
)
|
||||
HFmodel, input = get_torch_model(modelname)[:2]
|
||||
frontend_model = HFmodel.model
|
||||
frontend_model.to(torch_device)
|
||||
input.to(torch_device)
|
||||
|
||||
for i in range(shark_args.num_warmup_iterations):
|
||||
frontend_model.forward(input)
|
||||
|
||||
begin = time.time()
|
||||
for i in range(shark_args.num_iterations):
|
||||
out = frontend_model.forward(input)
|
||||
if i == shark_args.num_iterations - 1:
|
||||
end = time.time()
|
||||
break
|
||||
print(
|
||||
f"Torch benchmark:{shark_args.num_iterations/(end-begin)} iter/second, Total Iterations:{shark_args.num_iterations}"
|
||||
)
|
||||
return [
|
||||
f"{shark_args.num_iterations/(end-begin)}",
|
||||
f"{((end-begin)/shark_args.num_iterations)*1000}",
|
||||
]
|
||||
|
||||
def benchmark_tf(self, modelname):
|
||||
import tensorflow as tf
|
||||
from tank.model_utils_tf import get_tf_model
|
||||
|
||||
model, input, = get_tf_model(
|
||||
modelname
|
||||
)[:2]
|
||||
frontend_model = model
|
||||
|
||||
for i in range(shark_args.num_warmup_iterations):
|
||||
frontend_model.forward(*input)
|
||||
|
||||
begin = time.time()
|
||||
for i in range(shark_args.num_iterations):
|
||||
out = frontend_model.forward(*input)
|
||||
if i == shark_args.num_iterations - 1:
|
||||
end = time.time()
|
||||
break
|
||||
print(
|
||||
f"TF benchmark:{shark_args.num_iterations/(end-begin)} iter/second, Total Iterations:{shark_args.num_iterations}"
|
||||
)
|
||||
return [
|
||||
f"{shark_args.num_iterations/(end-begin)}",
|
||||
f"{((end-begin)/shark_args.num_iterations)*1000}",
|
||||
]
|
||||
|
||||
def benchmark_c(self):
|
||||
print(self.benchmark_cl)
|
||||
result = run_benchmark_module(self.benchmark_cl)
|
||||
print(f"Shark-IREE-C benchmark:{result} iter/second")
|
||||
return [f"{result}", f"{1000/result}"]
|
||||
|
||||
def benchmark_python(self, inputs):
|
||||
input_list = [x for x in inputs]
|
||||
for i in range(shark_args.num_warmup_iterations):
|
||||
self.run(input_list)
|
||||
|
||||
begin = time.time()
|
||||
for i in range(shark_args.num_iterations):
|
||||
out = self.run(input_list)
|
||||
if i == shark_args.num_iterations - 1:
|
||||
end = time.time()
|
||||
print(
|
||||
f"Shark-IREE Python benchmark:{shark_args.num_iterations/(end-begin)} iter/second, Total Iterations:{shark_args.num_iterations}"
|
||||
)
|
||||
return [
|
||||
f"{shark_args.num_iterations/(end-begin)}",
|
||||
f"{((end-begin)/shark_args.num_iterations)*1000}",
|
||||
]
|
||||
|
||||
def benchmark_onnx(self, modelname, inputs):
|
||||
if self.device == "gpu":
|
||||
print(
|
||||
"Currently GPU benchmarking on ONNX is not supported in SHARK."
|
||||
)
|
||||
return ["N/A", "N/A"]
|
||||
else:
|
||||
from onnxruntime.transformers.benchmark import run_onnxruntime
|
||||
from onnxruntime.transformers.huggingface_models import MODELS
|
||||
from onnxruntime.transformers.benchmark_helper import (
|
||||
ConfigModifier,
|
||||
Precision,
|
||||
)
|
||||
import psutil
|
||||
|
||||
if modelname == "microsoft/MiniLM-L12-H384-uncased":
|
||||
modelname = "bert-base-uncased"
|
||||
if modelname not in MODELS:
|
||||
print(
|
||||
f"{modelname} is currently not supported in ORT's HF. Check \
|
||||
https://github.com/microsoft/onnxruntime/blob/master/onnxruntime/python/tools/transformers/huggingface_models.py \
|
||||
for currently supported models. Exiting benchmark ONNX."
|
||||
)
|
||||
return ["N/A", "N/A"]
|
||||
use_gpu = self.device == "gpu"
|
||||
num_threads = psutil.cpu_count(logical=False)
|
||||
batch_sizes = [1]
|
||||
sequence_lengths = [128]
|
||||
cache_dir = os.path.join(".", "cache_models")
|
||||
onnx_dir = os.path.join(".", "onnx_models")
|
||||
verbose = False
|
||||
input_counts = [1]
|
||||
optimize_onnx = True
|
||||
validate_onnx = False
|
||||
disable_ort_io_binding = False
|
||||
use_raw_attention_mask = True
|
||||
model_fusion_statistics = {}
|
||||
overwrite = False
|
||||
model_source = "pt" # Either "pt" or "tf"
|
||||
provider = None
|
||||
config_modifier = ConfigModifier(None)
|
||||
onnx_args = OnnxFusionOptions()
|
||||
result = run_onnxruntime(
|
||||
use_gpu,
|
||||
provider,
|
||||
(modelname,),
|
||||
None,
|
||||
config_modifier,
|
||||
Precision.FLOAT32,
|
||||
num_threads,
|
||||
batch_sizes,
|
||||
sequence_lengths,
|
||||
shark_args.num_iterations,
|
||||
input_counts,
|
||||
optimize_onnx,
|
||||
validate_onnx,
|
||||
cache_dir,
|
||||
onnx_dir,
|
||||
verbose,
|
||||
overwrite,
|
||||
disable_ort_io_binding,
|
||||
use_raw_attention_mask,
|
||||
model_fusion_statistics,
|
||||
model_source,
|
||||
onnx_args,
|
||||
)
|
||||
print(
|
||||
f"ONNX ORT-benchmark:{result[0]['QPS']} iter/second, Total Iterations:{shark_args.num_iterations}"
|
||||
)
|
||||
return [
|
||||
result[0]["QPS"],
|
||||
result[0]["average_latency_ms"],
|
||||
]
|
||||
|
||||
def benchmark_all_csv(
|
||||
self, inputs: tuple, modelname, dynamic, device_str, frontend
|
||||
):
|
||||
self.setup_cl(inputs)
|
||||
field_names = [
|
||||
"model",
|
||||
"engine",
|
||||
"dynamic",
|
||||
"dialect",
|
||||
"device",
|
||||
"iter/sec",
|
||||
"ms/iter",
|
||||
"iterations",
|
||||
"datetime",
|
||||
]
|
||||
engines = ["frontend", "shark_python", "shark_iree_c"]
|
||||
if shark_args.onnx_bench == True:
|
||||
engines.append("onnxruntime")
|
||||
|
||||
if not os.path.exists("bench_results.csv"):
|
||||
with open("bench_results.csv", mode="w", newline="") as f:
|
||||
writer = csv.writer(f)
|
||||
writer.writerow(field_names)
|
||||
|
||||
with open("bench_results.csv", mode="a", newline="") as f:
|
||||
writer = csv.DictWriter(f, fieldnames=field_names)
|
||||
bench_result = {}
|
||||
bench_result["model"] = modelname
|
||||
if dynamic == True:
|
||||
bench_result["dynamic"] = "True"
|
||||
else:
|
||||
bench_result["dynamic"] = "False"
|
||||
bench_result["device"] = device_str
|
||||
for e in engines:
|
||||
if e == "frontend":
|
||||
bench_result["engine"] = frontend
|
||||
(
|
||||
bench_result["iter/sec"],
|
||||
bench_result["ms/iter"],
|
||||
) = self.benchmark_frontend(modelname)
|
||||
elif e == "shark_python":
|
||||
bench_result["engine"] = "shark_python"
|
||||
(
|
||||
bench_result["iter/sec"],
|
||||
bench_result["ms/iter"],
|
||||
) = self.benchmark_python(inputs)
|
||||
elif e == "shark_iree_c":
|
||||
bench_result["engine"] = "shark_iree_c"
|
||||
(
|
||||
bench_result["iter/sec"],
|
||||
bench_result["ms/iter"],
|
||||
) = self.benchmark_c()
|
||||
elif e == "onnxruntime":
|
||||
bench_result["engine"] = "onnxruntime"
|
||||
(
|
||||
bench_result["iter/sec"],
|
||||
bench_result["ms/iter"],
|
||||
) = self.benchmark_onnx(modelname, inputs)
|
||||
|
||||
bench_result["dialect"] = self.mlir_dialect
|
||||
bench_result["iterations"] = shark_args.num_iterations
|
||||
bench_result["datetime"] = str(datetime.now())
|
||||
writer.writerow(bench_result)
|
||||
236
shark/shark_downloader.py
Normal file
236
shark/shark_downloader.py
Normal file
@@ -0,0 +1,236 @@
|
||||
# Lint as: python3
|
||||
"""SHARK Downloader"""
|
||||
# Requirements : Put shark_tank in SHARK directory
|
||||
# /SHARK
|
||||
# /gen_shark_tank
|
||||
# /tflite
|
||||
# /albert_lite_base
|
||||
# /...model_name...
|
||||
# /tf
|
||||
# /pytorch
|
||||
#
|
||||
#
|
||||
#
|
||||
|
||||
import numpy as np
|
||||
import os
|
||||
import urllib.request
|
||||
import json
|
||||
import hashlib
|
||||
from pathlib import Path
|
||||
|
||||
input_type_to_np_dtype = {
|
||||
"float32": np.float32,
|
||||
"float64": np.float64,
|
||||
"bool": np.bool_,
|
||||
"int32": np.int32,
|
||||
"int64": np.int64,
|
||||
"uint8": np.uint8,
|
||||
"int8": np.int8,
|
||||
}
|
||||
|
||||
# default hash is updated when nightly populate_sharktank_ci is successful
|
||||
shark_default_sha = "latest"
|
||||
|
||||
# Save the model in the home local so it needn't be fetched everytime in the CI.
|
||||
home = str(Path.home())
|
||||
WORKDIR = os.path.join(home, ".local/shark_tank/")
|
||||
print(WORKDIR)
|
||||
|
||||
|
||||
# Checks whether the directory and files exists.
|
||||
def check_dir_exists(model_name, frontend="torch", dynamic=""):
|
||||
model_dir = os.path.join(WORKDIR, model_name)
|
||||
|
||||
# Remove the _tf keyword from end.
|
||||
if frontend in ["tf", "tensorflow"]:
|
||||
model_name = model_name[:-3]
|
||||
elif frontend in ["tflite"]:
|
||||
model_name = model_name[:-7]
|
||||
elif frontend in ["torch", "pytorch"]:
|
||||
model_name = model_name[:-6]
|
||||
|
||||
if os.path.isdir(model_dir):
|
||||
if (
|
||||
os.path.isfile(
|
||||
os.path.join(
|
||||
model_dir,
|
||||
model_name + dynamic + "_" + str(frontend) + ".mlir",
|
||||
)
|
||||
)
|
||||
and os.path.isfile(os.path.join(model_dir, "function_name.npy"))
|
||||
and os.path.isfile(os.path.join(model_dir, "inputs.npz"))
|
||||
and os.path.isfile(os.path.join(model_dir, "golden_out.npz"))
|
||||
and os.path.isfile(os.path.join(model_dir, "hash.npy"))
|
||||
):
|
||||
print(
|
||||
f"""The models are present in the {WORKDIR}. If you want a fresh
|
||||
download, consider deleting the directory."""
|
||||
)
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
# Downloads the torch model from gs://shark_tank dir.
|
||||
def download_torch_model(model_name, dynamic=False):
|
||||
model_name = model_name.replace("/", "_")
|
||||
dyn_str = "_dynamic" if dynamic else ""
|
||||
os.makedirs(WORKDIR, exist_ok=True)
|
||||
model_dir_name = model_name + "_torch"
|
||||
|
||||
def gs_download_model():
|
||||
gs_command = (
|
||||
'gsutil -o "GSUtil:parallel_process_count=1" cp -r gs://shark_tank/'
|
||||
+ shark_default_sha
|
||||
+ "/"
|
||||
+ model_dir_name
|
||||
+ " "
|
||||
+ WORKDIR
|
||||
)
|
||||
if os.system(gs_command) != 0:
|
||||
raise Exception("model not present in the tank. Contact Nod Admin")
|
||||
|
||||
if not check_dir_exists(model_dir_name, frontend="torch", dynamic=dyn_str):
|
||||
gs_download_model()
|
||||
else:
|
||||
model_dir = os.path.join(WORKDIR, model_dir_name)
|
||||
local_hash = str(np.load(os.path.join(model_dir, "hash.npy")))
|
||||
gs_hash = (
|
||||
'gsutil -o "GSUtil:parallel_process_count=1" cp gs://shark_tank/'
|
||||
+ shark_default_sha
|
||||
+ "/"
|
||||
+ model_dir_name
|
||||
+ "/hash.npy"
|
||||
+ " "
|
||||
+ os.path.join(model_dir, "upstream_hash.npy")
|
||||
)
|
||||
if os.system(gs_hash) != 0:
|
||||
raise Exception("hash of the model not present in the tank.")
|
||||
upstream_hash = str(
|
||||
np.load(os.path.join(model_dir, "upstream_hash.npy"))
|
||||
)
|
||||
if local_hash != upstream_hash:
|
||||
gs_download_model()
|
||||
|
||||
model_dir = os.path.join(WORKDIR, model_dir_name)
|
||||
with open(
|
||||
os.path.join(model_dir, model_name + dyn_str + "_torch.mlir")
|
||||
) as f:
|
||||
mlir_file = f.read()
|
||||
|
||||
function_name = str(np.load(os.path.join(model_dir, "function_name.npy")))
|
||||
inputs = np.load(os.path.join(model_dir, "inputs.npz"))
|
||||
golden_out = np.load(os.path.join(model_dir, "golden_out.npz"))
|
||||
|
||||
inputs_tuple = tuple([inputs[key] for key in inputs])
|
||||
golden_out_tuple = tuple([golden_out[key] for key in golden_out])
|
||||
return mlir_file, function_name, inputs_tuple, golden_out_tuple
|
||||
|
||||
|
||||
# Downloads the tflite model from gs://shark_tank dir.
|
||||
def download_tflite_model(model_name, dynamic=False):
|
||||
dyn_str = "_dynamic" if dynamic else ""
|
||||
os.makedirs(WORKDIR, exist_ok=True)
|
||||
model_dir_name = model_name + "_tflite"
|
||||
|
||||
def gs_download_model():
|
||||
gs_command = (
|
||||
'gsutil -o "GSUtil:parallel_process_count=1" cp -r gs://shark_tank/'
|
||||
+ shark_default_sha
|
||||
+ "/"
|
||||
+ model_dir_name
|
||||
+ " "
|
||||
+ WORKDIR
|
||||
)
|
||||
if os.system(gs_command) != 0:
|
||||
raise Exception("model not present in the tank. Contact Nod Admin")
|
||||
|
||||
if not check_dir_exists(
|
||||
model_dir_name, frontend="tflite", dynamic=dyn_str
|
||||
):
|
||||
gs_download_model()
|
||||
else:
|
||||
model_dir = os.path.join(WORKDIR, model_dir_name)
|
||||
local_hash = str(np.load(os.path.join(model_dir, "hash.npy")))
|
||||
gs_hash = (
|
||||
'gsutil -o "GSUtil:parallel_process_count=1" cp gs://shark_tank/'
|
||||
+ shark_default_sha
|
||||
+ "/"
|
||||
+ model_dir_name
|
||||
+ "/hash.npy"
|
||||
+ " "
|
||||
+ os.path.join(model_dir, "upstream_hash.npy")
|
||||
)
|
||||
if os.system(gs_hash) != 0:
|
||||
raise Exception("hash of the model not present in the tank.")
|
||||
upstream_hash = str(
|
||||
np.load(os.path.join(model_dir, "upstream_hash.npy"))
|
||||
)
|
||||
if local_hash != upstream_hash:
|
||||
gs_download_model()
|
||||
|
||||
model_dir = os.path.join(WORKDIR, model_dir_name)
|
||||
with open(
|
||||
os.path.join(model_dir, model_name + dyn_str + "_tflite.mlir")
|
||||
) as f:
|
||||
mlir_file = f.read()
|
||||
|
||||
function_name = str(np.load(os.path.join(model_dir, "function_name.npy")))
|
||||
inputs = np.load(os.path.join(model_dir, "inputs.npz"))
|
||||
golden_out = np.load(os.path.join(model_dir, "golden_out.npz"))
|
||||
|
||||
inputs_tuple = tuple([inputs[key] for key in inputs])
|
||||
golden_out_tuple = tuple([golden_out[key] for key in golden_out])
|
||||
return mlir_file, function_name, inputs_tuple, golden_out_tuple
|
||||
|
||||
|
||||
def download_tf_model(model_name):
|
||||
model_name = model_name.replace("/", "_")
|
||||
os.makedirs(WORKDIR, exist_ok=True)
|
||||
model_dir_name = model_name + "_tf"
|
||||
|
||||
def gs_download_model():
|
||||
gs_command = (
|
||||
'gsutil -o "GSUtil:parallel_process_count=1" cp -r gs://shark_tank/'
|
||||
+ shark_default_sha
|
||||
+ "/"
|
||||
+ model_dir_name
|
||||
+ " "
|
||||
+ WORKDIR
|
||||
)
|
||||
if os.system(gs_command) != 0:
|
||||
raise Exception("model not present in the tank. Contact Nod Admin")
|
||||
|
||||
if not check_dir_exists(model_dir_name, frontend="tf"):
|
||||
gs_download_model()
|
||||
else:
|
||||
model_dir = os.path.join(WORKDIR, model_dir_name)
|
||||
local_hash = str(np.load(os.path.join(model_dir, "hash.npy")))
|
||||
gs_hash = (
|
||||
'gsutil -o "GSUtil:parallel_process_count=1" cp gs://shark_tank/'
|
||||
+ shark_default_sha
|
||||
+ "/"
|
||||
+ model_dir_name
|
||||
+ "/hash.npy"
|
||||
+ " "
|
||||
+ os.path.join(model_dir, "upstream_hash.npy")
|
||||
)
|
||||
if os.system(gs_hash) != 0:
|
||||
raise Exception("hash of the model not present in the tank.")
|
||||
upstream_hash = str(
|
||||
np.load(os.path.join(model_dir, "upstream_hash.npy"))
|
||||
)
|
||||
if local_hash != upstream_hash:
|
||||
gs_download_model()
|
||||
|
||||
model_dir = os.path.join(WORKDIR, model_dir_name)
|
||||
with open(os.path.join(model_dir, model_name + "_tf.mlir")) as f:
|
||||
mlir_file = f.read()
|
||||
|
||||
function_name = str(np.load(os.path.join(model_dir, "function_name.npy")))
|
||||
inputs = np.load(os.path.join(model_dir, "inputs.npz"))
|
||||
golden_out = np.load(os.path.join(model_dir, "golden_out.npz"))
|
||||
|
||||
inputs_tuple = tuple([inputs[key] for key in inputs])
|
||||
golden_out_tuple = tuple([golden_out[key] for key in golden_out])
|
||||
return mlir_file, function_name, inputs_tuple, golden_out_tuple
|
||||
236
shark/shark_importer.py
Normal file
236
shark/shark_importer.py
Normal file
@@ -0,0 +1,236 @@
|
||||
# Lint as: python3
|
||||
"""SHARK Importer"""
|
||||
|
||||
import sys
|
||||
import tempfile
|
||||
import os
|
||||
|
||||
# List of the supported frontends.
|
||||
supported_frontends = {
|
||||
"tensorflow",
|
||||
"tf",
|
||||
"pytorch",
|
||||
"torch",
|
||||
"tf-lite",
|
||||
"tflite",
|
||||
}
|
||||
|
||||
|
||||
class SharkImporter:
|
||||
"""
|
||||
SharkImporter converts frontend modules into a
|
||||
mlir_module. The supported frameworks are tensorflow,
|
||||
pytorch, and tf-lite.
|
||||
|
||||
...
|
||||
|
||||
Attributes
|
||||
----------
|
||||
module :
|
||||
torch, tensorflow or tf-lite module.
|
||||
inputs :
|
||||
inputs to the module, may be required for the shape
|
||||
information.
|
||||
frontend: str
|
||||
frontend to which the module belongs.
|
||||
raw_model_file: str
|
||||
temp tflite model path
|
||||
|
||||
Methods
|
||||
-------
|
||||
import_mlir(is_dynamic, tracing_required, func_name):
|
||||
is_dynamic: input shapes to be totally dynamic (pytorch specific).
|
||||
tracing_required: whether tracing is required (pytorch specific.
|
||||
func_name: The function to be traced out or imported to mlir.
|
||||
|
||||
import_debug(is_dynamic, tracing_required, func_name):
|
||||
returns the converted (mlir_module,func_name) with inputs and golden
|
||||
outputs.
|
||||
The inputs and outputs are converted into np array.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
module,
|
||||
inputs: tuple = (),
|
||||
frontend: str = "torch",
|
||||
raw_model_file: str = "",
|
||||
):
|
||||
self.module = module
|
||||
self.inputs = None if len(inputs) == 0 else inputs
|
||||
self.frontend = frontend
|
||||
if not self.frontend in supported_frontends:
|
||||
print(
|
||||
f"The frontend is not in the supported_frontends: {supported_frontends}"
|
||||
)
|
||||
sys.exit(1)
|
||||
self.raw_model_file = raw_model_file
|
||||
|
||||
# NOTE: The default function for torch is "forward" and tf-lite is "main".
|
||||
|
||||
def _torch_mlir(self, is_dynamic, tracing_required):
|
||||
from shark.torch_mlir_utils import get_torch_mlir_module
|
||||
|
||||
return get_torch_mlir_module(
|
||||
self.module, self.inputs, is_dynamic, tracing_required
|
||||
)
|
||||
|
||||
def _tf_mlir(self, func_name):
|
||||
from iree.compiler import tf as tfc
|
||||
|
||||
return tfc.compile_module(
|
||||
self.module, exported_names=[func_name], import_only=True
|
||||
)
|
||||
|
||||
def _tflite_mlir(self, func_name):
|
||||
from iree.compiler import tflite as tflitec
|
||||
from shark.iree_utils._common import IREE_TARGET_MAP
|
||||
|
||||
self.mlir_model = tflitec.compile_file(
|
||||
self.raw_model_file, # in tflite, it is a path to .tflite file, not a tflite interpreter
|
||||
input_type="tosa",
|
||||
import_only=True,
|
||||
)
|
||||
return self.mlir_model
|
||||
|
||||
# Adds the conversion of the frontend with the private function.
|
||||
def import_mlir(
|
||||
self,
|
||||
is_dynamic=False,
|
||||
tracing_required=False,
|
||||
func_name="forward",
|
||||
):
|
||||
if self.frontend in ["torch", "pytorch"]:
|
||||
if self.inputs == None:
|
||||
print(
|
||||
"Please pass in the inputs, the inputs are required to determine the shape of the mlir_module"
|
||||
)
|
||||
sys.exit(1)
|
||||
return self._torch_mlir(is_dynamic, tracing_required), func_name
|
||||
if self.frontend in ["tf", "tensorflow"]:
|
||||
return self._tf_mlir(func_name), func_name
|
||||
if self.frontend in ["tflite", "tf-lite"]:
|
||||
func_name = "main"
|
||||
return self._tflite_mlir(func_name), func_name
|
||||
|
||||
# Converts the frontend specific tensors into np array.
|
||||
def convert_to_numpy(self, array_tuple: tuple):
|
||||
if self.frontend in ["torch", "pytorch"]:
|
||||
return [x.detach().numpy() for x in array_tuple]
|
||||
if self.frontend in ["tf", "tensorflow"]:
|
||||
return [x.numpy() for x in array_tuple]
|
||||
|
||||
# Saves `function_name.npy`, `inputs.npz`, `golden_out.npz` and `model_name.mlir` in the directory `dir`.
|
||||
def save_data(
|
||||
self, dir, model_name, mlir_data, func_name, inputs, outputs
|
||||
):
|
||||
import numpy as np
|
||||
|
||||
inputs_name = "inputs.npz"
|
||||
outputs_name = "golden_out.npz"
|
||||
func_file_name = "function_name"
|
||||
model_name_mlir = model_name + "_" + self.frontend + ".mlir"
|
||||
np.savez(os.path.join(dir, inputs_name), *inputs)
|
||||
np.savez(os.path.join(dir, outputs_name), *outputs)
|
||||
np.save(os.path.join(dir, func_file_name), np.array(func_name))
|
||||
|
||||
mlir_str = mlir_data
|
||||
if self.frontend == "torch":
|
||||
mlir_str = mlir_data.operation.get_asm()
|
||||
elif self.frontend == "tf":
|
||||
mlir_str = mlir_data.decode("utf-8")
|
||||
elif self.frontend == "tflite":
|
||||
mlir_str = mlir_data.decode("utf-8")
|
||||
with open(os.path.join(dir, model_name_mlir), "w") as mlir_file:
|
||||
mlir_file.write(mlir_str)
|
||||
|
||||
return
|
||||
|
||||
def import_debug(
|
||||
self,
|
||||
is_dynamic=False,
|
||||
tracing_required=False,
|
||||
func_name="forward",
|
||||
dir=tempfile.gettempdir(),
|
||||
model_name="model",
|
||||
):
|
||||
if self.inputs == None:
|
||||
print(
|
||||
f"There is no input provided: {self.inputs}, please provide inputs or simply run import_mlir."
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
imported_mlir = self.import_mlir(
|
||||
is_dynamic, tracing_required, func_name
|
||||
)
|
||||
# TODO: Make sure that any generic function name is accepted. Currently takes in the default function names.
|
||||
# TODO: Check for multiple outputs.
|
||||
if self.frontend in ["torch", "pytorch"]:
|
||||
import torch
|
||||
|
||||
golden_out = self.module(*self.inputs)
|
||||
if torch.is_tensor(golden_out):
|
||||
golden_out = tuple(
|
||||
golden_out.detach().numpy(),
|
||||
)
|
||||
else:
|
||||
golden_out = self.convert_to_numpy(golden_out)
|
||||
# Save the artifacts in the directory dir.
|
||||
self.save_data(
|
||||
dir,
|
||||
model_name,
|
||||
imported_mlir[0],
|
||||
imported_mlir[1],
|
||||
self.inputs,
|
||||
golden_out,
|
||||
)
|
||||
return (
|
||||
imported_mlir,
|
||||
self.convert_to_numpy(self.inputs),
|
||||
golden_out,
|
||||
)
|
||||
if self.frontend in ["tf", "tensorflow"]:
|
||||
import tensorflow as tf
|
||||
|
||||
golden_out = self.module.forward(*self.inputs)
|
||||
if tf.is_tensor(golden_out):
|
||||
golden_out = tuple(
|
||||
golden_out.numpy(),
|
||||
)
|
||||
elif golden_out is tuple:
|
||||
golden_out = self.convert_to_numpy(golden_out)
|
||||
elif hasattr(golden_out, "logits"):
|
||||
# from transformers import TFSequenceClassifierOutput
|
||||
golden_out = golden_out.logits
|
||||
else:
|
||||
golden_out = golden_out.last_hidden_state
|
||||
# Save the artifacts in the directory dir.
|
||||
self.save_data(
|
||||
dir,
|
||||
model_name,
|
||||
imported_mlir[0],
|
||||
imported_mlir[1],
|
||||
self.inputs,
|
||||
golden_out,
|
||||
)
|
||||
return (
|
||||
imported_mlir,
|
||||
self.convert_to_numpy(self.inputs),
|
||||
golden_out,
|
||||
)
|
||||
if self.frontend in ["tflite", "tf-lite"]:
|
||||
# TODO(Chi): Validate it for tflite models.
|
||||
golden_out = self.module.invoke_tflite(self.inputs)
|
||||
self.save_data(
|
||||
dir,
|
||||
model_name,
|
||||
imported_mlir[0],
|
||||
imported_mlir[1],
|
||||
self.inputs,
|
||||
golden_out,
|
||||
)
|
||||
return (
|
||||
imported_mlir,
|
||||
self.inputs,
|
||||
golden_out,
|
||||
)
|
||||
137
shark/shark_inference.py
Normal file
137
shark/shark_inference.py
Normal file
@@ -0,0 +1,137 @@
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from shark.shark_runner import SharkRunner
|
||||
import numpy as np
|
||||
|
||||
|
||||
dtype_to_np_dtype = {
|
||||
"f32": np.float32,
|
||||
"f64": np.float64,
|
||||
"i32": np.int32,
|
||||
"i64": np.int64,
|
||||
"i1": np.bool_,
|
||||
}
|
||||
|
||||
|
||||
class SharkInference:
|
||||
"""
|
||||
Runs prediction or inference on mlir_module.
|
||||
|
||||
...
|
||||
|
||||
Attributes
|
||||
----------
|
||||
mlir_module : str
|
||||
mlir_module represented in string.
|
||||
function_name : str
|
||||
function to execute in the given mlir_module.
|
||||
device : str
|
||||
device to execute the mlir_module on.
|
||||
currently supports cpu, cuda, vulkan, and metal backends.
|
||||
mlir_dialect: str
|
||||
The dialect in which the given mlir_module is in.
|
||||
Refer to {https://mlir.llvm.org/docs/Dialects/}
|
||||
is_benchmark: bool
|
||||
Whether this SharkInference module should be benchmark-enabled.
|
||||
|
||||
Methods
|
||||
-------
|
||||
run(inputs=None):
|
||||
Runs the mlir_module with the given inputs, if the inputs are not
|
||||
given it autogenerates the inputs. Also, the inputs should be a
|
||||
numpy array.
|
||||
input_info():
|
||||
Gives the information about the inputs required by the `function_name`.
|
||||
This can be expensive as it does string matching to do so.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
mlir_module: str,
|
||||
function_name: str = "forward",
|
||||
device: str = "none",
|
||||
mlir_dialect: str = "linalg",
|
||||
is_benchmark: bool = False,
|
||||
):
|
||||
self.mlir_module = mlir_module
|
||||
self.function_name = function_name
|
||||
self.device = device
|
||||
self.mlir_dialect = mlir_dialect
|
||||
self.is_benchmark = is_benchmark
|
||||
|
||||
self.shark_runner = None
|
||||
|
||||
def compile(self):
|
||||
|
||||
if self.is_benchmark == True:
|
||||
from shark.shark_benchmark_runner import SharkBenchmarkRunner
|
||||
|
||||
self.shark_runner = SharkBenchmarkRunner(
|
||||
self.mlir_module,
|
||||
self.function_name,
|
||||
self.device,
|
||||
self.mlir_dialect,
|
||||
)
|
||||
|
||||
else:
|
||||
self.shark_runner = SharkRunner(
|
||||
self.mlir_module,
|
||||
self.function_name,
|
||||
self.device,
|
||||
self.mlir_dialect,
|
||||
)
|
||||
|
||||
# inputs are considered to be tuple of np.array.
|
||||
def forward(self, inputs: tuple):
|
||||
return self.shark_runner.run(inputs)
|
||||
|
||||
# Captures the static input information from the mlir_module.
|
||||
# TODO(pashu123): Generate the input information for dynamic shapes.
|
||||
def _input_info(self):
|
||||
# func_key to get the line which contains the function.
|
||||
func_key = "func.func @" + self.function_name
|
||||
func_header = None
|
||||
for line in str(self.mlir_module).splitlines():
|
||||
if func_key in line:
|
||||
func_header = line
|
||||
break
|
||||
if func_header is None:
|
||||
print(f"Function: {self.function_name} not found")
|
||||
|
||||
import re
|
||||
|
||||
inputs = re.findall("\(.*?\)", func_header)[0].split(",")
|
||||
shapes = []
|
||||
dtype = []
|
||||
for inp in inputs:
|
||||
shape_dtype = re.findall(r"<[^>]*>", inp)[0].split("x")
|
||||
shape_dtype[0], shape_dtype[-1] = (
|
||||
shape_dtype[0][1:],
|
||||
shape_dtype[-1][:-1],
|
||||
)
|
||||
shapes.append(tuple([int(x) for x in shape_dtype[:-1]]))
|
||||
dtype.append(shape_dtype[-1])
|
||||
|
||||
return shapes, dtype
|
||||
|
||||
# Generates random input to be feed into the graph.
|
||||
def generate_random_inputs(self, low=0, high=1):
|
||||
shapes, dtype = self._input_info()
|
||||
inputs = []
|
||||
for i, j in zip(shapes, dtype):
|
||||
inputs.append(
|
||||
np.random.uniform(low, high, size=i).astype(
|
||||
dtype_to_np_dtype[j]
|
||||
)
|
||||
)
|
||||
return tuple(inputs)
|
||||
101
shark/shark_runner.py
Normal file
101
shark/shark_runner.py
Normal file
@@ -0,0 +1,101 @@
|
||||
# Copyright 2020 The Nod Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from shark.iree_utils.compile_utils import (
|
||||
get_iree_compiled_module,
|
||||
get_results,
|
||||
export_iree_module_to_vmfb,
|
||||
)
|
||||
from shark.iree_utils._common import check_device_drivers, device_driver_info
|
||||
from shark.parser import shark_args
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
||||
# supported dialects by the shark-runtime.
|
||||
supported_dialects = {"linalg", "mhlo", "tosa", "tf-lite"}
|
||||
|
||||
|
||||
class SharkRunner:
|
||||
"""
|
||||
Base class for SharkInference and SharkTrainer
|
||||
used to execute an mlir_module.
|
||||
|
||||
...
|
||||
|
||||
Attributes
|
||||
----------
|
||||
mlir_module : str
|
||||
mlir_module represented in string.
|
||||
function_name : str
|
||||
function to execute in the given mlir_module.
|
||||
device : str
|
||||
device to execute the mlir_module on.
|
||||
currently supports cpu, cuda, vulkan, and metal backends.
|
||||
mlir_dialect: str
|
||||
The dialect in which the given mlir_module is in.
|
||||
Refer to {https://mlir.llvm.org/docs/Dialects/}
|
||||
|
||||
Methods
|
||||
-------
|
||||
run(inputs=None):
|
||||
Runs the mlir_module with the given inputs, if the inputs are not
|
||||
given it autogenerates the inputs. Also, the inputs should be a
|
||||
numpy array.
|
||||
input_info():
|
||||
Gives the information about the inputs required by the `function_name`.
|
||||
This can be expensive as it does string matching to do so.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
mlir_module: str,
|
||||
function_name: str = "forward",
|
||||
device: str = "none",
|
||||
mlir_dialect: str = "linalg",
|
||||
):
|
||||
self.mlir_module = mlir_module
|
||||
self.function_name = function_name
|
||||
self.device = shark_args.device if device == "none" else device
|
||||
self.mlir_dialect = mlir_dialect
|
||||
|
||||
if check_device_drivers(self.device):
|
||||
device_driver_info(self.device)
|
||||
sys.exit(1)
|
||||
|
||||
# Compile the module to get the .vmfb.
|
||||
(
|
||||
self.iree_compilation_module,
|
||||
self.iree_config,
|
||||
) = get_iree_compiled_module(
|
||||
self.mlir_module,
|
||||
self.device,
|
||||
self.mlir_dialect,
|
||||
func_name=self.function_name,
|
||||
)
|
||||
|
||||
def run(self, inputs: tuple):
|
||||
return get_results(
|
||||
self.iree_compilation_module,
|
||||
inputs,
|
||||
self.iree_config,
|
||||
self.mlir_dialect,
|
||||
)
|
||||
|
||||
# TODO: Instead of passing directory and having names decided by the module
|
||||
# , user may want to save the module with manual names.
|
||||
def save_module(self, dir=os.getcwd()):
|
||||
return export_iree_module_to_vmfb(
|
||||
self.model, self.device, dir, self.mlir_dialect
|
||||
)
|
||||
152
shark/shark_trainer.py
Normal file
152
shark/shark_trainer.py
Normal file
@@ -0,0 +1,152 @@
|
||||
# Copyright 2020 The Nod Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from shark.parser import shark_args
|
||||
from shark.shark_runner import SharkRunner
|
||||
from shark.backward_makefx import MakeFxModule
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
import sys
|
||||
|
||||
|
||||
# Prints to stderr.
|
||||
def print_err(*a):
|
||||
print(*a, file=sys.stderr)
|
||||
|
||||
|
||||
class SharkTrainer:
|
||||
"""Training pytorch, tensorflow module on shark runtime."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
input: tuple,
|
||||
dynamic: bool = False,
|
||||
device: str = None,
|
||||
jit_trace: bool = False,
|
||||
from_aot: bool = True,
|
||||
):
|
||||
self.model = model
|
||||
# Change tuple to list.
|
||||
self.input = [x for x in input]
|
||||
self.dynamic = dynamic
|
||||
self.from_aot = from_aot
|
||||
self.jit_trace = jit_trace
|
||||
self.from_aot = from_aot
|
||||
|
||||
# By default it's the torch frontend.
|
||||
self.frontend = "pytorch"
|
||||
self.device = device if device is not None else shark_args.device
|
||||
|
||||
self.shark_runner = None
|
||||
|
||||
# Sets the frontend i.e `pytorch` or `tensorflow`.
|
||||
def set_frontend(self, frontend: str):
|
||||
if frontend not in [
|
||||
"pytorch",
|
||||
"torch",
|
||||
"tensorflow",
|
||||
"tf",
|
||||
"mhlo",
|
||||
"linalg",
|
||||
"tosa",
|
||||
]:
|
||||
print_err("frontend not supported.")
|
||||
else:
|
||||
self.frontend = frontend
|
||||
|
||||
# Training function is needed in the case of torch_fn.
|
||||
def compile(self, training_fn=None):
|
||||
if self.frontend in ["torch", "pytorch"]:
|
||||
aot_module = MakeFxModule(
|
||||
self.model, tuple(self.input), custom_inference_fn=training_fn
|
||||
)
|
||||
aot_module.generate_graph()
|
||||
# Returns the backward graph.
|
||||
training_graph = aot_module.training_graph
|
||||
weights = self.get_torch_params()
|
||||
self.shark_runner = SharkRunner(
|
||||
training_graph,
|
||||
weights + self.input,
|
||||
self.dynamic,
|
||||
self.device,
|
||||
self.jit_trace,
|
||||
self.from_aot,
|
||||
self.frontend,
|
||||
)
|
||||
elif self.frontend in ["tensorflow", "tf", "mhlo"]:
|
||||
self.shark_runner = SharkRunner(
|
||||
self.model,
|
||||
self.input,
|
||||
self.dynamic,
|
||||
self.device,
|
||||
self.jit_trace,
|
||||
self.from_aot,
|
||||
self.frontend,
|
||||
)
|
||||
else:
|
||||
print_err("Unknown frontend")
|
||||
return
|
||||
|
||||
# The inputs to the mlir-graph are weights, buffers and inputs respectively.
|
||||
def get_torch_params(self):
|
||||
params = [i.detach() for i in self.model.parameters()]
|
||||
buffers = [i.detach() for i in self.model.buffers()]
|
||||
return params + buffers
|
||||
|
||||
# Function to train pytorch module.
|
||||
def _train_torch(self, num_iters):
|
||||
"""Returns the updated weights after num_iters"""
|
||||
params = self.get_torch_params()
|
||||
params = [x.numpy() for x in params]
|
||||
print(f"Training started for {num_iters} iterations:")
|
||||
for i in tqdm(range(num_iters)):
|
||||
params = self.shark_runner.forward(
|
||||
params + self.input, self.frontend
|
||||
)
|
||||
|
||||
return params
|
||||
|
||||
# Function to train tensorflow module.
|
||||
# Output final loss.
|
||||
# TODO(raikonenfnu): Save updated weight/states in SHARK.
|
||||
def _train_tf(self, num_iters):
|
||||
input_list = []
|
||||
for x in self.input:
|
||||
if isinstance(x, list):
|
||||
nested_list = []
|
||||
for val in x:
|
||||
if isinstance(val, np.ndarray):
|
||||
nested_list.append(val)
|
||||
else:
|
||||
nested_list.append(val.numpy())
|
||||
input_list.append(nested_list)
|
||||
elif isinstance(x, np.ndarray):
|
||||
input_list.append(x)
|
||||
else:
|
||||
input_list.append(x.numpy())
|
||||
|
||||
print(f"Training started for {num_iters} iterations:")
|
||||
for i in tqdm(range(num_iters)):
|
||||
outputs = self.shark_runner.forward(input_list, self.frontend)
|
||||
return outputs
|
||||
|
||||
def train(self, num_iters=1):
|
||||
if self.frontend in ["torch", "pytorch"]:
|
||||
return self._train_torch(num_iters)
|
||||
elif self.frontend in ["tf", "tensorflow", "mhlo"]:
|
||||
return self._train_tf(num_iters)
|
||||
else:
|
||||
print_err("Unknown frontend")
|
||||
return
|
||||
144
shark/tests/test_shark_importer.py
Normal file
144
shark/tests/test_shark_importer.py
Normal file
@@ -0,0 +1,144 @@
|
||||
# RUN: %PYTHON %s
|
||||
import numpy as np
|
||||
from shark.shark_importer import SharkImporter
|
||||
import pytest
|
||||
from shark.parser import shark_args
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.tflite_utils import TFLitePreprocessor
|
||||
import sys
|
||||
|
||||
# model_path = "https://tfhub.dev/tensorflow/lite-model/albert_lite_base/squadv1/1?lite-format=tflite"
|
||||
|
||||
|
||||
# Inputs modified to be useful albert inputs.
|
||||
def generate_inputs(input_details):
|
||||
for input in input_details:
|
||||
print(str(input["shape"]), input["dtype"].__name__)
|
||||
|
||||
args = []
|
||||
args.append(
|
||||
np.random.randint(
|
||||
low=0,
|
||||
high=256,
|
||||
size=input_details[0]["shape"],
|
||||
dtype=input_details[0]["dtype"],
|
||||
)
|
||||
)
|
||||
args.append(
|
||||
np.ones(
|
||||
shape=input_details[1]["shape"], dtype=input_details[1]["dtype"]
|
||||
)
|
||||
)
|
||||
args.append(
|
||||
np.zeros(
|
||||
shape=input_details[2]["shape"], dtype=input_details[2]["dtype"]
|
||||
)
|
||||
)
|
||||
return args
|
||||
|
||||
|
||||
def compare_results(mlir_results, tflite_results, details):
|
||||
print("Compare mlir_results VS tflite_results: ")
|
||||
assert len(mlir_results) == len(
|
||||
tflite_results
|
||||
), "Number of results do not match"
|
||||
for i in range(len(details)):
|
||||
mlir_result = mlir_results[i]
|
||||
tflite_result = tflite_results[i]
|
||||
mlir_result = mlir_result.astype(np.single)
|
||||
tflite_result = tflite_result.astype(np.single)
|
||||
assert mlir_result.shape == tflite_result.shape, "shape doesnot match"
|
||||
max_error = np.max(np.abs(mlir_result - tflite_result))
|
||||
print("Max error (%d): %f", i, max_error)
|
||||
|
||||
|
||||
class AlbertTfliteModuleTester:
|
||||
def __init__(
|
||||
self,
|
||||
dynamic=False,
|
||||
device="cpu",
|
||||
save_mlir=False,
|
||||
save_vmfb=False,
|
||||
):
|
||||
self.dynamic = dynamic
|
||||
self.device = device
|
||||
self.save_mlir = save_mlir
|
||||
self.save_vmfb = save_vmfb
|
||||
|
||||
def create_and_check_module(self):
|
||||
shark_args.save_mlir = self.save_mlir
|
||||
shark_args.save_vmfb = self.save_vmfb
|
||||
tflite_preprocessor = TFLitePreprocessor(model_name="albert_lite_base")
|
||||
|
||||
raw_model_file_path = tflite_preprocessor.get_raw_model_file()
|
||||
inputs = tflite_preprocessor.get_inputs()
|
||||
tflite_interpreter = tflite_preprocessor.get_interpreter()
|
||||
|
||||
my_shark_importer = SharkImporter(
|
||||
module=tflite_interpreter,
|
||||
inputs=inputs,
|
||||
frontend="tflite",
|
||||
raw_model_file=raw_model_file_path,
|
||||
)
|
||||
mlir_model, func_name = my_shark_importer.import_mlir()
|
||||
|
||||
shark_module = SharkInference(
|
||||
mlir_module=mlir_model,
|
||||
function_name=func_name,
|
||||
device=self.device,
|
||||
mlir_dialect="tflite",
|
||||
)
|
||||
|
||||
# Case1: Use shark_importer default generate inputs
|
||||
shark_module.compile()
|
||||
mlir_results = shark_module.forward(inputs)
|
||||
## post process results for compare
|
||||
input_details, output_details = tflite_preprocessor.get_model_details()
|
||||
mlir_results = list(mlir_results)
|
||||
for i in range(len(output_details)):
|
||||
dtype = output_details[i]["dtype"]
|
||||
mlir_results[i] = mlir_results[i].astype(dtype)
|
||||
tflite_results = tflite_preprocessor.get_golden_output()
|
||||
compare_results(mlir_results, tflite_results, output_details)
|
||||
|
||||
# Case2: Use manually set inputs
|
||||
input_details, output_details = tflite_preprocessor.get_model_details()
|
||||
inputs = generate_inputs(input_details) # new inputs
|
||||
|
||||
shark_module = SharkInference(
|
||||
mlir_module=mlir_model,
|
||||
function_name=func_name,
|
||||
device=self.device,
|
||||
mlir_dialect="tflite",
|
||||
)
|
||||
shark_module.compile()
|
||||
mlir_results = shark_module.forward(inputs)
|
||||
## post process results for compare
|
||||
tflite_results = tflite_preprocessor.get_golden_output()
|
||||
compare_results(mlir_results, tflite_results, output_details)
|
||||
# print(mlir_results)
|
||||
|
||||
|
||||
# A specific case can be run by commenting different cases. Runs all the test
|
||||
# across cpu, gpu and vulkan according to available drivers.
|
||||
pytest_param = pytest.mark.parametrize(
|
||||
("dynamic", "device"),
|
||||
[
|
||||
pytest.param(False, "cpu"),
|
||||
# TODO: Language models are failing for dynamic case..
|
||||
pytest.param(True, "cpu", marks=pytest.mark.skip),
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
@pytest_param
|
||||
@pytest.mark.xfail(
|
||||
sys.platform == "darwin", reason="known macos tflite install issue"
|
||||
)
|
||||
def test_albert(dynamic, device):
|
||||
module_tester = AlbertTfliteModuleTester(dynamic=dynamic, device=device)
|
||||
module_tester.create_and_check_module()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_albert(False, "cpu")
|
||||
208
shark/tflite_utils.py
Normal file
208
shark/tflite_utils.py
Normal file
@@ -0,0 +1,208 @@
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
import os
|
||||
import csv
|
||||
import urllib.request
|
||||
|
||||
|
||||
class TFLiteModelUtil:
|
||||
def __init__(self, raw_model_file):
|
||||
self.raw_model_file = str(raw_model_file)
|
||||
self.tflite_interpreter = None
|
||||
self.input_details = None
|
||||
self.output_details = None
|
||||
self.inputs = []
|
||||
|
||||
def setup_tflite_interpreter(self):
|
||||
self.tflite_interpreter = tf.lite.Interpreter(
|
||||
model_path=self.raw_model_file
|
||||
)
|
||||
self.tflite_interpreter.allocate_tensors()
|
||||
# default input initialization
|
||||
return self.get_model_details()
|
||||
|
||||
def get_model_details(self):
|
||||
print("Get tflite input output details")
|
||||
self.input_details = self.tflite_interpreter.get_input_details()
|
||||
self.output_details = self.tflite_interpreter.get_output_details()
|
||||
return self.input_details, self.output_details
|
||||
|
||||
def invoke_tflite(self, inputs):
|
||||
self.inputs = inputs
|
||||
print("invoke_tflite")
|
||||
for i, input in enumerate(self.inputs):
|
||||
self.tflite_interpreter.set_tensor(
|
||||
self.input_details[i]["index"], input
|
||||
)
|
||||
self.tflite_interpreter.invoke()
|
||||
|
||||
# post process tflite_result for compare with mlir_result,
|
||||
# for tflite the output is a list of numpy.tensor
|
||||
tflite_results = []
|
||||
for output_detail in self.output_details:
|
||||
tflite_results.append(
|
||||
np.array(
|
||||
self.tflite_interpreter.get_tensor(output_detail["index"])
|
||||
)
|
||||
)
|
||||
|
||||
for i in range(len(self.output_details)):
|
||||
# print("output_details ", i, "shape", self.output_details[i]["shape"].__name__,
|
||||
# ", dtype: ", self.output_details[i]["dtype"].__name__)
|
||||
out_dtype = self.output_details[i]["dtype"]
|
||||
tflite_results[i] = tflite_results[i].astype(out_dtype)
|
||||
return tflite_results
|
||||
|
||||
|
||||
class TFLitePreprocessor:
|
||||
def __init__(
|
||||
self,
|
||||
model_name,
|
||||
input_details=None,
|
||||
output_details=None,
|
||||
model_path=None,
|
||||
):
|
||||
self.model_name = model_name
|
||||
self.input_details = (
|
||||
input_details # used for tflite, optional for tf/pytorch
|
||||
)
|
||||
self.output_details = (
|
||||
output_details # used for tflite, optional for tf/pytorch
|
||||
)
|
||||
self.inputs = []
|
||||
self.model_path = model_path # url to download the model
|
||||
self.raw_model_file = (
|
||||
None # local address for raw tf/tflite/pytorch model
|
||||
)
|
||||
self.mlir_file = (
|
||||
None # local address for .mlir file of tf/tflite/pytorch model
|
||||
)
|
||||
self.mlir_model = None # read of .mlir file
|
||||
self.output_tensor = (
|
||||
None # the raw tf/pytorch/tflite_output_tensor, not mlir_tensor
|
||||
)
|
||||
self.interpreter = (
|
||||
None # could be tflite/tf/torch_interpreter in utils
|
||||
)
|
||||
self.input_file = None
|
||||
self.output_file = None
|
||||
|
||||
# create tmp model file directory
|
||||
if self.model_path is None and self.model_name is None:
|
||||
print(
|
||||
"Error. No model_path, No model name,Please input either one."
|
||||
)
|
||||
return
|
||||
|
||||
print("Setting up for TMP_WORK_DIR")
|
||||
self.workdir = os.path.join(
|
||||
os.path.dirname(__file__), "./../gen_shark_tank"
|
||||
)
|
||||
os.makedirs(self.workdir, exist_ok=True)
|
||||
print(f"TMP_WORK_DIR = {self.workdir}")
|
||||
|
||||
# compile and run tfhub tflite
|
||||
load_model_success = self.load_tflite_model()
|
||||
if not load_model_success:
|
||||
print("Error, load tflite model fail")
|
||||
return
|
||||
|
||||
if (self.input_details is None) or (self.output_details is None):
|
||||
# print("Setting up tflite interpreter to get model input details")
|
||||
self.setup_interpreter()
|
||||
|
||||
inputs = self.generate_inputs(self.input_details) # device_inputs
|
||||
self.setup_inputs(inputs)
|
||||
|
||||
def load_tflite_model(self):
|
||||
# use model name get dir.
|
||||
tflite_model_name_dir = os.path.join(
|
||||
self.workdir, str(self.model_name)
|
||||
)
|
||||
|
||||
os.makedirs(tflite_model_name_dir, exist_ok=True)
|
||||
print(f"TMP_TFLITE_MODELNAME_DIR = {tflite_model_name_dir}")
|
||||
|
||||
self.raw_model_file = "/".join(
|
||||
[tflite_model_name_dir, str(self.model_name) + "_tflite.tflite"]
|
||||
)
|
||||
self.mlir_file = "/".join(
|
||||
[tflite_model_name_dir, str(self.model_name) + "_tflite.mlir"]
|
||||
)
|
||||
self.input_file = "/".join([tflite_model_name_dir, "inputs"])
|
||||
self.output_file = "/".join([tflite_model_name_dir, "golden_out"])
|
||||
# np.save("/".join([tflite_model_name_dir, "function_name"]), np.array("main"))
|
||||
|
||||
if os.path.exists(self.raw_model_file):
|
||||
print(
|
||||
"Local address for .tflite model file Exists: ",
|
||||
self.raw_model_file,
|
||||
)
|
||||
else:
|
||||
print("No local tflite file, Download tflite model")
|
||||
if self.model_path is None:
|
||||
# get model file from tflite_model_list.csv or download from gs://bucket
|
||||
print("No model_path, get from tflite_model_list.csv")
|
||||
tflite_model_list_path = os.path.join(
|
||||
os.path.dirname(__file__),
|
||||
"../tank/tflite/tflite_model_list.csv",
|
||||
)
|
||||
tflite_model_list = csv.reader(open(tflite_model_list_path))
|
||||
for row in tflite_model_list:
|
||||
if str(row[0]) == str(self.model_name):
|
||||
self.model_path = row[1]
|
||||
print("tflite_model_name", str(row[0]))
|
||||
print("tflite_model_link", self.model_path)
|
||||
if self.model_path is None:
|
||||
print("Error, No model path find in tflite_model_list.csv")
|
||||
return False
|
||||
urllib.request.urlretrieve(self.model_path, self.raw_model_file)
|
||||
return True
|
||||
|
||||
def setup_interpreter(self):
|
||||
self.interpreter = TFLiteModelUtil(self.raw_model_file)
|
||||
(
|
||||
self.input_details,
|
||||
self.output_details,
|
||||
) = self.interpreter.setup_tflite_interpreter()
|
||||
|
||||
def generate_inputs(self, input_details):
|
||||
self.inputs = []
|
||||
for tmp_input in input_details:
|
||||
print(
|
||||
"input_details shape:",
|
||||
str(tmp_input["shape"]),
|
||||
" type:",
|
||||
tmp_input["dtype"].__name__,
|
||||
)
|
||||
self.inputs.append(
|
||||
np.ones(shape=tmp_input["shape"], dtype=tmp_input["dtype"])
|
||||
)
|
||||
return self.inputs
|
||||
|
||||
def setup_inputs(self, inputs):
|
||||
# print("Setting up inputs")
|
||||
self.inputs = inputs
|
||||
|
||||
def get_mlir_model(self):
|
||||
return self.mlir_model
|
||||
|
||||
def get_mlir_file(self):
|
||||
return self.mlir_file
|
||||
|
||||
def get_inputs(self):
|
||||
return self.inputs
|
||||
|
||||
def get_golden_output(self):
|
||||
self.output_tensor = self.interpreter.invoke_tflite(self.inputs)
|
||||
np.savez(self.output_file, *self.output_tensor)
|
||||
return self.output_tensor
|
||||
|
||||
def get_model_details(self):
|
||||
return self.input_details, self.output_details
|
||||
|
||||
def get_raw_model_file(self):
|
||||
return self.raw_model_file
|
||||
|
||||
def get_interpreter(self):
|
||||
return self.interpreter
|
||||
72
shark/torch_mlir_utils.py
Normal file
72
shark/torch_mlir_utils.py
Normal file
@@ -0,0 +1,72 @@
|
||||
# Copyright 2020 The Nod Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from torch_mlir.ir import StringAttr
|
||||
import torch_mlir
|
||||
from torch_mlir_e2e_test.linalg_on_tensors_backends import refbackend
|
||||
|
||||
|
||||
def get_module_name_for_asm_dump(module):
|
||||
"""Gets a name suitable for an assembly dump.
|
||||
The name is not guaranteed to be unique.
|
||||
"""
|
||||
if not "torch.debug_module_name" in module.operation.attributes:
|
||||
return "UnnammedModule"
|
||||
return StringAttr(
|
||||
module.operation.attributes["torch.debug_module_name"]
|
||||
).value
|
||||
|
||||
|
||||
def run_on_refbackend(torch_module, inputs):
|
||||
backend = refbackend.RefBackendLinalgOnTensorsBackend()
|
||||
compiled = backend.compile(torch_module)
|
||||
jit_module = backend.load(compiled)
|
||||
np_inputs = [x.numpy() for x in inputs]
|
||||
return jit_module.forward(np_inputs[0])
|
||||
|
||||
|
||||
# Creates dynamic dims for all dims.
|
||||
# TODO: Pass user specified dynamic dims.
|
||||
def create_dynamic_placeholders(inputs):
|
||||
placeholders = []
|
||||
for inp in inputs:
|
||||
placeholder = torch_mlir.TensorPlaceholder.like(
|
||||
inp, dynamic_axes=[i for i in range(len(inp.shape))]
|
||||
)
|
||||
placeholders.append(placeholder)
|
||||
return tuple(placeholders)
|
||||
|
||||
|
||||
def get_torch_mlir_module(
|
||||
module,
|
||||
input: tuple,
|
||||
dynamic: bool,
|
||||
jit_trace: bool,
|
||||
from_torchscript: bool = False,
|
||||
):
|
||||
"""Get the MLIR's linalg-on-tensors module from torchscipt module."""
|
||||
ignore_traced_shapes = False
|
||||
if dynamic:
|
||||
input = create_dynamic_placeholders(input)
|
||||
if jit_trace:
|
||||
ignore_traced_shapes = True
|
||||
|
||||
module = torch_mlir.compile(
|
||||
module,
|
||||
input,
|
||||
output_type=torch_mlir.OutputType.LINALG_ON_TENSORS,
|
||||
use_tracing=jit_trace,
|
||||
ignore_traced_shapes=ignore_traced_shapes,
|
||||
)
|
||||
return module
|
||||
101
tank/MiniLM-L12-H384-uncased/MiniLM-L12-H384-uncased_test.py
Normal file
101
tank/MiniLM-L12-H384-uncased/MiniLM-L12-H384-uncased_test.py
Normal file
@@ -0,0 +1,101 @@
|
||||
from shark.iree_utils._common import check_device_drivers, device_driver_info
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.shark_downloader import download_tf_model
|
||||
from shark.parser import shark_args
|
||||
|
||||
import iree.compiler as ireec
|
||||
import unittest
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
|
||||
class MiniLMModuleTester:
|
||||
def __init__(
|
||||
self,
|
||||
benchmark=False,
|
||||
onnx_bench=False,
|
||||
):
|
||||
self.benchmark = benchmark
|
||||
self.onnx_bench = onnx_bench
|
||||
|
||||
def create_and_check_module(self, dynamic, device):
|
||||
model, func_name, inputs, golden_out = download_tf_model(
|
||||
"microsoft/MiniLM-L12-H384-uncased"
|
||||
)
|
||||
|
||||
shark_module = SharkInference(
|
||||
model,
|
||||
func_name,
|
||||
device=device,
|
||||
mlir_dialect="mhlo",
|
||||
is_benchmark=self.benchmark,
|
||||
)
|
||||
if self.benchmark == True:
|
||||
shark_args.enable_tf32 = True
|
||||
shark_module.compile()
|
||||
shark_args.onnx_bench = self.onnx_bench
|
||||
shark_module.shark_runner.benchmark_all_csv(
|
||||
(inputs),
|
||||
"microsoft/MiniLM-L12-H384-uncased",
|
||||
dynamic,
|
||||
device,
|
||||
"tensorflow",
|
||||
)
|
||||
shark_args.enable_tf32 = False
|
||||
rtol = 1e-01
|
||||
atol = 1e-02
|
||||
|
||||
else:
|
||||
shark_module.compile()
|
||||
rtol = 1e-02
|
||||
atol = 1e-03
|
||||
|
||||
# TODO: Remove catch once new MiniLM stable
|
||||
try:
|
||||
result = shark_module.forward(inputs)[0][1].to_host()
|
||||
|
||||
except:
|
||||
result = shark_module.forward(inputs)
|
||||
|
||||
np.testing.assert_allclose(golden_out, result, rtol=rtol, atol=atol)
|
||||
|
||||
|
||||
class MiniLMModuleTest(unittest.TestCase):
|
||||
@pytest.fixture(autouse=True)
|
||||
def configure(self, pytestconfig):
|
||||
self.module_tester = MiniLMModuleTester(self)
|
||||
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
|
||||
self.module_tester.onnx_bench = pytestconfig.getoption("onnx_bench")
|
||||
|
||||
def test_module_static_cpu(self):
|
||||
dynamic = False
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_static_gpu(self):
|
||||
dynamic = False
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
def test_module_static_vulkan(self):
|
||||
dynamic = False
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("intel-gpu"),
|
||||
reason=device_driver_info("intel-gpu"),
|
||||
)
|
||||
def test_module_static_intel_gpu(self):
|
||||
dynamic = False
|
||||
device = "intel-gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
@@ -0,0 +1,114 @@
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.iree_utils._common import check_device_drivers, device_driver_info
|
||||
from tank.model_utils import compare_tensors
|
||||
from shark.shark_downloader import download_torch_model
|
||||
from shark.parser import shark_args
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
|
||||
class MiniLMModuleTester:
|
||||
def __init__(
|
||||
self,
|
||||
benchmark=False,
|
||||
onnx_bench=False,
|
||||
):
|
||||
self.benchmark = benchmark
|
||||
self.onnx_bench = onnx_bench
|
||||
|
||||
def create_and_check_module(self, dynamic, device):
|
||||
model_mlir, func_name, input, act_out = download_torch_model(
|
||||
"microsoft/MiniLM-L12-H384-uncased", dynamic
|
||||
)
|
||||
shark_module = SharkInference(
|
||||
model_mlir,
|
||||
func_name,
|
||||
device=device,
|
||||
mlir_dialect="linalg",
|
||||
is_benchmark=self.benchmark,
|
||||
)
|
||||
if self.benchmark == True:
|
||||
shark_args.enable_tf32 = True
|
||||
shark_module.compile()
|
||||
shark_args.onnx_bench = self.onnx_bench
|
||||
shark_module.shark_runner.benchmark_all_csv(
|
||||
(input),
|
||||
"microsoft/MiniLM-L12-H384-uncased",
|
||||
dynamic,
|
||||
device,
|
||||
"torch",
|
||||
)
|
||||
shark_args.enable_tf32 = False
|
||||
rtol = 1e-01
|
||||
atol = 1e-02
|
||||
else:
|
||||
shark_module.compile()
|
||||
rtol = 1e-02
|
||||
atol = 1e-03
|
||||
|
||||
results = shark_module.forward(input)
|
||||
assert True == compare_tensors(act_out, results, rtol, atol)
|
||||
|
||||
|
||||
class MiniLMModuleTest(unittest.TestCase):
|
||||
@pytest.fixture(autouse=True)
|
||||
def configure(self, pytestconfig):
|
||||
self.module_tester = MiniLMModuleTester(self)
|
||||
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
|
||||
self.module_tester.onnx_bench = pytestconfig.getoption("onnx_bench")
|
||||
|
||||
def test_module_static_cpu(self):
|
||||
dynamic = False
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
def test_module_dynamic_cpu(self):
|
||||
dynamic = True
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_static_gpu(self):
|
||||
dynamic = False
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_dynamic_gpu(self):
|
||||
dynamic = True
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
def test_module_static_vulkan(self):
|
||||
dynamic = False
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
def test_module_dynamic_vulkan(self):
|
||||
dynamic = True
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("intel-gpu"),
|
||||
reason=device_driver_info("intel-gpu"),
|
||||
)
|
||||
def test_module_static_intel_gpu(self):
|
||||
dynamic = False
|
||||
device = "intel-gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
13
tank/README.md
Normal file
13
tank/README.md
Normal file
@@ -0,0 +1,13 @@
|
||||
To run the fine tuning example, from the root SHARK directory, run:
|
||||
|
||||
```shell
|
||||
IMPORTER=1 ./setup_venv.sh
|
||||
source shark.venv/bin/activate
|
||||
pip install jupyter tf-models-nightly tf-datasets
|
||||
jupyter-notebook
|
||||
```
|
||||
if running from a google vm, you can view jupyter notebooks on your local system with:
|
||||
```shell
|
||||
gcloud compute ssh <YOUR_INSTANCE_DETAILS> --ssh-flag="-N -L localhost:8888:localhost:8888"
|
||||
```
|
||||
|
||||
0
tank/__init__.py
Normal file
0
tank/__init__.py
Normal file
69
tank/albert-base-v2_tf/albert-base-v2_tf_test.py
Normal file
69
tank/albert-base-v2_tf/albert-base-v2_tf_test.py
Normal file
@@ -0,0 +1,69 @@
|
||||
from shark.iree_utils._common import check_device_drivers, device_driver_info
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.shark_downloader import download_tf_model
|
||||
|
||||
import iree.compiler as ireec
|
||||
import unittest
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
|
||||
class AlbertBaseModuleTester:
|
||||
def __init__(
|
||||
self,
|
||||
benchmark=False,
|
||||
):
|
||||
self.benchmark = benchmark
|
||||
|
||||
def create_and_check_module(self, dynamic, device):
|
||||
model, func_name, inputs, golden_out = download_tf_model(
|
||||
"albert-base-v2"
|
||||
)
|
||||
|
||||
shark_module = SharkInference(
|
||||
model, func_name, device=device, mlir_dialect="mhlo"
|
||||
)
|
||||
shark_module.compile()
|
||||
result = shark_module.forward(inputs)
|
||||
np.testing.assert_allclose(golden_out, result, rtol=1e-02, atol=1e-03)
|
||||
|
||||
|
||||
class AlbertBaseModuleTest(unittest.TestCase):
|
||||
@pytest.fixture(autouse=True)
|
||||
def configure(self, pytestconfig):
|
||||
self.module_tester = AlbertBaseModuleTester(self)
|
||||
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
|
||||
|
||||
def test_module_static_cpu(self):
|
||||
dynamic = False
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_static_gpu(self):
|
||||
dynamic = False
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
def test_module_static_vulkan(self):
|
||||
dynamic = False
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("intel-gpu"),
|
||||
reason=device_driver_info("intel-gpu"),
|
||||
)
|
||||
def test_module_static_intel_gpu(self):
|
||||
dynamic = False
|
||||
device = "intel-gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
113
tank/albert-base-v2_torch/albert-base-v2_torch_test.py
Normal file
113
tank/albert-base-v2_torch/albert-base-v2_torch_test.py
Normal file
@@ -0,0 +1,113 @@
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.iree_utils._common import check_device_drivers, device_driver_info
|
||||
from tank.model_utils import compare_tensors
|
||||
from shark.shark_downloader import download_torch_model
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
|
||||
class AlbertModuleTester:
|
||||
def __init__(
|
||||
self,
|
||||
benchmark=False,
|
||||
):
|
||||
self.benchmark = benchmark
|
||||
|
||||
def create_and_check_module(self, dynamic, device):
|
||||
model_mlir, func_name, input, act_out = download_torch_model(
|
||||
"albert-base-v2", dynamic
|
||||
)
|
||||
|
||||
# from shark.shark_importer import SharkImporter
|
||||
# mlir_importer = SharkImporter(
|
||||
# model,
|
||||
# (input,),
|
||||
# frontend="torch",
|
||||
# )
|
||||
# minilm_mlir, func_name = mlir_importer.import_mlir(
|
||||
# is_dynamic=dynamic, tracing_required=True
|
||||
# )
|
||||
|
||||
shark_module = SharkInference(
|
||||
model_mlir,
|
||||
func_name,
|
||||
device=device,
|
||||
mlir_dialect="linalg",
|
||||
is_benchmark=self.benchmark,
|
||||
)
|
||||
shark_module.compile()
|
||||
results = shark_module.forward(input)
|
||||
assert True == compare_tensors(act_out, results)
|
||||
|
||||
if self.benchmark == True:
|
||||
shark_module.shark_runner.benchmark_all_csv(
|
||||
(input),
|
||||
"albert-base-v2",
|
||||
dynamic,
|
||||
device,
|
||||
"torch",
|
||||
)
|
||||
|
||||
|
||||
class AlbertModuleTest(unittest.TestCase):
|
||||
@pytest.fixture(autouse=True)
|
||||
def configure(self, pytestconfig):
|
||||
self.module_tester = AlbertModuleTester(self)
|
||||
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
|
||||
|
||||
def test_module_static_cpu(self):
|
||||
dynamic = False
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
def test_module_dynamic_cpu(self):
|
||||
dynamic = True
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_static_gpu(self):
|
||||
dynamic = False
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_dynamic_gpu(self):
|
||||
dynamic = True
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
def test_module_static_vulkan(self):
|
||||
dynamic = False
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
def test_module_dynamic_vulkan(self):
|
||||
dynamic = True
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("intel-gpu"),
|
||||
reason=device_driver_info("intel-gpu"),
|
||||
)
|
||||
def test_module_static_intel_gpu(self):
|
||||
dynamic = False
|
||||
device = "intel-gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
177
tank/albert_lite_base/albert_lite_base_tflite_sharkimporter.txt
Normal file
177
tank/albert_lite_base/albert_lite_base_tflite_sharkimporter.txt
Normal file
@@ -0,0 +1,177 @@
|
||||
# import numpy as np
|
||||
# from shark.shark_importer import SharkImporter
|
||||
# from shark.shark_inference import SharkInference
|
||||
# import pytest
|
||||
# import unittest
|
||||
# from shark.parser import shark_args
|
||||
# from shark.tflite_utils import TFLitePreprocessor
|
||||
#
|
||||
#
|
||||
# # model_path = "https://tfhub.dev/tensorflow/lite-model/albert_lite_base/squadv1/1?lite-format=tflite"
|
||||
# # model_path = model_path
|
||||
#
|
||||
# # Inputs modified to be useful albert inputs.
|
||||
# def generate_inputs(input_details):
|
||||
# for input in input_details:
|
||||
# print(str(input["shape"]), input["dtype"].__name__)
|
||||
# # [ 1 384] int32
|
||||
# # [ 1 384] int32
|
||||
# # [ 1 384] int32
|
||||
#
|
||||
# args = []
|
||||
# args.append(
|
||||
# np.random.randint(
|
||||
# low=0,
|
||||
# high=256,
|
||||
# size=input_details[0]["shape"],
|
||||
# dtype=input_details[0]["dtype"],
|
||||
# )
|
||||
# )
|
||||
# args.append(
|
||||
# np.ones(
|
||||
# shape=input_details[1]["shape"], dtype=input_details[1]["dtype"]
|
||||
# )
|
||||
# )
|
||||
# args.append(
|
||||
# np.zeros(
|
||||
# shape=input_details[2]["shape"], dtype=input_details[2]["dtype"]
|
||||
# )
|
||||
# )
|
||||
# return args
|
||||
#
|
||||
#
|
||||
# def compare_results(mlir_results, tflite_results):
|
||||
# print("Compare mlir_results VS tflite_results: ")
|
||||
# assert len(mlir_results) == len(
|
||||
# tflite_results
|
||||
# ), "Number of results do not match"
|
||||
# rtol = 1e-02
|
||||
# atol = 1e-03
|
||||
# print(
|
||||
# "numpy.allclose: ",
|
||||
# np.allclose(mlir_results, tflite_results, rtol, atol),
|
||||
# )
|
||||
# for i in range(len(mlir_results)):
|
||||
# mlir_result = mlir_results[i]
|
||||
# tflite_result = tflite_results[i]
|
||||
# mlir_result = mlir_result.astype(np.single)
|
||||
# tflite_result = tflite_result.astype(np.single)
|
||||
# assert mlir_result.shape == tflite_result.shape, "shape doesnot match"
|
||||
# max_error = np.max(np.abs(mlir_result - tflite_result))
|
||||
# print("Max error (%d): %f", i, max_error)
|
||||
#
|
||||
#
|
||||
# class AlbertTfliteModuleTester:
|
||||
# def __init__(
|
||||
# self,
|
||||
# dynamic=False,
|
||||
# device="cpu",
|
||||
# save_mlir=False,
|
||||
# save_vmfb=False,
|
||||
# ):
|
||||
# self.dynamic = dynamic
|
||||
# self.device = device
|
||||
# self.save_mlir = save_mlir
|
||||
# self.save_vmfb = save_vmfb
|
||||
#
|
||||
# def create_and_check_module(self):
|
||||
# shark_args.save_mlir = self.save_mlir
|
||||
# shark_args.save_vmfb = self.save_vmfb
|
||||
#
|
||||
# # Preprocess to get SharkImporter input args
|
||||
# tflite_preprocessor = TFLitePreprocessor(model_name="albert_lite_base")
|
||||
# raw_model_file_path = tflite_preprocessor.get_raw_model_file()
|
||||
# inputs = tflite_preprocessor.get_inputs()
|
||||
# tflite_interpreter = tflite_preprocessor.get_interpreter()
|
||||
#
|
||||
# # Use SharkImporter to get SharkInference input args
|
||||
# my_shark_importer = SharkImporter(
|
||||
# module=tflite_interpreter,
|
||||
# inputs=inputs,
|
||||
# frontend="tflite",
|
||||
# raw_model_file=raw_model_file_path,
|
||||
# )
|
||||
# mlir_model, func_name = my_shark_importer.import_mlir()
|
||||
#
|
||||
# # Use SharkInference to get inference result
|
||||
# shark_module = SharkInference(
|
||||
# mlir_module=mlir_model,
|
||||
# function_name=func_name,
|
||||
# device=self.device,
|
||||
# mlir_dialect="tflite",
|
||||
# )
|
||||
#
|
||||
# # Case1: Use shark_importer default generate inputs
|
||||
# shark_module.compile()
|
||||
# mlir_results = shark_module.forward(inputs)
|
||||
# ## post process results for compare
|
||||
# # input_details, output_details = tflite_preprocessor.get_model_details()
|
||||
# # mlir_results = list(mlir_results)
|
||||
# # for i in range(len(output_details)):
|
||||
# # dtype = output_details[i]["dtype"]
|
||||
# # mlir_results[i] = mlir_results[i].astype(dtype)
|
||||
# tflite_results = tflite_preprocessor.get_golden_output()
|
||||
# compare_results(mlir_results, tflite_results)
|
||||
# # import pdb
|
||||
# # pdb.set_trace()
|
||||
#
|
||||
# # Case2: Use manually set inputs
|
||||
# # input_details, output_details = tflite_preprocessor.get_model_details()
|
||||
# input_details = [
|
||||
# {
|
||||
# "shape": [1, 384],
|
||||
# "dtype": np.int32,
|
||||
# },
|
||||
# {
|
||||
# "shape": [1, 384],
|
||||
# "dtype": np.int32,
|
||||
# },
|
||||
# {
|
||||
# "shape": [1, 384],
|
||||
# "dtype": np.int32,
|
||||
# },
|
||||
# ]
|
||||
# inputs = generate_inputs(input_details) # new inputs
|
||||
#
|
||||
# shark_module = SharkInference(
|
||||
# mlir_module=mlir_model,
|
||||
# function_name=func_name,
|
||||
# device=self.device,
|
||||
# mlir_dialect="tflite",
|
||||
# )
|
||||
# shark_module.compile()
|
||||
# mlir_results = shark_module.forward(inputs)
|
||||
# ## post process results for compare
|
||||
# tflite_results = tflite_preprocessor.get_golden_output()
|
||||
# compare_results(mlir_results, tflite_results)
|
||||
# # print(mlir_results)
|
||||
#
|
||||
#
|
||||
# class AlbertTfliteModuleTest(unittest.TestCase):
|
||||
# @pytest.fixture(autouse=True)
|
||||
# def configure(self, pytestconfig):
|
||||
# self.save_mlir = pytestconfig.getoption("save_mlir")
|
||||
# self.save_vmfb = pytestconfig.getoption("save_vmfb")
|
||||
#
|
||||
# def setUp(self):
|
||||
# self.module_tester = AlbertTfliteModuleTester(self)
|
||||
# self.module_tester.save_mlir = self.save_mlir
|
||||
#
|
||||
# import sys
|
||||
#
|
||||
# @pytest.mark.xfail(
|
||||
# sys.platform == "darwin", reason="known macos tflite install issue"
|
||||
# )
|
||||
# def test_module_static_cpu(self):
|
||||
# self.module_tester.dynamic = False
|
||||
# self.module_tester.device = "cpu"
|
||||
# self.module_tester.create_and_check_module()
|
||||
|
||||
|
||||
# if __name__ == "__main__":
|
||||
# module_tester = AlbertTfliteModuleTester()
|
||||
# module_tester.save_mlir = True
|
||||
# module_tester.save_vmfb = True
|
||||
# module_tester.create_and_check_module()
|
||||
|
||||
# unittest.main()
|
||||
118
tank/albert_lite_base/albert_lite_base_tflite_test.py
Normal file
118
tank/albert_lite_base/albert_lite_base_tflite_test.py
Normal file
@@ -0,0 +1,118 @@
|
||||
import numpy as np
|
||||
from shark.shark_downloader import download_tflite_model
|
||||
from shark.shark_inference import SharkInference
|
||||
import pytest
|
||||
import unittest
|
||||
from shark.parser import shark_args
|
||||
|
||||
|
||||
# model_path = "https://tfhub.dev/tensorflow/lite-model/albert_lite_base/squadv1/1?lite-format=tflite"
|
||||
# model_path = model_path
|
||||
|
||||
# Inputs modified to be useful albert inputs.
|
||||
def generate_inputs(input_details):
|
||||
for input in input_details:
|
||||
print(str(input["shape"]), input["dtype"].__name__)
|
||||
# [ 1 384] int32
|
||||
# [ 1 384] int32
|
||||
# [ 1 384] int32
|
||||
|
||||
args = []
|
||||
args.append(
|
||||
np.random.randint(
|
||||
low=0,
|
||||
high=256,
|
||||
size=input_details[0]["shape"],
|
||||
dtype=input_details[0]["dtype"],
|
||||
)
|
||||
)
|
||||
args.append(
|
||||
np.ones(
|
||||
shape=input_details[1]["shape"], dtype=input_details[1]["dtype"]
|
||||
)
|
||||
)
|
||||
args.append(
|
||||
np.zeros(
|
||||
shape=input_details[2]["shape"], dtype=input_details[2]["dtype"]
|
||||
)
|
||||
)
|
||||
return args
|
||||
|
||||
|
||||
def compare_results(mlir_results, tflite_results):
|
||||
print("Compare mlir_results VS tflite_results: ")
|
||||
assert len(mlir_results) == len(
|
||||
tflite_results
|
||||
), "Number of results do not match"
|
||||
rtol = 1e-02
|
||||
atol = 1e-03
|
||||
print(
|
||||
"numpy.allclose: ",
|
||||
np.allclose(mlir_results, tflite_results, rtol, atol),
|
||||
)
|
||||
for i in range(len(mlir_results)):
|
||||
mlir_result = mlir_results[i]
|
||||
tflite_result = tflite_results[i]
|
||||
mlir_result = mlir_result.astype(np.single)
|
||||
tflite_result = tflite_result.astype(np.single)
|
||||
assert mlir_result.shape == tflite_result.shape, "shape doesnot match"
|
||||
max_error = np.max(np.abs(mlir_result - tflite_result))
|
||||
print("Max error (%d): %f", i, max_error)
|
||||
|
||||
|
||||
class AlbertTfliteModuleTester:
|
||||
def __init__(
|
||||
self,
|
||||
dynamic=False,
|
||||
device="cpu",
|
||||
save_mlir=False,
|
||||
save_vmfb=False,
|
||||
):
|
||||
self.dynamic = dynamic
|
||||
self.device = device
|
||||
self.save_mlir = save_mlir
|
||||
self.save_vmfb = save_vmfb
|
||||
|
||||
def create_and_check_module(self):
|
||||
shark_args.save_mlir = self.save_mlir
|
||||
shark_args.save_vmfb = self.save_vmfb
|
||||
|
||||
(
|
||||
mlir_model,
|
||||
function_name,
|
||||
inputs,
|
||||
tflite_results,
|
||||
) = download_tflite_model(model_name="albert_lite_base")
|
||||
|
||||
shark_module = SharkInference(
|
||||
mlir_module=mlir_model,
|
||||
function_name="main",
|
||||
device=self.device,
|
||||
mlir_dialect="tflite",
|
||||
)
|
||||
shark_module.compile()
|
||||
mlir_results = shark_module.forward(inputs)
|
||||
# print(shark_results)
|
||||
compare_results(mlir_results, tflite_results)
|
||||
|
||||
|
||||
class AlbertTfliteModuleTest(unittest.TestCase):
|
||||
@pytest.fixture(autouse=True)
|
||||
def configure(self, pytestconfig):
|
||||
self.save_mlir = pytestconfig.getoption("save_mlir")
|
||||
self.save_vmfb = pytestconfig.getoption("save_vmfb")
|
||||
|
||||
def setUp(self):
|
||||
self.module_tester = AlbertTfliteModuleTester(self)
|
||||
self.module_tester.save_mlir = self.save_mlir
|
||||
|
||||
def test_module_static_cpu(self):
|
||||
self.module_tester.dynamic = False
|
||||
self.module_tester.device = "cpu"
|
||||
self.module_tester.create_and_check_module()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
# module_tester = AlbertTfliteModuleTester()
|
||||
# module_tester.create_and_check_module()
|
||||
115
tank/alexnet_torch/alexnet_torch_test.py
Normal file
115
tank/alexnet_torch/alexnet_torch_test.py
Normal file
@@ -0,0 +1,115 @@
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.iree_utils._common import check_device_drivers, device_driver_info
|
||||
from tank.model_utils import compare_tensors
|
||||
from shark.shark_downloader import download_torch_model
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
|
||||
class AlexnetModuleTester:
|
||||
def __init__(
|
||||
self,
|
||||
benchmark=False,
|
||||
):
|
||||
self.benchmark = benchmark
|
||||
|
||||
def create_and_check_module(self, dynamic, device):
|
||||
model_mlir, func_name, input, act_out = download_torch_model(
|
||||
"alexnet", dynamic
|
||||
)
|
||||
|
||||
# from shark.shark_importer import SharkImporter
|
||||
# mlir_importer = SharkImporter(
|
||||
# model,
|
||||
# (input,),
|
||||
# frontend="torch",
|
||||
# )
|
||||
# minilm_mlir, func_name = mlir_importer.import_mlir(
|
||||
# is_dynamic=dynamic, tracing_required=True
|
||||
# )
|
||||
|
||||
shark_module = SharkInference(
|
||||
model_mlir,
|
||||
func_name,
|
||||
device=device,
|
||||
mlir_dialect="linalg",
|
||||
is_benchmark=self.benchmark,
|
||||
)
|
||||
shark_module.compile()
|
||||
results = shark_module.forward(input)
|
||||
assert True == compare_tensors(act_out, results)
|
||||
|
||||
if self.benchmark == True:
|
||||
shark_module.shark_runner.benchmark_all_csv(
|
||||
(input),
|
||||
"alexnet",
|
||||
dynamic,
|
||||
device,
|
||||
"torch",
|
||||
)
|
||||
|
||||
|
||||
class AlexnetModuleTest(unittest.TestCase):
|
||||
@pytest.fixture(autouse=True)
|
||||
def configure(self, pytestconfig):
|
||||
self.module_tester = AlexnetModuleTester(self)
|
||||
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
|
||||
|
||||
def test_module_static_cpu(self):
|
||||
dynamic = False
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
def test_module_dynamic_cpu(self):
|
||||
dynamic = True
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_static_gpu(self):
|
||||
dynamic = False
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_dynamic_gpu(self):
|
||||
dynamic = True
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
@pytest.mark.xfail(
|
||||
reason="Issue known, WIP",
|
||||
)
|
||||
def test_module_static_vulkan(self):
|
||||
dynamic = False
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
def test_module_dynamic_vulkan(self):
|
||||
dynamic = True
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("intel-gpu"),
|
||||
reason=device_driver_info("intel-gpu"),
|
||||
)
|
||||
def test_module_static_intel_gpu(self):
|
||||
dynamic = False
|
||||
device = "intel-gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
@@ -0,0 +1,97 @@
|
||||
import numpy as np
|
||||
from shark.shark_downloader import download_tflite_model
|
||||
from shark.shark_inference import SharkInference
|
||||
import pytest
|
||||
import unittest
|
||||
from shark.parser import shark_args
|
||||
|
||||
|
||||
# model_path = "https://tfhub.dev/google/lite-model/magenta/arbitrary-image-stylization-v1-256/int8/prediction/1?lite-format=tflite"
|
||||
|
||||
|
||||
def compare_results(mlir_results, tflite_results):
|
||||
print("Compare mlir_results VS tflite_results: ")
|
||||
assert len(mlir_results) == len(
|
||||
tflite_results
|
||||
), "Number of results do not match"
|
||||
for i in range(len(mlir_results)):
|
||||
mlir_result = mlir_results[i]
|
||||
tflite_result = tflite_results[i]
|
||||
mlir_result = mlir_result.astype(np.single)
|
||||
tflite_result = tflite_result.astype(np.single)
|
||||
mlir_result = np.expand_dims(mlir_result, axis=0)
|
||||
print("mlir_result.shape", mlir_result.shape)
|
||||
print("tflite_result.shape", tflite_result.shape)
|
||||
assert mlir_result.shape == tflite_result.shape, "shape doesnot match"
|
||||
max_error = np.max(np.abs(mlir_result - tflite_result))
|
||||
print("Max error (%d): %f", i, max_error)
|
||||
|
||||
|
||||
class ArbitraryImageStylizationV1TfliteModuleTester:
|
||||
def __init__(
|
||||
self,
|
||||
dynamic=False,
|
||||
device="cpu",
|
||||
save_mlir=False,
|
||||
save_vmfb=False,
|
||||
):
|
||||
self.dynamic = dynamic
|
||||
self.device = device
|
||||
self.save_mlir = save_mlir
|
||||
self.save_vmfb = save_vmfb
|
||||
|
||||
def create_and_check_module(self):
|
||||
shark_args.save_mlir = self.save_mlir
|
||||
shark_args.save_vmfb = self.save_vmfb
|
||||
|
||||
(
|
||||
mlir_model,
|
||||
function_name,
|
||||
inputs,
|
||||
tflite_results,
|
||||
) = download_tflite_model(
|
||||
model_name="arbitrary-image-stylization-v1-256"
|
||||
)
|
||||
shark_module = SharkInference(
|
||||
mlir_module=mlir_model,
|
||||
function_name="main",
|
||||
device=self.device,
|
||||
mlir_dialect="tflite",
|
||||
)
|
||||
# Case1: Use shark_importer default generate inputs
|
||||
shark_module.compile()
|
||||
mlir_results = shark_module.forward(inputs)
|
||||
# print(shark_results)
|
||||
compare_results(mlir_results, tflite_results)
|
||||
|
||||
|
||||
class ArbitraryImageStylizationV1TfliteModuleTest(unittest.TestCase):
|
||||
@pytest.fixture(autouse=True)
|
||||
def configure(self, pytestconfig):
|
||||
self.save_mlir = pytestconfig.getoption("save_mlir")
|
||||
self.save_vmfb = pytestconfig.getoption("save_vmfb")
|
||||
|
||||
def setUp(self):
|
||||
self.module_tester = ArbitraryImageStylizationV1TfliteModuleTester(
|
||||
self
|
||||
)
|
||||
self.module_tester.save_mlir = self.save_mlir
|
||||
|
||||
import sys
|
||||
|
||||
@pytest.mark.xfail(
|
||||
reason="'tosa.conv2d' op attribute 'quantization_info' failed ",
|
||||
)
|
||||
def test_module_static_cpu(self):
|
||||
self.module_tester.dynamic = False
|
||||
self.module_tester.device = "cpu"
|
||||
self.module_tester.create_and_check_module()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# module_tester = ArbitraryImageStylizationV1TfliteModuleTester()
|
||||
# module_tester.save_mlir = True
|
||||
# module_tester.save_vmfb = True
|
||||
# module_tester.create_and_check_module()
|
||||
|
||||
unittest.main()
|
||||
117
tank/bert-base-cased_torch/bert-base-cased_torch_test.py
Normal file
117
tank/bert-base-cased_torch/bert-base-cased_torch_test.py
Normal file
@@ -0,0 +1,117 @@
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.iree_utils._common import check_device_drivers, device_driver_info
|
||||
from tank.model_utils import compare_tensors
|
||||
from shark.shark_downloader import download_torch_model
|
||||
|
||||
import torch
|
||||
import unittest
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
|
||||
class BertBaseUncasedModuleTester:
|
||||
def __init__(
|
||||
self,
|
||||
save_mlir=False,
|
||||
save_vmfb=False,
|
||||
benchmark=False,
|
||||
):
|
||||
self.save_mlir = save_mlir
|
||||
self.save_vmfb = save_vmfb
|
||||
self.benchmark = benchmark
|
||||
|
||||
def create_and_check_module(self, dynamic, device):
|
||||
model_mlir, func_name, input, act_out = download_torch_model(
|
||||
"bert-base-cased", dynamic
|
||||
)
|
||||
|
||||
# from shark.shark_importer import SharkImporter
|
||||
# mlir_importer = SharkImporter(
|
||||
# model,
|
||||
# (input,),
|
||||
# frontend="torch",
|
||||
# )
|
||||
# minilm_mlir, func_name = mlir_importer.import_mlir(
|
||||
# is_dynamic=dynamic, tracing_required=True
|
||||
# )
|
||||
|
||||
shark_module = SharkInference(
|
||||
model_mlir,
|
||||
func_name,
|
||||
device=device,
|
||||
mlir_dialect="linalg",
|
||||
is_benchmark=self.benchmark,
|
||||
)
|
||||
shark_module.compile()
|
||||
results = shark_module.forward(input)
|
||||
assert True == compare_tensors(act_out, results)
|
||||
|
||||
if self.benchmark == True:
|
||||
shark_module.shark_runner.benchmark_all_csv(
|
||||
(input),
|
||||
"bert-base-cased",
|
||||
dynamic,
|
||||
device,
|
||||
"torch",
|
||||
)
|
||||
|
||||
|
||||
class BertBaseUncasedModuleTest(unittest.TestCase):
|
||||
@pytest.fixture(autouse=True)
|
||||
def configure(self, pytestconfig):
|
||||
self.module_tester = BertBaseUncasedModuleTester(self)
|
||||
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
|
||||
|
||||
def test_module_static_cpu(self):
|
||||
dynamic = False
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
def test_module_dynamic_cpu(self):
|
||||
dynamic = True
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_static_gpu(self):
|
||||
dynamic = False
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_dynamic_gpu(self):
|
||||
dynamic = True
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
def test_module_static_vulkan(self):
|
||||
dynamic = False
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
def test_module_dynamic_vulkan(self):
|
||||
dynamic = True
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("intel-gpu"),
|
||||
reason=device_driver_info("intel-gpu"),
|
||||
)
|
||||
def test_module_static_intel_gpu(self):
|
||||
dynamic = False
|
||||
device = "intel-gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
71
tank/bert-base-uncased_tf/bert-base-uncased_tf_test.py
Normal file
71
tank/bert-base-uncased_tf/bert-base-uncased_tf_test.py
Normal file
@@ -0,0 +1,71 @@
|
||||
from shark.iree_utils._common import check_device_drivers, device_driver_info
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.shark_downloader import download_tf_model
|
||||
from shark.parser import shark_args
|
||||
|
||||
import unittest
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
|
||||
class BertBaseUncasedModuleTester:
|
||||
def __init__(
|
||||
self,
|
||||
benchmark=False,
|
||||
onnx_bench=False,
|
||||
):
|
||||
self.benchmark = benchmark
|
||||
self.onnx_bench = onnx_bench
|
||||
|
||||
def create_and_check_module(self, dynamic, device):
|
||||
model, func_name, inputs, golden_out = download_tf_model(
|
||||
"bert-base-uncased"
|
||||
)
|
||||
|
||||
shark_module = SharkInference(
|
||||
model, func_name, device=device, mlir_dialect="mhlo"
|
||||
)
|
||||
shark_module.compile()
|
||||
result = shark_module.forward(inputs)
|
||||
np.testing.assert_allclose(golden_out, result, rtol=1e-02, atol=1e-03)
|
||||
|
||||
|
||||
class BertBaseUncasedModuleTest(unittest.TestCase):
|
||||
@pytest.fixture(autouse=True)
|
||||
def configure(self, pytestconfig):
|
||||
self.module_tester = BertBaseUncasedModuleTester(self)
|
||||
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
|
||||
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
|
||||
|
||||
def test_module_static_cpu(self):
|
||||
dynamic = False
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_static_gpu(self):
|
||||
dynamic = False
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
def test_module_static_vulkan(self):
|
||||
dynamic = False
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("intel-gpu"),
|
||||
reason=device_driver_info("intel-gpu"),
|
||||
)
|
||||
def test_module_static_intel_gpu(self):
|
||||
dynamic = False
|
||||
device = "intel-gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
108
tank/bert-base-uncased_torch/bert-base-uncased_torch_test.py
Normal file
108
tank/bert-base-uncased_torch/bert-base-uncased_torch_test.py
Normal file
@@ -0,0 +1,108 @@
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.iree_utils._common import check_device_drivers, device_driver_info
|
||||
from tank.model_utils import compare_tensors
|
||||
from shark.shark_downloader import download_torch_model
|
||||
from shark.parser import shark_args
|
||||
|
||||
import torch
|
||||
import unittest
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
|
||||
class BertBaseUncasedModuleTester:
|
||||
def __init__(
|
||||
self,
|
||||
benchmark=False,
|
||||
onnx_bench=False,
|
||||
):
|
||||
self.benchmark = benchmark
|
||||
self.onnx_bench = onnx_bench
|
||||
|
||||
def create_and_check_module(self, dynamic, device):
|
||||
model_mlir, func_name, input, act_out = download_torch_model(
|
||||
"bert-base-uncased", dynamic
|
||||
)
|
||||
|
||||
shark_module = SharkInference(
|
||||
model_mlir,
|
||||
func_name,
|
||||
device=device,
|
||||
mlir_dialect="linalg",
|
||||
is_benchmark=self.benchmark,
|
||||
)
|
||||
shark_module.compile()
|
||||
results = shark_module.forward(input)
|
||||
assert True == compare_tensors(act_out, results)
|
||||
|
||||
if self.benchmark == True:
|
||||
shark_args.onnx_bench = self.onnx_bench
|
||||
shark_module.shark_runner.benchmark_all_csv(
|
||||
(input),
|
||||
"bert-base-uncased",
|
||||
dynamic,
|
||||
device,
|
||||
"torch",
|
||||
)
|
||||
|
||||
|
||||
class BertBaseUncasedModuleTest(unittest.TestCase):
|
||||
@pytest.fixture(autouse=True)
|
||||
def configure(self, pytestconfig):
|
||||
self.module_tester = BertBaseUncasedModuleTester(self)
|
||||
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
|
||||
self.module_tester.onnx_bench = pytestconfig.getoption("onnx_bench")
|
||||
|
||||
def test_module_static_cpu(self):
|
||||
dynamic = False
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
def test_module_dynamic_cpu(self):
|
||||
dynamic = True
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_static_gpu(self):
|
||||
dynamic = False
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_dynamic_gpu(self):
|
||||
dynamic = True
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
def test_module_static_vulkan(self):
|
||||
dynamic = False
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
def test_module_dynamic_vulkan(self):
|
||||
dynamic = True
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("intel-gpu"),
|
||||
reason=device_driver_info("intel-gpu"),
|
||||
)
|
||||
def test_module_static_intel_gpu(self):
|
||||
dynamic = False
|
||||
device = "intel-gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
182
tank/bert_fine_tuning/bert_fine_tune_tf.py
Normal file
182
tank/bert_fine_tuning/bert_fine_tune_tf.py
Normal file
@@ -0,0 +1,182 @@
|
||||
import numpy as np
|
||||
|
||||
from iree import runtime as ireert
|
||||
from iree.tf.support import module_utils
|
||||
from iree.compiler import tf as tfc
|
||||
from iree.compiler import compile_str
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
try:
|
||||
import tensorflow_datasets as tfds
|
||||
import tensorflow_models as tfm
|
||||
from official.nlp.modeling import layers
|
||||
from official.nlp.modeling import networks
|
||||
from official.nlp.modeling.models import bert_classifier
|
||||
except ModuleNotFoundError:
|
||||
print(
|
||||
"tensorflow models or datasets not found please run the following command with your virtual env active:\npip install tf-models-nightly tf-datasets"
|
||||
)
|
||||
import json
|
||||
import time
|
||||
import os
|
||||
|
||||
gs_folder_bert = "gs://cloud-tpu-checkpoints/bert/v3/uncased_L-12_H-768_A-12"
|
||||
tf.io.gfile.listdir(gs_folder_bert)
|
||||
vocab_size = 100
|
||||
NUM_CLASSES = 2
|
||||
SEQUENCE_LENGTH = 128
|
||||
BATCH_SIZE = 1
|
||||
# Create a set of 2-dimensional inputs
|
||||
bert_input = [
|
||||
tf.TensorSpec(shape=[BATCH_SIZE, SEQUENCE_LENGTH], dtype=tf.int32),
|
||||
tf.TensorSpec(shape=[BATCH_SIZE, SEQUENCE_LENGTH], dtype=tf.int32),
|
||||
tf.TensorSpec(shape=[BATCH_SIZE, SEQUENCE_LENGTH], dtype=tf.int32),
|
||||
]
|
||||
|
||||
|
||||
class BertModule(tf.Module):
|
||||
def __init__(self):
|
||||
super(BertModule, self).__init__()
|
||||
dict_outputs = False
|
||||
|
||||
bert_config_file = os.path.join(gs_folder_bert, "bert_config.json")
|
||||
|
||||
config_dict = json.loads(tf.io.gfile.GFile(bert_config_file).read())
|
||||
encoder_config = tfm.nlp.encoders.EncoderConfig(
|
||||
{"type": "bert", "bert": config_dict}
|
||||
)
|
||||
bert_encoder = tfm.nlp.encoders.build_encoder(encoder_config)
|
||||
|
||||
# Create a BERT trainer with the created network.
|
||||
bert_trainer_model = bert_classifier.BertClassifier(
|
||||
bert_encoder, num_classes=NUM_CLASSES
|
||||
)
|
||||
bert_trainer_model.summary()
|
||||
checkpoint = tf.train.Checkpoint(encoder=bert_encoder)
|
||||
checkpoint.read(
|
||||
os.path.join(gs_folder_bert, "bert_model.ckpt")
|
||||
).assert_consumed()
|
||||
|
||||
# Invoke the trainer model on the inputs. This causes the layer to be built.
|
||||
self.m = bert_trainer_model
|
||||
self.m.predict = lambda x: self.m.call(x, training=False)
|
||||
self.predict = tf.function(input_signature=[bert_input])(
|
||||
self.m.predict
|
||||
)
|
||||
self.m.learn = lambda x, y: self.m.call(x, training=False)
|
||||
self.loss = tf.keras.losses.SparseCategoricalCrossentropy()
|
||||
self.optimizer = tf.keras.optimizers.SGD(learning_rate=1e-2)
|
||||
|
||||
@tf.function(
|
||||
input_signature=[
|
||||
bert_input, # inputs
|
||||
tf.TensorSpec(shape=[BATCH_SIZE], dtype=tf.int32), # labels
|
||||
]
|
||||
)
|
||||
def learn(self, inputs, labels):
|
||||
with tf.GradientTape() as tape:
|
||||
# Capture the gradients from forward prop...
|
||||
probs = self.m.call(inputs, training=True)
|
||||
loss = self.loss(labels, probs)
|
||||
|
||||
# ...and use them to update the model's weights.
|
||||
variables = self.m.trainable_variables
|
||||
gradients = tape.gradient(loss, variables)
|
||||
self.optimizer.apply_gradients(zip(gradients, variables))
|
||||
return loss
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
glue, info = tfds.load("glue/mrpc", with_info=True, batch_size=BATCH_SIZE)
|
||||
|
||||
tokenizer = tfm.nlp.layers.FastWordpieceBertTokenizer(
|
||||
vocab_file=os.path.join(gs_folder_bert, "vocab.txt"), lower_case=True
|
||||
)
|
||||
|
||||
max_seq_length = SEQUENCE_LENGTH
|
||||
|
||||
packer = tfm.nlp.layers.BertPackInputs(
|
||||
seq_length=max_seq_length,
|
||||
special_tokens_dict=tokenizer.get_special_tokens_dict(),
|
||||
)
|
||||
|
||||
class BertInputProcessor(tf.keras.layers.Layer):
|
||||
def __init__(self, tokenizer, packer):
|
||||
super().__init__()
|
||||
self.tokenizer = tokenizer
|
||||
self.packer = packer
|
||||
|
||||
def call(self, inputs):
|
||||
tok1 = self.tokenizer(inputs["sentence1"])
|
||||
tok2 = self.tokenizer(inputs["sentence2"])
|
||||
|
||||
packed = self.packer([tok1, tok2])
|
||||
|
||||
if "label" in inputs:
|
||||
return packed, inputs["label"]
|
||||
else:
|
||||
return packed
|
||||
|
||||
bert_inputs_processor = BertInputProcessor(tokenizer, packer)
|
||||
glue_train = glue["train"].map(bert_inputs_processor).prefetch(1)
|
||||
glue_validation = glue["validation"].map(bert_inputs_processor).prefetch(1)
|
||||
glue_test = glue["test"].map(bert_inputs_processor).prefetch(1)
|
||||
|
||||
# base tensorflow model
|
||||
bert_model = BertModule()
|
||||
|
||||
# Compile the model using IREE
|
||||
compiler_module = tfc.compile_module(
|
||||
bert_model, exported_names=["learn"], import_only=True
|
||||
)
|
||||
|
||||
# choose from dylib-llvm-aot or cuda
|
||||
backend = "dylib-llvm-aot"
|
||||
if backend == "dylib-llvm-aot":
|
||||
args = [
|
||||
"--iree-llvm-target-cpu-features=host",
|
||||
"--iree-mhlo-demote-i64-to-i32=false",
|
||||
"--iree-flow-demote-i64-to-i32",
|
||||
]
|
||||
backend_config = "dylib"
|
||||
|
||||
else:
|
||||
backend_config = "cuda"
|
||||
args = [
|
||||
"--iree-cuda-llvm-target-arch=sm_80",
|
||||
"--iree-hal-cuda-disable-loop-nounroll-wa",
|
||||
"--iree-enable-fusion-with-reduction-ops",
|
||||
]
|
||||
|
||||
flatbuffer_blob = compile_str(
|
||||
compiler_module,
|
||||
target_backends=[backend],
|
||||
extra_args=args,
|
||||
input_type="mhlo",
|
||||
)
|
||||
|
||||
# Save module as MLIR file in a directory
|
||||
vm_module = ireert.VmModule.from_flatbuffer(flatbuffer_blob)
|
||||
tracer = ireert.Tracer(os.getcwd())
|
||||
config = ireert.Config("local-sync", tracer)
|
||||
ctx = ireert.SystemContext(config=config)
|
||||
ctx.add_vm_module(vm_module)
|
||||
BertCompiled = ctx.modules.module
|
||||
|
||||
# compare output losses:
|
||||
|
||||
iterations = 10
|
||||
for i in range(iterations):
|
||||
example_inputs, example_labels = next(iter(glue_train))
|
||||
example_labels = tf.cast(example_labels, tf.int32)
|
||||
example_inputs = [value for key, value in example_inputs.items()]
|
||||
|
||||
# iree version
|
||||
iree_loss = BertCompiled.learn(
|
||||
example_inputs, example_labels
|
||||
).to_host()
|
||||
|
||||
# base tensorflow
|
||||
tf_loss = np.array(bert_model.learn(example_inputs, example_labels))
|
||||
print(np.allclose(iree_loss, tf_loss))
|
||||
131
tank/birds_V1/birds_V1_tflite_test.py
Normal file
131
tank/birds_V1/birds_V1_tflite_test.py
Normal file
@@ -0,0 +1,131 @@
|
||||
import numpy as np
|
||||
from shark.shark_downloader import download_tflite_model
|
||||
from shark.shark_inference import SharkInference
|
||||
import pytest
|
||||
import unittest
|
||||
from shark.parser import shark_args
|
||||
import os
|
||||
import sys
|
||||
import urllib.request
|
||||
from PIL import Image
|
||||
|
||||
# model_path = "https://tfhub.dev/google/lite-model/aiy/vision/classifier/birds_V1/3?lite-format=tflite"
|
||||
|
||||
|
||||
def generate_inputs(input_details):
|
||||
# input_details shape: [ 1 224 224 3] type: uint8
|
||||
exe_basename = os.path.basename(sys.argv[0])
|
||||
workdir = os.path.join(os.path.dirname(__file__), "../tmp", exe_basename)
|
||||
os.makedirs(workdir, exist_ok=True)
|
||||
|
||||
img_path = "https://github.com/google-coral/test_data/raw/master/bird.bmp"
|
||||
local_path = "/".join([workdir, "bird.bmp"])
|
||||
urllib.request.urlretrieve(img_path, local_path)
|
||||
|
||||
shape = input_details[0]["shape"]
|
||||
im = np.array(Image.open(local_path).resize((shape[1], shape[2])))
|
||||
args = [im.reshape(shape)]
|
||||
return args
|
||||
|
||||
|
||||
def compare_results(mlir_results, tflite_results):
|
||||
print("Compare mlir_results VS tflite_results: ")
|
||||
assert len(mlir_results) == len(
|
||||
tflite_results
|
||||
), "Number of results do not match"
|
||||
for i in range(len(mlir_results)):
|
||||
mlir_result = mlir_results[i]
|
||||
tflite_result = tflite_results[i]
|
||||
mlir_result = mlir_result.astype(np.single)
|
||||
tflite_result = tflite_result.astype(np.single)
|
||||
mlir_result = np.expand_dims(mlir_result, axis=0)
|
||||
print("mlir_result.shape", mlir_result.shape)
|
||||
print("tflite_result.shape", tflite_result.shape)
|
||||
assert mlir_result.shape == tflite_result.shape, "shape doesnot match"
|
||||
max_error = np.max(np.abs(mlir_result - tflite_result))
|
||||
print("Max error (%d): %f", i, max_error)
|
||||
|
||||
|
||||
class BirdsV1TfliteModuleTester:
|
||||
def __init__(
|
||||
self,
|
||||
dynamic=False,
|
||||
device="cpu",
|
||||
save_mlir=False,
|
||||
save_vmfb=False,
|
||||
):
|
||||
self.dynamic = dynamic
|
||||
self.device = device
|
||||
self.save_mlir = save_mlir
|
||||
self.save_vmfb = save_vmfb
|
||||
|
||||
def create_and_check_module(self):
|
||||
shark_args.save_mlir = self.save_mlir
|
||||
shark_args.save_vmfb = self.save_vmfb
|
||||
|
||||
(
|
||||
mlir_model,
|
||||
function_name,
|
||||
inputs,
|
||||
tflite_results,
|
||||
) = download_tflite_model(model_name="birds_V1")
|
||||
shark_module = SharkInference(
|
||||
mlir_module=mlir_model,
|
||||
function_name="main",
|
||||
device=self.device,
|
||||
mlir_dialect="tflite",
|
||||
)
|
||||
|
||||
# Case1: Use shark_importer default generate inputs
|
||||
shark_module.compile()
|
||||
mlir_results = shark_module.forward(inputs)
|
||||
compare_results(mlir_results, tflite_results)
|
||||
|
||||
# Case2: Use manually set inputs
|
||||
input_details = [
|
||||
{
|
||||
"shape": [1, 224, 224, 3],
|
||||
"dtype": np.uint8,
|
||||
}
|
||||
]
|
||||
inputs = generate_inputs(input_details) # device_inputs
|
||||
shark_module = SharkInference(
|
||||
mlir_module=mlir_model,
|
||||
function_name="main",
|
||||
device=self.device,
|
||||
mlir_dialect="tflite",
|
||||
)
|
||||
shark_module.compile()
|
||||
mlir_results = shark_module.forward(inputs)
|
||||
compare_results(mlir_results, tflite_results)
|
||||
# print(mlir_results)
|
||||
|
||||
|
||||
class BirdsV1TfliteModuleTest(unittest.TestCase):
|
||||
@pytest.fixture(autouse=True)
|
||||
def configure(self, pytestconfig):
|
||||
self.save_mlir = pytestconfig.getoption("save_mlir")
|
||||
self.save_vmfb = pytestconfig.getoption("save_vmfb")
|
||||
|
||||
def setUp(self):
|
||||
self.module_tester = BirdsV1TfliteModuleTester(self)
|
||||
self.module_tester.save_mlir = self.save_mlir
|
||||
|
||||
import sys
|
||||
|
||||
@pytest.mark.xfail(
|
||||
reason="'tosa.conv2d' op attribute 'quantization_info' failed ",
|
||||
)
|
||||
def test_module_static_cpu(self):
|
||||
self.module_tester.dynamic = False
|
||||
self.module_tester.device = "cpu"
|
||||
self.module_tester.create_and_check_module()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# module_tester = BirdsV1TfliteModuleTester()
|
||||
# module_tester.save_mlir = True
|
||||
# module_tester.save_vmfb = True
|
||||
# module_tester.create_and_check_module()
|
||||
|
||||
unittest.main()
|
||||
68
tank/camembert-base_tf/camembert-base_tf_test.py
Normal file
68
tank/camembert-base_tf/camembert-base_tf_test.py
Normal file
@@ -0,0 +1,68 @@
|
||||
from shark.iree_utils._common import check_device_drivers, device_driver_info
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.shark_downloader import download_tf_model
|
||||
|
||||
import iree.compiler as ireec
|
||||
import unittest
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
|
||||
class CamemBertModuleTester:
|
||||
def __init__(
|
||||
self,
|
||||
benchmark=False,
|
||||
):
|
||||
self.benchmark = benchmark
|
||||
|
||||
def create_and_check_module(self, dynamic, device):
|
||||
model, func_name, inputs, golden_out = download_tf_model(
|
||||
"camembert-base"
|
||||
)
|
||||
|
||||
shark_module = SharkInference(
|
||||
model, func_name, device=device, mlir_dialect="mhlo"
|
||||
)
|
||||
shark_module.compile()
|
||||
result = shark_module.forward(inputs)
|
||||
np.testing.assert_allclose(golden_out, result, rtol=1e-02, atol=1e-03)
|
||||
|
||||
|
||||
class CamemBertModuleTest(unittest.TestCase):
|
||||
@pytest.fixture(autouse=True)
|
||||
def configure(self, pytestconfig):
|
||||
self.module_tester = CamemBertModuleTester(self)
|
||||
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
|
||||
|
||||
def test_module_static_cpu(self):
|
||||
dynamic = False
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_static_gpu(self):
|
||||
dynamic = False
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
def test_module_static_vulkan(self):
|
||||
dynamic = False
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("intel-gpu"),
|
||||
reason=device_driver_info("intel-gpu"),
|
||||
)
|
||||
def test_module_static_intel_gpu(self):
|
||||
dynamic = False
|
||||
device = "intel-gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
88
tank/cartoongan/cartoongan_tflite_test.py
Normal file
88
tank/cartoongan/cartoongan_tflite_test.py
Normal file
@@ -0,0 +1,88 @@
|
||||
import numpy as np
|
||||
from shark.shark_downloader import download_tflite_model
|
||||
from shark.shark_inference import SharkInference
|
||||
import pytest
|
||||
import unittest
|
||||
from shark.parser import shark_args
|
||||
|
||||
|
||||
# model_path = "https://tfhub.dev/sayakpaul/lite-model/cartoongan/dr/1?lite-format=tflite"
|
||||
|
||||
|
||||
def compare_results(mlir_results, tflite_results):
|
||||
print("Compare mlir_results VS tflite_results: ")
|
||||
assert len(mlir_results) == len(
|
||||
tflite_results
|
||||
), "Number of results do not match"
|
||||
for i in range(len(mlir_results)):
|
||||
mlir_result = mlir_results[i]
|
||||
tflite_result = tflite_results[i]
|
||||
mlir_result = mlir_result.astype(np.single)
|
||||
tflite_result = tflite_result.astype(np.single)
|
||||
mlir_result = np.expand_dims(mlir_result, axis=0)
|
||||
print("mlir_result.shape", mlir_result.shape)
|
||||
print("tflite_result.shape", tflite_result.shape)
|
||||
assert mlir_result.shape == tflite_result.shape, "shape doesnot match"
|
||||
max_error = np.max(np.abs(mlir_result - tflite_result))
|
||||
print("Max error (%d): %f", i, max_error)
|
||||
|
||||
|
||||
class CartoonganTfliteModuleTester:
|
||||
def __init__(
|
||||
self,
|
||||
dynamic=False,
|
||||
device="cpu",
|
||||
save_mlir=False,
|
||||
save_vmfb=False,
|
||||
):
|
||||
self.dynamic = dynamic
|
||||
self.device = device
|
||||
self.save_mlir = save_mlir
|
||||
self.save_vmfb = save_vmfb
|
||||
|
||||
def create_and_check_module(self):
|
||||
shark_args.save_mlir = self.save_mlir
|
||||
shark_args.save_vmfb = self.save_vmfb
|
||||
|
||||
(
|
||||
mlir_model,
|
||||
function_name,
|
||||
inputs,
|
||||
tflite_results,
|
||||
) = download_tflite_model(model_name="cartoongan")
|
||||
shark_module = SharkInference(
|
||||
mlir_module=mlir_model,
|
||||
function_name="main",
|
||||
device=self.device,
|
||||
mlir_dialect="tflite",
|
||||
)
|
||||
|
||||
# Case1: Use shark_importer default generate inputs
|
||||
shark_module.compile()
|
||||
mlir_results = shark_module.forward(inputs)
|
||||
compare_results(mlir_results, tflite_results)
|
||||
|
||||
|
||||
class CartoonganTfliteModuleTest(unittest.TestCase):
|
||||
@pytest.fixture(autouse=True)
|
||||
def configure(self, pytestconfig):
|
||||
self.save_mlir = pytestconfig.getoption("save_mlir")
|
||||
self.save_vmfb = pytestconfig.getoption("save_vmfb")
|
||||
|
||||
def setUp(self):
|
||||
self.module_tester = CartoonganTfliteModuleTester(self)
|
||||
self.module_tester.save_mlir = self.save_mlir
|
||||
|
||||
def test_module_static_cpu(self):
|
||||
self.module_tester.dynamic = False
|
||||
self.module_tester.device = "cpu"
|
||||
self.module_tester.create_and_check_module()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# module_tester = CartoonganTfliteModuleTester()
|
||||
# module_tester.save_mlir = True
|
||||
# module_tester.save_vmfb = True
|
||||
# module_tester.create_and_check_module()
|
||||
|
||||
unittest.main()
|
||||
@@ -0,0 +1,71 @@
|
||||
from shark.iree_utils._common import check_device_drivers, device_driver_info
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.shark_downloader import download_tf_model
|
||||
|
||||
import iree.compiler as ireec
|
||||
import unittest
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
|
||||
class ConvBertModuleTester:
|
||||
def __init__(
|
||||
self,
|
||||
benchmark=False,
|
||||
):
|
||||
self.benchmark = benchmark
|
||||
|
||||
def create_and_check_module(self, dynamic, device):
|
||||
model, func_name, inputs, golden_out = download_tf_model(
|
||||
"dbmdz/convbert-base-turkish-cased"
|
||||
)
|
||||
|
||||
shark_module = SharkInference(
|
||||
model, func_name, device=device, mlir_dialect="mhlo"
|
||||
)
|
||||
shark_module.compile()
|
||||
result = shark_module.forward(inputs)
|
||||
np.testing.assert_allclose(golden_out, result, rtol=1e-02, atol=1e-03)
|
||||
|
||||
|
||||
class ConvBertModuleTest(unittest.TestCase):
|
||||
@pytest.fixture(autouse=True)
|
||||
def configure(self, pytestconfig):
|
||||
self.module_tester = ConvBertModuleTester(self)
|
||||
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
|
||||
|
||||
def test_module_static_cpu(self):
|
||||
dynamic = False
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_static_gpu(self):
|
||||
dynamic = False
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
@pytest.mark.xfail(
|
||||
reason="Issue: https://github.com/iree-org/iree/issues/9971",
|
||||
)
|
||||
def test_module_static_vulkan(self):
|
||||
dynamic = False
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("intel-gpu"),
|
||||
reason=device_driver_info("intel-gpu"),
|
||||
)
|
||||
def test_module_static_intel_gpu(self):
|
||||
dynamic = False
|
||||
device = "intel-gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
72
tank/deberta-base_tf/deberta-base_tf_test.py
Normal file
72
tank/deberta-base_tf/deberta-base_tf_test.py
Normal file
@@ -0,0 +1,72 @@
|
||||
from shark.iree_utils._common import check_device_drivers, device_driver_info
|
||||
from shark.shark_inference import SharkInference
|
||||
from shark.shark_downloader import download_tf_model
|
||||
from shark.parser import shark_args
|
||||
|
||||
import iree.compiler as ireec
|
||||
import unittest
|
||||
import pytest
|
||||
import numpy as np
|
||||
import tempfile
|
||||
import os
|
||||
|
||||
|
||||
class DebertaBaseModuleTester:
|
||||
def __init__(
|
||||
self,
|
||||
benchmark=False,
|
||||
):
|
||||
self.benchmark = benchmark
|
||||
|
||||
def create_and_check_module(self, dynamic, device):
|
||||
model, func_name, inputs, golden_out = download_tf_model(
|
||||
"microsoft/deberta-base"
|
||||
)
|
||||
|
||||
shark_module = SharkInference(
|
||||
model, func_name, device=device, mlir_dialect="mhlo"
|
||||
)
|
||||
shark_module.compile()
|
||||
result = shark_module.forward(inputs)
|
||||
np.testing.assert_allclose(golden_out, result, rtol=1e-02, atol=1e-03)
|
||||
|
||||
|
||||
class DebertaBaseModuleTest(unittest.TestCase):
|
||||
@pytest.skip(reason="Model can't be imported.", allow_module_level=True)
|
||||
@pytest.fixture(autouse=True)
|
||||
def configure(self, pytestconfig):
|
||||
self.module_tester = DebertaBaseModuleTester(self)
|
||||
self.module_tester.benchmark = pytestconfig.getoption("benchmark")
|
||||
|
||||
def test_module_static_cpu(self):
|
||||
dynamic = False
|
||||
device = "cpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("gpu"), reason=device_driver_info("gpu")
|
||||
)
|
||||
def test_module_static_gpu(self):
|
||||
dynamic = False
|
||||
device = "gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("vulkan"), reason=device_driver_info("vulkan")
|
||||
)
|
||||
def test_module_static_vulkan(self):
|
||||
dynamic = False
|
||||
device = "vulkan"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
@pytest.mark.skipif(
|
||||
check_device_drivers("intel-gpu"),
|
||||
reason=device_driver_info("intel-gpu"),
|
||||
)
|
||||
def test_module_static_intel_gpu(self):
|
||||
dynamic = False
|
||||
device = "intel-gpu"
|
||||
self.module_tester.create_and_check_module(dynamic, device)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
90
tank/deeplabv3/deeplabv3_tflite_test.py
Normal file
90
tank/deeplabv3/deeplabv3_tflite_test.py
Normal file
@@ -0,0 +1,90 @@
|
||||
import numpy as np
|
||||
from shark.shark_downloader import download_tflite_model
|
||||
from shark.shark_inference import SharkInference
|
||||
import pytest
|
||||
import unittest
|
||||
from shark.parser import shark_args
|
||||
|
||||
|
||||
# model_path = "https://tfhub.dev/google/lite-model/aiy/vision/classifier/birds_V1/3?lite-format=tflite"
|
||||
|
||||
|
||||
def compare_results(mlir_results, tflite_results):
|
||||
print("Compare mlir_results VS tflite_results: ")
|
||||
assert len(mlir_results) == len(
|
||||
tflite_results
|
||||
), "Number of results do not match"
|
||||
for i in range(len(mlir_results)):
|
||||
mlir_result = mlir_results[i]
|
||||
tflite_result = tflite_results[i]
|
||||
mlir_result = mlir_result.astype(np.single)
|
||||
tflite_result = tflite_result.astype(np.single)
|
||||
mlir_result = np.expand_dims(mlir_result, axis=0)
|
||||
print("mlir_result.shape", mlir_result.shape)
|
||||
print("tflite_result.shape", tflite_result.shape)
|
||||
assert mlir_result.shape == tflite_result.shape, "shape doesnot match"
|
||||
max_error = np.max(np.abs(mlir_result - tflite_result))
|
||||
print("Max error (%d): %f", i, max_error)
|
||||
|
||||
|
||||
class DeepLabV3TfliteModuleTester:
|
||||
def __init__(
|
||||
self,
|
||||
dynamic=False,
|
||||
device="cpu",
|
||||
save_mlir=False,
|
||||
save_vmfb=False,
|
||||
):
|
||||
self.dynamic = dynamic
|
||||
self.device = device
|
||||
self.save_mlir = save_mlir
|
||||
self.save_vmfb = save_vmfb
|
||||
|
||||
def create_and_check_module(self):
|
||||
shark_args.save_mlir = self.save_mlir
|
||||
shark_args.save_vmfb = self.save_vmfb
|
||||
|
||||
# preprocess to get SharkImporter input args
|
||||
(
|
||||
mlir_model,
|
||||
function_name,
|
||||
inputs,
|
||||
tflite_results,
|
||||
) = download_tflite_model(model_name="deeplabv3")
|
||||
|
||||
shark_module = SharkInference(
|
||||
mlir_module=mlir_model,
|
||||
function_name="main",
|
||||
device=self.device,
|
||||
mlir_dialect="tflite",
|
||||
)
|
||||
|
||||
# Case1: Use shark_importer default generate inputs
|
||||
shark_module.compile()
|
||||
mlir_results = shark_module.forward(inputs)
|
||||
compare_results(mlir_results, tflite_results)
|
||||
|
||||
|
||||
class DeepLabV3TfliteModuleTest(unittest.TestCase):
|
||||
@pytest.fixture(autouse=True)
|
||||
def configure(self, pytestconfig):
|
||||
self.save_mlir = pytestconfig.getoption("save_mlir")
|
||||
self.save_vmfb = pytestconfig.getoption("save_vmfb")
|
||||
|
||||
def setUp(self):
|
||||
self.module_tester = DeepLabV3TfliteModuleTester(self)
|
||||
self.module_tester.save_mlir = self.save_mlir
|
||||
|
||||
def test_module_static_cpu(self):
|
||||
self.module_tester.dynamic = False
|
||||
self.module_tester.device = "cpu"
|
||||
self.module_tester.create_and_check_module()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# module_tester = DeepLabV3TfliteModuleTester()
|
||||
# module_tester.save_mlir = True
|
||||
# module_tester.save_vmfb = True
|
||||
# module_tester.create_and_check_module()
|
||||
|
||||
unittest.main()
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user