mirror of
https://github.com/nod-ai/SHARK-Studio.git
synced 2026-01-11 14:58:11 -05:00
Compare commits
4 Commits
llm-rest-a
...
fix-shardi
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
eab2194ca1 | ||
|
|
93f583f0be | ||
|
|
e5ed167f03 | ||
|
|
051ba5de63 |
@@ -12,6 +12,8 @@ import sys
|
||||
import time
|
||||
from dataclasses import dataclass
|
||||
from os import environ
|
||||
from dataclasses import dataclass
|
||||
from os import environ
|
||||
|
||||
import torch
|
||||
import torch_mlir
|
||||
@@ -510,6 +512,8 @@ class ShardedVicuna(VicunaBase):
|
||||
n_devices=None,
|
||||
) -> None:
|
||||
self.hf_auth_token = hf_auth_token
|
||||
self.hidden_state_size_dict = {"vicuna": 4096, "llama2_7b": 4096, "llama2_13b" : 5120}
|
||||
self.n_layers_dict = {"vicuna": 32, "llama2_7b": 32, "llama2_13b" : 40}
|
||||
super().__init__(
|
||||
model_name,
|
||||
hf_model_path,
|
||||
@@ -711,6 +715,27 @@ class ShardedVicuna(VicunaBase):
|
||||
device_idx = max(idx_votes, key=idx_votes.get)
|
||||
return device_idx
|
||||
|
||||
|
||||
def write_dynamic_inputs_lmhead(self, ir, sample_input_length):
|
||||
if self.precision in ["fp16", "int4"]:
|
||||
precision_str = "f16"
|
||||
else:
|
||||
precision_str = "f32"
|
||||
lines = ir.splitlines()
|
||||
new_lines = []
|
||||
for line in lines:
|
||||
if f"%cst_0 =" in line:
|
||||
new_lines.append(line)
|
||||
new_lines.append("%c1 = arith.constant 1 : index")
|
||||
new_lines.append(f"%dim = tensor.dim %arg0, %c1 : tensor<1x?x{self.hidden_state_size_dict[self.model_name]}x{precision_str}>")
|
||||
else:
|
||||
line = re.sub(f"{sample_input_length}x", "?x", line)
|
||||
if "?x" in line:
|
||||
line = re.sub("tensor.empty\(\)", "tensor.empty(%dim)", line)
|
||||
new_lines.append(line)
|
||||
|
||||
return "\n".join(new_lines)
|
||||
|
||||
def compile_lmhead(
|
||||
self,
|
||||
lmh,
|
||||
@@ -775,14 +800,21 @@ class ShardedVicuna(VicunaBase):
|
||||
use_tracing=False,
|
||||
verbose=False,
|
||||
)
|
||||
|
||||
"""
|
||||
bytecode_stream = BytesIO()
|
||||
module.operation.write_bytecode(bytecode_stream)
|
||||
bytecode = bytecode_stream.getvalue()
|
||||
f_ = open(mlir_path, "wb")
|
||||
f_.write(bytecode)
|
||||
f_.close()
|
||||
"""
|
||||
module = str(module)
|
||||
if self.precision in ["int4", "fp16"]:
|
||||
module = self.write_dynamic_inputs_lmhead(module, 137)
|
||||
filepath = Path(f"{self.dir_name}/lmhead.mlir")
|
||||
f_ = open(mlir_path, "w+")
|
||||
f_.write(module)
|
||||
f_.close()
|
||||
# download_public_file(
|
||||
# "gs://shark_tank/elias/compressed_sv/lmhead.mlir",
|
||||
# filepath.absolute(),
|
||||
@@ -795,7 +827,7 @@ class ShardedVicuna(VicunaBase):
|
||||
device=device,
|
||||
mlir_dialect="tm_tensor",
|
||||
device_idx=device_idx,
|
||||
mmap=False,
|
||||
mmap=True,
|
||||
)
|
||||
if vmfb_path.exists():
|
||||
shark_module.load_module(vmfb_path)
|
||||
@@ -883,7 +915,7 @@ class ShardedVicuna(VicunaBase):
|
||||
device=device,
|
||||
mlir_dialect="tm_tensor",
|
||||
device_idx=device_idx,
|
||||
mmap=False,
|
||||
mmap=True,
|
||||
)
|
||||
if vmfb_path.exists():
|
||||
shark_module.load_module(vmfb_path)
|
||||
@@ -964,7 +996,7 @@ class ShardedVicuna(VicunaBase):
|
||||
device=device,
|
||||
mlir_dialect="tm_tensor",
|
||||
device_idx=device_idx,
|
||||
mmap=False,
|
||||
mmap=True,
|
||||
)
|
||||
if vmfb_path.exists():
|
||||
shark_module.load_module(vmfb_path)
|
||||
@@ -1163,12 +1195,13 @@ class ShardedVicuna(VicunaBase):
|
||||
device_idx = idx % self.n_devices
|
||||
else:
|
||||
device_idx = None
|
||||
print(device_idx, self.n_devices)
|
||||
module = SharkInference(
|
||||
None,
|
||||
device=device,
|
||||
device_idx=device_idx,
|
||||
mlir_dialect="tm_tensor",
|
||||
mmap=False,
|
||||
mmap=True,
|
||||
)
|
||||
module.load_module(vmfb_path)
|
||||
else:
|
||||
@@ -1180,13 +1213,13 @@ class ShardedVicuna(VicunaBase):
|
||||
if self.n_devices is not None:
|
||||
device_idx = idx % self.n_devices
|
||||
else:
|
||||
device_idx = 0
|
||||
device_idx = None
|
||||
module = SharkInference(
|
||||
mlirs[idx],
|
||||
device=device,
|
||||
device_idx=device_idx,
|
||||
mlir_dialect="tm_tensor",
|
||||
mmap=False,
|
||||
mmap=True,
|
||||
)
|
||||
module.save_module(
|
||||
module_name=f"{self.dir_name}/{idx}_full",
|
||||
@@ -1238,7 +1271,7 @@ class ShardedVicuna(VicunaBase):
|
||||
if self.n_devices is not None:
|
||||
device_idx = idx % self.n_devices
|
||||
else:
|
||||
device_idx = 0
|
||||
device_idx = None
|
||||
module = SharkInference(
|
||||
None,
|
||||
device=device,
|
||||
@@ -1256,7 +1289,7 @@ class ShardedVicuna(VicunaBase):
|
||||
if self.n_devices is not None:
|
||||
device_idx = idx % self.n_devices
|
||||
else:
|
||||
device_idx = 0
|
||||
device_idx = None
|
||||
module = SharkInference(
|
||||
mlirs[idx],
|
||||
device=device,
|
||||
@@ -1320,41 +1353,42 @@ class ShardedVicuna(VicunaBase):
|
||||
|
||||
placeholder_pkv_segment = tuple(
|
||||
(
|
||||
torch.zeros([1, 32, SAMPLE_INPUT_LEN, 128]),
|
||||
torch.zeros([1, 32, SAMPLE_INPUT_LEN, 128]),
|
||||
torch.zeros([1, self.n_layers_dict[self.model_name], SAMPLE_INPUT_LEN, 128]),
|
||||
torch.zeros([1, self.n_layers_dict[self.model_name], SAMPLE_INPUT_LEN, 128]),
|
||||
)
|
||||
for _ in range(8)
|
||||
)
|
||||
placeholder_pkv_full = tuple(
|
||||
(
|
||||
torch.zeros([1, 32, SAMPLE_INPUT_LEN, 128]),
|
||||
torch.zeros([1, 32, SAMPLE_INPUT_LEN, 128]),
|
||||
torch.zeros([1, self.n_layers_dict[self.model_name], SAMPLE_INPUT_LEN, 128]),
|
||||
torch.zeros([1, self.n_layers_dict[self.model_name], SAMPLE_INPUT_LEN, 128]),
|
||||
)
|
||||
for _ in range(32)
|
||||
for _ in range(self.n_layers_dict[self.model_name])
|
||||
)
|
||||
|
||||
placeholder_input0 = (
|
||||
torch.zeros([1, SAMPLE_INPUT_LEN, 4096]),
|
||||
torch.zeros([1, SAMPLE_INPUT_LEN, self.hidden_state_size_dict[self.model_name]]),
|
||||
torch.zeros([1, 1, SAMPLE_INPUT_LEN, SAMPLE_INPUT_LEN]),
|
||||
torch.zeros([1, SAMPLE_INPUT_LEN], dtype=torch.int64),
|
||||
)
|
||||
|
||||
placeholder_input1 = (
|
||||
torch.zeros([1, 1, 4096]),
|
||||
torch.zeros([1, 1, self.hidden_state_size_dict[self.model_name]]),
|
||||
torch.zeros([1, 1, 1, SAMPLE_INPUT_LEN + 1]),
|
||||
torch.zeros([1, 1], dtype=torch.int64),
|
||||
torch.zeros([1, 32, SAMPLE_INPUT_LEN, 128]),
|
||||
torch.zeros([1, 32, SAMPLE_INPUT_LEN, 128]),
|
||||
torch.zeros([1, self.n_layers_dict[self.model_name], SAMPLE_INPUT_LEN, 128]),
|
||||
torch.zeros([1, self.n_layers_dict[self.model_name], SAMPLE_INPUT_LEN, 128]),
|
||||
)
|
||||
|
||||
norm = VicunaNorm(vicuna_model.model.norm)
|
||||
device_idx = self.get_device_index(
|
||||
r"vicuna\.model\.model\.norm(?:\.|\s|$)"
|
||||
)
|
||||
print(device_idx)
|
||||
# HC device_idx for non-layer vmfbs
|
||||
device_idx = 0
|
||||
norm = self.compile_norm(
|
||||
norm,
|
||||
torch.zeros([1, SAMPLE_INPUT_LEN, 4096]),
|
||||
torch.zeros([1, SAMPLE_INPUT_LEN, self.hidden_state_size_dict[self.model_name]]),
|
||||
device=self.device,
|
||||
device_idx=device_idx,
|
||||
)
|
||||
@@ -1363,7 +1397,8 @@ class ShardedVicuna(VicunaBase):
|
||||
device_idx = self.get_device_index(
|
||||
r"vicuna\.model\.model\.embed_tokens(?:\.|\s|$)"
|
||||
)
|
||||
print(device_idx)
|
||||
# HC device_idx for non-layer vmfbs
|
||||
device_idx = 0
|
||||
embeddings = self.compile_embedding(
|
||||
embeddings,
|
||||
(torch.zeros([1, SAMPLE_INPUT_LEN], dtype=torch.int64)),
|
||||
@@ -1375,10 +1410,11 @@ class ShardedVicuna(VicunaBase):
|
||||
device_idx = self.get_device_index(
|
||||
r"vicuna\.model\.lm_head(?:\.|\s|$)"
|
||||
)
|
||||
print(device_idx)
|
||||
# HC device_idx for non-layer vmfbs
|
||||
device_idx = 0
|
||||
lmhead = self.compile_lmhead(
|
||||
lmhead,
|
||||
torch.zeros([1, SAMPLE_INPUT_LEN, 4096]),
|
||||
torch.zeros([1, SAMPLE_INPUT_LEN, self.hidden_state_size_dict[self.model_name]]),
|
||||
device=self.device,
|
||||
device_idx=device_idx,
|
||||
)
|
||||
@@ -1452,13 +1488,13 @@ class ShardedVicuna(VicunaBase):
|
||||
|
||||
generated_token_op = self.generate_new_token(params=params)
|
||||
|
||||
prefill_time = time.time() - decode_st_time
|
||||
decode_time = (time.time() - decode_st_time) * 1000
|
||||
|
||||
_token = generated_token_op["token"]
|
||||
_past_key_values = generated_token_op["past_key_values"]
|
||||
_detok = generated_token_op["detok"]
|
||||
history.append(_token)
|
||||
yield self.tokenizer.decode(history), None, prefill_time
|
||||
yield self.tokenizer.decode(history), None, decode_time
|
||||
|
||||
if _token == 2:
|
||||
break
|
||||
@@ -1667,12 +1703,7 @@ class UnshardedVicuna(VicunaBase):
|
||||
new_lines = []
|
||||
|
||||
# Using a while loop and the pop method to avoid creating a copy of module
|
||||
if "llama2_13b" in self.model_name:
|
||||
pkv_tensor_shape = "tensor<1x40x?x128x"
|
||||
elif "llama2_70b" in self.model_name:
|
||||
pkv_tensor_shape = "tensor<1x8x?x128x"
|
||||
else:
|
||||
pkv_tensor_shape = "tensor<1x32x?x128x"
|
||||
pkv_tensor_shape = f"tensor<1x{self.n_layers_dict[self.model_name]}x?x128x"
|
||||
if self.precision in ["fp16", "int4", "int8"]:
|
||||
pkv_tensor_shape += "f16>"
|
||||
else:
|
||||
@@ -2066,14 +2097,14 @@ class UnshardedVicuna(VicunaBase):
|
||||
generated_token_op = self.generate_new_token(
|
||||
params=params, sharded=False, cli=cli
|
||||
)
|
||||
prefill_time = time.time() - prefill_st_time
|
||||
prefill_time_ms = (time.time() - prefill_st_time) * 1000
|
||||
|
||||
token = generated_token_op["token"]
|
||||
if "cpu" not in self.device:
|
||||
logits = generated_token_op["logits"]
|
||||
pkv = generated_token_op["past_key_values"]
|
||||
detok = generated_token_op["detok"]
|
||||
yield detok, None, prefill_time
|
||||
yield detok, None, prefill_time_ms
|
||||
|
||||
res_tokens.append(token)
|
||||
if cli:
|
||||
@@ -2408,8 +2439,7 @@ if __name__ == "__main__":
|
||||
vic.shark_model.shark_runner.iree_config.device.flush_profiling()
|
||||
if msg is None:
|
||||
if is_first:
|
||||
# Note that the prefill time is in seconds, and all the decoded tokens in ms.
|
||||
prefill_time_ms = exec_time * 1000
|
||||
prefill_time_ms = exec_time
|
||||
is_first = False
|
||||
else:
|
||||
token_times_ms.append(exec_time)
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import torch
|
||||
import time
|
||||
|
||||
|
||||
class FirstVicunaLayer(torch.nn.Module):
|
||||
@@ -110,9 +111,11 @@ class LMHeadCompiled(torch.nn.Module):
|
||||
self.model = shark_module
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = hidden_states.detach()
|
||||
hidden_states_sample = hidden_states.detach()
|
||||
|
||||
output = self.model("forward", (hidden_states,))
|
||||
output = torch.tensor(output)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
@@ -136,8 +139,9 @@ class VicunaNormCompiled(torch.nn.Module):
|
||||
hidden_states.detach()
|
||||
except:
|
||||
pass
|
||||
output = self.model("forward", (hidden_states,))
|
||||
output = self.model("forward", (hidden_states,), send_to_host=True)
|
||||
output = torch.tensor(output)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
@@ -158,8 +162,9 @@ class VicunaEmbeddingCompiled(torch.nn.Module):
|
||||
|
||||
def forward(self, input_ids):
|
||||
input_ids.detach()
|
||||
output = self.model("forward", (input_ids,))
|
||||
output = self.model("forward", (input_ids,), send_to_host=True)
|
||||
output = torch.tensor(output)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
@@ -178,9 +183,10 @@ class CompiledVicunaLayer(torch.nn.Module):
|
||||
use_cache=True,
|
||||
):
|
||||
if past_key_value is None:
|
||||
hidden_states = hidden_states.detach()
|
||||
attention_mask = attention_mask.detach()
|
||||
position_ids = position_ids.detach()
|
||||
# hidden_states = hidden_states.detach()
|
||||
# attention_mask = attention_mask.detach()
|
||||
# position_ids = position_ids.detach()
|
||||
|
||||
output = self.model(
|
||||
"first_vicuna_forward",
|
||||
(
|
||||
@@ -188,11 +194,17 @@ class CompiledVicunaLayer(torch.nn.Module):
|
||||
attention_mask,
|
||||
position_ids,
|
||||
),
|
||||
send_to_host=True,
|
||||
)
|
||||
|
||||
### send_to_host=True
|
||||
output0 = torch.tensor(output[0])
|
||||
output1 = torch.tensor(output[1])
|
||||
output2 = torch.tensor(output[2])
|
||||
### send_to_host=False
|
||||
# output0 = output[0]
|
||||
# output1 = output[1]
|
||||
# output2 = output[2]
|
||||
|
||||
return (
|
||||
output0,
|
||||
@@ -202,11 +214,12 @@ class CompiledVicunaLayer(torch.nn.Module):
|
||||
),
|
||||
)
|
||||
else:
|
||||
hidden_states = hidden_states.detach()
|
||||
attention_mask = attention_mask.detach()
|
||||
position_ids = position_ids.detach()
|
||||
pkv0 = past_key_value[0].detach()
|
||||
pkv1 = past_key_value[1].detach()
|
||||
# hidden_states = hidden_states.detach()
|
||||
# attention_mask = attention_mask.detach()
|
||||
# position_ids = position_ids.detach()
|
||||
# pkv0 = past_key_value[0].detach()
|
||||
pkv0 = past_key_value[0]
|
||||
pkv1 = past_key_value[1]
|
||||
output = self.model(
|
||||
"second_vicuna_forward",
|
||||
(
|
||||
@@ -216,11 +229,17 @@ class CompiledVicunaLayer(torch.nn.Module):
|
||||
pkv0,
|
||||
pkv1,
|
||||
),
|
||||
send_to_host=True,
|
||||
)
|
||||
|
||||
### send_to_host=True
|
||||
output0 = torch.tensor(output[0])
|
||||
output1 = torch.tensor(output[1])
|
||||
output2 = torch.tensor(output[2])
|
||||
### send_to_host=False
|
||||
# output0 = output[0]
|
||||
# output1 = output[1]
|
||||
# output2 = output[2]
|
||||
|
||||
return (
|
||||
output0,
|
||||
|
||||
@@ -355,11 +355,15 @@ def get_iree_module(
|
||||
device = iree_device_map(device)
|
||||
print("registering device id: ", device_idx)
|
||||
haldriver = ireert.get_driver(device)
|
||||
hal_device_id = haldriver.query_available_devices()[device_idx][
|
||||
"device_id"
|
||||
]
|
||||
haldevice = haldriver.create_device(
|
||||
haldriver.query_available_devices()[device_idx]["device_id"],
|
||||
hal_device_id,
|
||||
allocators=shark_args.device_allocator,
|
||||
)
|
||||
config = ireert.Config(device=haldevice)
|
||||
config.id = hal_device_id
|
||||
else:
|
||||
config = get_iree_runtime_config(device)
|
||||
vm_module = ireert.VmModule.from_buffer(
|
||||
@@ -398,15 +402,16 @@ def load_vmfb_using_mmap(
|
||||
haldriver = ireert.get_driver(device)
|
||||
dl.log(f"ireert.get_driver()")
|
||||
|
||||
hal_device_id = haldriver.query_available_devices()[device_idx][
|
||||
"device_id"
|
||||
]
|
||||
haldevice = haldriver.create_device(
|
||||
haldriver.query_available_devices()[device_idx]["device_id"],
|
||||
hal_device_id,
|
||||
allocators=shark_args.device_allocator,
|
||||
)
|
||||
dl.log(f"ireert.create_device()")
|
||||
config = ireert.Config(device=haldevice)
|
||||
config.id = haldriver.query_available_devices()[device_idx][
|
||||
"device_id"
|
||||
]
|
||||
config.id = hal_device_id
|
||||
dl.log(f"ireert.Config()")
|
||||
else:
|
||||
config = get_iree_runtime_config(device)
|
||||
|
||||
Reference in New Issue
Block a user