mirror of
https://github.com/caulk-crypto/caulk.git
synced 2026-01-08 21:07:56 -05:00
initial commit
This commit is contained in:
201
LICENSE
Normal file
201
LICENSE
Normal file
@@ -0,0 +1,201 @@
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
10
README.md
10
README.md
@@ -1 +1,9 @@
|
||||
# caulk-pub
|
||||
# caulk-dev
|
||||
Linkable vector commitments and lookup tables.
|
||||
|
||||
WARNING: This project contains a proof of concept implementation of Caulk that has not received any formal audit. It should not be used production.
|
||||
|
||||
This project contains sample SRS and Q-openings (for a sample poly) for various N up to 2^12. If SRS and/or openings don't exist they are recreated (this is timely!).
|
||||
|
||||
SRS and openings for bigger N (up to 2^20) can be downloaded [here](https://drive.google.com/file/d/1ANrNC-aIW22Z6Kx8vrea21Abl2q52hQH/view?usp=sharing).
|
||||
The folders `polys` and `srs` in the archive should be merged with their counterparts in this project.
|
||||
|
||||
31
caulk_multi_lookup/Cargo.toml
Normal file
31
caulk_multi_lookup/Cargo.toml
Normal file
@@ -0,0 +1,31 @@
|
||||
[package]
|
||||
name = "caulk_multi_lookup"
|
||||
authors = ["mmaller <mary.maller@ethereum.org>", "khovratovich <khovratovich@gmail.com>"]
|
||||
version = "0.1.0"
|
||||
edition = "2021"
|
||||
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
|
||||
[dependencies]
|
||||
ark-ff = { version = "^0.3.0", default-features = false }
|
||||
ark-ec = { version = "^0.3.0", default-features = false }
|
||||
ark-serialize = { version = "^0.3.0", default-features = false, features = [ "derive" ] }
|
||||
ark-poly = { version = "^0.3.0", default-features = false }
|
||||
ark-std = { version = "^0.3.0", default-features = false }
|
||||
ark-relations = { version = "^0.3.0", default-features = false }
|
||||
ark-crypto-primitives = { version = "^0.3.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.3.0", default-features = false, optional = true }
|
||||
ark-bls12-381 = { version = "^0.3.0", features = [ "std" ] }
|
||||
ark-poly-commit = { version = "^0.3.0", default-features = false }
|
||||
ark-marlin = { version = "^0.3.0", default-features = false }
|
||||
|
||||
tracing = { version = "0.1", default-features = false, features = [ "attributes" ], optional = true }
|
||||
derivative = { version = "2.0", features = ["use_core"], optional = true}
|
||||
rand = "0.7.3"
|
||||
rand_chacha = { version = "0.2.1" }
|
||||
thiserror = "1.0.19"
|
||||
blake2s_simd = "0.5.10"
|
||||
|
||||
|
||||
[features]
|
||||
asm = [ "ark-ff/asm" ]
|
||||
838
caulk_multi_lookup/src/caulk_multi_lookup.rs
Normal file
838
caulk_multi_lookup/src/caulk_multi_lookup.rs
Normal file
@@ -0,0 +1,838 @@
|
||||
/*
|
||||
This file includes the Caulk prover and verifier for single openings.
|
||||
The protocol is described in Figure 3.
|
||||
*/
|
||||
|
||||
use ark_bls12_381::{Bls12_381,Fr,FrParameters,G1Affine, G2Affine};
|
||||
use ark_poly::{univariate::DensePolynomial, Evaluations as EvaluationsOnDomain};
|
||||
use ark_ff::{Fp256, Field};
|
||||
|
||||
use ark_poly::{EvaluationDomain, Evaluations, GeneralEvaluationDomain, UVPolynomial, Polynomial};
|
||||
use ark_ec::{AffineCurve,ProjectiveCurve,PairingEngine};
|
||||
use ark_serialize::CanonicalSerialize;
|
||||
|
||||
use ark_std::{cfg_into_iter, One, Zero};
|
||||
|
||||
|
||||
use std::time::{Instant};
|
||||
use std::vec::Vec;
|
||||
|
||||
use crate::caulk_multi_setup::{setup_multi_lookup, PublicParameters};
|
||||
use crate::caulk_multi_unity::{prove_multiunity,verify_multiunity,ProofMultiUnity};
|
||||
use crate::tools::{KzgBls12_381, UniPoly381,
|
||||
kzg_commit_g2,random_field,
|
||||
generate_lagrange_polynomials_subset,aggregate_kzg_proofs_g2, hash_caulk_multi,
|
||||
kzg_open_g1_native, kzg_verify_g1_native};
|
||||
|
||||
use crate::multiopen::{multiple_open_g2};
|
||||
|
||||
pub struct LookupInstance{
|
||||
pub c_com: G1Affine, //polynomial C(X) that represents a table
|
||||
pub phi_com: G1Affine, //polynomial phi(X) that represents the values to look up
|
||||
}
|
||||
|
||||
pub struct LookupProverInput{
|
||||
pub c_poly: DensePolynomial<Fp256<FrParameters>>, //polynomial C(X) that represents a table
|
||||
pub phi_poly: DensePolynomial<Fp256<FrParameters>>, //polynomial phi(X) that represents the values to look up
|
||||
pub positions: Vec<usize>, //
|
||||
pub openings: Vec<G2Affine>
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
#[derive(PartialEq)]
|
||||
//Data structure to be stored in a file: polynomial, its commitment, and its openings (for certain SRS)
|
||||
pub struct TableInput{
|
||||
pub c_poly: DensePolynomial<Fp256<FrParameters>>,
|
||||
pub c_com: G1Affine,
|
||||
pub openings: Vec<G2Affine>
|
||||
}
|
||||
|
||||
|
||||
//Lookup proof data structure
|
||||
#[allow(non_snake_case)]
|
||||
pub struct LookupProof{
|
||||
pub C_I_com: G1Affine, //Commitment to C_I(X)
|
||||
pub H1_com: G2Affine, //Commmitment to H_1(X)
|
||||
pub H2_com: G1Affine, //Commmitment to H_2(X)
|
||||
pub u_com: G1Affine, //Commmitment to u(X)
|
||||
pub z_I_com: G1Affine, //Commitment to z_I(X)
|
||||
pub v1: Fr,
|
||||
pub v2: Fr,
|
||||
pub pi1:G1Affine,
|
||||
pub pi2:G1Affine,
|
||||
pub pi3:G1Affine
|
||||
}
|
||||
|
||||
|
||||
|
||||
impl TableInput{
|
||||
fn store(&self, path: &str)
|
||||
{
|
||||
use std::io::Write;
|
||||
use std::fs::File;
|
||||
|
||||
|
||||
//1. Polynomial
|
||||
let mut o_bytes = vec![];
|
||||
let mut f = File::create(path).expect("Unable to create file");
|
||||
let len: u32 = self.c_poly.len().try_into().unwrap();
|
||||
let len_bytes = len.to_be_bytes();
|
||||
f.write_all(&len_bytes).expect("Unable to write data");
|
||||
let len32: usize = len.try_into().unwrap();
|
||||
for i in 0..len32
|
||||
{
|
||||
self.c_poly.coeffs[i].serialize_uncompressed(&mut o_bytes).ok();
|
||||
}
|
||||
f.write_all(&o_bytes).expect("Unable to write data");
|
||||
|
||||
//2. Commitment
|
||||
o_bytes.clear();
|
||||
self.c_com.serialize_uncompressed(&mut o_bytes).ok();
|
||||
f.write_all(&o_bytes).expect("Unable to write data");
|
||||
|
||||
//3. Openings
|
||||
o_bytes.clear();
|
||||
let len: u32 = self.openings.len().try_into().unwrap();
|
||||
let len_bytes = len.to_be_bytes();
|
||||
f.write_all(&len_bytes).expect("Unable to write data");
|
||||
let len32: usize = len.try_into().unwrap();
|
||||
for i in 0..len32
|
||||
{
|
||||
self.openings[i].serialize_uncompressed(&mut o_bytes).ok();
|
||||
}
|
||||
f.write_all(&o_bytes).expect("Unable to write data");
|
||||
}
|
||||
|
||||
fn load(path: &str) ->TableInput
|
||||
{
|
||||
use std::fs::File;
|
||||
use std::io::Read;
|
||||
use ark_serialize::CanonicalDeserialize;
|
||||
const FR_UNCOMPR_SIZE: usize=32;
|
||||
const G1_UNCOMPR_SIZE: usize =96;
|
||||
const G2_UNCOMPR_SIZE: usize =192;
|
||||
let mut data = Vec::new();
|
||||
let mut f = File::open(path).expect("Unable to open file");
|
||||
f.read_to_end(&mut data).expect("Unable to read data");
|
||||
|
||||
//1. reading c_poly
|
||||
let mut cur_counter:usize = 0;
|
||||
let len_bytes: [u8; 4] = (&data[0..4]).try_into().unwrap();
|
||||
let len: u32 = u32::from_be_bytes(len_bytes);
|
||||
let mut coeffs = vec![];
|
||||
let len32: usize = len.try_into().unwrap();
|
||||
cur_counter += 4;
|
||||
for i in 0..len32
|
||||
{
|
||||
let buf_bytes = &data[cur_counter+i*FR_UNCOMPR_SIZE..cur_counter+(i+1)*FR_UNCOMPR_SIZE];
|
||||
let tmp = Fr::deserialize_unchecked(buf_bytes).unwrap();
|
||||
coeffs.push(tmp);
|
||||
}
|
||||
cur_counter+=len32*FR_UNCOMPR_SIZE;
|
||||
|
||||
//2. c_com
|
||||
let buf_bytes = &data[cur_counter..cur_counter+G1_UNCOMPR_SIZE];
|
||||
let c_com = G1Affine::deserialize_unchecked(buf_bytes).unwrap();
|
||||
cur_counter += G1_UNCOMPR_SIZE;
|
||||
|
||||
//3 openings
|
||||
let len_bytes: [u8; 4] = (&data[cur_counter..cur_counter+4]).try_into().unwrap();
|
||||
let len: u32 = u32::from_be_bytes(len_bytes);
|
||||
let mut openings = vec![];
|
||||
let len32: usize = len.try_into().unwrap();
|
||||
cur_counter += 4;
|
||||
for _ in 0..len32
|
||||
{
|
||||
let buf_bytes = &data[cur_counter..cur_counter+G2_UNCOMPR_SIZE];
|
||||
let tmp = G2Affine::deserialize_unchecked(buf_bytes).unwrap();
|
||||
openings.push(tmp);
|
||||
cur_counter+=G2_UNCOMPR_SIZE;
|
||||
}
|
||||
|
||||
return TableInput{
|
||||
c_poly: DensePolynomial { coeffs },
|
||||
c_com: c_com,
|
||||
openings: openings
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
pub fn compute_lookup_proof(
|
||||
instance: &LookupInstance,
|
||||
input: &LookupProverInput,
|
||||
srs: &PublicParameters
|
||||
)->(LookupProof, ProofMultiUnity)
|
||||
{
|
||||
let m = input.positions.len();
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//1. Blinders
|
||||
///////////////////////////////////////////////////////////////////
|
||||
|
||||
// provers blinders for zero-knowledge
|
||||
let r1: Fp256<FrParameters> = random_field::<Fr>();
|
||||
let r2: Fp256<FrParameters> = random_field::<Fr>();
|
||||
let r3: Fp256<FrParameters> = random_field::<Fr>();
|
||||
let r4: Fp256<FrParameters> = random_field::<Fr>();
|
||||
let r5: Fp256<FrParameters> = random_field::<Fr>();
|
||||
let r6: Fp256<FrParameters> = random_field::<Fr>();
|
||||
let r7: Fp256<FrParameters> = random_field::<Fr>();
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//2. Compute z_I(X) = r1 prod_{i in I} (X - w^i)
|
||||
///////////////////////////////////////////////////////////////////
|
||||
|
||||
// z_I includes each position only once.
|
||||
let mut positions_no_repeats = Vec::new();
|
||||
for i in 0..input.positions.len() {
|
||||
if positions_no_repeats.contains( &input.positions[i] ) { }
|
||||
else {
|
||||
positions_no_repeats.push( input.positions[i] );
|
||||
}
|
||||
}
|
||||
|
||||
// insert 0 into z_I so that we can pad when m is not a power of 2.
|
||||
if positions_no_repeats.contains( &(0 as usize) ) {}
|
||||
else {
|
||||
positions_no_repeats.push( 0 as usize );
|
||||
}
|
||||
|
||||
|
||||
// z_I(X)
|
||||
let mut z_I = DensePolynomial::from_coefficients_slice(
|
||||
&[
|
||||
r1
|
||||
]);
|
||||
for j in 0..positions_no_repeats.len() {
|
||||
z_I = &z_I * &DensePolynomial::from_coefficients_slice(
|
||||
&[
|
||||
-srs.domain_N.element(positions_no_repeats[j]) ,
|
||||
Fr::one()]);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//2. Compute C_I(X) = (r_2+r_3X + r4X^2)*Z_I(X) + sum_j c_j*tau_j(X)
|
||||
///////////////////////////////////////////////////////////////////
|
||||
|
||||
let mut c_I_poly = DensePolynomial::from_coefficients_slice(&[Fr::zero()]);
|
||||
|
||||
// tau_polys[i] = 1 at positions_no_repeats[i] and 0 at positions_no_repeats[j]
|
||||
// Takes m^2 time, or 36ms when m = 32. Can be done in m log^2(m) time if this ever becomes a bottleneck.
|
||||
// See https://people.csail.mit.edu/devadas/pubs/scalable_thresh.pdf
|
||||
let tau_polys = generate_lagrange_polynomials_subset(&positions_no_repeats, srs);
|
||||
|
||||
// C_I(X) = sum_j c_j*tau_j(X)
|
||||
// Takes m^2 time, or 38ms when m = 32. Can be done faster if we store c_poly evaluations.
|
||||
for j in 0..positions_no_repeats.len(){
|
||||
c_I_poly = &c_I_poly + &(&tau_polys[j]*input.c_poly.evaluate(&srs.domain_N.element(positions_no_repeats[j]))); //sum_j c_j*tau_j
|
||||
}
|
||||
|
||||
// extra_blinder = r2 + r3 X + r4 X^2
|
||||
let extra_blinder=DensePolynomial::from_coefficients_slice(
|
||||
&[ r2,
|
||||
r3, r4]);
|
||||
|
||||
// C_I(X) = C_I(X) + z_I(X) * (r2 + r3 X + r4 X^2)
|
||||
c_I_poly = &c_I_poly + &(&z_I*&extra_blinder);
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//4. Compute H1
|
||||
///////////////////////////////////////////////////////////////////
|
||||
|
||||
// Compute [Q(x)]_2 by aggregating kzg proofs such that
|
||||
// Q(X) = ( C(X) - sum_{i in I} c_{i+1} tau_i(X) ) / ( prod_{i in I} (X - w^i) )
|
||||
let g2_Q=aggregate_kzg_proofs_g2(&input.openings, &positions_no_repeats, &srs.domain_N);
|
||||
|
||||
// blind_com = [ r2 + r3 x + r4 x^2 ]_2
|
||||
let blind_com = kzg_commit_g2(&extra_blinder, srs);
|
||||
|
||||
// H1_com = [ r1^{-1} Q(x) ]_2 - blind_com
|
||||
let H1_com = (g2_Q.mul(r1.inverse().unwrap())
|
||||
-blind_com.into_projective())
|
||||
.into_affine();
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//5. Compute u(X) = sum_j w^{i_j} mu_j(X) + (r5 + r6 X + r7 X^2) z_{Vm}(X)
|
||||
///////////////////////////////////////////////////////////////////
|
||||
|
||||
// u(X) = sum_j w^{i_j} mu_j(X)
|
||||
let mut u_vals= vec![];
|
||||
for j in 0..m {
|
||||
u_vals.push(srs.domain_N.element(input.positions[j]));
|
||||
}
|
||||
|
||||
// u(X) = u(X) + (r5 + r6 X + r7 X^2) z_{Vm}(X)
|
||||
let extra_blinder2=DensePolynomial::from_coefficients_slice(
|
||||
&[
|
||||
r5,
|
||||
r6,
|
||||
r7
|
||||
]);
|
||||
let u_poly = &EvaluationsOnDomain::from_vec_and_domain(u_vals.clone(), srs.domain_m).interpolate()
|
||||
+ &(extra_blinder2.mul_by_vanishing_poly(srs.domain_m));
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//6. Commitments
|
||||
///////////////////////////////////////////////////////////////////
|
||||
let (z_I_com, _) = KzgBls12_381::commit(&srs.poly_ck, &z_I, None, None).unwrap();
|
||||
let (C_I_com, _) = KzgBls12_381::commit(&srs.poly_ck, &c_I_poly, None, None).unwrap();
|
||||
let (u_com, _) = KzgBls12_381::commit(&srs.poly_ck, &u_poly, None, None).unwrap();
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//7 Prepare unity proof
|
||||
///////////////////////////////////////////////////////////////////
|
||||
|
||||
// hash_input initialised to zero
|
||||
let mut hash_input = Fr::zero();
|
||||
|
||||
//let now = Instant::now();
|
||||
let unity_proof = prove_multiunity( &srs, &mut hash_input, &u_com.0, u_vals.clone(), extra_blinder2 );
|
||||
//println!("Time to prove unity {:?}", now.elapsed());
|
||||
|
||||
// quick test can be uncommented to check if unity proof verifies
|
||||
// let unity_check = verify_multiunity( &srs, &mut Fr::zero(), u_com.0.clone(), &unity_proof );
|
||||
// println!("unity_check = {}", unity_check);
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//8. Hash outputs to get chi
|
||||
///////////////////////////////////////////////////////////////////
|
||||
|
||||
let chi = hash_caulk_multi::<Fr>(
|
||||
hash_input,
|
||||
Some(& [ &instance.c_com, &instance.phi_com,
|
||||
// hash last round of unity proof for good practice
|
||||
&unity_proof.g1_u_bar_alpha, &unity_proof.g1_h_2_alpha,
|
||||
&unity_proof.pi_1, &unity_proof.pi_2, &unity_proof.pi_3, &unity_proof.pi_4, &unity_proof.pi_5,
|
||||
// lookup inputs
|
||||
&C_I_com.0, &z_I_com.0, &u_com.0 ].to_vec() ),
|
||||
Some(& [ &H1_com.clone() ].to_vec() ),
|
||||
Some(& [ &unity_proof.v1, &unity_proof.v2, &unity_proof.v3 ].to_vec() ));
|
||||
|
||||
hash_input = chi.clone();
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//9. Compute z_I( u(X) )
|
||||
///////////////////////////////////////////////////////////////////
|
||||
|
||||
// Need a bigger domain to compute z_I(u(X)) over.
|
||||
// Has size O(m^2)
|
||||
let domain_m_sq: GeneralEvaluationDomain<Fr> = GeneralEvaluationDomain::new( z_I.len() * u_poly.len() + 2 ).unwrap();
|
||||
|
||||
// id_poly(X) = 0 for sigma_i < m and 1 for sigma_i > m
|
||||
// used for when m is not a power of 2
|
||||
let mut id_poly = DensePolynomial::from_coefficients_slice( & [Fr::one()]);
|
||||
id_poly = &id_poly - &srs.id_poly;
|
||||
|
||||
// Compute z_I( u(X) + w^0 id(X) )
|
||||
// Computing z_I(u(X)) is done naively and could be faster. Currently this is not a bottleneck
|
||||
let evals: Vec<Fp256<FrParameters>> = cfg_into_iter!(0..domain_m_sq.size())
|
||||
.map(|k| {
|
||||
z_I.evaluate( &(
|
||||
u_poly.evaluate(&domain_m_sq.element(k))
|
||||
+ id_poly.evaluate(&domain_m_sq.element(k))
|
||||
) )
|
||||
}).collect();
|
||||
let z_I_u_poly = Evaluations::from_vec_and_domain(evals, domain_m_sq).interpolate();
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//10. Compute C_I(u(X))-phi(X)
|
||||
///////////////////////////////////////////////////////////////////
|
||||
|
||||
// Compute C_I( u(X) )
|
||||
// Computing C_I(u(X)) is done naively and could be faster. Currently this is not a bottleneck
|
||||
|
||||
//Actually compute c_I( u(X) + id(X) ) in case m is not a power of 2
|
||||
let evals: Vec<Fp256<FrParameters>> = cfg_into_iter!(0..domain_m_sq.size())
|
||||
.map(|k| {
|
||||
c_I_poly.evaluate( &(
|
||||
u_poly.evaluate(&domain_m_sq.element(k))
|
||||
+ id_poly.evaluate(&domain_m_sq.element(k))
|
||||
) )
|
||||
}).collect();
|
||||
|
||||
// c_I_u_poly = C_I( u(X) ) - phi(X)
|
||||
let c_I_u_poly = &Evaluations::from_vec_and_domain(evals, domain_m_sq)
|
||||
.interpolate()
|
||||
- &input.phi_poly;
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//11. Compute H2
|
||||
///////////////////////////////////////////////////////////////////
|
||||
|
||||
// temp_poly(X) = z_I(u(X)) + chi [ C_I(u(X)) - phi(X) ]
|
||||
let temp_poly = &z_I_u_poly + &(&c_I_u_poly*chi);
|
||||
|
||||
//H2(X) = temp_poly / z_Vm(X)
|
||||
let (H2_poly, rem) = temp_poly.divide_by_vanishing_poly( srs.domain_m ).unwrap();
|
||||
assert!(rem== DensePolynomial::from_coefficients_slice(&[Fr::zero()]), "H_2(X) doesn't divide");
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//12. Compute commitments to H2
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//let now = Instant::now();
|
||||
let (H2_com, _) = KzgBls12_381::commit(&srs.poly_ck, &H2_poly, None, None).unwrap();
|
||||
//println!("Time to commit to H2 {:?}", now.elapsed());
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//13. Hash outputs to get alpha
|
||||
///////////////////////////////////////////////////////////////////
|
||||
let alpha = hash_caulk_multi::<Fr>(
|
||||
hash_input,
|
||||
Some(& [ &H2_com.0.clone() ].to_vec() ),
|
||||
None, None );
|
||||
|
||||
// last hash so don't need to update hash_input
|
||||
// hash_input = alpha.clone();
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//14. Open u at alpha, get v1
|
||||
///////////////////////////////////////////////////////////////////
|
||||
let (evals1, pi1) = kzg_open_g1_native(&srs.poly_ck, &u_poly, None, [&alpha].to_vec() );
|
||||
let v1 = evals1[0];
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//15. Compute p1(X) and open at v1
|
||||
///////////////////////////////////////////////////////////////////
|
||||
|
||||
// v1_id = u(alpha) + id(alpha) for when m is not a power of 2
|
||||
let v1_id = v1 + id_poly.evaluate(&alpha);
|
||||
|
||||
// p1(X) = z_IX() + chi cI(X)
|
||||
let p1_poly = &z_I + &(&c_I_poly * chi);
|
||||
|
||||
let (evals2, pi2) = kzg_open_g1_native(&srs.poly_ck, &p1_poly, None, [&v1_id].to_vec() );
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//16. Compute p2(X) and open p2 at alpha
|
||||
///////////////////////////////////////////////////////////////////
|
||||
|
||||
// p2(X) = zI(u(alpha)) + chi C_I( u(alpha) )
|
||||
let mut p2_poly = DensePolynomial::from_coefficients_slice(
|
||||
&[ z_I.evaluate(&v1_id) + chi * c_I_poly.evaluate(&v1_id) ] );
|
||||
|
||||
// p2(X) = p2(X) - chi phi(X)
|
||||
p2_poly = &p2_poly - &(&input.phi_poly * chi);
|
||||
|
||||
// p2(X) = p2(X) - zVm(alpha) H2(X)
|
||||
let zVm: UniPoly381 = srs.domain_m.vanishing_polynomial().into();
|
||||
|
||||
p2_poly = &p2_poly - &( &H2_poly * zVm.evaluate(&alpha) );
|
||||
|
||||
|
||||
// Open p2(X) at alpha
|
||||
let (evals3, pi3) = kzg_open_g1_native(&srs.poly_ck, &p2_poly, None, [&alpha].to_vec() );
|
||||
|
||||
// check that p2_poly(alpha) = 0
|
||||
assert!(evals3[0]==Fr::zero(), "p2(alpha) does not equal 0");
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//17. Compose proof
|
||||
///////////////////////////////////////////////////////////////////
|
||||
let proof = LookupProof{
|
||||
C_I_com: C_I_com.0,
|
||||
H1_com: H1_com,
|
||||
H2_com: H2_com.0,
|
||||
z_I_com: z_I_com.0,
|
||||
u_com: u_com.0,
|
||||
v1: v1,
|
||||
v2: evals2[0],
|
||||
pi1: pi1,
|
||||
pi2: pi2,
|
||||
pi3: pi3
|
||||
};
|
||||
|
||||
return (proof, unity_proof);
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
pub fn verify_lookup_proof(
|
||||
c_com: G1Affine,
|
||||
phi_com: G1Affine,
|
||||
proof: &LookupProof,
|
||||
unity_proof: &ProofMultiUnity,
|
||||
srs: &PublicParameters
|
||||
)->bool
|
||||
{
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//1. check unity
|
||||
///////////////////////////////////////////////////////////////////
|
||||
|
||||
// hash_input initialised to zero
|
||||
let mut hash_input = Fr::zero();
|
||||
|
||||
let unity_check = verify_multiunity(srs, &mut hash_input, proof.u_com, unity_proof );
|
||||
assert!(unity_check, "failure on unity");
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//2. Hash outputs to get chi
|
||||
///////////////////////////////////////////////////////////////////
|
||||
|
||||
let chi = hash_caulk_multi::<Fr>(
|
||||
hash_input.clone(),
|
||||
Some(& [ &c_com, &phi_com,
|
||||
// include last round of unity proof outputs for good practice
|
||||
&unity_proof.g1_u_bar_alpha, &unity_proof.g1_h_2_alpha,
|
||||
&unity_proof.pi_1, &unity_proof.pi_2, &unity_proof.pi_3,
|
||||
&unity_proof.pi_4, &unity_proof.pi_5,
|
||||
// outputs from multi-lookup
|
||||
&proof.C_I_com, &proof.z_I_com, &proof.u_com ].to_vec() ),
|
||||
Some(& [ &proof.H1_com ].to_vec() ),
|
||||
Some(& [ &unity_proof.v1, &unity_proof.v2, &unity_proof.v3 ].to_vec() ));
|
||||
|
||||
hash_input = chi.clone();
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//3. Hash outputs to get alpha
|
||||
///////////////////////////////////////////////////////////////////
|
||||
let alpha = hash_caulk_multi::<Fr>(
|
||||
hash_input,
|
||||
Some(& [ &proof.H2_com ].to_vec() ),
|
||||
None, None );
|
||||
|
||||
// last hash so don't need to update hash_input
|
||||
// hash_input = alpha.clone();
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//4. Check pi_1
|
||||
///////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
// KZG.Verify(srs_KZG, [u]_1, deg = bot, alpha, v1, pi1)
|
||||
let check1 = kzg_verify_g1_native(
|
||||
&srs,
|
||||
proof.u_com.clone(),
|
||||
None,
|
||||
[alpha].to_vec(),
|
||||
[proof.v1].to_vec(),
|
||||
proof.pi1
|
||||
);
|
||||
|
||||
assert!(check1,"failure on pi_1 check");
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//5. Check pi_2
|
||||
///////////////////////////////////////////////////////////////////
|
||||
|
||||
// v1_id = u(alpha)+ id(alpha) for when m is not a power of 2
|
||||
let v1_id = proof.v1 + (Fr::one() - srs.id_poly.evaluate(&alpha));
|
||||
|
||||
// [P1]_1 = [z_I]_1 + chi [c_I]_1
|
||||
let p1_com =(proof.z_I_com.into_projective()
|
||||
+ proof.C_I_com.mul(chi)).into_affine();
|
||||
|
||||
// KZG.Verify(srs_KZG, [P1]_1, deg = bot, v1_id, v2, pi2)
|
||||
let check2 = kzg_verify_g1_native(
|
||||
&srs,
|
||||
p1_com,
|
||||
None,
|
||||
[v1_id].to_vec(),
|
||||
[proof.v2].to_vec(),
|
||||
proof.pi2
|
||||
);
|
||||
assert!(check2, "failure on pi_2 check");
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//6. Check pi_3
|
||||
///////////////////////////////////////////////////////////////////
|
||||
|
||||
// z_Vm(X)
|
||||
let zVm: UniPoly381 = srs.domain_m.vanishing_polynomial().into(); //z_V_m(alpah)
|
||||
|
||||
// [P2]_1 = [v2]_1 - chi cm - zVm(alpha) [H_2]_1
|
||||
let p2_com = (
|
||||
srs.poly_ck.powers_of_g[0].mul(proof.v2 ) // [v2]_1
|
||||
- phi_com.mul( chi ) //[phi]_1
|
||||
- proof.H2_com.mul(zVm.evaluate(&alpha)) // [H2]_1 * zVm(alpha)
|
||||
).into_affine();
|
||||
|
||||
// KZG.Verify(srs_KZG, [P2]_1, deg = bot, alpha, 0, pi3)
|
||||
let check3 = kzg_verify_g1_native(
|
||||
&srs,
|
||||
p2_com,
|
||||
None,
|
||||
[alpha].to_vec(),
|
||||
[Fr::zero()].to_vec(),
|
||||
proof.pi3
|
||||
);
|
||||
assert!(check3, "failure on check 3");
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
//7. Check final pairing
|
||||
///////////////////////////////////////////////////////////////////
|
||||
|
||||
// pairing1 = e([C]_1 - [C_I]_1, [1]_2)
|
||||
let pairing1=Bls12_381::pairing((c_com.into_projective()-proof.C_I_com.into_projective()).into_affine(), srs.g2_powers[0]);
|
||||
|
||||
// pairing2 = e([z_I]_1, [H_1]_2)
|
||||
let pairing2 = Bls12_381::pairing(proof.z_I_com,proof.H1_com);
|
||||
|
||||
assert!(pairing1 == pairing2, "failure on pairing check");
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
#[allow(dead_code)]
|
||||
pub fn generate_lookup_input()
|
||||
->(
|
||||
LookupProverInput,
|
||||
PublicParameters //SRS
|
||||
)
|
||||
{
|
||||
let n: usize =8;//bitlength of poly degree
|
||||
let m: usize = 4;
|
||||
//let m: usize = (1<<(n/2-1)); //should be power of 2
|
||||
let N: usize = 1<<n;
|
||||
let max_degree: usize = if N>2*m*m {N-1} else {2*m*m};
|
||||
let actual_degree = N-1;
|
||||
let now = Instant::now();
|
||||
let pp =setup_multi_lookup(&max_degree,&N,&m,&n);
|
||||
println!("Time to setup {:?}", now.elapsed());
|
||||
|
||||
let rng = &mut ark_std::test_rng();
|
||||
let c_poly = UniPoly381::rand(actual_degree, rng);
|
||||
|
||||
let mut positions: Vec<usize> = vec![];
|
||||
for j in 0..m { //generate positions evenly distributed in the set
|
||||
let i_j: usize = j*(N/m);
|
||||
positions.push(i_j);
|
||||
};
|
||||
|
||||
//generating phi
|
||||
let blinder: Fp256<FrParameters> = random_field::<Fr>();
|
||||
let a_m = DensePolynomial::from_coefficients_slice(&[blinder]);
|
||||
let mut phi_poly = a_m.mul_by_vanishing_poly(pp.domain_m);
|
||||
for j in 0..m
|
||||
{
|
||||
phi_poly = &phi_poly +
|
||||
&(&pp.lagrange_polynomials_m[j]
|
||||
* c_poly.evaluate(&pp.domain_N.element(positions[j]))); //adding c(w^{i_j})*mu_j(X)
|
||||
}
|
||||
|
||||
for j in m..pp.domain_m.size() {
|
||||
phi_poly = &phi_poly +
|
||||
&(&pp.lagrange_polynomials_m[j]
|
||||
* c_poly.evaluate(&pp.domain_N.element(0)));
|
||||
}
|
||||
|
||||
let now = Instant::now();
|
||||
let openings = multiple_open_g2(&pp.g2_powers, &c_poly, n);
|
||||
println!("Time to generate openings {:?}", now.elapsed());
|
||||
|
||||
|
||||
return (LookupProverInput{
|
||||
c_poly: c_poly,
|
||||
phi_poly:phi_poly,
|
||||
positions: positions,
|
||||
openings: openings},
|
||||
pp);
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
#[test]
|
||||
pub fn test_lookup()
|
||||
{
|
||||
_do_lookup();
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
#[test]
|
||||
pub fn test_store()
|
||||
{
|
||||
//1. Setup
|
||||
let n: usize = 6;
|
||||
let N: usize = 1<<n;
|
||||
let powers_size: usize = N+2; //SRS SIZE
|
||||
let temp_m = n; //dummy
|
||||
let pp =setup_multi_lookup(&powers_size,&N,&temp_m,&n);
|
||||
let actual_degree = N-1;
|
||||
let path=format!("tmp/poly_openings.log");
|
||||
|
||||
//2. Store
|
||||
let rng = &mut ark_std::test_rng();
|
||||
let c_poly = UniPoly381::rand(actual_degree, rng);
|
||||
let (c_comx, _) = KzgBls12_381::commit(&pp.poly_ck, &c_poly, None, None).unwrap();
|
||||
let openings = multiple_open_g2(&pp.g2_powers, &c_poly, pp.n);
|
||||
let table = TableInput{
|
||||
c_poly: c_poly,
|
||||
c_com: c_comx.0,
|
||||
openings: openings
|
||||
};
|
||||
table.store(&path);
|
||||
|
||||
//3. Load
|
||||
let table_loaded = TableInput::load(&path);
|
||||
|
||||
//4. Test
|
||||
assert_eq!(table,table_loaded);
|
||||
std::fs::remove_file(&path).expect("File can not be deleted");
|
||||
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
#[test]
|
||||
pub fn test_multiple_lookups()
|
||||
{
|
||||
do_multiple_lookups()
|
||||
}
|
||||
|
||||
pub fn get_poly_and_g2_openings(
|
||||
pp: &PublicParameters,
|
||||
actual_degree: usize,
|
||||
)->TableInput
|
||||
{
|
||||
use std::fs::File;
|
||||
|
||||
//try opening the file. If it exists load the setup from there, otherwise generate
|
||||
let path=format!("polys/poly_{}_openings_{}.setup",actual_degree,pp.N);
|
||||
let res = File::open(path.clone());
|
||||
match res{
|
||||
Ok(_)=>{
|
||||
let now = Instant::now();
|
||||
let table = TableInput::load(&path);
|
||||
println!("Time to load openings = {:?}", now.elapsed());
|
||||
return table;
|
||||
}
|
||||
Err(_)=>{
|
||||
let rng = &mut ark_std::test_rng();
|
||||
let c_poly = UniPoly381::rand(actual_degree, rng);
|
||||
let (c_comx, _) = KzgBls12_381::commit(&pp.poly_ck, &c_poly, None, None).unwrap();
|
||||
let now = Instant::now();
|
||||
let openings = multiple_open_g2(&pp.g2_powers, &c_poly, pp.n);
|
||||
println!("Time to generate openings = {:?}", now.elapsed());
|
||||
let table = TableInput{
|
||||
c_poly: c_poly,
|
||||
c_com: c_comx.0,
|
||||
openings: openings
|
||||
};
|
||||
table.store(&path);
|
||||
return table;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
pub mod tests {
|
||||
#[allow(non_snake_case)]
|
||||
pub fn do_multiple_lookups()
|
||||
{
|
||||
const MIN_LOG_N: usize = 7;
|
||||
const MAX_LOG_N: usize = 15;
|
||||
const EPS: usize=1;
|
||||
const MIN_LOG_M: usize=2;
|
||||
const MAX_LOG_M: usize=5;
|
||||
|
||||
for n in MIN_LOG_N..=MAX_LOG_N
|
||||
{
|
||||
|
||||
//1. Setup
|
||||
let N: usize = 1<<n;
|
||||
let powers_size: usize = N+2; //SRS SIZE
|
||||
println!("N={}",N);
|
||||
let temp_m = n; //dummy
|
||||
let mut pp =setup_multi_lookup(&powers_size,&N,&temp_m,&n);
|
||||
let actual_degree = N-EPS;
|
||||
//println!("time for powers of tau {:?} for N={:?}", now.elapsed(),N);
|
||||
|
||||
//2. Poly and openings
|
||||
let table=get_poly_and_g2_openings(&pp,actual_degree);
|
||||
|
||||
for logm in MIN_LOG_M..=std::cmp::min(MAX_LOG_M,n/2-1)
|
||||
{
|
||||
//3. Setup
|
||||
let now = Instant::now();
|
||||
let mut m = 1<<logm;
|
||||
m = m + 1;
|
||||
|
||||
println!("m={}",m);
|
||||
pp.regenerate_lookup_params(m);
|
||||
println!("Time to generate aux domain {:?}", now.elapsed());
|
||||
|
||||
//4. Positions
|
||||
let mut positions: Vec<usize> = vec![];
|
||||
for j in 0..m { //generate positions evenly distributed in the set
|
||||
let i_j: usize = j*(actual_degree/m);
|
||||
positions.push(i_j);
|
||||
};
|
||||
|
||||
//5. generating phi
|
||||
let blinder: Fp256<FrParameters> = random_field::<Fr>();
|
||||
let a_m = DensePolynomial::from_coefficients_slice(&[blinder]);
|
||||
let mut phi_poly = a_m.mul_by_vanishing_poly(pp.domain_m);
|
||||
let c_poly_local = table.c_poly.clone();
|
||||
for j in 0..m
|
||||
{
|
||||
phi_poly = &phi_poly +
|
||||
&(&pp.lagrange_polynomials_m[j]
|
||||
* c_poly_local.evaluate(&pp.domain_N.element(positions[j]))); //adding c(w^{i_j})*mu_j(X)
|
||||
}
|
||||
|
||||
for j in m..pp.domain_m.size()
|
||||
{
|
||||
phi_poly = &phi_poly +
|
||||
&(&pp.lagrange_polynomials_m[j]
|
||||
* c_poly_local.evaluate( &pp.domain_N.element(0) ) ); //adding c(w^{i_j})*mu_j(X)
|
||||
}
|
||||
|
||||
//6. Running proofs
|
||||
let now = Instant::now();
|
||||
let (c_com, _) = KzgBls12_381::commit(&pp.poly_ck, &table.c_poly, None, None).unwrap();
|
||||
let (phi_com, _) = KzgBls12_381::commit(&pp.poly_ck, &phi_poly, None, None).unwrap();
|
||||
println!("Time to generate inputs = {:?}", now.elapsed());
|
||||
|
||||
let lookup_instance = LookupInstance{
|
||||
c_com: c_com.0.clone(),
|
||||
phi_com: phi_com.0.clone(),
|
||||
};
|
||||
|
||||
let prover_input = LookupProverInput{
|
||||
c_poly: table.c_poly.clone(),
|
||||
phi_poly:phi_poly,
|
||||
positions: positions,
|
||||
openings: table.openings.clone()};
|
||||
|
||||
let now = Instant::now();
|
||||
let (proof, unity_proof) = compute_lookup_proof(&lookup_instance, &prover_input,&pp);
|
||||
println!("Time to generate proof for = {:?}", now.elapsed());
|
||||
let now = Instant::now();
|
||||
let res=verify_lookup_proof(table.c_com, phi_com.0, &proof, &unity_proof, &pp);
|
||||
println!("Time to verify proof for = {:?}", now.elapsed());
|
||||
assert!(res);
|
||||
println!("Lookup test succeeded");
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
pub fn _do_lookup()
|
||||
{
|
||||
let now = Instant::now();
|
||||
let (prover_input,srs)=generate_lookup_input();
|
||||
println!("Time to generate parameters for n={:?} = {:?}", srs.n, now.elapsed());
|
||||
//kzg_test(&srs);
|
||||
let (c_com, _) = KzgBls12_381::commit(&srs.poly_ck, &prover_input.c_poly, None, None).unwrap();
|
||||
let (phi_com, _) = KzgBls12_381::commit(&srs.poly_ck, &prover_input.phi_poly, None, None).unwrap();
|
||||
|
||||
let lookup_instance = LookupInstance{
|
||||
c_com: c_com.0.clone(),
|
||||
phi_com: phi_com.0.clone(),
|
||||
};
|
||||
|
||||
let now = Instant::now();
|
||||
let (proof, unity_proof) = compute_lookup_proof(&lookup_instance, &prover_input,&srs);
|
||||
println!("Time to generate proof for m={:?} = {:?}", srs.m, now.elapsed());
|
||||
let now = Instant::now();
|
||||
let res=verify_lookup_proof(c_com.0, phi_com.0, &proof, &unity_proof, &srs);
|
||||
println!("Time to verify proof for n={:?} = {:?}", srs.n, now.elapsed());
|
||||
assert!(res);
|
||||
println!("Lookup test succeeded");
|
||||
}
|
||||
}
|
||||
399
caulk_multi_lookup/src/caulk_multi_setup.rs
Normal file
399
caulk_multi_lookup/src/caulk_multi_setup.rs
Normal file
@@ -0,0 +1,399 @@
|
||||
/*
|
||||
This file includes the setup algorithm for Caulk with multi openings.
|
||||
A full description of the setup is not formally given in the paper.
|
||||
*/
|
||||
|
||||
use ark_poly_commit::kzg10::*;
|
||||
use ark_ec::{bls12::Bls12, PairingEngine,AffineCurve,ProjectiveCurve};
|
||||
use ark_poly::{ UVPolynomial, GeneralEvaluationDomain, Evaluations as EvaluationsOnDomain,
|
||||
EvaluationDomain};
|
||||
use ark_bls12_381::{Bls12_381, Fr, FrParameters,G1Affine, G2Affine};
|
||||
use ark_ff::{Fp256, UniformRand};
|
||||
use ark_serialize::{CanonicalSerialize, CanonicalDeserialize};
|
||||
|
||||
use crate::tools::{UniPoly381, KzgBls12_381};
|
||||
use std::{time::{Instant}, fs::File, io::Read};
|
||||
use ark_std::{One, Zero,cfg_into_iter};
|
||||
|
||||
|
||||
// structure of public parameters
|
||||
#[allow(non_snake_case)]
|
||||
pub struct PublicParameters {
|
||||
pub poly_ck: Powers<'static, Bls12<ark_bls12_381::Parameters> >,
|
||||
pub poly_vk: VerifierKey<Bls12<ark_bls12_381::Parameters>>,
|
||||
pub domain_m: GeneralEvaluationDomain<Fr>,
|
||||
pub domain_n: GeneralEvaluationDomain<Fr>,
|
||||
pub domain_N: GeneralEvaluationDomain<Fr>,
|
||||
pub verifier_pp: VerifierPublicParameters,
|
||||
pub lagrange_polynomials_n: Vec< UniPoly381>,
|
||||
pub lagrange_polynomials_m: Vec< UniPoly381>,
|
||||
pub id_poly: UniPoly381,
|
||||
pub N: usize,
|
||||
pub m: usize,
|
||||
pub n: usize,
|
||||
pub g2_powers: Vec<G2Affine>,
|
||||
}
|
||||
|
||||
pub struct LookupParameters{
|
||||
m: usize,
|
||||
lagrange_polynomials_m: Vec< UniPoly381>,
|
||||
domain_m: GeneralEvaluationDomain<Fr>,
|
||||
id_poly: UniPoly381,
|
||||
}
|
||||
|
||||
impl PublicParameters{
|
||||
pub fn regenerate_lookup_params(&mut self, m: usize){
|
||||
let lp = generate_lookup_params(m);
|
||||
self.m = lp.m;
|
||||
self.lagrange_polynomials_m = lp.lagrange_polynomials_m;
|
||||
self.domain_m = lp.domain_m;
|
||||
self.id_poly = lp.id_poly;
|
||||
}
|
||||
|
||||
|
||||
//store powers of g in a file
|
||||
pub fn store(&self, path: &str) {
|
||||
use std::io::Write;
|
||||
|
||||
//1. Powers of g
|
||||
let mut g_bytes = vec![];
|
||||
let mut f = File::create(path).expect("Unable to create file");
|
||||
let deg: u32 = self.poly_ck.powers_of_g.len().try_into().unwrap();
|
||||
let deg_bytes = deg.to_be_bytes();
|
||||
f.write_all(°_bytes).expect("Unable to write data");
|
||||
let deg32: usize = deg.try_into().unwrap();
|
||||
for i in 0..deg32
|
||||
{
|
||||
self.poly_ck.powers_of_g[i].into_projective().into_affine().serialize_uncompressed(&mut g_bytes).ok();
|
||||
}
|
||||
f.write_all(&g_bytes).expect("Unable to write data");
|
||||
|
||||
//2. Powers of gammag
|
||||
let deg_gamma: u32 = self.poly_ck.powers_of_gamma_g.len().try_into().unwrap();
|
||||
let mut gg_bytes = vec![];
|
||||
let deg_bytes = deg_gamma.to_be_bytes();
|
||||
f.write_all(°_bytes).expect("Unable to write data");
|
||||
let deg32: usize = deg.try_into().unwrap();
|
||||
for i in 0..deg32
|
||||
{
|
||||
self.poly_ck.powers_of_gamma_g[i].into_projective().into_affine().serialize_uncompressed(&mut gg_bytes).ok();
|
||||
}
|
||||
f.write_all(&gg_bytes).expect("Unable to write data");
|
||||
|
||||
|
||||
//3. Verifier key
|
||||
let mut h_bytes = vec![];
|
||||
self.poly_vk.h.serialize_uncompressed(&mut h_bytes).ok();
|
||||
self.poly_vk.beta_h.serialize_uncompressed(&mut h_bytes).ok();
|
||||
f.write_all(&h_bytes).expect("Unable to write data");
|
||||
|
||||
//4. g2 powers
|
||||
let mut g2_bytes = vec![];
|
||||
let deg2: u32 = self.g2_powers.len().try_into().unwrap();
|
||||
let deg2_bytes = deg2.to_be_bytes();
|
||||
f.write_all(°2_bytes).expect("Unable to write data");
|
||||
let deg2_32: usize = deg2.try_into().unwrap();
|
||||
for i in 0..deg2_32
|
||||
{
|
||||
self.g2_powers[i].into_projective().into_affine().serialize_uncompressed(&mut g2_bytes).ok();
|
||||
}
|
||||
f.write_all(&g2_bytes).expect("Unable to write data");
|
||||
|
||||
}
|
||||
|
||||
//load powers of g from a file
|
||||
pub fn load(path: &str)
|
||||
->(
|
||||
Powers<'static, Bls12<ark_bls12_381::Parameters> >,
|
||||
VerifierKey<Bls12<ark_bls12_381::Parameters>>,
|
||||
Vec<G2Affine>
|
||||
)
|
||||
{
|
||||
const G1_UNCOMPR_SIZE: usize =96;
|
||||
const G2_UNCOMPR_SIZE: usize =192;
|
||||
let mut data = Vec::new();
|
||||
let mut f = File::open(path).expect("Unable to open file");
|
||||
f.read_to_end(&mut data).expect("Unable to read data");
|
||||
|
||||
//1. reading g powers
|
||||
let mut cur_counter:usize = 0;
|
||||
let deg_bytes: [u8; 4] = (&data[0..4]).try_into().unwrap();
|
||||
let deg: u32 = u32::from_be_bytes(deg_bytes);
|
||||
let mut powers_of_g = vec![];
|
||||
let deg32: usize = deg.try_into().unwrap();
|
||||
cur_counter += 4;
|
||||
for i in 0..deg32
|
||||
{
|
||||
let buf_bytes = &data[cur_counter+i*G1_UNCOMPR_SIZE..cur_counter+(i+1)*G1_UNCOMPR_SIZE];
|
||||
let tmp = G1Affine::deserialize_unchecked(buf_bytes).unwrap();
|
||||
powers_of_g.push(tmp);
|
||||
}
|
||||
cur_counter+=deg32*G1_UNCOMPR_SIZE;
|
||||
|
||||
//2. reading gamma g powers
|
||||
let deg_bytes: [u8; 4] = (&data[cur_counter..cur_counter+4]).try_into().unwrap();
|
||||
let deg: u32 = u32::from_be_bytes(deg_bytes);
|
||||
let mut powers_of_gamma_g = vec![];
|
||||
let deg32: usize = deg.try_into().unwrap();
|
||||
cur_counter += 4;
|
||||
for i in 0..deg32
|
||||
{
|
||||
let buf_bytes = &data[cur_counter+i*G1_UNCOMPR_SIZE..cur_counter+(i+1)*G1_UNCOMPR_SIZE];
|
||||
let tmp = G1Affine::deserialize_unchecked(buf_bytes).unwrap();
|
||||
powers_of_gamma_g.push(tmp);
|
||||
}
|
||||
cur_counter+=deg32*G1_UNCOMPR_SIZE;
|
||||
|
||||
|
||||
|
||||
//3. reading verifier key
|
||||
let buf_bytes = &data[cur_counter..cur_counter+G2_UNCOMPR_SIZE];
|
||||
let h = G2Affine::deserialize_unchecked(buf_bytes).unwrap();
|
||||
cur_counter+= G2_UNCOMPR_SIZE;
|
||||
let buf_bytes = &data[cur_counter..cur_counter+G2_UNCOMPR_SIZE];
|
||||
let beta_h = G2Affine::deserialize_unchecked(buf_bytes).unwrap();
|
||||
cur_counter+= G2_UNCOMPR_SIZE;
|
||||
|
||||
//4. reading G2 powers
|
||||
let deg2_bytes: [u8; 4] = (&data[cur_counter..cur_counter+4]).try_into().unwrap();
|
||||
let deg2: u32 = u32::from_be_bytes(deg2_bytes);
|
||||
let mut g2_powers = vec![];
|
||||
let deg2_32: usize = deg2.try_into().unwrap();
|
||||
cur_counter += 4;
|
||||
for _ in 0..deg2_32
|
||||
{
|
||||
let buf_bytes = &data[cur_counter ..cur_counter+G2_UNCOMPR_SIZE];
|
||||
let tmp = G2Affine::deserialize_unchecked(buf_bytes).unwrap();
|
||||
g2_powers.push(tmp);
|
||||
cur_counter+=G2_UNCOMPR_SIZE;
|
||||
}
|
||||
|
||||
let vk = VerifierKey {
|
||||
g: powers_of_g[0].clone(),
|
||||
gamma_g: powers_of_gamma_g[0].clone(),
|
||||
h: h,
|
||||
beta_h: beta_h,
|
||||
prepared_h: h.into(),
|
||||
prepared_beta_h: beta_h.into(),
|
||||
};
|
||||
|
||||
let powers = Powers {
|
||||
powers_of_g: ark_std::borrow::Cow::Owned(powers_of_g),
|
||||
powers_of_gamma_g: ark_std::borrow::Cow::Owned(powers_of_gamma_g),
|
||||
};
|
||||
|
||||
(powers, vk, g2_powers)
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
// smaller set of public parameters used by verifier
|
||||
pub struct VerifierPublicParameters {
|
||||
pub poly_vk: VerifierKey<Bls12<ark_bls12_381::Parameters>>,
|
||||
pub domain_m_size: usize,
|
||||
}
|
||||
|
||||
fn generate_lookup_params(m: usize)
|
||||
->LookupParameters
|
||||
{
|
||||
let domain_m: GeneralEvaluationDomain<Fr> = GeneralEvaluationDomain::new( m.clone() ).unwrap();
|
||||
|
||||
// id_poly(X) = 1 for omega_m in range and 0 for omega_m not in range.
|
||||
let mut id_vec = Vec::new();
|
||||
for _ in 0..m.clone() {
|
||||
id_vec.push( Fr::one() );
|
||||
}
|
||||
for _ in m.clone() .. domain_m.size() {
|
||||
id_vec.push( Fr::zero() );
|
||||
}
|
||||
let id_poly = EvaluationsOnDomain::from_vec_and_domain(id_vec, domain_m).interpolate();
|
||||
let mut lagrange_polynomials_m: Vec< UniPoly381 > = Vec::new();
|
||||
|
||||
for i in 0..domain_m.size() {
|
||||
let evals: Vec<Fp256<FrParameters>> = cfg_into_iter!(0..domain_m.size())
|
||||
.map(|k| {
|
||||
if k == i { Fr::one() }
|
||||
else { Fr::zero() }
|
||||
}).collect();
|
||||
lagrange_polynomials_m.push(EvaluationsOnDomain::from_vec_and_domain(evals, domain_m).interpolate());
|
||||
}
|
||||
|
||||
return LookupParameters {
|
||||
m: m,
|
||||
lagrange_polynomials_m: lagrange_polynomials_m,
|
||||
domain_m: domain_m,
|
||||
id_poly: id_poly };
|
||||
}
|
||||
|
||||
// Reduces full srs down to smaller srs for smaller polynomials
|
||||
// Copied from arkworks library (where same function is private)
|
||||
fn trim<E: PairingEngine, P: UVPolynomial<E::Fr>>(
|
||||
srs: UniversalParams<E>,
|
||||
mut supported_degree: usize,
|
||||
) -> (Powers<'static, E>, VerifierKey<E>) {
|
||||
if supported_degree == 1 {
|
||||
supported_degree += 1;
|
||||
}
|
||||
let pp = srs.clone();
|
||||
let powers_of_g = pp.powers_of_g[..=supported_degree].to_vec();
|
||||
let powers_of_gamma_g = (0..=supported_degree)
|
||||
.map(|i| pp.powers_of_gamma_g[&i])
|
||||
.collect();
|
||||
|
||||
let powers = Powers {
|
||||
powers_of_g: ark_std::borrow::Cow::Owned(powers_of_g),
|
||||
powers_of_gamma_g: ark_std::borrow::Cow::Owned(powers_of_gamma_g),
|
||||
};
|
||||
let vk = VerifierKey {
|
||||
g: pp.powers_of_g[0],
|
||||
gamma_g: pp.powers_of_gamma_g[&0],
|
||||
h: pp.h,
|
||||
beta_h: pp.beta_h,
|
||||
prepared_h: pp.prepared_h.clone(),
|
||||
prepared_beta_h: pp.prepared_beta_h.clone(),
|
||||
};
|
||||
(powers, vk)
|
||||
}
|
||||
|
||||
|
||||
|
||||
// setup algorithm for index_hiding_polycommit
|
||||
// also includes a bunch of precomputation.
|
||||
// @max_degree max degree of table polynomial C(X), also the size of the trusted setup
|
||||
// @N domain size on which proofs are constructed. Should not be smaller than max_degree
|
||||
// @m lookup size. Can be changed later
|
||||
// @n suppl domain for the unity proofs. Should be at least 6+log N
|
||||
#[allow(non_snake_case)]
|
||||
pub fn setup_multi_lookup(max_degree: &usize, N: &usize, m: &usize, n: &usize) -> PublicParameters
|
||||
{
|
||||
|
||||
let rng = &mut ark_std::test_rng();
|
||||
|
||||
// Setup algorithm. To be replaced by output of a universal setup before being production ready.
|
||||
|
||||
|
||||
//let mut srs = KzgBls12_381::setup(4, true, rng).unwrap();
|
||||
let poly_ck: Powers<'static, Bls12<ark_bls12_381::Parameters> >;
|
||||
let poly_vk: VerifierKey<Bls12<ark_bls12_381::Parameters>>;
|
||||
let mut g2_powers: Vec<G2Affine>=Vec::new();
|
||||
|
||||
//try opening the file. If it exists load the setup from there, otherwise generate
|
||||
let path=format!("srs/srs_{}.setup",max_degree);
|
||||
let res = File::open(path.clone());
|
||||
let store_to_file:bool;
|
||||
match res{
|
||||
Ok(_)=>{
|
||||
let now = Instant::now();
|
||||
let (_poly_ck, _poly_vk, _g2_powers) = PublicParameters::load(&path);
|
||||
println!("time to load powers = {:?}", now.elapsed());
|
||||
store_to_file = false;
|
||||
g2_powers = _g2_powers;
|
||||
poly_ck = _poly_ck;
|
||||
poly_vk = _poly_vk;
|
||||
}
|
||||
Err(_)=>{
|
||||
let now = Instant::now();
|
||||
let srs = KzgBls12_381::setup(max_degree.clone(), true, rng).unwrap();
|
||||
println!("time to setup powers = {:?}", now.elapsed());
|
||||
|
||||
// trim down to size
|
||||
let (poly_ck2, poly_vk2) = trim::<Bls12_381, UniPoly381>(srs, max_degree.clone());
|
||||
poly_ck = Powers {
|
||||
powers_of_g: ark_std::borrow::Cow::Owned(poly_ck2.powers_of_g.into()),
|
||||
powers_of_gamma_g: ark_std::borrow::Cow::Owned(poly_ck2.powers_of_gamma_g.into()),
|
||||
};
|
||||
poly_vk = poly_vk2;
|
||||
|
||||
// need some powers of g2
|
||||
// arkworks setup doesn't give these powers but the setup does use a fixed randomness to generate them.
|
||||
// so we can generate powers of g2 directly.
|
||||
let rng = &mut ark_std::test_rng();
|
||||
let beta: Fp256<FrParameters> = Fr::rand(rng);
|
||||
let mut temp = poly_vk.h.clone();
|
||||
|
||||
for _ in 0..poly_ck.powers_of_g.len() {
|
||||
g2_powers.push( temp.clone() );
|
||||
temp = temp.mul( beta ).into_affine();
|
||||
}
|
||||
|
||||
store_to_file = true;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
// domain where openings {w_i}_{i in I} are embedded
|
||||
let domain_n: GeneralEvaluationDomain<Fr> = GeneralEvaluationDomain::new( n.clone() ).unwrap();
|
||||
let domain_N: GeneralEvaluationDomain<Fr> = GeneralEvaluationDomain::new( N.clone() ).unwrap();
|
||||
|
||||
|
||||
|
||||
// precomputation to speed up prover
|
||||
// lagrange_polynomials[i] = polynomial equal to 0 at w^j for j!= i and 1 at w^i
|
||||
let mut lagrange_polynomials_n: Vec< UniPoly381 > = Vec::new();
|
||||
|
||||
for i in 0..domain_n.size() {
|
||||
let evals: Vec<Fp256<FrParameters>> = cfg_into_iter!(0..domain_n.size())
|
||||
.map(|k| {
|
||||
if k == i { Fr::one() }
|
||||
else { Fr::zero() }
|
||||
}).collect();
|
||||
lagrange_polynomials_n.push(EvaluationsOnDomain::from_vec_and_domain(evals, domain_n).interpolate());
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
let lp = generate_lookup_params(m.clone());
|
||||
|
||||
let verifier_pp = VerifierPublicParameters {
|
||||
poly_vk: poly_vk.clone(),
|
||||
domain_m_size: lp.domain_m.size(),
|
||||
};
|
||||
|
||||
let pp = PublicParameters {
|
||||
poly_ck: poly_ck,
|
||||
domain_m: lp.domain_m,
|
||||
domain_n: domain_n,
|
||||
lagrange_polynomials_n: lagrange_polynomials_n,
|
||||
lagrange_polynomials_m: lp.lagrange_polynomials_m,
|
||||
id_poly: lp.id_poly,
|
||||
domain_N: domain_N,
|
||||
poly_vk: poly_vk,
|
||||
verifier_pp: verifier_pp,
|
||||
N: N.clone(),
|
||||
n: n.clone(),
|
||||
m: lp.m.clone(),
|
||||
g2_powers: g2_powers.clone()
|
||||
};
|
||||
if store_to_file
|
||||
{
|
||||
pp.store(&path);
|
||||
}
|
||||
return pp
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
#[allow(non_snake_case)]
|
||||
pub fn test_load()
|
||||
{
|
||||
let n: usize = 4;
|
||||
let N: usize = 1<<n;
|
||||
let powers_size: usize = 4*N; //SRS SIZE
|
||||
let temp_m = n; //dummy
|
||||
let pp =setup_multi_lookup(&powers_size,&N,&temp_m,&n);
|
||||
let path = "powers.log";
|
||||
pp.store(path);
|
||||
let loaded = PublicParameters::load(path);
|
||||
assert_eq!(pp.poly_ck.powers_of_g,loaded.0.powers_of_g);
|
||||
assert_eq!(pp.poly_ck.powers_of_gamma_g,loaded.0.powers_of_gamma_g);
|
||||
assert_eq!(pp.poly_vk.h,loaded.1.h);
|
||||
assert_eq!(pp.poly_vk.beta_h,loaded.1.beta_h);
|
||||
assert_eq!(pp.g2_powers,loaded.2);
|
||||
std::fs::remove_file(&path).expect("File can not be deleted");
|
||||
}
|
||||
444
caulk_multi_lookup/src/caulk_multi_unity.rs
Normal file
444
caulk_multi_lookup/src/caulk_multi_unity.rs
Normal file
@@ -0,0 +1,444 @@
|
||||
/*
|
||||
This file includes the Caulk's unity prover and verifier for multi openings.
|
||||
The protocol is described in Figure 4.
|
||||
*/
|
||||
|
||||
use ark_bls12_381::{G1Affine, FrParameters, Fr};
|
||||
use ark_ff::{Fp256};
|
||||
use ark_poly::{EvaluationDomain, UVPolynomial, Evaluations as EvaluationsOnDomain,
|
||||
univariate::DensePolynomial, Polynomial};
|
||||
use ark_std::{Zero, One};
|
||||
use ark_ec::{msm::{VariableBaseMSM}, ProjectiveCurve, AffineCurve};
|
||||
|
||||
|
||||
|
||||
use crate::caulk_multi_setup::{PublicParameters};
|
||||
use crate::tools::{UniPoly381, bipoly_commit, hash_caulk_multi, convert_to_bigints,
|
||||
kzg_open_g1_native, kzg_verify_g1_native, kzg_partial_open_g1_native, kzg_partial_verify_g1_native};
|
||||
|
||||
|
||||
// output structure of prove_unity
|
||||
pub struct ProofMultiUnity {
|
||||
pub g1_u_bar: G1Affine,
|
||||
pub g1_h_1: G1Affine,
|
||||
pub g1_h_2: G1Affine,
|
||||
pub g1_u_bar_alpha: G1Affine,
|
||||
pub g1_h_2_alpha: G1Affine,
|
||||
pub v1: Fr,
|
||||
pub v2: Fr,
|
||||
pub v3: Fr,
|
||||
pub pi_1: G1Affine,
|
||||
pub pi_2: G1Affine,
|
||||
pub pi_3: G1Affine,
|
||||
pub pi_4: G1Affine,
|
||||
pub pi_5: G1Affine,
|
||||
}
|
||||
|
||||
// Prove knowledge of vec_u_evals such that g1_u = g1^(sum_j u_j mu_j(x)) and u_j^N = 1
|
||||
#[allow(non_snake_case)]
|
||||
pub fn prove_multiunity(
|
||||
pp: &PublicParameters,
|
||||
hash_input: &mut Fr,
|
||||
g1_u: &G1Affine,
|
||||
mut vec_u_evals: Vec<Fp256<FrParameters>>,
|
||||
u_poly_quotient: UniPoly381) -> ProofMultiUnity
|
||||
{
|
||||
|
||||
// The test_rng is deterministic. Should be replaced with actual random generator.
|
||||
let rng_arkworks = &mut ark_std::test_rng();
|
||||
|
||||
// let rng_arkworks = &mut ark_std::test_rng();
|
||||
let n = pp.n;
|
||||
let deg_blinders = 11 / n ;
|
||||
let z_Vm: UniPoly381 = pp.domain_m.vanishing_polynomial().into();
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// 1. Compute polynomials u_s(X) = vec_u_polys[s] such that u_s( nu_i ) = w_i^{2^s}
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
let mut vec_u_polys: Vec<UniPoly381> = Vec::new();
|
||||
|
||||
vec_u_polys.push(
|
||||
EvaluationsOnDomain::from_vec_and_domain(vec_u_evals.clone(), pp.domain_m).interpolate()
|
||||
+ (&z_Vm * &u_poly_quotient) );
|
||||
|
||||
for _ in 1..pp.domain_n.size() {
|
||||
for i in 0..vec_u_evals.len() {
|
||||
vec_u_evals[i] = vec_u_evals[i] * vec_u_evals[i].clone();
|
||||
}
|
||||
|
||||
vec_u_polys.push(
|
||||
EvaluationsOnDomain::from_vec_and_domain(vec_u_evals.clone(), pp.domain_m).interpolate()
|
||||
+ (&z_Vm * &UniPoly381::rand(deg_blinders, rng_arkworks)) );
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// 2. Compute U_bar(X,Y) = sum_{s= 1}^n u_{s-1} rho_s(Y)
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// bivariate polynomials such that bipoly_U_bar[j] = a_j(Y) where U_bar(X,Y) = sum_j X^j a_j(Y)
|
||||
let mut bipoly_U_bar = Vec::new();
|
||||
|
||||
// vec_u_polys[0] has an extended degree because it is blinded so use vec_u_polys[1] for the length
|
||||
for j in 0..vec_u_polys[1].len() {
|
||||
|
||||
/*
|
||||
Denoting u_{s-1}(X) = sum_j u_{s-1, j} X^j then
|
||||
temp is a_j(Y) = sum_{s=1}^n u_{s-1, j} * rho_s(Y)
|
||||
*/
|
||||
let mut temp = DensePolynomial::from_coefficients_slice(&[Fr::zero()]);
|
||||
|
||||
for s in 1..n {
|
||||
|
||||
let u_s_j = DensePolynomial::from_coefficients_slice( &[vec_u_polys[s][j]] );
|
||||
temp = &temp + &(&u_s_j * &pp.lagrange_polynomials_n[s]);
|
||||
|
||||
}
|
||||
|
||||
// add a_j(X) to U_bar(X,Y)
|
||||
bipoly_U_bar.push( temp);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// 3. Hs(X) = u_{s-1}^2(X) - u_s(X)
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// id_poly(X) = 1 for omega_m in range and 0 for omega_m not in range.
|
||||
let id_poly = pp.id_poly.clone();
|
||||
|
||||
// Hs(X) = (u_{s-1}^2(X) - u_s(X)) / zVm(X). Abort if doesn't divide.
|
||||
let mut vec_H_s_polys: Vec<DensePolynomial<Fr>> = Vec::new();
|
||||
for s in 1..n {
|
||||
let (poly_H_s, remainder) = ( &( &vec_u_polys[s-1] * &vec_u_polys[s-1] ) - &vec_u_polys[s] ).divide_by_vanishing_poly(pp.domain_m).unwrap();
|
||||
assert!(remainder.is_zero());
|
||||
vec_H_s_polys.push(poly_H_s);
|
||||
}
|
||||
|
||||
// Hn(X) = u_{n-1}^2(X) - id(X) / zVm(X). Abort if doesn't divide.
|
||||
let (poly_H_s, remainder) = ( &( &vec_u_polys[n-1] * &vec_u_polys[n-1] ) - &id_poly ).divide_by_vanishing_poly(pp.domain_m).unwrap();
|
||||
assert!(remainder.is_zero());
|
||||
vec_H_s_polys.push(poly_H_s);
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// 4. h_2(X,Y) = sum_{s=1}^n rho_s(Y) H_s(X)
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// h_2[j] = a_j(Y) where h_2(X,Y) = sum_j X^j a_j(Y)
|
||||
let mut bipoly_h_2 = Vec::new();
|
||||
|
||||
// first add H_1(X) rho_1(Y)
|
||||
for j in 0..vec_H_s_polys[0].len() {
|
||||
let h_0_j = DensePolynomial::from_coefficients_slice( &[vec_H_s_polys[0][j]] );
|
||||
bipoly_h_2.push( &h_0_j * &pp.lagrange_polynomials_n[0]);
|
||||
}
|
||||
|
||||
// In case length of H_1(X) and H_2(X) is different pad with zeros.
|
||||
for _ in vec_H_s_polys[0].len()..vec_H_s_polys[1].len() {
|
||||
let h_0_j = DensePolynomial::from_coefficients_slice( &[Fr::zero()] );
|
||||
bipoly_h_2.push( h_0_j );
|
||||
}
|
||||
|
||||
// h_2(X,Y) = sum_j ( sum_s H_{s,j} * rho_s(Y) ) X^j
|
||||
for j in 0..vec_H_s_polys[1].len() {
|
||||
|
||||
// h_2[j] = sum_s H_{s,j} * rho_s(Y)
|
||||
for s in 1..n {
|
||||
let h_s_j = DensePolynomial::from_coefficients_slice( &[vec_H_s_polys[s][j]] );
|
||||
|
||||
// h_2[j] += H_{s,j} * rho_s(Y)
|
||||
bipoly_h_2[j] = &bipoly_h_2[j] + &(&h_s_j * &pp.lagrange_polynomials_n[s]);
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// 5. Commit to U_bar(X^n, X) and h_2(X^n, X)
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
let g1_u_bar = bipoly_commit( pp, &bipoly_U_bar, pp.domain_n.size());
|
||||
let g1_h_2 = bipoly_commit( pp, &bipoly_h_2, pp.domain_n.size());
|
||||
|
||||
////////////////////////////
|
||||
// 6. alpha = Hash(g1_u, g1_u_bar, g1_h_2)
|
||||
////////////////////////////
|
||||
|
||||
let alpha = hash_caulk_multi::<Fr>(
|
||||
hash_input.clone(),
|
||||
Some(& [ &g1_u, &g1_u_bar, &g1_h_2 ].to_vec() ),
|
||||
None, None );
|
||||
|
||||
*hash_input = alpha.clone();
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// 7. Compute h_1(Y)
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// poly_U_alpha = sum_{s=1}^n u_{s-1}(alpha) rho_s(Y)
|
||||
let mut poly_U_alpha = DensePolynomial::from_coefficients_slice(&[Fr::zero()]);
|
||||
|
||||
// poly_Usq_alpha = sum_{s=1}^n u_{s-1}^2(alpha) rho_s(Y)
|
||||
let mut poly_Usq_alpha = DensePolynomial::from_coefficients_slice(&[Fr::zero()]);
|
||||
|
||||
for s in 0..n {
|
||||
let u_s_alpha = vec_u_polys[s].evaluate(&alpha);
|
||||
let mut temp = DensePolynomial::from_coefficients_slice( &[ u_s_alpha ] );
|
||||
poly_U_alpha = &poly_U_alpha + &(&temp * &pp.lagrange_polynomials_n[s]);
|
||||
|
||||
temp = DensePolynomial::from_coefficients_slice( &[ u_s_alpha.clone() * &u_s_alpha ] );
|
||||
poly_Usq_alpha = &poly_Usq_alpha + &(&temp * &pp.lagrange_polynomials_n[s]);
|
||||
}
|
||||
|
||||
// divide h1(Y) = [ U^2(alpha,Y) - sum_{s=1}^n u_{s-1}^2(alpha) rho_s(Y) ) ] / zVn(Y)
|
||||
// return an error if division fails
|
||||
let (poly_h_1, remainder) = ( &(&poly_U_alpha * &poly_U_alpha) - &poly_Usq_alpha).divide_by_vanishing_poly(pp.domain_n).unwrap();
|
||||
assert!(remainder.is_zero(), "poly_h_1 does not divide");
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// 8. Commit to h_1(Y)
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
assert!( pp.poly_ck.powers_of_g.len() >= poly_h_1.len() );
|
||||
let g1_h_1 = VariableBaseMSM::multi_scalar_mul(&pp.poly_ck.powers_of_g, convert_to_bigints(&poly_h_1.coeffs).as_slice()).into_affine();
|
||||
|
||||
|
||||
////////////////////////////
|
||||
//9. beta = Hash( g1_h_1 )
|
||||
////////////////////////////
|
||||
|
||||
let beta = hash_caulk_multi::<Fr>(
|
||||
hash_input.clone(),
|
||||
Some(& [ &g1_h_1 ].to_vec() ),
|
||||
None, None );
|
||||
|
||||
*hash_input = beta.clone();
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// 10. Compute p(Y) = (U^2(alpha, beta) - h1(Y) zVn(beta) ) - (u_bar(alpha, beta sigma^(-1)) + id(alpha) rho_n(Y)) - zVm(alpha )h2(alpha,Y)
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
// p(Y) = U^2(alpha, beta)
|
||||
let u_alpha_beta = poly_U_alpha.evaluate( &beta );
|
||||
let mut poly_p = DensePolynomial::from_coefficients_slice( &[ u_alpha_beta.clone() * &u_alpha_beta ] );
|
||||
|
||||
////////////////////////////
|
||||
// p(Y) = p(Y) - ( u_bar(alpha, beta sigma) + id(alpha) rho_n(beta))
|
||||
|
||||
// u_bar_alpha_shiftbeta = u_bar(alpha, beta sigma)
|
||||
let mut u_bar_alpha_shiftbeta = Fr::zero();
|
||||
let beta_shift = beta * &pp.domain_n.element(1);
|
||||
for s in 1..n {
|
||||
let u_s_alpha = vec_u_polys[s].evaluate(&alpha);
|
||||
u_bar_alpha_shiftbeta = u_bar_alpha_shiftbeta + &(u_s_alpha * &pp.lagrange_polynomials_n[s].evaluate(&beta_shift));
|
||||
}
|
||||
|
||||
// temp = u_bar(alpha, beta sigma) + id(alpha) rho_n(beta)
|
||||
let temp = u_bar_alpha_shiftbeta + &(id_poly.evaluate(&alpha) * &pp.lagrange_polynomials_n[n-1].evaluate(&beta));
|
||||
let temp = DensePolynomial::from_coefficients_slice( &[ temp ] );
|
||||
|
||||
poly_p = &poly_p - &temp;
|
||||
|
||||
////////////////////////////
|
||||
// p(Y) = p(Y) - h1(Y) zVn(beta)
|
||||
let z_Vn: UniPoly381 = pp.domain_n.vanishing_polynomial().into();
|
||||
let temp = &DensePolynomial::from_coefficients_slice( &[ z_Vn.evaluate(&beta) ] ) * &poly_h_1;
|
||||
poly_p = &poly_p - &temp;
|
||||
|
||||
////////////////////////////
|
||||
// p(Y) = p(Y) - z_Vm(alpha) h_2(alpha, Y)
|
||||
|
||||
// poly_h_2_alpha = h_2(alpha, Y)
|
||||
let mut poly_h_2_alpha = DensePolynomial::from_coefficients_slice(&[Fr::zero()]);
|
||||
for s in 0..vec_H_s_polys.len() {
|
||||
let h_s_j = DensePolynomial::from_coefficients_slice( &[vec_H_s_polys[s].evaluate(&alpha)] );
|
||||
poly_h_2_alpha = &poly_h_2_alpha + &(&h_s_j * &pp.lagrange_polynomials_n[s]);
|
||||
}
|
||||
|
||||
let temp = &DensePolynomial::from_coefficients_slice( &[ z_Vm.evaluate(&alpha) ] ) * &poly_h_2_alpha;
|
||||
poly_p = &poly_p - &temp;
|
||||
|
||||
// check p(beta) = 0
|
||||
assert!(poly_p.evaluate(&beta) == Fr::zero());
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// 11. Open KZG commitments
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// KZG.Open( srs, u(X), deg = bot, X = alpha )
|
||||
let (evals_1, pi_1) = kzg_open_g1_native( &pp.poly_ck, &vec_u_polys[0], None, [&alpha].to_vec());
|
||||
|
||||
// KZG.Open( srs, U_bar(X,Y), deg = bot, X = alpha )
|
||||
let (g1_u_bar_alpha, pi_2, poly_u_bar_alpha) = kzg_partial_open_g1_native( &pp, &bipoly_U_bar, pp.domain_n.size(), &alpha);
|
||||
|
||||
// KZG.Open( srs, h_2(X,Y), deg = bot, X = alpha )
|
||||
let (g1_h_2_alpha, pi_3, _) = kzg_partial_open_g1_native( &pp, &bipoly_h_2, pp.domain_n.size(), &alpha);
|
||||
|
||||
// KZG.Open( srs, U_bar(alpha,Y), deg = bot, Y = [1, beta, beta * sigma] ) should evaluate to (0, v2, v3)
|
||||
let (evals_2, pi_4) = kzg_open_g1_native( &pp.poly_ck, &poly_u_bar_alpha, Some(&(pp.domain_n.size()-1)), [ &Fr::one(), &beta, &(beta * &pp.domain_n.element(1))].to_vec() );
|
||||
assert!( evals_2[0] == Fr::zero() );
|
||||
|
||||
// KZG.Open(srs, p(Y), deg = n-1, Y = beta)
|
||||
let (evals_3, pi_5) = kzg_open_g1_native( &pp.poly_ck, &poly_p, Some(&(pp.domain_n.size()-1)), [&beta].to_vec());
|
||||
assert!( evals_3[0] == Fr::zero() );
|
||||
|
||||
let proof = ProofMultiUnity {
|
||||
g1_u_bar: g1_u_bar,
|
||||
g1_h_1: g1_h_1,
|
||||
g1_h_2: g1_h_2,
|
||||
g1_u_bar_alpha: g1_u_bar_alpha,
|
||||
g1_h_2_alpha: g1_h_2_alpha,
|
||||
v1: evals_1[0],
|
||||
v2: evals_2[1],
|
||||
v3: evals_2[2],
|
||||
pi_1: pi_1,
|
||||
pi_2: pi_2,
|
||||
pi_3: pi_3,
|
||||
pi_4: pi_4,
|
||||
pi_5: pi_5,
|
||||
};
|
||||
|
||||
|
||||
|
||||
proof
|
||||
}
|
||||
|
||||
// Verify that the prover knows vec_u_evals such that g1_u = g1^(sum_j u_j mu_j(x)) and u_j^N = 1
|
||||
#[allow(non_snake_case)]
|
||||
pub fn verify_multiunity(pp: &PublicParameters, hash_input: &mut Fr,
|
||||
g1_u: G1Affine, pi_unity: &ProofMultiUnity
|
||||
) -> bool {
|
||||
|
||||
|
||||
////////////////////////////
|
||||
// alpha = Hash(g1_u, g1_u_bar, g1_h_2)
|
||||
////////////////////////////
|
||||
|
||||
let alpha = hash_caulk_multi::<Fr>(
|
||||
hash_input.clone(),
|
||||
Some(& [ &g1_u, &pi_unity.g1_u_bar, &pi_unity.g1_h_2 ].to_vec() ),
|
||||
None, None );
|
||||
|
||||
*hash_input = alpha.clone();
|
||||
|
||||
////////////////////////////
|
||||
// beta = Hash( g1_h_1 )
|
||||
////////////////////////////
|
||||
let beta = hash_caulk_multi::<Fr>(
|
||||
hash_input.clone(),
|
||||
Some(& [ &pi_unity.g1_h_1 ].to_vec() ),
|
||||
None, None );
|
||||
|
||||
*hash_input = beta.clone();
|
||||
|
||||
/////////////////////////////
|
||||
// Compute [P]_1
|
||||
////////////////////////////
|
||||
|
||||
let u_alpha_beta = pi_unity.v1 * &pp.lagrange_polynomials_n[0].evaluate( &beta ) + &pi_unity.v2;
|
||||
|
||||
|
||||
// g1_P = [ U^2 - (v3 + id(alpha)* pn(beta) )]_1
|
||||
let mut g1_P = pp.poly_ck.powers_of_g[0].mul( u_alpha_beta * &u_alpha_beta
|
||||
- &(pi_unity.v3
|
||||
+ &(pp.id_poly.evaluate( &alpha ) * &pp.lagrange_polynomials_n[pp.n - 1].evaluate( &beta )
|
||||
) ) );
|
||||
|
||||
// g1_P = g1_P - h1 zVn(beta)
|
||||
let zVn = pp.domain_n.vanishing_polynomial();
|
||||
g1_P = g1_P - &(pi_unity.g1_h_1.mul( zVn.evaluate(&beta)) ) ;
|
||||
|
||||
// g1_P = g1_P - h2_alpha zVm(alpha)
|
||||
let zVm = pp.domain_m.vanishing_polynomial();
|
||||
g1_P = g1_P - &(pi_unity.g1_h_2_alpha.mul( zVm.evaluate(&alpha)) ) ;
|
||||
|
||||
/////////////////////////////
|
||||
// Check the KZG openings
|
||||
////////////////////////////
|
||||
|
||||
let check1 = kzg_verify_g1_native( &pp, g1_u.clone(), None, [alpha].to_vec(), [pi_unity.v1].to_vec(), pi_unity.pi_1 );
|
||||
let check2 = kzg_partial_verify_g1_native( &pp, pi_unity.g1_u_bar, pp.domain_n.size(), alpha, pi_unity.g1_u_bar_alpha, pi_unity.pi_2 );
|
||||
let check3 = kzg_partial_verify_g1_native( &pp, pi_unity.g1_h_2, pp.domain_n.size(), alpha, pi_unity.g1_h_2_alpha, pi_unity.pi_3 );
|
||||
let check4 = kzg_verify_g1_native( &pp,
|
||||
pi_unity.g1_u_bar_alpha,
|
||||
Some( &(pp.domain_n.size() - 1) ),
|
||||
[Fr::one(), beta, beta * &pp.domain_n.element(1)].to_vec(),
|
||||
[Fr::zero(),pi_unity.v2, pi_unity.v3].to_vec(),
|
||||
pi_unity.pi_4 );
|
||||
let check5 = kzg_verify_g1_native( &pp, g1_P.into_affine(), Some( &(pp.domain_n.size() - 1) ), [beta].to_vec(), [Fr::zero()].to_vec(), pi_unity.pi_5 );
|
||||
|
||||
|
||||
return check1 && check2 && check3 && check4 && check5
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
#[cfg(test)]
|
||||
pub mod tests {
|
||||
use std::time::{Instant};
|
||||
use crate::caulk_multi_setup::{setup_multi_lookup};
|
||||
use crate::caulk_multi_unity::{prove_multiunity,verify_multiunity};
|
||||
use crate::tools::{UniPoly381,convert_to_bigints};
|
||||
use rand::Rng;
|
||||
|
||||
use ark_poly::{EvaluationDomain,Evaluations as EvaluationsOnDomain,UVPolynomial};
|
||||
use ark_ff::Fp256;
|
||||
use ark_bls12_381::{ FrParameters};
|
||||
use ark_ec::{msm::{VariableBaseMSM}, ProjectiveCurve};
|
||||
|
||||
//#[test]
|
||||
#[allow(non_snake_case)]
|
||||
#[test]
|
||||
pub fn test_unity() {
|
||||
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
let n: usize =8;//bitlength of poly degree
|
||||
let max_degree: usize = (1<<n) +2;
|
||||
let N: usize = (1<<n)-1;
|
||||
|
||||
let m_bitsize: usize = 3;
|
||||
let m: usize = (1<<m_bitsize)-1;
|
||||
|
||||
// run the setup
|
||||
let now = Instant::now();
|
||||
let pp = setup_multi_lookup(&max_degree, &N, &m, &n);
|
||||
println!("time to setup single openings of table size {:?} = {:?}", N + 1, now.elapsed());
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// generating values for testing
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// choose [u1, ..., um] such that uj**N = 1
|
||||
let mut vec_u_evals: Vec<Fp256<FrParameters>> = Vec::new();
|
||||
for _ in 0..m {
|
||||
let j = rng.gen_range(0,pp.domain_N.size());
|
||||
vec_u_evals.push( pp.domain_N.element(j) );
|
||||
}
|
||||
|
||||
// choose random quotient polynomial of degree 1.
|
||||
let rng_arkworks = &mut ark_std::test_rng();
|
||||
let u_poly_quotient = UniPoly381::rand(5, rng_arkworks);
|
||||
|
||||
// X^m - 1
|
||||
let z_Vm: UniPoly381 = pp.domain_m.vanishing_polynomial().into();
|
||||
|
||||
//commit to polynomial u(X) = sum_j uj muj(X) + u_quotient(X) z_Vm(X)
|
||||
let u_poly = &EvaluationsOnDomain::from_vec_and_domain(vec_u_evals.clone(), pp.domain_m)
|
||||
.interpolate() + &(&u_poly_quotient * &z_Vm);
|
||||
|
||||
assert!( pp.poly_ck.powers_of_g.len() >= u_poly.len() );
|
||||
let g1_u = VariableBaseMSM::multi_scalar_mul(&pp.poly_ck.powers_of_g, convert_to_bigints(&u_poly.coeffs).as_slice()).into_affine();
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// run the prover
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
let pi_unity = prove_multiunity( &pp, &g1_u, vec_u_evals.clone(), u_poly_quotient );
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
// run the verifier
|
||||
////////////////////////////////////////////////////////////////////////////////////
|
||||
println!( "unity proof verifies {:?}", verify_multiunity( &pp, g1_u, pi_unity ) );
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
120
caulk_multi_lookup/src/main.rs
Normal file
120
caulk_multi_lookup/src/main.rs
Normal file
@@ -0,0 +1,120 @@
|
||||
mod caulk_multi_setup;
|
||||
mod caulk_multi_unity;
|
||||
mod tools;
|
||||
mod caulk_multi_lookup;
|
||||
mod multiopen;
|
||||
|
||||
use crate::tools::{read_line, KzgBls12_381, random_field};
|
||||
use crate::caulk_multi_setup::setup_multi_lookup;
|
||||
use crate::caulk_multi_lookup::{LookupProverInput, LookupInstance,
|
||||
get_poly_and_g2_openings,
|
||||
compute_lookup_proof, verify_lookup_proof};
|
||||
|
||||
use ark_poly_commit::{Polynomial, UVPolynomial};
|
||||
use ark_bls12_381::{Fr, FrParameters};
|
||||
use ark_ff::Fp256;
|
||||
use ark_std::time::Instant;
|
||||
use ark_poly::{EvaluationDomain, univariate::DensePolynomial};
|
||||
|
||||
use std::cmp::max;
|
||||
use rand::Rng;
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
fn main() {
|
||||
|
||||
//1. Setup
|
||||
// setting public parameters
|
||||
// current kzg setup should be changed with output from a setup ceremony
|
||||
println!("What is the bitsize of the degree of the polynomial inside the commitment? ");
|
||||
let n: usize = read_line();
|
||||
println!("How many positions m do you want to open the polynomial at? ");
|
||||
let m: usize = read_line();
|
||||
|
||||
|
||||
let N: usize = 1 << n;
|
||||
let powers_size: usize = max( N + 2, 1024 ) ;
|
||||
let actual_degree = N - 1;
|
||||
let temp_m = n; //dummy
|
||||
|
||||
let now = Instant::now();
|
||||
let mut pp =setup_multi_lookup(&powers_size, &N, &temp_m, &n);
|
||||
println!("Time to setup multi openings of table size {:?} = {:?}", actual_degree + 1, now.elapsed());
|
||||
|
||||
//2. Poly and openings
|
||||
let now = Instant::now();
|
||||
let table=get_poly_and_g2_openings(&pp, actual_degree);
|
||||
println!("Time to generate commitment table = {:?}", now.elapsed());
|
||||
|
||||
//3. Setup
|
||||
|
||||
|
||||
|
||||
pp.regenerate_lookup_params(m);
|
||||
|
||||
//4. Positions
|
||||
let mut rng = rand::thread_rng();
|
||||
let mut positions: Vec<usize> = vec![];
|
||||
for _ in 0..m { //generate positions randomly in the set
|
||||
//let i_j: usize = j*(actual_degree/m);
|
||||
let i_j: usize = rng.gen_range(0,actual_degree);
|
||||
positions.push(i_j);
|
||||
};
|
||||
|
||||
println!("positions = {:?}", positions);
|
||||
|
||||
//5. generating phi
|
||||
let blinder: Fp256<FrParameters> = random_field::<Fr>();
|
||||
let a_m = DensePolynomial::from_coefficients_slice(&[blinder]);
|
||||
let mut phi_poly = a_m.mul_by_vanishing_poly(pp.domain_m);
|
||||
let c_poly_local = table.c_poly.clone();
|
||||
|
||||
for j in 0..m
|
||||
{
|
||||
phi_poly = &phi_poly +
|
||||
&(&pp.lagrange_polynomials_m[j]
|
||||
* c_poly_local.evaluate(&pp.domain_N.element(positions[j]))); //adding c(w^{i_j})*mu_j(X)
|
||||
}
|
||||
|
||||
for j in m..pp.domain_m.size()
|
||||
{
|
||||
phi_poly = &phi_poly +
|
||||
&(&pp.lagrange_polynomials_m[j]
|
||||
* c_poly_local.evaluate( &pp.domain_N.element(0) ) ); //adding c(w^{i_j})*mu_j(X)
|
||||
}
|
||||
|
||||
//6. Running proofs
|
||||
let now = Instant::now();
|
||||
let (c_com, _) = KzgBls12_381::commit(&pp.poly_ck, &table.c_poly, None, None).unwrap();
|
||||
let (phi_com, _) = KzgBls12_381::commit(&pp.poly_ck, &phi_poly, None, None).unwrap();
|
||||
println!("Time to generate inputs = {:?}", now.elapsed());
|
||||
|
||||
let lookup_instance = LookupInstance{
|
||||
c_com: c_com.0.clone(),
|
||||
phi_com: phi_com.0.clone(),
|
||||
};
|
||||
|
||||
let prover_input = LookupProverInput{
|
||||
c_poly: table.c_poly.clone(),
|
||||
phi_poly:phi_poly,
|
||||
positions: positions,
|
||||
openings: table.openings.clone()};
|
||||
|
||||
println!("We are now ready to run the prover. How many times should we run it?" );
|
||||
let number_of_openings: usize = read_line();
|
||||
let now = Instant::now();
|
||||
let (proof, unity_proof) = compute_lookup_proof(&lookup_instance, &prover_input,&pp);
|
||||
for _ in 1..number_of_openings {
|
||||
_ = compute_lookup_proof(&lookup_instance, &prover_input,&pp);
|
||||
}
|
||||
println!("Time to evaluate {} times {} multi-openings of table size {:?} = {:?} ", number_of_openings, m, N, now.elapsed());
|
||||
|
||||
let now = Instant::now();
|
||||
for _ in 0..number_of_openings {
|
||||
verify_lookup_proof(table.c_com, phi_com.0, &proof, &unity_proof, &pp);
|
||||
}
|
||||
println!("Time to verify {} times {} multi-openings of table size {:?} = {:?} ", number_of_openings, m, N, now.elapsed());
|
||||
|
||||
|
||||
assert!(verify_lookup_proof(table.c_com, phi_com.0, &proof, &unity_proof, &pp), "Result does not verify");
|
||||
|
||||
}
|
||||
449
caulk_multi_lookup/src/multiopen.rs
Normal file
449
caulk_multi_lookup/src/multiopen.rs
Normal file
@@ -0,0 +1,449 @@
|
||||
/*
|
||||
This file includes an algorithm for calculating n openings of a KZG vector commitment of size n in n log(n) time.
|
||||
The algorithm is by Feist and khovratovich.
|
||||
It is useful for preprocessing.
|
||||
The full algorithm is described here https://github.com/khovratovich/Kate/blob/master/Kate_amortized.pdf
|
||||
*/
|
||||
|
||||
use std::str::FromStr;
|
||||
//use std::time::{Instant};
|
||||
use std::vec::Vec;
|
||||
|
||||
|
||||
use ark_ff::{PrimeField, Fp256, Field};
|
||||
use ark_poly::{univariate::DensePolynomial,EvaluationDomain, GeneralEvaluationDomain, UVPolynomial};
|
||||
use ark_ec::{AffineCurve,ProjectiveCurve};
|
||||
use ark_bls12_381::{Fr,FrParameters, G2Affine,G2Projective};
|
||||
|
||||
|
||||
|
||||
|
||||
pub fn compute_h_opt_g2(
|
||||
c_poly: &DensePolynomial<Fp256<FrParameters>>, //c(X) degree up to d<2^p , i.e. c_poly has at most d+1 coeffs non-zero
|
||||
g2powers: &Vec<G2Affine>, //SRS
|
||||
p: usize
|
||||
)->Vec<G2Projective>
|
||||
{
|
||||
let mut coeffs = c_poly.coeffs().to_vec();
|
||||
let dom_size = 1<<p;
|
||||
let fpzero = Fp256::from_str("0").unwrap();
|
||||
coeffs.resize(dom_size,fpzero);
|
||||
|
||||
|
||||
//let now = Instant::now();
|
||||
//1. x_ext = [[x^(d-1)], [x^{d-2},...,[x],[1], d+2 [0]'s]
|
||||
let mut x_ext = vec![];
|
||||
for i in 0..=dom_size-2{
|
||||
x_ext.push( g2powers[dom_size-2-i].into_projective());
|
||||
}
|
||||
let g1inf = g2powers[0].mul(fpzero);
|
||||
x_ext.resize(2*dom_size,g1inf); //filling 2d+2 neutral elements
|
||||
|
||||
let y = dft_g2_opt(&x_ext, p+1);
|
||||
//println!("Step 1 computed in {:?}", now.elapsed());
|
||||
|
||||
//2. c_ext = [c_d, d zeroes, c_d,c_{0},c_1,...,c_{d-2},c_{d-1}]
|
||||
//let now = Instant::now();
|
||||
let mut c_ext = vec![];
|
||||
c_ext.push(coeffs[coeffs.len()-1]);
|
||||
c_ext.resize(dom_size,fpzero);
|
||||
c_ext.push(coeffs[coeffs.len()-1]);
|
||||
for i in 0..coeffs.len()-1{
|
||||
c_ext.push(coeffs[i]);
|
||||
}
|
||||
assert_eq!(c_ext.len(),2*dom_size);
|
||||
let v = dft_opt(&c_ext, p+1);
|
||||
//println!("Step 2 computed in {:?}", now.elapsed());
|
||||
|
||||
//3. u = y o v
|
||||
|
||||
//let now = Instant::now();
|
||||
let u = y.into_iter()
|
||||
.zip(v.into_iter())
|
||||
.map(|(a,b)|{a.mul(b.into_repr())})
|
||||
.collect();
|
||||
// println!("Step 3 computed in {:?}", now.elapsed());
|
||||
|
||||
//4. h_ext = idft_{2d+2}(u)
|
||||
//let now = Instant::now();
|
||||
let h_ext = idft_g2_opt(&u, p+1);
|
||||
//println!("Step 4 computed in {:?}", now.elapsed());
|
||||
|
||||
return h_ext[0..dom_size].to_vec();
|
||||
}
|
||||
|
||||
//compute dft of size @dom_size over vector of G1 elements
|
||||
//q_i = h_0 + h_1w^i + h_2w^{2i}+\cdots + h_{dom_size-1}w^{(dom_size-1)i} for 0<= i< dom_size=2^p
|
||||
pub fn dft_g2_opt(
|
||||
h: &Vec<G2Projective>,
|
||||
p: usize
|
||||
)->Vec<G2Projective>
|
||||
{
|
||||
let dom_size = 1<<p;
|
||||
assert_eq!(h.len(),dom_size); //we do not support inputs of size not power of 2
|
||||
let input_domain: GeneralEvaluationDomain<Fr> = EvaluationDomain::new(dom_size).unwrap();
|
||||
let mut l = dom_size/2;
|
||||
let mut m: usize=1;
|
||||
//Stockham FFT
|
||||
let mut xprev = h.to_vec();
|
||||
for _ in 1..=p{
|
||||
let mut xnext= vec![];
|
||||
xnext.resize(xprev.len(),h[0]);
|
||||
for j in 0..l{
|
||||
for k in 0..m{
|
||||
let c0 = xprev[k+j*m].clone();
|
||||
let c1 = &xprev[k+j*m+l*m];
|
||||
xnext[k+2*j*m] = c0+c1;
|
||||
let wj_2l=input_domain.element((j*dom_size/(2*l))%dom_size);
|
||||
xnext[k+2*j*m+m]= (c0-c1).mul(wj_2l.into_repr());
|
||||
}
|
||||
}
|
||||
l = l/2;
|
||||
m = m*2;
|
||||
xprev = xnext;
|
||||
}
|
||||
return xprev;
|
||||
}
|
||||
|
||||
|
||||
//compute dft of size @dom_size over vector of Fr elements
|
||||
//q_i = h_0 + h_1w^i + h_2w^{2i}+\cdots + h_{dom_size-1}w^{(dom_size-1)i} for 0<= i< dom_size=2^p
|
||||
pub fn dft_opt(
|
||||
h: &Vec<Fr>,
|
||||
p: usize
|
||||
)->Vec<Fr>
|
||||
{
|
||||
let dom_size = 1<<p;
|
||||
assert_eq!(h.len(),dom_size); //we do not support inputs of size not power of 2
|
||||
let input_domain: GeneralEvaluationDomain<Fr> = EvaluationDomain::new(dom_size).unwrap();
|
||||
let mut l = dom_size/2;
|
||||
let mut m: usize=1;
|
||||
//Stockham FFT
|
||||
let mut xprev = h.to_vec();
|
||||
for _ in 1..=p{
|
||||
let mut xnext= vec![];
|
||||
xnext.resize(xprev.len(),h[0]);
|
||||
for j in 0..l{
|
||||
for k in 0..m{
|
||||
let c0 = xprev[k+j*m].clone();
|
||||
let c1 = &xprev[k+j*m+l*m];
|
||||
xnext[k+2*j*m] = c0+c1;
|
||||
let wj_2l=input_domain.element((j*dom_size/(2*l))%dom_size);
|
||||
xnext[k+2*j*m+m]= (c0-c1)*(wj_2l);
|
||||
}
|
||||
}
|
||||
l = l/2;
|
||||
m = m*2;
|
||||
xprev = xnext;
|
||||
}
|
||||
return xprev;
|
||||
}
|
||||
|
||||
|
||||
//compute idft of size @dom_size over vector of G1 elements
|
||||
//q_i = (h_0 + h_1w^-i + h_2w^{-2i}+\cdots + h_{dom_size-1}w^{-(dom_size-1)i})/dom_size for 0<= i< dom_size=2^p
|
||||
pub fn idft_g2_opt(
|
||||
h: &Vec<G2Projective>,
|
||||
p: usize
|
||||
)->Vec<G2Projective>
|
||||
{
|
||||
let dom_size = 1<<p;
|
||||
assert_eq!(h.len(),dom_size); //we do not support inputs of size not power of 2
|
||||
let input_domain: GeneralEvaluationDomain<Fr> = EvaluationDomain::new(dom_size).unwrap();
|
||||
let mut l = dom_size/2;
|
||||
let mut m: usize=1;
|
||||
let mut dom_fr = Fr::from_str("1").unwrap();
|
||||
//Stockham FFT
|
||||
let mut xprev = h.to_vec();
|
||||
for _ in 1..=p{
|
||||
let mut xnext= vec![];
|
||||
xnext.resize(xprev.len(),h[0]);
|
||||
for j in 0..l{
|
||||
for k in 0..m{
|
||||
let c0 = xprev[k+j*m].clone();
|
||||
let c1 = &xprev[k+j*m+l*m];
|
||||
xnext[k+2*j*m] = c0+c1;
|
||||
let wj_2l=input_domain.element((dom_size-(j*dom_size/(2*l))%dom_size)%dom_size);
|
||||
xnext[k+2*j*m+m]= (c0-c1).mul(wj_2l.into_repr()); //Difference #1 to forward dft
|
||||
}
|
||||
}
|
||||
l = l/2;
|
||||
m = m*2;
|
||||
dom_fr = dom_fr+dom_fr;
|
||||
xprev=xnext;
|
||||
}
|
||||
let res = xprev
|
||||
.iter()
|
||||
.map(|x|{x
|
||||
.mul(dom_fr
|
||||
.inverse()
|
||||
.unwrap().into_repr())})
|
||||
.collect();
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
|
||||
//compute all openings to c_poly using a smart formula
|
||||
pub fn multiple_open_g2(
|
||||
g2powers: &Vec<G2Affine>, //SRS
|
||||
c_poly: &DensePolynomial<Fp256<FrParameters>>, //c(X)
|
||||
p: usize
|
||||
)->Vec<G2Affine>
|
||||
{
|
||||
let degree=c_poly.coeffs.len()-1;
|
||||
let input_domain: GeneralEvaluationDomain<Fr> = EvaluationDomain::new(degree).unwrap();
|
||||
|
||||
//let now = Instant::now();
|
||||
let h2 = compute_h_opt_g2(c_poly,g2powers,p);
|
||||
//println!("H2 computed in {:?}", now.elapsed());
|
||||
//assert_eq!(h,h2);
|
||||
|
||||
let dom_size = input_domain.size();
|
||||
assert_eq!(1<<p,dom_size);
|
||||
assert_eq!(degree+1,dom_size);
|
||||
/*let now = Instant::now();
|
||||
let q = dftG1(&h,p);
|
||||
println!("Q computed in {:?}", now.elapsed());*/
|
||||
|
||||
//let now = Instant::now();
|
||||
let q2 = dft_g2_opt(&h2,p);
|
||||
//println!("Q2 computed in {:?}", now.elapsed());
|
||||
//assert_eq!(q,q2);
|
||||
|
||||
let mut res: Vec<G2Affine> = vec![];
|
||||
for i in 0..dom_size{
|
||||
res.push(q2[i].into_affine());
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
#[cfg(test)]
|
||||
pub mod tests {
|
||||
|
||||
|
||||
use std::{time::{Instant}};
|
||||
|
||||
use ark_poly_commit::kzg10::*;
|
||||
use ark_bls12_381::{Bls12_381,G1Affine,G1Projective};
|
||||
use ark_ff::{Fp256};
|
||||
use ark_ec::{AffineCurve,ProjectiveCurve};
|
||||
use ark_poly_commit::UVPolynomial;
|
||||
use ark_poly::EvaluationDomain;
|
||||
use ark_poly::univariate::DensePolynomial;
|
||||
use ark_std::{One};
|
||||
|
||||
use crate::tools::{KzgBls12_381, UniPoly381, kzg_open_g1,kzg_commit_g2};
|
||||
use crate::caulk_multi_setup::{setup_multi_lookup, PublicParameters};
|
||||
use crate::multiopen::*;
|
||||
|
||||
pub fn commit_direct(
|
||||
c_poly: &DensePolynomial<Fp256<FrParameters>>, //c(X)
|
||||
poly_ck: &Powers<Bls12_381>, //SRS
|
||||
)-> G1Affine
|
||||
{
|
||||
assert!(c_poly.coeffs.len()<=poly_ck.powers_of_g.len());
|
||||
let mut com = poly_ck.powers_of_g[0].mul(c_poly.coeffs[0]);
|
||||
for i in 1..c_poly.coeffs.len()
|
||||
{
|
||||
com = com + poly_ck.powers_of_g[i].mul(c_poly.coeffs[i]);
|
||||
}
|
||||
return com.into_affine();
|
||||
}
|
||||
|
||||
//compute dft of size @dom_size over vector of G1 elements
|
||||
//q_i = h_0 + h_1w^i + h_2w^{2i}+\cdots + h_{dom_size-1}w^{(dom_size-1)i} for 0<= i< dom_size=2^p
|
||||
#[allow(dead_code)]
|
||||
pub fn dft_g1_opt(
|
||||
h: &Vec<G1Projective>,
|
||||
p: usize
|
||||
)->Vec<G1Projective>
|
||||
{
|
||||
let dom_size = 1<<p;
|
||||
assert_eq!(h.len(),dom_size); //we do not support inputs of size not power of 2
|
||||
let input_domain: GeneralEvaluationDomain<Fr> = EvaluationDomain::new(dom_size).unwrap();
|
||||
let mut l = dom_size/2;
|
||||
let mut m: usize=1;
|
||||
//Stockham FFT
|
||||
let mut xprev = h.to_vec();
|
||||
for _ in 1..=p{
|
||||
let mut xnext= vec![];
|
||||
xnext.resize(xprev.len(),h[0]);
|
||||
for j in 0..l{
|
||||
for k in 0..m{
|
||||
let c0 = xprev[k+j*m].clone();
|
||||
let c1 = &xprev[k+j*m+l*m];
|
||||
xnext[k+2*j*m] = c0+c1;
|
||||
let wj_2l=input_domain.element((j*dom_size/(2*l))%dom_size);
|
||||
xnext[k+2*j*m+m]= (c0-c1).mul(wj_2l.into_repr());
|
||||
}
|
||||
}
|
||||
l = l/2;
|
||||
m = m*2;
|
||||
xprev = xnext;
|
||||
}
|
||||
return xprev;
|
||||
}
|
||||
|
||||
//compute idft of size @dom_size over vector of G1 elements
|
||||
//q_i = (h_0 + h_1w^-i + h_2w^{-2i}+\cdots + h_{dom_size-1}w^{-(dom_size-1)i})/dom_size for 0<= i< dom_size=2^p
|
||||
#[allow(dead_code)]
|
||||
pub fn idft_g1_opt(
|
||||
h: &Vec<G1Projective>,
|
||||
p: usize
|
||||
)->Vec<G1Projective>
|
||||
{
|
||||
let dom_size = 1<<p;
|
||||
assert_eq!(h.len(),dom_size); //we do not support inputs of size not power of 2
|
||||
let input_domain: GeneralEvaluationDomain<Fr> = EvaluationDomain::new(dom_size).unwrap();
|
||||
let mut l = dom_size/2;
|
||||
let mut m: usize=1;
|
||||
let mut dom_fr = Fr::from_str("1").unwrap();
|
||||
//Stockham FFT
|
||||
let mut xprev = h.to_vec();
|
||||
for _ in 1..=p{
|
||||
let mut xnext= vec![];
|
||||
xnext.resize(xprev.len(),h[0]);
|
||||
for j in 0..l{
|
||||
for k in 0..m{
|
||||
let c0 = xprev[k+j*m].clone();
|
||||
let c1 = &xprev[k+j*m+l*m];
|
||||
xnext[k+2*j*m] = c0+c1;
|
||||
let wj_2l=input_domain.element((dom_size-(j*dom_size/(2*l))%dom_size)%dom_size);
|
||||
xnext[k+2*j*m+m]= (c0-c1).mul(wj_2l.into_repr()); //Difference #1 to forward dft
|
||||
}
|
||||
}
|
||||
l = l/2;
|
||||
m = m*2;
|
||||
dom_fr = dom_fr+dom_fr;
|
||||
xprev = xnext;
|
||||
}
|
||||
let res = xprev
|
||||
.iter()
|
||||
.map(|x|{x
|
||||
.mul(dom_fr
|
||||
.inverse()
|
||||
.unwrap().into_repr())})
|
||||
.collect();
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
//compute all openings to c_poly by mere calling `open` N times
|
||||
#[allow(dead_code)]
|
||||
pub fn multiple_open_naive(
|
||||
c_poly: &DensePolynomial<Fp256<FrParameters>>,
|
||||
c_com_open: &Randomness< Fp256<FrParameters>, DensePolynomial<Fp256<FrParameters>> >,
|
||||
poly_ck: &Powers<Bls12_381>,
|
||||
degree: usize
|
||||
)
|
||||
->Vec<G1Affine>
|
||||
{
|
||||
let input_domain: GeneralEvaluationDomain<Fr> = EvaluationDomain::new(degree).unwrap();
|
||||
let mut res: Vec<G1Affine> = vec![];
|
||||
for i in 0..input_domain.size(){
|
||||
let omega_i = input_domain.element(i);
|
||||
res.push( kzg_open_g1(&c_poly, &omega_i, &c_com_open, &poly_ck).w);
|
||||
}
|
||||
return res;
|
||||
|
||||
}
|
||||
|
||||
|
||||
//compute all openings to c_poly by mere calling `open` N times
|
||||
pub fn multiple_open_naive_g2(
|
||||
c_poly: &DensePolynomial<Fp256<FrParameters>>,
|
||||
srs: &PublicParameters,
|
||||
degree: usize
|
||||
)
|
||||
->Vec<G2Affine>
|
||||
{
|
||||
let input_domain: GeneralEvaluationDomain<Fr> = EvaluationDomain::new(degree).unwrap();
|
||||
let mut res: Vec<G2Affine> = vec![];
|
||||
for i in 0..input_domain.size(){
|
||||
let omega_i = input_domain.element(i);
|
||||
res.push( kzg_open_g2(&c_poly, &omega_i,srs));
|
||||
}
|
||||
return res;
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
pub fn kzg_open_g2(
|
||||
p: &DensePolynomial<Fp256<FrParameters>>,
|
||||
x: &Fp256<FrParameters>, //point
|
||||
srs: &PublicParameters
|
||||
) -> G2Affine {
|
||||
|
||||
let tmp = DensePolynomial::from_coefficients_slice(&[Fr::one()]);
|
||||
let (_tmp_com, tmp_com_open) = KzgBls12_381::commit(&srs.poly_ck, &tmp, None, None).unwrap();
|
||||
let (witness_polynomial, _random_witness_polynomial) =
|
||||
KzgBls12_381::compute_witness_polynomial(p, x.clone(), &tmp_com_open).unwrap();
|
||||
|
||||
return kzg_commit_g2(&witness_polynomial, srs);
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
#[test]
|
||||
pub fn test_commit()
|
||||
{
|
||||
// current kzg setup should be changed with output from a setup ceremony
|
||||
let p: usize =8;//bitlength of poly degree
|
||||
let max_degree: usize = (1<<p) +2;
|
||||
let actual_degree: usize = (1<<p)-1;
|
||||
let m: usize = 1<<(p/2);
|
||||
let N: usize = 1<<p;
|
||||
let pp =setup_multi_lookup(&max_degree,&N,&m,&p);
|
||||
|
||||
// Setting up test instance to run evaluate on.
|
||||
// test randomness for c_poly is same everytime.
|
||||
// g_c = g^(c(x))
|
||||
let rng = &mut ark_std::test_rng();
|
||||
let c_poly = UniPoly381::rand(actual_degree, rng);
|
||||
let (c_com, _) = KzgBls12_381::commit( &pp.poly_ck, &c_poly, None, None).unwrap();
|
||||
let g_c1 = c_com.0;
|
||||
|
||||
let g_c2 = commit_direct(&c_poly, &pp.poly_ck);
|
||||
assert_eq!(g_c1,g_c2);
|
||||
println!("commit test passed")
|
||||
}
|
||||
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
#[test]
|
||||
pub fn test_multi_g2()
|
||||
{
|
||||
// current kzg setup should be changed with output from a setup ceremony
|
||||
let p: usize =6;//bitlength of poly degree
|
||||
let max_degree: usize = (1<<p) +2;
|
||||
let actual_degree: usize = (1<<p)-1;
|
||||
let m: usize = 1<<(p/2);
|
||||
let N: usize = 1<<p;
|
||||
let pp =setup_multi_lookup(&max_degree,&N,&m,&p);
|
||||
|
||||
// Setting up test instance to run evaluate on.
|
||||
// test randomness for c_poly is same everytime.
|
||||
// test index equals 5 everytime
|
||||
// g_c = g^(c(x))
|
||||
let rng = &mut ark_std::test_rng();
|
||||
let c_poly = UniPoly381::rand(actual_degree, rng);
|
||||
|
||||
|
||||
let now = Instant::now();
|
||||
let q = multiple_open_naive_g2(&c_poly,&pp,actual_degree);
|
||||
println!("Multi naive computed in {:?}", now.elapsed());
|
||||
|
||||
|
||||
let now = Instant::now();
|
||||
let q2 = multiple_open_g2(&pp.g2_powers,&c_poly,p);
|
||||
println!("Multi advanced computed in {:?}", now.elapsed());
|
||||
assert_eq!(q,q2);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
640
caulk_multi_lookup/src/tools.rs
Normal file
640
caulk_multi_lookup/src/tools.rs
Normal file
@@ -0,0 +1,640 @@
|
||||
/*
|
||||
This file includes backend tools:
|
||||
(1) read_line() is for taking inputs from the user
|
||||
(2) bipoly_commit commits to bivariate polynomials
|
||||
(3) hash_caulk_single is for hashing group and field elements into a field element
|
||||
(4) random_field is for generating random field elements
|
||||
(5) convert_to_bigints is for formatting inputs into multiscalar operations
|
||||
(6) kzg_open_g1_native is for opening KZG commitments
|
||||
(7) kzg_partial_open_g1_native is for partially opening bivariate commitments to univariate commitments
|
||||
(8) kzg_verify_g1_native is for verifying KZG commitments
|
||||
(9) kzg_partial_open_g1_native is for partially verifying bivariate commitments to univariate commitments
|
||||
(10) generate_lagrange_polynomials_subset is for generating lagrange polynomials over a subset that is not roots of unity.
|
||||
(11) aggregate_kzg_proofs_g2 is for aggregating KZG proofs
|
||||
*/
|
||||
|
||||
use ark_bls12_381::{Bls12_381, FrParameters, G1Affine, G2Affine, G1Projective, G2Projective, Fr};
|
||||
use ark_ff::{PrimeField, Fp256, Field};
|
||||
use ark_std::{One};
|
||||
use ark_poly_commit::kzg10::*;
|
||||
use ark_poly::{univariate::DensePolynomial as DensePoly, UVPolynomial, Polynomial,
|
||||
GeneralEvaluationDomain, EvaluationDomain};
|
||||
use ark_ec::{PairingEngine, msm::VariableBaseMSM, ProjectiveCurve, AffineCurve};
|
||||
use ark_std::Zero;
|
||||
use ark_serialize::CanonicalSerialize;
|
||||
|
||||
use blake2s_simd::Params;
|
||||
use rand::{Rng, SeedableRng, thread_rng};
|
||||
use rand_chacha::ChaChaRng;
|
||||
use std::{io, str::FromStr, error::Error};
|
||||
|
||||
|
||||
use crate::caulk_multi_setup::{PublicParameters};
|
||||
|
||||
pub type UniPoly381 = DensePoly<<Bls12_381 as PairingEngine>::Fr>;
|
||||
pub type KzgBls12_381 = KZG10<Bls12_381, UniPoly381>;
|
||||
|
||||
|
||||
// Function for reading inputs from the command line.
|
||||
pub fn read_line<T: FromStr>() -> T
|
||||
where <T as FromStr>::Err: Error + 'static
|
||||
{
|
||||
let mut input = String::new();
|
||||
io::stdin().read_line(&mut input).expect("Failed to get console input.");
|
||||
let output: T = input.trim().parse().expect("Console input is invalid.");
|
||||
output
|
||||
}
|
||||
|
||||
/*
|
||||
Function to commit to f(X,Y)
|
||||
here f = [ [a0, a1, a2], [b1, b2, b3] ] represents (a0 + a1 Y + a2 Y^2 ) + X (b1 + b2 Y + b3 Y^2)
|
||||
|
||||
First we unwrap to get a vector of form [a0, a1, a2, b0, b1, b2]
|
||||
Then we commit to f as a commitment to f'(X) = a0 + a1 X + a2 X^2 + b0 X^3 + b1 X^4 + b2 X^5
|
||||
|
||||
We also need to know the maximum degree of (a0 + a1 Y + a2 Y^2 ) to prevent overflow errors.
|
||||
|
||||
This is described in Section 4.6.2
|
||||
*/
|
||||
pub fn bipoly_commit( pp: &PublicParameters,
|
||||
poly: &Vec<DensePoly<Fp256<FrParameters>>>, deg_x: usize ) -> G1Affine {
|
||||
|
||||
let mut poly_formatted = Vec::new();
|
||||
|
||||
for i in 0..poly.len() {
|
||||
let temp = convert_to_bigints(&poly[i].coeffs);
|
||||
for j in 0..poly[i].len() {
|
||||
poly_formatted.push(temp[j]);
|
||||
}
|
||||
let temp = convert_to_bigints(&[Fr::zero()].to_vec())[0];
|
||||
for _ in poly[i].len()..deg_x {
|
||||
poly_formatted.push(temp);
|
||||
}
|
||||
}
|
||||
|
||||
assert!( pp.poly_ck.powers_of_g.len() >= poly_formatted.len() );
|
||||
let g1_poly = VariableBaseMSM::multi_scalar_mul(&pp.poly_ck.powers_of_g, poly_formatted.as_slice()).into_affine();
|
||||
|
||||
return g1_poly;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Hashing
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
|
||||
// hashing to field copied from
|
||||
// https://github.com/kobigurk/aggregatable-dkg/blob/main/src/signature/utils/hash.rs
|
||||
fn rng_from_message(personalization: &[u8], message: &[u8]) -> ChaChaRng {
|
||||
let hash = Params::new()
|
||||
.hash_length(32)
|
||||
.personal(personalization)
|
||||
.to_state()
|
||||
.update(message)
|
||||
.finalize();
|
||||
let mut seed = [0u8; 32];
|
||||
seed.copy_from_slice(hash.as_bytes());
|
||||
let rng = ChaChaRng::from_seed(seed);
|
||||
rng
|
||||
}
|
||||
|
||||
pub fn hash_to_field<F: PrimeField>(
|
||||
personalization: &[u8],
|
||||
message: &[u8],
|
||||
) -> F {
|
||||
let mut rng = rng_from_message(personalization, message);
|
||||
loop {
|
||||
let bytes: Vec<u8> = (0..F::zero().serialized_size())
|
||||
.map(|_| rng.gen())
|
||||
.collect();
|
||||
if let Some(p) = F::from_random_bytes(&bytes) {
|
||||
return p;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* hash function that takes as input:
|
||||
(1) some state (either equal to the last hash output or zero)
|
||||
(2) a vector of g1 elements
|
||||
(3) a vector of g2 elements
|
||||
(4) a vector of field elements
|
||||
|
||||
It returns a field element.
|
||||
*/
|
||||
pub fn hash_caulk_multi<F: PrimeField>(
|
||||
state: Fr,
|
||||
g1_elements: Option< &Vec< &G1Affine>>,
|
||||
g2_elements: Option< &Vec< &G2Affine>>,
|
||||
field_elements: Option< &Vec< &Fr>> ) -> Fr
|
||||
{
|
||||
|
||||
// PERSONALIZATION distinguishes this hash from other hashes that may be in the system
|
||||
const PERSONALIZATION: &[u8] = b"CAULK2";
|
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
// Handling cases where no g1_elements or no g1_elements or no field elements are input
|
||||
///////////////////////////////////////////////////////////
|
||||
let g1_elements_len: usize;
|
||||
let g2_elements_len: usize;
|
||||
let field_elements_len: usize;
|
||||
|
||||
if g1_elements == None {
|
||||
g1_elements_len = 0;
|
||||
}
|
||||
else {
|
||||
g1_elements_len = g1_elements.unwrap().len();
|
||||
}
|
||||
|
||||
if g2_elements == None {
|
||||
g2_elements_len = 0;
|
||||
}
|
||||
else {
|
||||
g2_elements_len = g2_elements.unwrap().len();
|
||||
}
|
||||
|
||||
if field_elements == None {
|
||||
field_elements_len = 0;
|
||||
}
|
||||
else {
|
||||
field_elements_len = field_elements.unwrap().len();
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
// Transform inputs into bytes
|
||||
///////////////////////////////////////////////////////////
|
||||
let mut state_bytes = vec![];
|
||||
state.serialize(&mut state_bytes).ok();
|
||||
|
||||
let mut g1_elements_bytes = Vec::new();
|
||||
for i in 0..g1_elements_len {
|
||||
let mut temp = vec![];
|
||||
g1_elements.unwrap()[i].clone().serialize( &mut temp ).ok();
|
||||
g1_elements_bytes.append( &mut temp.clone() );
|
||||
}
|
||||
|
||||
let mut g2_elements_bytes = Vec::new();
|
||||
for i in 0..g2_elements_len {
|
||||
let mut temp = vec![];
|
||||
g2_elements.unwrap()[i].clone().serialize( &mut temp ).ok();
|
||||
g2_elements_bytes.append( &mut temp.clone() );
|
||||
}
|
||||
|
||||
|
||||
|
||||
let mut field_elements_bytes = Vec::new();
|
||||
for i in 0..field_elements_len {
|
||||
let mut temp = vec![];
|
||||
field_elements.unwrap()[i].clone().serialize( &mut temp ).ok();
|
||||
field_elements_bytes.append( &mut temp.clone() );
|
||||
}
|
||||
|
||||
// Transform bytes into vector of bytes of the form expected by hash_to_field
|
||||
let mut hash_input: Vec<u8> = state_bytes.clone();
|
||||
for i in 0..g1_elements_bytes.len() {
|
||||
hash_input = [ &hash_input as &[_], &[g1_elements_bytes[i]] ].concat();
|
||||
}
|
||||
|
||||
for i in 0..g2_elements_bytes.len() {
|
||||
hash_input = [ &hash_input as &[_], &[g2_elements_bytes[i]] ].concat();
|
||||
}
|
||||
|
||||
for i in 0..field_elements_bytes.len() {
|
||||
hash_input = [ &hash_input as &[_], &[field_elements_bytes[i]] ].concat();
|
||||
}
|
||||
|
||||
// hash_to_field
|
||||
return hash_to_field::<Fr>(
|
||||
PERSONALIZATION,
|
||||
&hash_input
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
|
||||
pub fn random_field< F: PrimeField >() -> F {
|
||||
|
||||
let mut rng = thread_rng();
|
||||
loop {
|
||||
let bytes: Vec<u8> = (0..F::zero().serialized_size())
|
||||
.map(|_| rng.gen())
|
||||
.collect();
|
||||
if let Some(p) = F::from_random_bytes(&bytes) {
|
||||
return p;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//copied from arkworks
|
||||
pub fn convert_to_bigints<F: PrimeField>(p: &Vec<F>) -> Vec<F::BigInt> {
|
||||
let coeffs = ark_std::cfg_iter!(p)
|
||||
.map(|s| s.into_repr())
|
||||
.collect::<Vec<_>>();
|
||||
coeffs
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////////////////
|
||||
//
|
||||
/*
|
||||
KZG.Open( srs_KZG, f(X), deg, (alpha1, alpha2, ..., alphan) )
|
||||
returns ([f(alpha1), ..., f(alphan)], pi)
|
||||
Algorithm described in Section 4.6.1, Multiple Openings
|
||||
*/
|
||||
pub fn kzg_open_g1_native(poly_ck: &Powers<Bls12_381>,
|
||||
poly: &DensePoly<Fr>,
|
||||
max_deg: Option<&usize>,
|
||||
points: Vec<&Fr>) -> (Vec<Fr>, G1Affine) {
|
||||
|
||||
let mut evals = Vec::new();
|
||||
let mut proofs = Vec::new();
|
||||
for i in 0..points.len() {
|
||||
let (eval, pi) = kzg_open_g1_native_single( poly_ck, poly, max_deg, points[i] );
|
||||
evals.push( eval );
|
||||
proofs.push( pi );
|
||||
}
|
||||
|
||||
let mut res: G1Projective = G1Projective::zero(); //default value
|
||||
|
||||
for j in 0..points.len()
|
||||
{
|
||||
let w_j= points[j].clone();
|
||||
//1. Computing coefficient [1/prod]
|
||||
let mut prod =Fr::one();
|
||||
for k in 0..points.len() {
|
||||
let w_k = points[k];
|
||||
if k!=j{
|
||||
prod = prod*(w_j-w_k);
|
||||
}
|
||||
}
|
||||
//2. Summation
|
||||
let q_add = proofs[j].mul(prod.inverse().unwrap()); //[1/prod]Q_{j}
|
||||
res = res + q_add;
|
||||
}
|
||||
|
||||
return (evals, res.into_affine());
|
||||
}
|
||||
|
||||
fn kzg_open_g1_native_single(poly_ck: &Powers<Bls12_381>,
|
||||
poly: &DensePoly<Fr>,
|
||||
max_deg: Option<&usize>,
|
||||
point: &Fr) -> (Fr, G1Affine) {
|
||||
|
||||
let eval = poly.evaluate( &point);
|
||||
|
||||
let global_max_deg = poly_ck.powers_of_g.len();
|
||||
|
||||
let mut d: usize = 0;
|
||||
if max_deg == None {
|
||||
d += global_max_deg;
|
||||
}
|
||||
else {
|
||||
d += max_deg.unwrap();
|
||||
}
|
||||
let divisor = DensePoly::from_coefficients_vec(vec![-point.clone(), Fr::one()]);
|
||||
let witness_polynomial = poly / &divisor;
|
||||
|
||||
assert!( poly_ck.powers_of_g[(global_max_deg - d)..].len() >= witness_polynomial.len());
|
||||
let proof = VariableBaseMSM::multi_scalar_mul(&poly_ck.powers_of_g[(global_max_deg - d)..], &convert_to_bigints(&witness_polynomial.coeffs).as_slice() ).into_affine();
|
||||
return (eval, proof)
|
||||
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////////////////
|
||||
//
|
||||
/*
|
||||
KZG.Open( srs_KZG, f(X, Y), deg, alpha )
|
||||
returns ([f(alpha, x)]_1, pi)
|
||||
Algorithm described in Section 4.6.2, KZG for Bivariate Polynomials
|
||||
*/
|
||||
pub fn kzg_partial_open_g1_native(pp: &PublicParameters,
|
||||
poly: &Vec<DensePoly<Fr>>,
|
||||
deg_x: usize,
|
||||
point: &Fr) -> (G1Affine, G1Affine, DensePoly<Fr>) {
|
||||
|
||||
let mut poly_partial_eval = DensePoly::from_coefficients_vec(vec![Fr::zero()]);
|
||||
let mut alpha = Fr::one();
|
||||
for i in 0..poly.len() {
|
||||
let pow_alpha = DensePoly::from_coefficients_vec(vec![alpha.clone()]);
|
||||
poly_partial_eval = poly_partial_eval + &pow_alpha * &poly[i];
|
||||
alpha = alpha * point;
|
||||
}
|
||||
|
||||
let eval = VariableBaseMSM::multi_scalar_mul(&pp.poly_ck.powers_of_g, convert_to_bigints(&poly_partial_eval.coeffs).as_slice()).into_affine();
|
||||
|
||||
let mut witness_bipolynomial = Vec::new();
|
||||
let poly_reverse: Vec<_> = poly.into_iter().rev().collect();
|
||||
witness_bipolynomial.push( poly_reverse[ 0 ].clone() );
|
||||
|
||||
let alpha = DensePoly::from_coefficients_vec(vec![point.clone()]);
|
||||
for i in 1..(poly_reverse.len() - 1) {
|
||||
witness_bipolynomial.push( poly_reverse[ i ].clone() + &alpha * &witness_bipolynomial[i-1] );
|
||||
}
|
||||
|
||||
witness_bipolynomial.reverse();
|
||||
|
||||
let proof = bipoly_commit( pp, &witness_bipolynomial, deg_x );
|
||||
|
||||
return (eval, proof, poly_partial_eval)
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
// KZG.Verify( srs_KZG, F, deg, (alpha1, alpha2, ..., alphan), (v1, ..., vn), pi )
|
||||
Algorithm described in Section 4.6.1, Multiple Openings
|
||||
*/
|
||||
pub fn kzg_verify_g1_native( //Verify that @c_com is a commitment to C(X) such that C(x)=z
|
||||
srs: &PublicParameters,
|
||||
c_com: G1Affine, //commitment
|
||||
max_deg: Option<&usize>, // max degree
|
||||
points: Vec<Fr>, // x such that eval = C(x)
|
||||
evals: Vec<Fr>, //evaluation
|
||||
pi: G1Affine, //proof
|
||||
)
|
||||
->bool{
|
||||
|
||||
// Interpolation set
|
||||
// tau_i(X) = lagrange_tau[i] = polynomial equal to 0 at point[j] for j!= i and 1 at points[i]
|
||||
|
||||
let mut lagrange_tau = DensePoly::from_coefficients_slice(&[Fr::zero()]);
|
||||
for i in 0..points.len() {
|
||||
let mut temp : UniPoly381 = DensePoly::from_coefficients_slice(&[Fr::one()]);
|
||||
for j in 0..points.len() {
|
||||
if i != j {
|
||||
temp = &temp * (&DensePoly::from_coefficients_slice(&[-points[j] ,Fr::one()]));
|
||||
}
|
||||
}
|
||||
let lagrange_scalar = temp.evaluate(&points[i]).inverse().unwrap() * &evals[i] ;
|
||||
lagrange_tau = lagrange_tau + &temp * (&DensePoly::from_coefficients_slice(&[lagrange_scalar])) ;
|
||||
}
|
||||
|
||||
// commit to sum evals[i] tau_i(X)
|
||||
|
||||
// println!( "lagrange_tau = {:?}", lagrange_tau.evaluate(&points[0]) == evals[0] );
|
||||
assert!( srs.poly_ck.powers_of_g.len() >= lagrange_tau.len(), "not enough powers of g in kzg_verify_g1_native" );
|
||||
let g1_tau = VariableBaseMSM::multi_scalar_mul(&srs.poly_ck.powers_of_g[..lagrange_tau.len()], convert_to_bigints(&lagrange_tau.coeffs).as_slice());
|
||||
|
||||
// vanishing polynomial
|
||||
// z_tau[i] = polynomial equal to 0 at point[j]
|
||||
|
||||
let mut z_tau = DensePoly::from_coefficients_slice(&[Fr::one()]);
|
||||
for i in 0..points.len() {
|
||||
z_tau = &z_tau * (&DensePoly::from_coefficients_slice(&[-points[i] ,Fr::one()]));
|
||||
}
|
||||
|
||||
// commit to z_tau(X) in g2
|
||||
assert!( srs.g2_powers.len() >= z_tau.len() );
|
||||
let g2_z_tau = VariableBaseMSM::multi_scalar_mul(&srs.g2_powers[..z_tau.len()], convert_to_bigints(&z_tau.coeffs).as_slice());
|
||||
|
||||
|
||||
let global_max_deg = srs.poly_ck.powers_of_g.len();
|
||||
|
||||
let mut d: usize = 0;
|
||||
if max_deg == None {
|
||||
d += global_max_deg;
|
||||
}
|
||||
else {
|
||||
d += max_deg.unwrap();
|
||||
}
|
||||
|
||||
let pairing1 = Bls12_381::pairing(
|
||||
c_com.into_projective()-g1_tau,
|
||||
srs.g2_powers[global_max_deg - d]
|
||||
);
|
||||
|
||||
let pairing2 =Bls12_381::pairing(
|
||||
pi,
|
||||
g2_z_tau
|
||||
);
|
||||
|
||||
return pairing1==pairing2;
|
||||
}
|
||||
|
||||
/*
|
||||
KZG.Verify( srs_KZG, F, deg, alpha, F_alpha, pi )
|
||||
Algorithm described in Section 4.6.2, KZG for Bivariate Polynomials
|
||||
Be very careful here. Verification is only valid if it is paired with a degree check.
|
||||
*/
|
||||
pub fn kzg_partial_verify_g1_native(srs: &PublicParameters,
|
||||
c_com: G1Affine, //commitment
|
||||
deg_x: usize,
|
||||
point: Fr,
|
||||
partial_eval: G1Affine,
|
||||
pi: G1Affine, //proof
|
||||
) -> bool {
|
||||
|
||||
let pairing1 = Bls12_381::pairing(
|
||||
c_com.into_projective()-partial_eval.into_projective(),
|
||||
srs.g2_powers[0]
|
||||
);
|
||||
let pairing2 =Bls12_381::pairing(
|
||||
pi,
|
||||
srs.g2_powers[deg_x].into_projective() - srs.g2_powers[0].mul(point)
|
||||
);
|
||||
|
||||
return pairing1==pairing2;
|
||||
|
||||
}
|
||||
|
||||
|
||||
pub fn kzg_commit_g2(
|
||||
poly: &DensePoly<Fp256<FrParameters>>,
|
||||
srs: &PublicParameters
|
||||
)->G2Affine
|
||||
{
|
||||
let mut res=srs.g2_powers[0].mul(poly[0]);
|
||||
for i in 1..poly.len(){
|
||||
res = res+srs.g2_powers[i].mul(poly[i])
|
||||
}
|
||||
return res.into_affine();
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
|
||||
|
||||
pub fn generate_lagrange_polynomials_subset(
|
||||
positions: &Vec<usize>,
|
||||
srs: &PublicParameters
|
||||
)->Vec<DensePoly<Fp256<FrParameters>>>
|
||||
{
|
||||
let mut tau_polys = vec![];
|
||||
let m = positions.len();
|
||||
for j in 0..m{
|
||||
let mut tau_j= DensePoly::from_coefficients_slice(&[Fr::one()]); //start from tau_j =1
|
||||
for k in 0..m{
|
||||
if k != j { //tau_j = prod_{k\neq j} (X-w^(i_k))/(w^(i_j)-w^(i_k))
|
||||
let denum = srs.domain_N.element(positions[j])-srs.domain_N.element(positions[k]);
|
||||
tau_j = &tau_j * &DensePoly::from_coefficients_slice(&[
|
||||
-srs.domain_N.element(positions[k])/denum ,//-w^(i_k))/(w^(i_j)-w^(i_k)
|
||||
Fr::one()/denum //1//(w^(i_j)-w^(i_k))
|
||||
]);
|
||||
}
|
||||
}
|
||||
tau_polys.push(tau_j.clone());
|
||||
}
|
||||
tau_polys
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
Algorithm for aggregating KZG proofs into a single proof
|
||||
Described in Section 4.6.3 Subset openings
|
||||
compute Q =\sum_{j=1}^m \frac{Q_{i_j}}}{\prod_{1\leq k\leq m,\; k\neq j}(\omega^{i_j}-\omega^{i_k})}
|
||||
*/
|
||||
pub fn aggregate_kzg_proofs_g2(
|
||||
openings: &Vec<G2Affine>, //Q_i
|
||||
positions: &Vec<usize>, //i_j
|
||||
input_domain: &GeneralEvaluationDomain<Fr>
|
||||
)->G2Affine
|
||||
{
|
||||
let m = positions.len();
|
||||
let mut res: G2Projective = openings[0].into_projective(); //default value
|
||||
|
||||
for j in 0..m
|
||||
{
|
||||
let i_j = positions[j];
|
||||
let w_ij=input_domain.element(i_j);
|
||||
//1. Computing coefficient [1/prod]
|
||||
let mut prod =Fr::one();
|
||||
for k in 0..m{
|
||||
let i_k = positions[k];
|
||||
let w_ik = input_domain.element(i_k);
|
||||
if k!=j{
|
||||
prod = prod*(w_ij-w_ik);
|
||||
}
|
||||
}
|
||||
//2. Summation
|
||||
let q_add = openings[i_j].mul(prod.inverse().unwrap()); //[1/prod]Q_{j}
|
||||
if j==0{
|
||||
res=q_add;
|
||||
}
|
||||
else{
|
||||
res = res + q_add;
|
||||
}
|
||||
}
|
||||
return res.into_affine();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
|
||||
#[cfg(test)]
|
||||
pub mod tests {
|
||||
|
||||
use crate::caulk_multi_setup::{setup_multi_lookup};
|
||||
|
||||
use crate::tools::{UniPoly381,KzgBls12_381,generate_lagrange_polynomials_subset,aggregate_kzg_proofs_g2};
|
||||
use crate::multiopen::multiple_open_g2;
|
||||
|
||||
use ark_poly::{univariate::DensePolynomial as DensePoly, UVPolynomial, Polynomial,
|
||||
EvaluationDomain};
|
||||
|
||||
use std::time::{Instant};
|
||||
use ark_bls12_381::{Bls12_381,G2Affine,Fr};
|
||||
use ark_ec::{AffineCurve,PairingEngine,ProjectiveCurve};
|
||||
use ark_std::{ One,Zero};
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
#[test]
|
||||
pub fn test_lagrange()
|
||||
{
|
||||
let p: usize =8;//bitlength of poly degree
|
||||
let max_degree: usize = (1<<p) +2;
|
||||
let m: usize = 8;
|
||||
let N: usize = 1<<p;
|
||||
let pp =setup_multi_lookup(&max_degree,&N,&m,&p);
|
||||
let now = Instant::now();
|
||||
println!("time to setup {:?}", now.elapsed());
|
||||
|
||||
|
||||
let mut positions: Vec<usize> = vec![];
|
||||
for i in 0..m{ //generate positions evenly distributed in the set
|
||||
let i_j: usize = i*(max_degree/m);
|
||||
positions.push(i_j);
|
||||
};
|
||||
|
||||
let tau_polys=generate_lagrange_polynomials_subset(&positions, &pp);
|
||||
for j in 0..m{
|
||||
for k in 0..m{
|
||||
if k==j
|
||||
{
|
||||
assert_eq!(tau_polys[j].evaluate(&pp.domain_N.element(positions[k])),Fr::one())
|
||||
}
|
||||
else{
|
||||
assert_eq!(tau_polys[j].evaluate(&pp.domain_N.element(positions[k])),Fr::zero())
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
#[test]
|
||||
pub fn test_Q_g2(){
|
||||
// current kzg setup should be changed with output from a setup ceremony
|
||||
let p: usize =6;//bitlength of poly degree
|
||||
let max_degree: usize = (1<<p) +2;
|
||||
let actual_degree: usize = (1<<p)-1;
|
||||
let m: usize = 1<<(p/2);
|
||||
let N: usize = 1<<p;
|
||||
let pp =setup_multi_lookup(&max_degree,&N,&m,&p);
|
||||
|
||||
// Setting up test instance to run evaluate on.
|
||||
// test randomness for c_poly is same everytime.
|
||||
// test index equals 5 everytime
|
||||
// g_c = g^(c(x))
|
||||
let rng = &mut ark_std::test_rng();
|
||||
let c_poly = UniPoly381::rand(actual_degree, rng);
|
||||
let (c_com, _) = KzgBls12_381::commit( &pp.poly_ck, &c_poly, None, None).unwrap();
|
||||
|
||||
let now = Instant::now();
|
||||
let openings = multiple_open_g2(&pp.g2_powers, &c_poly, p);
|
||||
println!("Multi advanced computed in {:?}", now.elapsed());
|
||||
|
||||
let mut positions: Vec<usize> = vec![];
|
||||
for i in 0..m{
|
||||
let i_j: usize = i*(max_degree/m);
|
||||
positions.push(i_j);
|
||||
};
|
||||
|
||||
let now = Instant::now();
|
||||
|
||||
//Compute proof
|
||||
let Q:G2Affine =aggregate_kzg_proofs_g2(&openings, &positions, &pp.domain_N);
|
||||
println!("Full proof for {:?} positions computed in {:?}", m, now.elapsed());
|
||||
|
||||
//Compute commitment to C_I
|
||||
let mut C_I = DensePoly::from_coefficients_slice(&[Fr::zero()]); //C_I = sum_j c_j*tau_j
|
||||
let tau_polys = generate_lagrange_polynomials_subset(&positions, &pp);
|
||||
for j in 0..m{
|
||||
C_I = &C_I + &(&tau_polys[j]*c_poly.evaluate(&pp.domain_N.element(positions[j]))); //sum_j c_j*tau_j
|
||||
}
|
||||
let (c_I_com, _c_I_com_open) = KzgBls12_381::commit( &pp.poly_ck, &C_I, None, None).unwrap();
|
||||
|
||||
//Compute commitment to z_I
|
||||
let mut z_I = DensePoly::from_coefficients_slice(
|
||||
&[Fr::one()]);
|
||||
for j in 0..m {
|
||||
z_I = &z_I * &DensePoly::from_coefficients_slice(
|
||||
&[
|
||||
-pp.domain_N.element(positions[j]) ,
|
||||
Fr::one()]);
|
||||
}
|
||||
let (z_I_com, _) =KzgBls12_381::commit( &pp.poly_ck, &z_I, None, None).unwrap();
|
||||
|
||||
|
||||
//pairing check
|
||||
let pairing1=Bls12_381::pairing((c_com.0.into_projective()-c_I_com.0.into_projective()).into_affine(), pp.g2_powers[0]);
|
||||
let pairing2 = Bls12_381::pairing(z_I_com.0, Q);
|
||||
assert_eq!(pairing1,pairing2);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
31
caulk_single_opening/Cargo.toml
Normal file
31
caulk_single_opening/Cargo.toml
Normal file
@@ -0,0 +1,31 @@
|
||||
[package]
|
||||
name = "caulk_single_opening"
|
||||
version = "0.1.0"
|
||||
authors = ["mmaller <mary.maller@ethereum.org>"]
|
||||
edition = "2018"
|
||||
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
|
||||
[dependencies]
|
||||
ark-ff = { version = "^0.3.0", default-features = false }
|
||||
ark-ec = { version = "^0.3.0", default-features = false }
|
||||
ark-serialize = { version = "^0.3.0", default-features = false, features = [ "derive" ] }
|
||||
ark-poly = { version = "^0.3.0", default-features = false }
|
||||
ark-std = { version = "^0.3.0", default-features = false }
|
||||
ark-relations = { version = "^0.3.0", default-features = false }
|
||||
ark-crypto-primitives = { version = "^0.3.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.3.0", default-features = false, optional = true }
|
||||
ark-bls12-381 = { version = "^0.3.0", features = [ "std" ] }
|
||||
ark-poly-commit = { version = "^0.3.0", default-features = false }
|
||||
ark-marlin = { version = "^0.3.0", default-features = false }
|
||||
|
||||
tracing = { version = "0.1", default-features = false, features = [ "attributes" ], optional = true }
|
||||
derivative = { version = "2.0", features = ["use_core"], optional = true}
|
||||
rand = "0.7.3"
|
||||
rand_chacha = { version = "0.2.1" }
|
||||
thiserror = "1.0.19"
|
||||
blake2s_simd = "0.5.10"
|
||||
|
||||
|
||||
[features]
|
||||
asm = [ "ark-ff/asm" ]
|
||||
171
caulk_single_opening/src/caulk_single.rs
Normal file
171
caulk_single_opening/src/caulk_single.rs
Normal file
@@ -0,0 +1,171 @@
|
||||
/*
|
||||
This file includes the Caulk prover and verifier for single openings.
|
||||
The protocol is described in Figure 1.
|
||||
*/
|
||||
|
||||
use ark_bls12_381::{Bls12_381, Fr, G1Affine, G2Affine};
|
||||
use ark_ff::{PrimeField, Field};
|
||||
use ark_ec::{AffineCurve, ProjectiveCurve, PairingEngine};
|
||||
use ark_poly::{EvaluationDomain, GeneralEvaluationDomain};
|
||||
use ark_std::{One, Zero};
|
||||
|
||||
use crate::caulk_single_setup::{PublicParameters, VerifierPublicParameters};
|
||||
use crate::caulk_single_unity::{caulk_single_unity_prove, caulk_single_unity_verify,
|
||||
PublicParametersUnity,CaulkProofUnity, VerifierPublicParametersUnity};
|
||||
use crate::pedersen::{prove_pedersen, verify_pedersen, ProofPed};
|
||||
use crate::tools::{random_field, hash_caulk_single};
|
||||
|
||||
// Structure of opening proofs output by prove.
|
||||
#[allow(non_snake_case)]
|
||||
pub struct CaulkProof {
|
||||
pub g2_z: G2Affine,
|
||||
pub g1_T: G1Affine,
|
||||
pub g2_S: G2Affine,
|
||||
pub pi_ped: ProofPed,
|
||||
pub pi_unity: CaulkProofUnity,
|
||||
}
|
||||
|
||||
//Proves knowledge of (i, Q, z, r) such that
|
||||
// 1) Q is a KZG opening proof that g1_C opens to z at i
|
||||
// 2) cm = g^z h^r
|
||||
|
||||
//Takes as input opening proof Q. Does not need knowledge of contents of C = g1_C.
|
||||
#[allow(non_snake_case)]
|
||||
pub fn caulk_single_prove(pp: &PublicParameters, g1_C: &G1Affine,
|
||||
cm: &G1Affine, index: usize, g1_q: &G1Affine, v: &Fr, r: &Fr ) -> CaulkProof {
|
||||
|
||||
// provers blinders for zero-knowledge
|
||||
let a: Fr = random_field::<Fr>();
|
||||
let s: Fr = random_field::<Fr>();
|
||||
|
||||
let domain_H: GeneralEvaluationDomain<Fr> = GeneralEvaluationDomain::new( pp.domain_H_size ).unwrap();
|
||||
|
||||
///////////////////////////////
|
||||
// Compute [z]_2, [T]_1, and [S]_2
|
||||
///////////////////////////////
|
||||
|
||||
// [z]_2 = [ a (x - omega^i) ]_2
|
||||
let g2_z = ( pp.poly_vk.beta_h.mul( a ) + pp.poly_vk.h.mul( - a * domain_H.element(index) ) ).into_affine();
|
||||
|
||||
// [T]_1 = [ ( a^(-1) Q + s h]_1 for Q precomputed KZG opening.
|
||||
let g1_T = (g1_q.mul( a.inverse().unwrap() ) + pp.ped_h.mul(s)).into_affine();
|
||||
|
||||
// [S]_2 = [ - r - s z ]_2
|
||||
let g2_S =( pp.poly_vk.h.mul( (-*r).into_repr() )+ g2_z.mul((-s).into_repr())).into_affine();
|
||||
|
||||
|
||||
///////////////////////////////
|
||||
// Pedersen prove
|
||||
///////////////////////////////
|
||||
|
||||
// hash the instance and the proof elements to determine hash inputs for Pedersen prover
|
||||
let mut hash_input = hash_caulk_single::<Fr>(Fr::zero(),
|
||||
Some(& [g1_C.clone(), g1_T.clone()].to_vec() ),
|
||||
Some( & [g2_z.clone(), g2_S.clone()].to_vec() ), None );
|
||||
|
||||
// proof that cm = g^z h^rs
|
||||
let pi_ped = prove_pedersen( &pp.ped_g, &pp.ped_h, &mut hash_input, &cm, v, r );
|
||||
|
||||
///////////////////////////////
|
||||
// Unity prove
|
||||
///////////////////////////////
|
||||
|
||||
// hash the last round of the pedersen proof to determine hash input to the unity prover
|
||||
hash_input = hash_caulk_single::<Fr>( hash_input,
|
||||
None,
|
||||
None,
|
||||
Some( &[ pi_ped.t1.clone(), pi_ped.t2.clone()].to_vec() ) );
|
||||
|
||||
// Setting up the public parameters for the unity prover
|
||||
let pp_unity = PublicParametersUnity {
|
||||
poly_ck: pp.poly_ck.clone(),
|
||||
gxd: pp.poly_ck_d.clone(),
|
||||
gxpen: pp.poly_ck_pen.clone(),
|
||||
lagrange_polynomials_Vn: pp.lagrange_polynomials_Vn.clone(),
|
||||
poly_prod: pp.poly_prod.clone(),
|
||||
logN: pp.logN.clone(),
|
||||
domain_Vn: pp.domain_Vn.clone(),
|
||||
};
|
||||
|
||||
// proof that A = [a x - b ]_2 for a^n = b^n
|
||||
let pi_unity = caulk_single_unity_prove(&pp_unity,
|
||||
&mut hash_input,
|
||||
g2_z, a, a * domain_H.element(index) );
|
||||
|
||||
|
||||
let proof = CaulkProof {
|
||||
g2_z: g2_z, g1_T: g1_T, g2_S: g2_S, pi_ped: pi_ped, pi_unity: pi_unity,
|
||||
};
|
||||
|
||||
proof
|
||||
}
|
||||
|
||||
//Verifies that the prover knows of (i, Q, z, r) such that
|
||||
// 1) Q is a KZG opening proof that g1_C opens to z at i
|
||||
// 2) cm = g^z h^r
|
||||
#[allow(non_snake_case)]
|
||||
pub fn caulk_single_verify( vk: &VerifierPublicParameters,
|
||||
g1_C: &G1Affine, cm: &G1Affine, proof: &CaulkProof) -> bool {
|
||||
|
||||
|
||||
///////////////////////////////
|
||||
// Pairing check
|
||||
///////////////////////////////
|
||||
|
||||
// check that e( - C + cm, [1]_2) + e( [T]_1, [z]_2 ) + e( [h]_1, [S]_2 ) = 1
|
||||
let eq1: Vec<(ark_ec::bls12::G1Prepared<ark_bls12_381::Parameters>, ark_ec::bls12::G2Prepared<ark_bls12_381::Parameters>)>
|
||||
= vec![
|
||||
( ( g1_C.mul( -Fr::one()) + cm.into_projective() ).into_affine().into(), vk.poly_vk.prepared_h.clone()),
|
||||
|
||||
( ( proof.g1_T ).into(), proof.g2_z.into() ),
|
||||
|
||||
( vk.ped_h.into(), proof.g2_S.into() )
|
||||
];
|
||||
|
||||
let check1 = Bls12_381::product_of_pairings(&eq1).is_one();
|
||||
|
||||
///////////////////////////////
|
||||
// Pedersen check
|
||||
///////////////////////////////
|
||||
|
||||
// hash the instance and the proof elements to determine hash inputs for Pedersen prover
|
||||
let mut hash_input = hash_caulk_single::<Fr>(Fr::zero(),
|
||||
Some(& [g1_C.clone(), proof.g1_T.clone()].to_vec() ),
|
||||
Some( & [proof.g2_z.clone(), proof.g2_S.clone()].to_vec() ), None );
|
||||
|
||||
// verify that cm = [v + r h]
|
||||
let check2 = verify_pedersen(&vk.ped_g, &vk.ped_h, &mut hash_input, &cm, &proof.pi_ped );
|
||||
|
||||
|
||||
///////////////////////////////
|
||||
// Unity check
|
||||
///////////////////////////////
|
||||
|
||||
// hash the last round of the pedersen proof to determine hash input to the unity prover
|
||||
hash_input = hash_caulk_single::<Fr>( hash_input,
|
||||
None,
|
||||
None,
|
||||
Some( &[ proof.pi_ped.t1.clone(), proof.pi_ped.t2.clone()].to_vec() ) );
|
||||
|
||||
let vk_unity = VerifierPublicParametersUnity {
|
||||
poly_vk: vk.poly_vk.clone(),
|
||||
gxpen: vk.poly_ck_pen.clone(),
|
||||
g1: vk.ped_g.clone(),
|
||||
g1_x: vk.g1_x.clone(),
|
||||
lagrange_scalars_Vn: vk.lagrange_scalars_Vn.clone(),
|
||||
poly_prod: vk.poly_prod.clone(),
|
||||
logN: vk.logN.clone(),
|
||||
domain_Vn: vk.domain_Vn.clone(),
|
||||
powers_of_g2: vk.powers_of_g2.clone(),
|
||||
};
|
||||
|
||||
// Verify that g2_z = [ ax - b ]_1 for (a/b)**N = 1
|
||||
let check3 = caulk_single_unity_verify(
|
||||
&vk_unity,
|
||||
&mut hash_input,
|
||||
&proof.g2_z,
|
||||
&proof.pi_unity);
|
||||
|
||||
return check1 && check2 && check3;
|
||||
|
||||
}
|
||||
222
caulk_single_opening/src/caulk_single_setup.rs
Normal file
222
caulk_single_opening/src/caulk_single_setup.rs
Normal file
@@ -0,0 +1,222 @@
|
||||
/*
|
||||
This file includes the setup algorithm for Caulk with single openings.
|
||||
A full description of the setup is not formally given in the paper.
|
||||
*/
|
||||
|
||||
use ark_ff::{ UniformRand, Fp256, Field};
|
||||
use ark_poly_commit::kzg10::*;
|
||||
use ark_ec::{bls12::Bls12, PairingEngine, ProjectiveCurve, AffineCurve};
|
||||
use ark_poly::{ UVPolynomial, Evaluations as EvaluationsOnDomain, GeneralEvaluationDomain,
|
||||
EvaluationDomain, univariate::DensePolynomial};
|
||||
use ark_bls12_381::{Bls12_381, G1Projective, FrParameters, Fr, G1Affine, G2Affine};
|
||||
use ark_std::{Zero, One, cfg_into_iter};
|
||||
use std::cmp::max;
|
||||
|
||||
use crate::tools::{UniPoly381, KzgBls12_381};
|
||||
use std::time::{Instant};
|
||||
|
||||
|
||||
// structure of public parameters
|
||||
#[allow(non_snake_case)]
|
||||
pub struct PublicParameters {
|
||||
pub poly_ck: Powers<'static, Bls12<ark_bls12_381::Parameters> >,
|
||||
pub poly_ck_d: G1Affine,
|
||||
pub poly_ck_pen: G1Affine,
|
||||
pub lagrange_polynomials_Vn: Vec< UniPoly381>,
|
||||
pub poly_prod: UniPoly381,
|
||||
pub poly_vk: VerifierKey<Bls12<ark_bls12_381::Parameters>>,
|
||||
pub ped_g: G1Affine,
|
||||
pub ped_h: G1Affine,
|
||||
pub domain_H_size: usize,
|
||||
pub logN: usize,
|
||||
pub domain_Vn: GeneralEvaluationDomain<Fr>,
|
||||
pub domain_Vn_size: usize,
|
||||
pub verifier_pp: VerifierPublicParameters,
|
||||
pub actual_degree: usize,
|
||||
}
|
||||
|
||||
// smaller set of public parameters used by verifier
|
||||
#[allow(non_snake_case)]
|
||||
pub struct VerifierPublicParameters {
|
||||
pub poly_ck_pen: G1Affine,
|
||||
pub lagrange_scalars_Vn: Vec<Fr>,
|
||||
pub poly_prod: UniPoly381,
|
||||
pub poly_vk: VerifierKey<Bls12<ark_bls12_381::Parameters>>,
|
||||
pub ped_g: G1Affine,
|
||||
pub g1_x: G1Affine,
|
||||
pub ped_h: G1Affine,
|
||||
pub domain_H_size: usize,
|
||||
pub logN: usize,
|
||||
pub domain_Vn: GeneralEvaluationDomain<Fr>,
|
||||
pub domain_Vn_size: usize,
|
||||
pub powers_of_g2: Vec<G2Affine>,
|
||||
}
|
||||
|
||||
// Reduces full srs down to smaller srs for smaller polynomials
|
||||
// Copied from arkworks library (where same function is private)
|
||||
fn trim<E: PairingEngine, P: UVPolynomial<E::Fr>>(
|
||||
srs: UniversalParams<E>,
|
||||
mut supported_degree: usize,
|
||||
) -> (Powers<'static, E>, VerifierKey<E>) {
|
||||
if supported_degree == 1 {
|
||||
supported_degree += 1;
|
||||
}
|
||||
let pp = srs.clone();
|
||||
let powers_of_g = pp.powers_of_g[..=supported_degree].to_vec();
|
||||
let powers_of_gamma_g = (0..=supported_degree)
|
||||
.map(|i| pp.powers_of_gamma_g[&i])
|
||||
.collect();
|
||||
|
||||
let powers = Powers {
|
||||
powers_of_g: ark_std::borrow::Cow::Owned(powers_of_g),
|
||||
powers_of_gamma_g: ark_std::borrow::Cow::Owned(powers_of_gamma_g),
|
||||
};
|
||||
let vk = VerifierKey {
|
||||
g: pp.powers_of_g[0],
|
||||
gamma_g: pp.powers_of_gamma_g[&0],
|
||||
h: pp.h,
|
||||
beta_h: pp.beta_h,
|
||||
prepared_h: pp.prepared_h.clone(),
|
||||
prepared_beta_h: pp.prepared_beta_h.clone(),
|
||||
};
|
||||
(powers, vk)
|
||||
}
|
||||
|
||||
// setup algorithm for Caulk with single openings
|
||||
// also includes a bunch of precomputation.
|
||||
#[allow(non_snake_case)]
|
||||
pub fn caulk_single_setup(max_degree: usize, actual_degree: usize) -> PublicParameters
|
||||
{
|
||||
|
||||
// deterministic randomness. Should never be used in practice.
|
||||
let rng = &mut ark_std::test_rng();
|
||||
|
||||
|
||||
// domain where vector commitment is defined
|
||||
let domain_H: GeneralEvaluationDomain<Fr> = GeneralEvaluationDomain::new( actual_degree ).unwrap();
|
||||
|
||||
let logN: usize = ((actual_degree as f32).log(2.0)).ceil() as usize;
|
||||
|
||||
// smaller domain for unity proofs with generator w
|
||||
let domain_Vn: GeneralEvaluationDomain<Fr> = GeneralEvaluationDomain::new( 6 + logN ).unwrap();
|
||||
|
||||
|
||||
|
||||
// Determining how big an srs we need.
|
||||
// Need an srs of size actual_degree to commit to the polynomial.
|
||||
// Need an srs of size 2 * domain_Vn_size + 3 to run the unity prover.
|
||||
// We take the larger of the two.
|
||||
let poly_ck_size = max( actual_degree, 2 * domain_Vn.size() + 3);
|
||||
|
||||
// Setup algorithm. To be replaced by output of a universal setup before being production ready.
|
||||
let now = Instant::now();
|
||||
let srs = KzgBls12_381::setup(max(max_degree,poly_ck_size), true, rng).unwrap();
|
||||
println!("time to setup powers = {:?}", now.elapsed());
|
||||
|
||||
// trim down to size.
|
||||
let (poly_ck, poly_vk) = trim::<Bls12_381, UniPoly381>(srs.clone(), poly_ck_size.clone());
|
||||
|
||||
// g^x^d = maximum power given in setup
|
||||
let poly_ck_d = srs.powers_of_g[ srs.powers_of_g.len() - 1 ];
|
||||
|
||||
// g^x^(d-1) = penultimate power given in setup
|
||||
let poly_ck_pen = srs.powers_of_g[ srs.powers_of_g.len() - 2 ];
|
||||
|
||||
// random pedersen commitment generatoor
|
||||
let ped_h: G1Affine = G1Projective::rand(rng).into_affine();
|
||||
|
||||
// precomputation to speed up prover
|
||||
// lagrange_polynomials_Vn[i] = polynomial equal to 0 at w^j for j!= i and 1 at w^i
|
||||
let mut lagrange_polynomials_Vn: Vec< UniPoly381 > = Vec::new();
|
||||
|
||||
// precomputation to speed up verifier.
|
||||
// scalars such that lagrange_scalars_Vn[i] = prod_(j != i) (w^i - w^j)^(-1)
|
||||
let mut lagrange_scalars_Vn: Vec<Fr> = Vec::new();
|
||||
|
||||
for i in 0..domain_Vn.size() {
|
||||
let evals: Vec<Fp256<FrParameters>> = cfg_into_iter!(0..domain_Vn.size())
|
||||
.map(|k| {
|
||||
if k == i { Fr::one() }
|
||||
else { Fr::zero() }
|
||||
}).collect();
|
||||
lagrange_polynomials_Vn.push(EvaluationsOnDomain::from_vec_and_domain(evals, domain_Vn).interpolate());
|
||||
}
|
||||
|
||||
for i in 0..5 {
|
||||
let mut temp = Fr::one();
|
||||
for j in 0..domain_Vn.size() {
|
||||
if j != i {
|
||||
temp = temp * ( domain_Vn.element(i) - domain_Vn.element(j) );
|
||||
}
|
||||
}
|
||||
lagrange_scalars_Vn.push(temp.inverse().unwrap());
|
||||
}
|
||||
|
||||
// also want lagrange_scalars_Vn[logN + 5]
|
||||
let mut temp = Fr::one();
|
||||
for j in 0..domain_Vn.size() {
|
||||
if j != (logN + 5) {
|
||||
temp = temp * ( domain_Vn.element(logN + 5) - domain_Vn.element(j) );
|
||||
}
|
||||
}
|
||||
lagrange_scalars_Vn.push(temp.inverse().unwrap());
|
||||
|
||||
// poly_prod = (X - 1) (X - w) (X - w^2) (X - w^3) (X - w^4) (X - w^(5 + logN)) (X - w^(6 + logN))
|
||||
// for efficiency not including (X - w^i) for i > 6 + logN
|
||||
// prover sets these evaluations to 0 anyway.
|
||||
let mut poly_prod = DensePolynomial::from_coefficients_slice(&[Fr::one()]);
|
||||
for i in 0..domain_Vn.size() {
|
||||
if i < 5 {
|
||||
poly_prod = &poly_prod * (& DensePolynomial::from_coefficients_slice(&[-domain_Vn.element(i) ,Fr::one()]))
|
||||
}
|
||||
if i == (5 + logN) {
|
||||
poly_prod = &poly_prod * (& DensePolynomial::from_coefficients_slice(&[-domain_Vn.element(i) ,Fr::one()]))
|
||||
}
|
||||
if i == (6 + logN) {
|
||||
poly_prod = &poly_prod * (& DensePolynomial::from_coefficients_slice(&[-domain_Vn.element(i) ,Fr::one()]))
|
||||
}
|
||||
}
|
||||
|
||||
// ped_g = g^x^0 from kzg commitment key.
|
||||
let ped_g = poly_ck.powers_of_g[0];
|
||||
|
||||
// need some powers of g2
|
||||
// arkworks setup doesn't give these powers but the setup does use a fixed randomness to generate them.
|
||||
// so we can generate powers of g2 directly.
|
||||
let rng = &mut ark_std::test_rng();
|
||||
let beta: Fp256<FrParameters> = Fr::rand(rng);
|
||||
let mut temp = poly_vk.h.clone();
|
||||
|
||||
let mut powers_of_g2: Vec<G2Affine> = Vec::new();
|
||||
for _ in 0..3.clone() {
|
||||
powers_of_g2.push( temp.clone() );
|
||||
temp = temp.mul( beta ).into_affine();
|
||||
}
|
||||
|
||||
let verifier_pp = VerifierPublicParameters {
|
||||
poly_ck_pen: poly_ck_pen, lagrange_scalars_Vn: lagrange_scalars_Vn,
|
||||
poly_prod: poly_prod.clone(), poly_vk: poly_vk.clone(),
|
||||
ped_g: ped_g,
|
||||
g1_x: srs.powers_of_g[ 1 ],
|
||||
ped_h: ped_h,
|
||||
domain_H_size: domain_H.size(),
|
||||
logN: logN,
|
||||
domain_Vn: domain_Vn.clone(),
|
||||
domain_Vn_size: domain_Vn.size(),
|
||||
powers_of_g2: powers_of_g2.clone()
|
||||
};
|
||||
|
||||
let pp = PublicParameters {
|
||||
poly_ck: poly_ck, poly_ck_d: poly_ck_d, poly_ck_pen: poly_ck_pen,
|
||||
lagrange_polynomials_Vn: lagrange_polynomials_Vn,
|
||||
poly_prod: poly_prod, ped_g: ped_g, ped_h: ped_h,
|
||||
domain_H_size: domain_H.size(),
|
||||
logN: logN, poly_vk: poly_vk,
|
||||
domain_Vn_size: domain_Vn.size(),
|
||||
domain_Vn: domain_Vn,
|
||||
verifier_pp: verifier_pp,
|
||||
actual_degree: actual_degree.clone(),
|
||||
};
|
||||
|
||||
return pp
|
||||
}
|
||||
379
caulk_single_opening/src/caulk_single_unity.rs
Normal file
379
caulk_single_opening/src/caulk_single_unity.rs
Normal file
@@ -0,0 +1,379 @@
|
||||
/*
|
||||
This file includes the Caulk's unity prover and verifier for single openings.
|
||||
The protocol is described in Figure 2.
|
||||
*/
|
||||
|
||||
use ark_ec::{bls12::Bls12, AffineCurve, PairingEngine, ProjectiveCurve};
|
||||
use ark_ff::{Fp256, Field};
|
||||
use ark_poly::{GeneralEvaluationDomain, EvaluationDomain, UVPolynomial,
|
||||
Evaluations as EvaluationsOnDomain, univariate::DensePolynomial, Polynomial};
|
||||
use ark_poly_commit::kzg10::*;
|
||||
use ark_bls12_381::{Bls12_381, FrParameters, Fr, G1Affine, G2Affine};
|
||||
use ark_std::{cfg_into_iter, One, Zero};
|
||||
|
||||
use crate::tools::{UniPoly381, KzgBls12_381, hash_caulk_single, random_field,
|
||||
kzg_open_g1, kzg_verify_g1};
|
||||
|
||||
// prover public parameters structure for caulk_single_unity_prove
|
||||
#[allow(non_snake_case)]
|
||||
pub struct PublicParametersUnity {
|
||||
pub poly_ck: Powers<'static, Bls12<ark_bls12_381::Parameters> >,
|
||||
pub gxd: G1Affine,
|
||||
pub gxpen: G1Affine,
|
||||
pub lagrange_polynomials_Vn: Vec< UniPoly381>,
|
||||
pub poly_prod: UniPoly381,
|
||||
pub logN: usize,
|
||||
pub domain_Vn: GeneralEvaluationDomain<Fr>,
|
||||
}
|
||||
|
||||
// verifier parameters structure for caulk_single_unity_verify
|
||||
#[allow(non_snake_case)]
|
||||
pub struct VerifierPublicParametersUnity {
|
||||
pub poly_vk: VerifierKey<Bls12<ark_bls12_381::Parameters>>,
|
||||
pub gxpen: G1Affine,
|
||||
pub g1: G1Affine,
|
||||
pub g1_x: G1Affine,
|
||||
pub lagrange_scalars_Vn: Vec<Fr>,
|
||||
pub poly_prod: UniPoly381,
|
||||
pub logN: usize,
|
||||
pub domain_Vn: GeneralEvaluationDomain<Fr>,
|
||||
pub powers_of_g2: Vec<G2Affine>,
|
||||
}
|
||||
|
||||
|
||||
// output structure of caulk_single_unity_prove
|
||||
#[allow(non_snake_case)]
|
||||
pub struct CaulkProofUnity {
|
||||
pub g1_F: G1Affine,
|
||||
pub g1_H: G1Affine,
|
||||
pub v1: Fp256<FrParameters>,
|
||||
pub v2: Fp256<FrParameters>,
|
||||
pub pi1: G1Affine,
|
||||
pub pi2: G1Affine,
|
||||
// pub g1_q3: G1Affine,
|
||||
}
|
||||
|
||||
// Prove knowledge of a, b such that g2_z = [ax - b]_2 and a^n = b^n
|
||||
#[allow(non_snake_case)]
|
||||
pub fn caulk_single_unity_prove(
|
||||
pp: &PublicParametersUnity,
|
||||
hash_input: &mut Fr,
|
||||
g2_z: G2Affine,
|
||||
a: Fp256<FrParameters>,
|
||||
b: Fp256<FrParameters>,
|
||||
) -> CaulkProofUnity {
|
||||
|
||||
// a_poly = a X - b
|
||||
let a_poly = DensePolynomial::from_coefficients_slice(&[-b, a]);
|
||||
|
||||
// provers blinders for zero-knowledge
|
||||
let r0: Fp256<FrParameters> = random_field::<Fr>();
|
||||
let r1: Fp256<FrParameters> = random_field::<Fr>();
|
||||
let r2: Fp256<FrParameters> = random_field::<Fr>();
|
||||
let r3: Fp256<FrParameters> = random_field::<Fr>();
|
||||
let r_poly = DensePolynomial::from_coefficients_slice(&[r1, r2, r3]);
|
||||
|
||||
// roots of unity in domain of size m = log_2(n) + 6
|
||||
let sigma = pp.domain_Vn.element(1);
|
||||
|
||||
// X^n - 1
|
||||
let z: UniPoly381 = pp.domain_Vn.vanishing_polynomial().into();
|
||||
|
||||
// computing [ (a/b), (a/b)^2, (a/b)^4, ..., (a/b)^(2^logN) = (a/b)^n ]
|
||||
let mut a_div_b = a * (b.inverse()).unwrap();
|
||||
let mut vec_a_div_b: Vec< Fp256<FrParameters> > = Vec::new();
|
||||
for _ in 0..(pp.logN+1) {
|
||||
vec_a_div_b.push( a_div_b.clone() );
|
||||
a_div_b = a_div_b * a_div_b;
|
||||
}
|
||||
|
||||
////////////////////////////
|
||||
// computing f(X). First compute in domain.
|
||||
////////////////////////////
|
||||
let f_evals: Vec<Fp256<FrParameters>> =cfg_into_iter!(0..pp.domain_Vn.size())
|
||||
.map(|k| {
|
||||
if k == 0 { a - b }
|
||||
else if k == 1 { a * sigma - b }
|
||||
else if k == 2 { a }
|
||||
else if k == 3 { b }
|
||||
else if k > 3 && k < (pp.logN + 5) { vec_a_div_b[ k - 4] }
|
||||
else if k == pp.logN + 5 { r0 }
|
||||
else {
|
||||
Fr::zero()
|
||||
}
|
||||
}).collect();
|
||||
|
||||
let f_poly = &EvaluationsOnDomain::from_vec_and_domain(f_evals, pp.domain_Vn)
|
||||
.interpolate()
|
||||
+ &(&r_poly * &z);
|
||||
|
||||
// computing f( sigma^(-1) X) and f( sigma^(-2) X)
|
||||
let mut f_poly_shift_1 = f_poly.clone();
|
||||
let mut f_poly_shift_2 = f_poly.clone();
|
||||
let mut shift_1 = Fr::one();
|
||||
let mut shift_2 = Fr::one();
|
||||
|
||||
for i in 0..f_poly.len() {
|
||||
f_poly_shift_1[i] = f_poly_shift_1[i] * shift_1 ;
|
||||
f_poly_shift_2[i] = f_poly_shift_2[i] * shift_2 ;
|
||||
shift_1 = shift_1 * pp.domain_Vn.element( pp.domain_Vn.size() - 1 );
|
||||
shift_2 = shift_2 * pp.domain_Vn.element( pp.domain_Vn.size() - 2 );
|
||||
}
|
||||
|
||||
|
||||
|
||||
////////////////////////////
|
||||
// computing h(X). First compute p(X) then divide.
|
||||
////////////////////////////
|
||||
|
||||
// p(X) = p(X) + (f(X) - a(X)) (rho_1(X) + rho_2(X))
|
||||
let mut p_poly = &(&f_poly - &a_poly) * &(&pp.lagrange_polynomials_Vn[0] + &pp.lagrange_polynomials_Vn[1]) ;
|
||||
|
||||
// p(X) = p(X) + ( (1 - sigma) f(X) - f(sigma^(-2)X) + f(sigma^(-1) X) ) rho_3(X)
|
||||
p_poly = &p_poly +
|
||||
&( &(&( &(&DensePolynomial::from_coefficients_slice(&[(Fr::one() - sigma)]) * &f_poly)
|
||||
- &f_poly_shift_2 )
|
||||
+ &f_poly_shift_1 ) * &pp.lagrange_polynomials_Vn[2] ) ;
|
||||
|
||||
// p(X) = p(X) + ( -sigma f(sigma^(-1) X) + f(sigma^(-2)X) + f(X) ) rho_4(X)
|
||||
p_poly = &p_poly +
|
||||
&( &(&( &(&DensePolynomial::from_coefficients_slice(&[ - sigma]) * &f_poly_shift_1)
|
||||
+ &f_poly_shift_2 )
|
||||
+ &f_poly ) * &pp.lagrange_polynomials_Vn[3] ) ;
|
||||
|
||||
// p(X) = p(X) + ( f(X) f(sigma^(-1) X) - f(sigma^(-2)X) ) rho_5(X)
|
||||
p_poly = &p_poly +
|
||||
&( &( &(&f_poly * &f_poly_shift_1) - &f_poly_shift_2 ) * &pp.lagrange_polynomials_Vn[4] ) ;
|
||||
|
||||
// p(X) = p(X) + ( f(X) - f(sigma^(-1) X) * f(sigma^(-1)X) ) prod_(i not in [5, .. , logN + 4]) (X - sigma^i)
|
||||
p_poly = &p_poly +
|
||||
&(&( &f_poly - &(&f_poly_shift_1 * &f_poly_shift_1) ) * &pp.poly_prod ) ;
|
||||
|
||||
// p(X) = p(X) + ( f(sigma^(-1) X) - 1 ) rho_(logN + 6)(X)
|
||||
p_poly = &p_poly +
|
||||
&( &(&f_poly_shift_1 -
|
||||
&(DensePolynomial::from_coefficients_slice(&[ Fr::one()]) )) * &pp.lagrange_polynomials_Vn[pp.logN + 5] ) ;
|
||||
|
||||
// Compute h_hat_poly = p(X) / z_Vn(X) and abort if division is not perfect
|
||||
let (h_hat_poly, remainder) = p_poly.divide_by_vanishing_poly(pp.domain_Vn).unwrap();
|
||||
assert!(remainder.is_zero(), "z_Vn(X) does not divide p(X)");
|
||||
|
||||
|
||||
////////////////////////////
|
||||
// Commit to f(X) and h(X)
|
||||
////////////////////////////
|
||||
let (g1_F, _) = KzgBls12_381::commit( &pp.poly_ck, &f_poly, None, None).unwrap();
|
||||
let g1_F: G1Affine = g1_F.0;
|
||||
let (h_hat_com, _ ) = KzgBls12_381::commit( &pp.poly_ck, &h_hat_poly, None, None).unwrap();
|
||||
|
||||
// g1_H is a commitment to h_hat_poly + X^(d-1) z(X)
|
||||
let g1_H = h_hat_com.0 + (pp.gxd.mul(-a) + pp.gxpen.mul(b) ).into_affine();
|
||||
|
||||
////////////////////////////
|
||||
// alpha = Hash([z]_2, [F]_1, [H]_1)
|
||||
////////////////////////////
|
||||
|
||||
let alpha = hash_caulk_single::<Fr>(
|
||||
hash_input.clone(),
|
||||
Some(& [g1_F, g1_H].to_vec()),
|
||||
Some(& [g2_z].to_vec()),
|
||||
None );
|
||||
|
||||
*hash_input = alpha.clone();
|
||||
|
||||
////////////////////////////
|
||||
// v1 = f(sigma^(-1) alpha) and v2 = f(w^(-2) alpha)
|
||||
////////////////////////////
|
||||
let alpha1 = alpha * pp.domain_Vn.element( pp.domain_Vn.size() - 1 );
|
||||
let alpha2 = alpha * pp.domain_Vn.element( pp.domain_Vn.size() - 2 );
|
||||
let v1 = f_poly.evaluate(&alpha1);
|
||||
let v2 = f_poly.evaluate(&alpha2);
|
||||
|
||||
////////////////////////////
|
||||
// Compute polynomial p_alpha(X) that opens at alpha to 0
|
||||
////////////////////////////
|
||||
|
||||
// restating some field elements as polynomials so that can multiply polynomials
|
||||
let pz_alpha = DensePolynomial::from_coefficients_slice(&[ - z.evaluate(&alpha)]);
|
||||
let pv1 = DensePolynomial::from_coefficients_slice(&[ v1 ]);
|
||||
let pv2 = DensePolynomial::from_coefficients_slice(&[ v2 ]);
|
||||
let prho1_add_2 = DensePolynomial::from_coefficients_slice(&[ pp.lagrange_polynomials_Vn[0].evaluate(&alpha)
|
||||
+ pp.lagrange_polynomials_Vn[1].evaluate(&alpha)]);
|
||||
let prho3 = DensePolynomial::from_coefficients_slice(&[ pp.lagrange_polynomials_Vn[2].evaluate(&alpha)] );
|
||||
let prho4 = DensePolynomial::from_coefficients_slice(&[ pp.lagrange_polynomials_Vn[3].evaluate(&alpha)] );
|
||||
let prho5 = DensePolynomial::from_coefficients_slice(&[ pp.lagrange_polynomials_Vn[4].evaluate(&alpha)] );
|
||||
let ppolyprod = DensePolynomial::from_coefficients_slice(&[ pp.poly_prod.evaluate(&alpha)] );
|
||||
let prhologN6 = DensePolynomial::from_coefficients_slice(&[ pp.lagrange_polynomials_Vn[pp.logN + 5].evaluate(&alpha)] );
|
||||
|
||||
// p_alpha(X) = - zVn(alpha) h(X)
|
||||
let mut p_alpha_poly = &pz_alpha * &h_hat_poly;
|
||||
|
||||
// p_alpha(X) = p_alpha(X) + ( f(X) - z(X) )(rho1(alpha) + rho2(alpha))
|
||||
p_alpha_poly = &p_alpha_poly + &(&(&f_poly - &a_poly) * &prho1_add_2 ) ;
|
||||
|
||||
// p_alpha(X) = p_alpha(X) + ( (1-sigma) f(X) - v2 + v1 ) rho3(alpha)
|
||||
p_alpha_poly = &p_alpha_poly +
|
||||
&( &(&( &(&DensePolynomial::from_coefficients_slice(&[(Fr::one() - sigma)]) * &f_poly)
|
||||
- &pv2 )
|
||||
+ &pv1 ) * &prho3 ) ;
|
||||
|
||||
// p_alpha(X) = p_alpha(X) + ( f(X) + v2 - sigma v1 ) rho4(alpha)
|
||||
p_alpha_poly = &p_alpha_poly +
|
||||
&( &(&( &(&DensePolynomial::from_coefficients_slice(&[ - sigma]) * &pv1)
|
||||
+ &pv2 )
|
||||
+ &f_poly ) * &prho4 ) ;
|
||||
|
||||
// p_alpha(X) = p_alpha(X) + ( v1 f(X) - v2 ) rho5(alpha)
|
||||
p_alpha_poly = &p_alpha_poly +
|
||||
&( &( &(&f_poly * &pv1) - &pv2 ) * &prho5 ) ;
|
||||
|
||||
// p_alpha(X) = p_alpha(X) + ( f(X) - v1^2 ) prod_(i not in [5, .. , logN + 4]) (alpha - sigma^i)
|
||||
p_alpha_poly = &p_alpha_poly +
|
||||
&(&( &f_poly - &(&pv1 * &pv1) ) * &ppolyprod ) ;
|
||||
|
||||
/*
|
||||
Differing slightly from paper
|
||||
Paper uses p_alpha(X) = p_alpha(X) + ( v1 - 1 ) rho_(n)(alpha) assuming that logN = n - 6
|
||||
We use p_alpha(X) = p_alpha(X) + ( v1 - 1 ) rho_(logN + 6)(alpha) to allow for any value of logN
|
||||
*/
|
||||
p_alpha_poly = &p_alpha_poly +
|
||||
&( &(&pv1 -
|
||||
&(DensePolynomial::from_coefficients_slice(&[ Fr::one()]) )) * &prhologN6 ) ;
|
||||
|
||||
|
||||
|
||||
////////////////////////////
|
||||
// Compute opening proofs
|
||||
////////////////////////////
|
||||
|
||||
// KZG.Open(srs_KZG, f(X), deg = bot, (alpha1, alpha2))
|
||||
let (_evals1, pi1) = kzg_open_g1(
|
||||
&pp.poly_ck,
|
||||
&f_poly,
|
||||
None,
|
||||
[&alpha1, &alpha2].to_vec()
|
||||
);
|
||||
|
||||
// KZG.Open(srs_KZG, p_alpha(X), deg = bot, alpha)
|
||||
let (evals2, pi2) = kzg_open_g1(
|
||||
& pp.poly_ck,
|
||||
& p_alpha_poly,
|
||||
None,
|
||||
[&alpha].to_vec()
|
||||
);
|
||||
|
||||
// abort if p_alpha( alpha) != 0
|
||||
assert!( evals2[0] == Fr::zero(), "p_alpha(X) does not equal 0 at alpha" );
|
||||
|
||||
|
||||
|
||||
|
||||
let proof = CaulkProofUnity {
|
||||
g1_F: g1_F,
|
||||
g1_H: g1_H,
|
||||
v1: v1,
|
||||
v2: v2,
|
||||
pi1: pi1,
|
||||
pi2: pi2,
|
||||
};
|
||||
|
||||
proof
|
||||
}
|
||||
|
||||
// Verify that the prover knows a, b such that g2_z = g2^(a x - b) and a^n = b^n
|
||||
#[allow(non_snake_case)]
|
||||
pub fn caulk_single_unity_verify(
|
||||
vk: &VerifierPublicParametersUnity,
|
||||
hash_input: &mut Fr,
|
||||
g2_z: &G2Affine,
|
||||
proof: &CaulkProofUnity
|
||||
) -> bool {
|
||||
|
||||
// g2_z must not be the identity
|
||||
assert!( g2_z.is_zero() == false, "g2_z is the identity");
|
||||
|
||||
// roots of unity in domain of size m = log1_2(n) + 6
|
||||
let sigma = vk.domain_Vn.element(1);
|
||||
let v1 = proof.v1; let v2 = proof.v2;
|
||||
|
||||
////////////////////////////
|
||||
// alpha = Hash(A, F, H)
|
||||
////////////////////////////
|
||||
|
||||
|
||||
let alpha = hash_caulk_single::<Fr>( hash_input.clone(), Some(& [proof.g1_F, proof.g1_H].to_vec()), Some(& [g2_z.clone()].to_vec()), None );
|
||||
*hash_input = alpha.clone();
|
||||
|
||||
// alpha1 = sigma^(-1) alpha and alpha2 = sigma^(-2) alpha
|
||||
let alpha1: Fr = alpha * vk.domain_Vn.element( vk.domain_Vn.size() - 1 );
|
||||
let alpha2: Fr = alpha * vk.domain_Vn.element( vk.domain_Vn.size() - 2 );
|
||||
|
||||
///////////////////////////////
|
||||
// Compute P = commitment to p_alpha(X)
|
||||
///////////////////////////////
|
||||
|
||||
// Useful field elements.
|
||||
|
||||
// zalpha = z(alpha) = alpha^n - 1,
|
||||
let zalpha = vk.domain_Vn.vanishing_polynomial().evaluate(&alpha);
|
||||
|
||||
// rhoi = L_i(alpha) = ls_i * [(X^m - 1) / (alpha - w^i) ]
|
||||
// where ls_i = lagrange_scalars_Vn[i] = prod_{j neq i} (w_i - w_j)^(-1)
|
||||
let rho0 = zalpha * (alpha - vk.domain_Vn.element(0)).inverse().unwrap() * vk.lagrange_scalars_Vn[0];
|
||||
let rho1 = zalpha * (alpha - vk.domain_Vn.element(1)).inverse().unwrap() * vk.lagrange_scalars_Vn[1];
|
||||
let rho2 = zalpha * (alpha - vk.domain_Vn.element(2)).inverse().unwrap() * vk.lagrange_scalars_Vn[2];
|
||||
let rho3 = zalpha * (alpha - vk.domain_Vn.element(3)).inverse().unwrap() * vk.lagrange_scalars_Vn[3];
|
||||
let rho4 = zalpha * (alpha - vk.domain_Vn.element(4)).inverse().unwrap() * vk.lagrange_scalars_Vn[4];
|
||||
let rhologN5 = zalpha * (alpha - vk.domain_Vn.element(vk.logN + 5)).inverse().unwrap() * vk.lagrange_scalars_Vn[5];
|
||||
|
||||
// pprod = prod_(i not in [5,..,logN+4]) (alpha - w^i)
|
||||
let pprod = vk.poly_prod.evaluate(&alpha);
|
||||
|
||||
// P = H^(-z(alpha)) * F^(rho0(alpha) + L_1(alpha) + (1 - w)L_2(alpha) + L_3(alpha) + v1 L_4(alpha)
|
||||
// + prod_(i not in [5,..,logN+4]) (alpha - w^i))
|
||||
// * g^( (v1 -v2)L_2(alpha) + (v2 - w v1)L_3(alpha) - v2 L_4(alpha) + (v1 - 1)L_(logN+5)(alpha)
|
||||
// - v1^2 * prod_(i not in [5,..,logN+4]) (alpha - w^i) )
|
||||
let g1_p = proof.g1_H.mul( -zalpha )
|
||||
+ proof.g1_F.mul(rho0 + rho1 + (Fr::one() - sigma) * rho2 + rho3 + v1 * rho4 + pprod)
|
||||
+ vk.g1.mul( (v1 - v2) * rho2 + (v2 - sigma * v1) * rho3 - v2 * rho4 + (v1 - Fr::one()) * rhologN5 - v1 * v1 * pprod )
|
||||
;
|
||||
|
||||
///////////////////////////////
|
||||
// Pairing checks
|
||||
///////////////////////////////
|
||||
|
||||
|
||||
///////////////////////////////
|
||||
// KZG opening check
|
||||
///////////////////////////////
|
||||
|
||||
let check1 = kzg_verify_g1(
|
||||
& [vk.g1, vk.g1_x].to_vec(), & vk.powers_of_g2,
|
||||
proof.g1_F,
|
||||
None,
|
||||
[alpha1, alpha2].to_vec(),
|
||||
[proof.v1, proof.v2].to_vec(),
|
||||
proof.pi1
|
||||
);
|
||||
|
||||
let g1_q = proof.pi2.clone();
|
||||
|
||||
// check that e(P Q3^(-alpha), g2)e( g^(-(rho0 + rho1) - zH(alpha) x^(d-1)), A ) e( Q3, g2^x ) = 1
|
||||
// Had to move A from affine to projective and back to affine to get it to compile.
|
||||
// No idea what difference this makes.
|
||||
let eq1 = vec![
|
||||
( (g1_p + g1_q.mul( alpha ) ).into_affine().into(), vk.poly_vk.prepared_h.clone() ),
|
||||
|
||||
((( vk.g1.mul(-rho0 - rho1) + vk.gxpen.mul(-zalpha) ).into_affine() ).into(), g2_z.into_projective().into_affine().into() ),
|
||||
|
||||
( (- g1_q).into(), vk.poly_vk.prepared_beta_h.clone() )
|
||||
];
|
||||
|
||||
let check2 = Bls12_381::product_of_pairings(&eq1).is_one();
|
||||
|
||||
|
||||
|
||||
|
||||
return check1 && check2
|
||||
|
||||
}
|
||||
104
caulk_single_opening/src/main.rs
Normal file
104
caulk_single_opening/src/main.rs
Normal file
@@ -0,0 +1,104 @@
|
||||
use ark_bls12_381::{Bls12_381, Fr, G1Affine};
|
||||
use ark_poly::{EvaluationDomain, GeneralEvaluationDomain, UVPolynomial, Polynomial};
|
||||
use ark_poly_commit::kzg10::KZG10;
|
||||
use ark_ec::{AffineCurve,ProjectiveCurve};
|
||||
use std::{time::{Instant}};
|
||||
|
||||
mod tools;
|
||||
mod caulk_single_setup;
|
||||
mod caulk_single_unity;
|
||||
mod pedersen;
|
||||
mod caulk_single;
|
||||
mod multiopen;
|
||||
|
||||
|
||||
use crate::tools::{read_line, kzg_open_g1, random_field,UniPoly381};
|
||||
use crate::caulk_single_setup::{caulk_single_setup};
|
||||
use crate::caulk_single::{caulk_single_prove, caulk_single_verify};
|
||||
use crate::multiopen::{multiple_open};
|
||||
|
||||
pub type KzgBls12_381 = KZG10<Bls12_381, UniPoly381>;
|
||||
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
fn main() {
|
||||
|
||||
// setting public parameters
|
||||
// current kzg setup should be changed with output from a setup ceremony
|
||||
println!("What is the bitsize of the degree of the polynomial inside the commitment? ");
|
||||
let p: usize = read_line();
|
||||
let max_degree: usize = (1<<p) +2;
|
||||
let actual_degree: usize = (1<<p)-1;
|
||||
|
||||
// run the setup
|
||||
let now = Instant::now();
|
||||
let pp = caulk_single_setup(max_degree, actual_degree);
|
||||
println!("Time to setup single openings of table size {:?} = {:?}", actual_degree + 1, now.elapsed());
|
||||
|
||||
|
||||
//polynomial and commitment
|
||||
let now = Instant::now();
|
||||
// deterministic randomness. Should never be used in practice.
|
||||
let rng = &mut ark_std::test_rng();
|
||||
let c_poly = UniPoly381::rand(actual_degree, rng);
|
||||
let (g1_C, _) = KzgBls12_381::commit( &pp.poly_ck, &c_poly, None, None).unwrap();
|
||||
let g1_C = g1_C.0;
|
||||
println!("Time to KZG commit one element from table size {:?} = {:?}", actual_degree + 1, now.elapsed());
|
||||
|
||||
//point at which we will open c_com
|
||||
let input_domain: GeneralEvaluationDomain<Fr> = EvaluationDomain::new(actual_degree).unwrap();
|
||||
println!("Which position in the vector should we open at? ");
|
||||
let position: usize = read_line();
|
||||
assert!(0 < position, "This position does not exist in this vector.");
|
||||
assert!(position <= (actual_degree+1), "This position does not exist in this vector.");
|
||||
let omega_i = input_domain.element(position);
|
||||
|
||||
//Deciding whether to open all positions or just the one position.
|
||||
println!("Should we open all possible positions? Opening all possible positions is slow. Please input either YES or NO" );
|
||||
let open_all: String = read_line();
|
||||
|
||||
let g1_q: G1Affine;
|
||||
if (open_all == "NO") || (open_all == "No") || (open_all == "no") {
|
||||
|
||||
// Q = g1_q = g^( (c(x) - c(w_i)) / (x - w_i) )
|
||||
let now = Instant::now();
|
||||
let a = kzg_open_g1(&pp.poly_ck, & c_poly, None, [& omega_i].to_vec() );
|
||||
println!("Time to KZG open one element from table size {:?} = {:?}", actual_degree + 1, now.elapsed());
|
||||
g1_q = a.1;
|
||||
}
|
||||
else {
|
||||
|
||||
assert!( (open_all == "YES") || (open_all == "Yes") || (open_all == "yes") , "Console input is invalid");
|
||||
|
||||
//compute all openings
|
||||
let now = Instant::now();
|
||||
let g1_qs = multiple_open(&c_poly, &pp.poly_ck, p);
|
||||
g1_q = g1_qs[position];
|
||||
println!("Time to compute all KZG openings {:?}", now.elapsed());
|
||||
}
|
||||
|
||||
// z = c(w_i) and cm = g^z h^r for random r
|
||||
let z = c_poly.evaluate(&omega_i);
|
||||
let r = random_field::<Fr>();
|
||||
let cm = (pp.ped_g.mul( z ) + pp.ped_h.mul( r )).into_affine();
|
||||
|
||||
// run the prover
|
||||
println!("We are now ready to run the prover. How many times should we run it?" );
|
||||
let number_of_openings: usize = read_line();
|
||||
let now = Instant::now();
|
||||
|
||||
let mut proof_evaluate = caulk_single_prove(&pp, &g1_C, &cm, position, &g1_q, &z, &r );
|
||||
for _ in 1..(number_of_openings-1) {
|
||||
proof_evaluate = caulk_single_prove(&pp, &g1_C, &cm, position, &g1_q, &z, &r );
|
||||
}
|
||||
println!("Time to evaluate {} single openings of table size {:?} = {:?}", number_of_openings,actual_degree + 1, now.elapsed());
|
||||
|
||||
// run the verifier
|
||||
println!( "The proof verifies = {:?}", caulk_single_verify(&pp.verifier_pp, &g1_C, &cm, &proof_evaluate) );
|
||||
let now = Instant::now();
|
||||
for _ in 0..(number_of_openings-1) {
|
||||
caulk_single_verify(&pp.verifier_pp, &g1_C, &cm, &proof_evaluate);
|
||||
}
|
||||
println!("Time to verify {} single openings of table size {:?} = {:?}", number_of_openings, actual_degree + 1, now.elapsed());
|
||||
|
||||
}
|
||||
408
caulk_single_opening/src/multiopen.rs
Normal file
408
caulk_single_opening/src/multiopen.rs
Normal file
@@ -0,0 +1,408 @@
|
||||
/*
|
||||
This file includes an algorithm for calculating n openings of a KZG vector commitment of size n in n log(n) time.
|
||||
The algorithm is by Feist and khovratovich.
|
||||
It is useful for preprocessing.
|
||||
The full algorithm is described here https://github.com/khovratovich/Kate/blob/master/Kate_amortized.pdf
|
||||
*/
|
||||
|
||||
use std::str::FromStr;
|
||||
//use std::time::{Instant};
|
||||
use std::vec::Vec;
|
||||
|
||||
use ark_bls12_381::{Bls12_381,Fr,FrParameters,G1Affine,G1Projective};
|
||||
use ark_poly::univariate::DensePolynomial;
|
||||
use ark_ff::{PrimeField, Fp256, Field};
|
||||
|
||||
use ark_poly::{EvaluationDomain, GeneralEvaluationDomain, UVPolynomial};
|
||||
use ark_ec::{AffineCurve,ProjectiveCurve};
|
||||
use ark_poly_commit::kzg10::*;
|
||||
|
||||
|
||||
|
||||
//compute all pre-proofs using DFT
|
||||
// h_i= c_d[x^{d-i-1}]+c_{d-1}[x^{d-i-2}]+c_{d-2}[x^{d-i-3}]+\cdots + c_{i+2}[x]+c_{i+1}[1]
|
||||
pub fn compute_h(
|
||||
c_poly: &DensePolynomial<Fp256<FrParameters>>, //c(X) degree up to d<2^p , i.e. c_poly has at most d+1 coeffs non-zero
|
||||
poly_ck: &Powers<Bls12_381>, //SRS
|
||||
p: usize
|
||||
)->Vec<G1Projective>
|
||||
{
|
||||
let mut coeffs = c_poly.coeffs().to_vec();
|
||||
let dom_size = 1<<p;
|
||||
let fpzero = Fp256::from_str("0").unwrap();
|
||||
coeffs.resize(dom_size,fpzero);
|
||||
|
||||
|
||||
//let now = Instant::now();
|
||||
//1. x_ext = [[x^(d-1)], [x^{d-2},...,[x],[1], d+2 [0]'s]
|
||||
let mut x_ext = vec![];
|
||||
for i in 0..=dom_size-2{
|
||||
x_ext.push( poly_ck.powers_of_g[dom_size-2-i].into_projective());
|
||||
}
|
||||
let g1inf = poly_ck.powers_of_g[0].mul(fpzero);
|
||||
x_ext.resize(2*dom_size,g1inf); //filling 2d+2 neutral elements
|
||||
|
||||
let y = dft_g1(&x_ext, p+1);
|
||||
//println!("Step 1 computed in {:?}", now.elapsed());
|
||||
|
||||
//2. c_ext = [c_d, d zeroes, c_d,c_{0},c_1,...,c_{d-2},c_{d-1}]
|
||||
//let now = Instant::now();
|
||||
let mut c_ext = vec![];
|
||||
c_ext.push(coeffs[coeffs.len()-1]);
|
||||
c_ext.resize(dom_size,fpzero);
|
||||
c_ext.push(coeffs[coeffs.len()-1]);
|
||||
for i in 0..coeffs.len()-1{
|
||||
c_ext.push(coeffs[i]);
|
||||
}
|
||||
assert_eq!(c_ext.len(),2*dom_size);
|
||||
let v = dft_opt(&c_ext, p+1);
|
||||
//println!("Step 2 computed in {:?}", now.elapsed());
|
||||
|
||||
//3. u = y o v
|
||||
|
||||
//let now = Instant::now();
|
||||
let u = y.into_iter()
|
||||
.zip(v.into_iter())
|
||||
.map(|(a,b)|{a.mul(b.into_repr())})
|
||||
.collect();
|
||||
// println!("Step 3 computed in {:?}", now.elapsed());
|
||||
|
||||
//4. h_ext = idft_{2d+2}(u)
|
||||
//let now = Instant::now();
|
||||
let h_ext = idft_g1(&u, p+1);
|
||||
//println!("Step 4 computed in {:?}", now.elapsed());
|
||||
|
||||
return h_ext[0..dom_size].to_vec();
|
||||
}
|
||||
|
||||
//compute DFT of size @dom_size over vector of G1 elements
|
||||
//q_i = h_0 + h_1w^i + h_2w^{2i}+\cdots + h_{dom_size-1}w^{(dom_size-1)i} for 0<= i< dom_size=2^p
|
||||
pub fn dft_g1(
|
||||
h: &Vec<G1Projective>,
|
||||
p: usize
|
||||
)->Vec<G1Projective>
|
||||
{
|
||||
let dom_size = 1<<p;
|
||||
assert_eq!(h.len(),dom_size); //we do not support inputs of size not power of 2
|
||||
let input_domain: GeneralEvaluationDomain<Fr> = EvaluationDomain::new(dom_size).unwrap();
|
||||
let mut l = dom_size/2;
|
||||
let mut m: usize=1;
|
||||
//Stockham FFT
|
||||
let mut xvec = vec![h.to_vec()];
|
||||
for t in 1..=p{
|
||||
let mut xt= xvec[t-1].clone();
|
||||
for j in 0..l{
|
||||
for k in 0..m{
|
||||
let c0 = xvec[t-1][k+j*m].clone();
|
||||
let c1 = &xvec[t-1][k+j*m+l*m];
|
||||
xt[k+2*j*m] = c0+c1;
|
||||
let wj_2l=input_domain.element((j*dom_size/(2*l))%dom_size);
|
||||
xt[k+2*j*m+m]= (c0-c1).mul(wj_2l.into_repr());
|
||||
}
|
||||
}
|
||||
l = l/2;
|
||||
m = m*2;
|
||||
xvec.push(xt.to_vec());
|
||||
}
|
||||
return xvec[p].to_vec();
|
||||
}
|
||||
|
||||
//compute DFT of size @dom_size over vector of Fr elements
|
||||
//q_i = h_0 + h_1w^i + h_2w^{2i}+\cdots + h_{dom_size-1}w^{(dom_size-1)i} for 0<= i< dom_size=2^p
|
||||
pub fn dft_opt(
|
||||
h: &Vec<Fr>,
|
||||
p: usize
|
||||
)->Vec<Fr>
|
||||
{
|
||||
let dom_size = 1<<p;
|
||||
assert_eq!(h.len(),dom_size); //we do not support inputs of size not power of 2
|
||||
let input_domain: GeneralEvaluationDomain<Fr> = EvaluationDomain::new(dom_size).unwrap();
|
||||
let mut l = dom_size/2;
|
||||
let mut m: usize=1;
|
||||
//Stockham FFT
|
||||
let mut xvec = vec![h.to_vec()];
|
||||
for t in 1..=p{
|
||||
let mut xt= xvec[t-1].clone();
|
||||
for j in 0..l{
|
||||
for k in 0..m{
|
||||
let c0 = xvec[t-1][k+j*m].clone();
|
||||
let c1 = &xvec[t-1][k+j*m+l*m];
|
||||
xt[k+2*j*m] = c0+c1;
|
||||
let wj_2l=input_domain.element((j*dom_size/(2*l))%dom_size);
|
||||
xt[k+2*j*m+m]= (c0-c1)*(wj_2l);
|
||||
}
|
||||
}
|
||||
l = l/2;
|
||||
m = m*2;
|
||||
xvec.push(xt.to_vec());
|
||||
}
|
||||
return xvec[p].to_vec();
|
||||
}
|
||||
|
||||
|
||||
|
||||
//compute all openings to c_poly using a smart formula
|
||||
pub fn multiple_open(
|
||||
c_poly: &DensePolynomial<Fp256<FrParameters>>, //c(X)
|
||||
poly_ck: &Powers<Bls12_381>, //SRS
|
||||
p: usize
|
||||
)->Vec<G1Affine>
|
||||
{
|
||||
let degree=c_poly.coeffs.len()-1;
|
||||
let input_domain: GeneralEvaluationDomain<Fr> = EvaluationDomain::new(degree).unwrap();
|
||||
|
||||
|
||||
//let now = Instant::now();
|
||||
let h2 = compute_h(c_poly,poly_ck,p);
|
||||
//println!("H2 computed in {:?}", now.elapsed());
|
||||
//assert_eq!(h,h2);
|
||||
|
||||
let dom_size = input_domain.size();
|
||||
assert_eq!(1<<p,dom_size);
|
||||
assert_eq!(degree+1,dom_size);
|
||||
/*let now = Instant::now();
|
||||
let q = DFTG1(&h,p);
|
||||
println!("Q computed in {:?}", now.elapsed());*/
|
||||
|
||||
//let now = Instant::now();
|
||||
let q2 = dft_g1(&h2,p);
|
||||
//println!("Q2 computed in {:?}", now.elapsed());
|
||||
//assert_eq!(q,q2);
|
||||
|
||||
let mut res: Vec<G1Affine> = vec![];
|
||||
for i in 0..dom_size{
|
||||
res.push(q2[i].into_affine());
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
//compute idft of size @dom_size over vector of G1 elements
|
||||
//q_i = (h_0 + h_1w^-i + h_2w^{-2i}+\cdots + h_{dom_size-1}w^{-(dom_size-1)i})/dom_size for 0<= i< dom_size=2^p
|
||||
pub fn idft_g1(
|
||||
h: &Vec<G1Projective>,
|
||||
p: usize
|
||||
)->Vec<G1Projective>
|
||||
{
|
||||
let dom_size = 1<<p;
|
||||
assert_eq!(h.len(),dom_size); //we do not support inputs of size not power of 2
|
||||
let input_domain: GeneralEvaluationDomain<Fr> = EvaluationDomain::new(dom_size).unwrap();
|
||||
let mut l = dom_size/2;
|
||||
let mut m: usize=1;
|
||||
let mut dom_fr = Fr::from_str("1").unwrap();
|
||||
//Stockham FFT
|
||||
let mut xvec = vec![h.to_vec()];
|
||||
for t in 1..=p{
|
||||
let mut xt= xvec[t-1].clone();
|
||||
for j in 0..l{
|
||||
for k in 0..m{
|
||||
let c0 = xvec[t-1][k+j*m].clone();
|
||||
let c1 = &xvec[t-1][k+j*m+l*m];
|
||||
xt[k+2*j*m] = c0+c1;
|
||||
let wj_2l=input_domain.element((dom_size-(j*dom_size/(2*l))%dom_size)%dom_size);
|
||||
xt[k+2*j*m+m]= (c0-c1).mul(wj_2l.into_repr()); //Difference #1 to forward DFT
|
||||
}
|
||||
}
|
||||
l = l/2;
|
||||
m = m*2;
|
||||
dom_fr = dom_fr+dom_fr;
|
||||
xvec.push(xt.to_vec());
|
||||
}
|
||||
let res = xvec[p]
|
||||
.to_vec()
|
||||
.iter()
|
||||
.map(|x|{x
|
||||
.mul(dom_fr
|
||||
.inverse()
|
||||
.unwrap().into_repr())})
|
||||
.collect();
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
#[cfg(test)]
|
||||
pub mod tests {
|
||||
use crate::*;
|
||||
|
||||
use crate::caulk_single_setup::caulk_single_setup;
|
||||
use crate::multiopen::*;
|
||||
use crate::tools::{kzg_open_g1};
|
||||
|
||||
use ark_poly::univariate::DensePolynomial;
|
||||
use ark_ff::Fp256;
|
||||
|
||||
pub fn commit_direct(
|
||||
c_poly: &DensePolynomial<Fp256<FrParameters>>, //c(X)
|
||||
poly_ck: &Powers<Bls12_381>, //SRS
|
||||
)-> G1Affine
|
||||
{
|
||||
assert!(c_poly.coeffs.len()<=poly_ck.powers_of_g.len());
|
||||
let mut com = poly_ck.powers_of_g[0].mul(c_poly.coeffs[0]);
|
||||
for i in 1..c_poly.coeffs.len()
|
||||
{
|
||||
com = com + poly_ck.powers_of_g[i].mul(c_poly.coeffs[i]);
|
||||
}
|
||||
return com.into_affine();
|
||||
}
|
||||
|
||||
//compute all openings to c_poly by mere calling `open` N times
|
||||
pub fn multiple_open_naive(
|
||||
c_poly: &DensePolynomial<Fp256<FrParameters>>,
|
||||
c_com_open: &Randomness< Fp256<FrParameters>, DensePolynomial<Fp256<FrParameters>> >,
|
||||
poly_ck: &Powers<Bls12_381>,
|
||||
degree: usize
|
||||
)
|
||||
->Vec<G1Affine>
|
||||
{
|
||||
let input_domain: GeneralEvaluationDomain<Fr> = EvaluationDomain::new(degree).unwrap();
|
||||
let mut res: Vec<G1Affine> = vec![];
|
||||
for i in 0..input_domain.size(){
|
||||
let omega_i = input_domain.element(i);
|
||||
res.push( kzg_open_g1_test(&c_poly, &omega_i, &c_com_open, &poly_ck).w);
|
||||
}
|
||||
return res;
|
||||
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////
|
||||
pub fn kzg_open_g1_test(
|
||||
p: &DensePolynomial<Fp256<FrParameters>>,
|
||||
omega_5: &Fp256<FrParameters>,
|
||||
polycom_open: &Randomness< Fp256<FrParameters>, DensePolynomial<Fp256<FrParameters>> >,
|
||||
poly_ck: &Powers<Bls12_381>
|
||||
) -> Proof< Bls12_381 > {
|
||||
|
||||
let rng = &mut ark_std::test_rng();
|
||||
|
||||
let (witness_polynomial, _random_witness_polynomial) =
|
||||
KzgBls12_381::compute_witness_polynomial(p, omega_5.clone(), polycom_open).unwrap();
|
||||
|
||||
let (temp0, _temp1) = KZG10::commit(poly_ck, &witness_polynomial, None, Some(rng)).unwrap();
|
||||
let poly_open: Proof< Bls12_381 > = Proof { w: temp0.0 , random_v: None, };
|
||||
return poly_open
|
||||
}
|
||||
|
||||
//compute KZG proof Q = g1_q = g^( (c(x) - c(w^i)) / (x - w^i) ) where x is secret, w^i is the point where we open, and c(X) is the committed polynomial
|
||||
pub fn single_open_default(
|
||||
c_poly: &DensePolynomial<Fp256<FrParameters>>, //c(X)
|
||||
c_com_open: &Randomness< Fp256<FrParameters>, DensePolynomial<Fp256<FrParameters>> >, //
|
||||
poly_ck: &Powers<Bls12_381>,
|
||||
i: usize, //
|
||||
degree: usize
|
||||
)
|
||||
->G1Affine
|
||||
{
|
||||
let input_domain: GeneralEvaluationDomain<Fr> = EvaluationDomain::new(degree).unwrap();
|
||||
let omega_i = input_domain.element(i);
|
||||
let c_poly_open = kzg_open_g1_test(&c_poly, &omega_i, &c_com_open, &poly_ck);
|
||||
return c_poly_open.w ;
|
||||
}
|
||||
|
||||
//KZG proof/opening at point y for c(X) = sum_i c_i X^i
|
||||
//(1)T_y(X) = sum_i t_i X^i
|
||||
//(2) t_{deg-1} = c_deg
|
||||
//(3) t_j = c_{j+1} + y*t_{j+1}
|
||||
pub fn single_open_fast(
|
||||
c_poly: &DensePolynomial<Fp256<FrParameters>>, //c(X)
|
||||
poly_ck: &Powers<Bls12_381>, //SRS
|
||||
i: usize, //y=w^i
|
||||
degree: usize //degree of c(X)
|
||||
)
|
||||
->G1Affine
|
||||
{
|
||||
//computing opening point
|
||||
let input_domain: GeneralEvaluationDomain<Fr> = EvaluationDomain::new(degree).unwrap();
|
||||
let y = input_domain.element(i);
|
||||
|
||||
//compute quotient
|
||||
let mut t_poly = c_poly.clone();
|
||||
t_poly.coeffs.remove(0); //shifting indices
|
||||
for j in (0..t_poly.len()-1).rev(){
|
||||
t_poly.coeffs[j] = c_poly.coeffs[j+1] + y*t_poly.coeffs[j+1]
|
||||
}
|
||||
|
||||
//commit
|
||||
let (t_com,_) = KzgBls12_381::commit( &poly_ck, &t_poly, None, None).unwrap();
|
||||
return t_com.0;
|
||||
}
|
||||
|
||||
pub fn test_single()
|
||||
{
|
||||
// setting public parameters
|
||||
// current kzg setup should be changed with output from a setup ceremony
|
||||
let max_degree: usize = 100;
|
||||
let actual_degree: usize = 63;
|
||||
let pp = caulk_single_setup(max_degree, actual_degree);
|
||||
|
||||
// Setting up test instance to run evaluate on.
|
||||
// test randomness for c_poly is same everytime.
|
||||
// test index equals 5 everytime
|
||||
// g_c = g^(c(x))
|
||||
let rng = &mut ark_std::test_rng();
|
||||
let c_poly = UniPoly381::rand(actual_degree, rng);
|
||||
let (c_com, c_com_open) = KzgBls12_381::commit( &pp.poly_ck, &c_poly, None, None).unwrap();
|
||||
|
||||
let i: usize = 6;
|
||||
let q = single_open_default(&c_poly,&c_com_open,&pp.poly_ck,i,actual_degree);
|
||||
let q2 = single_open_fast(&c_poly,&pp.poly_ck,i,actual_degree);
|
||||
assert_eq!(q,q2);
|
||||
}
|
||||
|
||||
pub fn test_dft(
|
||||
h: &Vec<G1Projective>,
|
||||
p: usize)
|
||||
{
|
||||
let c_dft = dft_g1(h,p);
|
||||
let c_back = idft_g1(&c_dft,p);
|
||||
assert_eq!(h,&c_back);
|
||||
println!("DFT test passed");
|
||||
}
|
||||
|
||||
|
||||
pub fn test_commit()
|
||||
{
|
||||
// current kzg setup should be changed with output from a setup ceremony
|
||||
let max_degree: usize = 100;
|
||||
let actual_degree: usize = 63;
|
||||
let pp = caulk_single_setup(max_degree, actual_degree);
|
||||
|
||||
// Setting up test instance to run evaluate on.
|
||||
// test randomness for c_poly is same everytime.
|
||||
// g_c = g^(c(x))
|
||||
let rng = &mut ark_std::test_rng();
|
||||
let c_poly = UniPoly381::rand(actual_degree, rng);
|
||||
let (c_com, c_com_open) = KzgBls12_381::commit( &pp.poly_ck, &c_poly, None, None).unwrap();
|
||||
let g_c1 = c_com.0;
|
||||
|
||||
let g_c2 = commit_direct(&c_poly, &pp.poly_ck);
|
||||
assert_eq!(g_c1,g_c2);
|
||||
println!("commit test passed")
|
||||
}
|
||||
|
||||
#[test]
|
||||
pub fn test_multi()
|
||||
{
|
||||
// current kzg setup should be changed with output from a setup ceremony
|
||||
let p: usize = 9;
|
||||
let max_degree: usize = 1<<p+1;
|
||||
let actual_degree: usize = (1<<p)-1;
|
||||
let pp = caulk_single_setup(max_degree, actual_degree);
|
||||
|
||||
// Setting up test instance to run evaluate on.
|
||||
// test randomness for c_poly is same everytime.
|
||||
// test index equals 5 everytime
|
||||
// g_c = g^(c(x))
|
||||
let rng = &mut ark_std::test_rng();
|
||||
let c_poly = UniPoly381::rand(actual_degree, rng);
|
||||
let (c_com, c_com_open) = KzgBls12_381::commit( &pp.poly_ck, &c_poly, None, None).unwrap();
|
||||
let g_c = c_com.0;
|
||||
|
||||
let now = Instant::now();
|
||||
let q = multiple_open_naive(&c_poly,&c_com_open,&pp.poly_ck,actual_degree);
|
||||
println!("Multi naive computed in {:?}", now.elapsed());
|
||||
|
||||
let now = Instant::now();
|
||||
let q2 = multiple_open(&c_poly,&pp.poly_ck,p);
|
||||
println!("Multi advanced computed in {:?}", now.elapsed());
|
||||
assert_eq!(q,q2);
|
||||
}
|
||||
}
|
||||
71
caulk_single_opening/src/pedersen.rs
Normal file
71
caulk_single_opening/src/pedersen.rs
Normal file
@@ -0,0 +1,71 @@
|
||||
/*
|
||||
This file includes a prover and verifier for demonstrating knowledge of an opening of a Pedersen commitment.
|
||||
The protocol is informally described in Appendix A.2, Proof of Opening of a Pedersen Commitment
|
||||
*/
|
||||
|
||||
use ark_ec::{ProjectiveCurve, AffineCurve};
|
||||
use ark_ff::{Fp256, PrimeField};
|
||||
use ark_bls12_381::{G1Affine, FrParameters, Fr};
|
||||
use ark_std::Zero;
|
||||
|
||||
use crate::tools::{hash_caulk_single, random_field};
|
||||
|
||||
// Structure of proof output by prove_pedersen
|
||||
pub struct ProofPed {
|
||||
pub g1_r: G1Affine,
|
||||
pub t1: Fp256<FrParameters>,
|
||||
pub t2: Fp256<FrParameters>,
|
||||
}
|
||||
|
||||
// prove knowledge of a and b such that cm = g^a h^b
|
||||
pub fn prove_pedersen(
|
||||
g1: &G1Affine,
|
||||
h1: &G1Affine,
|
||||
hash_input: &mut Fr,
|
||||
cm: &G1Affine,
|
||||
a: &Fp256<FrParameters>,
|
||||
b: &Fp256<FrParameters>,
|
||||
) -> ProofPed {
|
||||
|
||||
// R = g^s1 h^s2
|
||||
let s1: Fr = random_field::<Fr>();
|
||||
let s2: Fr = random_field::<Fr>();
|
||||
|
||||
let g1_r = (g1.mul( s1.into_repr() ) + h1.mul( s2.into_repr() )).into_affine();
|
||||
|
||||
// c = Hash(cm, R)
|
||||
|
||||
let c = hash_caulk_single::<Fr>( hash_input.clone(), Some(& [cm.clone(), g1_r].to_vec()), None, None );
|
||||
*hash_input = c.clone();
|
||||
|
||||
let t1 = s1 + c * a;
|
||||
let t2 = s2 + c * b;
|
||||
|
||||
let proof = ProofPed {
|
||||
g1_r: g1_r, t1: t1, t2: t2
|
||||
};
|
||||
|
||||
return proof
|
||||
}
|
||||
|
||||
// Verify that prover knows a and b such that cm = g^a h^b
|
||||
pub fn verify_pedersen(
|
||||
g1: &G1Affine,
|
||||
h1: &G1Affine,
|
||||
hash_input: &mut Fr,
|
||||
cm: &G1Affine,
|
||||
proof: &ProofPed,
|
||||
) -> bool {
|
||||
|
||||
// compute c = Hash(cm, R)
|
||||
|
||||
|
||||
let c = hash_caulk_single::<Fr>( hash_input.clone(), Some(& [cm.clone(), proof.g1_r.clone()].to_vec()), None, None );
|
||||
*hash_input = c.clone();
|
||||
|
||||
// check that R g^(-t1) h^(-t2) cm^(c) = 1
|
||||
let check = proof.g1_r.into_projective() + g1.mul( - proof.t1 )
|
||||
+ h1.mul( - proof.t2 ) + cm.mul( c );
|
||||
|
||||
return check.is_zero()
|
||||
}
|
||||
337
caulk_single_opening/src/tools.rs
Normal file
337
caulk_single_opening/src/tools.rs
Normal file
@@ -0,0 +1,337 @@
|
||||
/*
|
||||
This file includes backend tools:
|
||||
(1) read_line() is for taking inputs from the user
|
||||
(2) kzg_open_g1 is for opening KZG commitments
|
||||
(3) kzg_verify_g1 is for verifying KZG commitments
|
||||
(4) hash_caulk_single is for hashing group and field elements into a field element
|
||||
(5) random_field is for generating random field elements
|
||||
*/
|
||||
|
||||
use ark_bls12_381::{Bls12_381, Fr, G1Affine, G2Affine, G1Projective};
|
||||
use ark_ff::{PrimeField, Field};
|
||||
use ark_poly::{univariate::DensePolynomial, UVPolynomial, Polynomial};
|
||||
use ark_serialize::CanonicalSerialize;
|
||||
use ark_std::{One, Zero};
|
||||
|
||||
use blake2s_simd::Params;
|
||||
use rand::{Rng, SeedableRng, thread_rng};
|
||||
use rand_chacha::ChaChaRng;
|
||||
use std::{io, str::FromStr, error::Error};
|
||||
|
||||
use ark_poly_commit::kzg10::*;
|
||||
use ark_poly::univariate::DensePolynomial as DensePoly;
|
||||
use ark_ec::{PairingEngine, AffineCurve, ProjectiveCurve, msm::VariableBaseMSM};
|
||||
|
||||
pub type UniPoly381 = DensePoly<<Bls12_381 as PairingEngine>::Fr>;
|
||||
pub type KzgBls12_381 = KZG10<Bls12_381, UniPoly381>;
|
||||
|
||||
// Function for reading inputs from the command line.
|
||||
pub fn read_line<T: FromStr>() -> T
|
||||
where <T as FromStr>::Err: Error + 'static
|
||||
{
|
||||
let mut input = String::new();
|
||||
io::stdin().read_line(&mut input).expect("Failed to get console input.");
|
||||
let output: T = input.trim().parse().expect("Console input is invalid.");
|
||||
output
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////
|
||||
//
|
||||
|
||||
//copied from arkworks
|
||||
fn convert_to_bigints<F: PrimeField>(p: &Vec<F>) -> Vec<F::BigInt> {
|
||||
let coeffs = ark_std::cfg_iter!(p)
|
||||
.map(|s| s.into_repr())
|
||||
.collect::<Vec<_>>();
|
||||
coeffs
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// KZG opening and verifying
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
|
||||
/*
|
||||
KZG.Open( srs_KZG, f(X), deg, (alpha1, alpha2, ..., alphan) )
|
||||
returns ([f(alpha1), ..., f(alphan)], pi)
|
||||
Algorithm described in Section 4.6.1, Multiple Openings
|
||||
*/
|
||||
pub fn kzg_open_g1(poly_ck: &Powers<Bls12_381>,
|
||||
poly: &DensePolynomial<Fr>,
|
||||
max_deg: Option<&usize>,
|
||||
points: Vec<&Fr>) -> (Vec<Fr>, G1Affine) {
|
||||
|
||||
let mut evals = Vec::new();
|
||||
let mut proofs = Vec::new();
|
||||
for i in 0..points.len() {
|
||||
let (eval, pi) = kzg_open_g1_single( poly_ck, poly, max_deg, points[i] );
|
||||
evals.push( eval );
|
||||
proofs.push( pi );
|
||||
}
|
||||
|
||||
let mut res: G1Projective = G1Projective::zero(); //default value
|
||||
|
||||
for j in 0..points.len()
|
||||
{
|
||||
let w_j= points[j].clone();
|
||||
//1. Computing coefficient [1/prod]
|
||||
let mut prod =Fr::one();
|
||||
for k in 0..points.len() {
|
||||
let w_k = points[k];
|
||||
if k!=j{
|
||||
prod = prod*(w_j-w_k);
|
||||
}
|
||||
}
|
||||
//2. Summation
|
||||
let q_add = proofs[j].mul(prod.inverse().unwrap()); //[1/prod]Q_{j}
|
||||
res = res + q_add;
|
||||
}
|
||||
|
||||
return (evals, res.into_affine());
|
||||
}
|
||||
|
||||
|
||||
//KZG.Open( srs_KZG, f(X), deg, alpha ) returns (f(alpha), pi)
|
||||
fn kzg_open_g1_single(poly_ck: &Powers<Bls12_381>,
|
||||
poly: &DensePolynomial<Fr>,
|
||||
max_deg: Option<&usize>,
|
||||
point: &Fr) -> (Fr, G1Affine) {
|
||||
|
||||
let eval = poly.evaluate( &point);
|
||||
|
||||
let global_max_deg = poly_ck.powers_of_g.len();
|
||||
|
||||
let mut d: usize = 0;
|
||||
if max_deg == None {
|
||||
d += global_max_deg;
|
||||
}
|
||||
else {
|
||||
d += max_deg.unwrap();
|
||||
}
|
||||
let divisor = DensePolynomial::from_coefficients_vec(vec![-point.clone(), Fr::one()]);
|
||||
let witness_polynomial = poly / &divisor;
|
||||
|
||||
assert!( poly_ck.powers_of_g[(global_max_deg - d)..].len() >= witness_polynomial.len());
|
||||
let proof = VariableBaseMSM::multi_scalar_mul(&poly_ck.powers_of_g[(global_max_deg - d)..], &convert_to_bigints(&witness_polynomial.coeffs).as_slice() ).into_affine();
|
||||
return (eval, proof)
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
// KZG.Verify( srs_KZG, F, deg, (alpha1, alpha2, ..., alphan), (v1, ..., vn), pi )
|
||||
Algorithm described in Section 4.6.1, Multiple Openings
|
||||
*/
|
||||
pub fn kzg_verify_g1( //Verify that @c_com is a commitment to C(X) such that C(x)=z
|
||||
powers_of_g1: &Vec<G1Affine>, // generator of G1
|
||||
powers_of_g2: &Vec<G2Affine>, // [1]_2, [x]_2, [x^2]_2, ...
|
||||
c_com: G1Affine, //commitment
|
||||
max_deg: Option<&usize>, // max degree
|
||||
points: Vec<Fr>, // x such that eval = C(x)
|
||||
evals: Vec<Fr>, //evaluation
|
||||
pi: G1Affine, //proof
|
||||
|
||||
)
|
||||
->bool{
|
||||
|
||||
// Interpolation set
|
||||
// tau_i(X) = lagrange_tau[i] = polynomial equal to 0 at point[j] for j!= i and 1 at points[i]
|
||||
|
||||
let mut lagrange_tau = DensePolynomial::from_coefficients_slice(&[Fr::zero()]);
|
||||
for i in 0..points.len() {
|
||||
let mut temp : UniPoly381 = DensePolynomial::from_coefficients_slice(&[Fr::one()]);
|
||||
for j in 0..points.len() {
|
||||
if i != j {
|
||||
temp = &temp * (&DensePolynomial::from_coefficients_slice(&[-points[j] ,Fr::one()]));
|
||||
}
|
||||
}
|
||||
let lagrange_scalar = temp.evaluate(&points[i]).inverse().unwrap() * &evals[i] ;
|
||||
lagrange_tau = lagrange_tau + &temp * (&DensePolynomial::from_coefficients_slice(&[lagrange_scalar])) ;
|
||||
}
|
||||
|
||||
// commit to sum evals[i] tau_i(X)
|
||||
|
||||
assert!( powers_of_g1.len() >= lagrange_tau.len(), "KZG verifier doesn't have enough g1 powers" );
|
||||
let g1_tau = VariableBaseMSM::multi_scalar_mul(&powers_of_g1[..lagrange_tau.len()], convert_to_bigints(&lagrange_tau.coeffs).as_slice());
|
||||
|
||||
|
||||
// vanishing polynomial
|
||||
// z_tau[i] = polynomial equal to 0 at point[j]
|
||||
let mut z_tau = DensePolynomial::from_coefficients_slice(&[Fr::one()]);
|
||||
for i in 0..points.len() {
|
||||
z_tau = &z_tau * (&DensePolynomial::from_coefficients_slice(&[-points[i] ,Fr::one()]));
|
||||
}
|
||||
|
||||
// commit to z_tau(X) in g2
|
||||
assert!( powers_of_g2.len() >= z_tau.len(), "KZG verifier doesn't have enough g2 powers" );
|
||||
let g2_z_tau = VariableBaseMSM::multi_scalar_mul(&powers_of_g2[..z_tau.len()], convert_to_bigints(&z_tau.coeffs).as_slice());
|
||||
|
||||
|
||||
let global_max_deg = powers_of_g1.len();
|
||||
|
||||
let mut d: usize = 0;
|
||||
if max_deg == None {
|
||||
d += global_max_deg;
|
||||
}
|
||||
else {
|
||||
d += max_deg.unwrap();
|
||||
}
|
||||
|
||||
let pairing1 = Bls12_381::pairing(
|
||||
c_com.into_projective()-g1_tau,
|
||||
powers_of_g2[global_max_deg - d]
|
||||
);
|
||||
let pairing2 =Bls12_381::pairing(
|
||||
pi,
|
||||
g2_z_tau
|
||||
);
|
||||
|
||||
return pairing1==pairing2;
|
||||
}
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Hashing
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
|
||||
// hashing to field copied from
|
||||
// https://github.com/kobigurk/aggregatable-dkg/blob/main/src/signature/utils/hash.rs
|
||||
fn rng_from_message(personalization: &[u8], message: &[u8]) -> ChaChaRng {
|
||||
let hash = Params::new()
|
||||
.hash_length(32)
|
||||
.personal(personalization)
|
||||
.to_state()
|
||||
.update(message)
|
||||
.finalize();
|
||||
let mut seed = [0u8; 32];
|
||||
seed.copy_from_slice(hash.as_bytes());
|
||||
let rng = ChaChaRng::from_seed(seed);
|
||||
rng
|
||||
}
|
||||
|
||||
fn hash_to_field<F: PrimeField>(
|
||||
personalization: &[u8],
|
||||
message: &[u8],
|
||||
) -> F {
|
||||
let mut rng = rng_from_message(personalization, message);
|
||||
loop {
|
||||
let bytes: Vec<u8> = (0..F::zero().serialized_size())
|
||||
.map(|_| rng.gen())
|
||||
.collect();
|
||||
if let Some(p) = F::from_random_bytes(&bytes) {
|
||||
return p;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* hash function that takes as input:
|
||||
(1) some state (either equal to the last hash output or zero)
|
||||
(2) a vector of g1 elements
|
||||
(3) a vector of g2 elements
|
||||
(4) a vector of field elements
|
||||
|
||||
It returns a field element.
|
||||
*/
|
||||
pub fn hash_caulk_single<F: PrimeField>(
|
||||
state: Fr,
|
||||
g1_elements: Option< &Vec<G1Affine>>,
|
||||
g2_elements: Option< &Vec<G2Affine>>,
|
||||
field_elements: Option< &Vec<Fr>> ) -> Fr
|
||||
{
|
||||
|
||||
// PERSONALIZATION distinguishes this hash from other hashes that may be in the system
|
||||
const PERSONALIZATION: &[u8] = b"CAULK1";
|
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
// Handling cases where no g1_elements or no g1_elements or no field elements are input
|
||||
///////////////////////////////////////////////////////////
|
||||
let g1_elements_len: usize;
|
||||
let g2_elements_len: usize;
|
||||
let field_elements_len: usize;
|
||||
|
||||
if g1_elements == None {
|
||||
g1_elements_len = 0;
|
||||
}
|
||||
else {
|
||||
g1_elements_len = g1_elements.unwrap().len();
|
||||
}
|
||||
|
||||
if g2_elements == None {
|
||||
g2_elements_len = 0;
|
||||
}
|
||||
else {
|
||||
g2_elements_len = g2_elements.unwrap().len();
|
||||
}
|
||||
|
||||
if field_elements == None {
|
||||
field_elements_len = 0;
|
||||
}
|
||||
else {
|
||||
field_elements_len = field_elements.unwrap().len();
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////
|
||||
// Transform inputs into bytes
|
||||
///////////////////////////////////////////////////////////
|
||||
let mut state_bytes = vec![];
|
||||
state.serialize(&mut state_bytes).ok();
|
||||
|
||||
let mut g1_elements_bytes = Vec::new();
|
||||
for i in 0..g1_elements_len {
|
||||
let mut temp = vec![];
|
||||
g1_elements.unwrap()[i].serialize( &mut temp ).ok();
|
||||
g1_elements_bytes.append( &mut temp.clone() );
|
||||
}
|
||||
|
||||
let mut g2_elements_bytes = Vec::new();
|
||||
for i in 0..g2_elements_len {
|
||||
let mut temp = vec![];
|
||||
g2_elements.unwrap()[i].serialize( &mut temp ).ok();
|
||||
g2_elements_bytes.append( &mut temp.clone() );
|
||||
}
|
||||
|
||||
|
||||
|
||||
let mut field_elements_bytes = Vec::new();
|
||||
for i in 0..field_elements_len {
|
||||
let mut temp = vec![];
|
||||
field_elements.unwrap()[i].serialize( &mut temp ).ok();
|
||||
field_elements_bytes.append( &mut temp.clone() );
|
||||
}
|
||||
|
||||
// Transform bytes into vector of bytes of the form expected by hash_to_field
|
||||
let mut hash_input: Vec<u8> = state_bytes.clone();
|
||||
for i in 0..g1_elements_bytes.len() {
|
||||
hash_input = [ &hash_input as &[_], &[g1_elements_bytes[i]] ].concat();
|
||||
}
|
||||
|
||||
for i in 0..g2_elements_bytes.len() {
|
||||
hash_input = [ &hash_input as &[_], &[g2_elements_bytes[i]] ].concat();
|
||||
}
|
||||
|
||||
for i in 0..field_elements_bytes.len() {
|
||||
hash_input = [ &hash_input as &[_], &[field_elements_bytes[i]] ].concat();
|
||||
}
|
||||
|
||||
// hash_to_field
|
||||
return hash_to_field::<Fr>(
|
||||
PERSONALIZATION,
|
||||
&hash_input
|
||||
);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
// Random field element
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
|
||||
// generating a random field element
|
||||
pub fn random_field< F: PrimeField >() -> F {
|
||||
|
||||
let mut rng = thread_rng();
|
||||
loop {
|
||||
let bytes: Vec<u8> = (0..F::zero().serialized_size())
|
||||
.map(|_| rng.gen())
|
||||
.collect();
|
||||
if let Some(p) = F::from_random_bytes(&bytes) {
|
||||
return p;
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user