Files
coffeescript/src/nodes.coffee

1538 lines
53 KiB
CoffeeScript

# `nodes.coffee` contains all of the node classes for the syntax tree. Most
# nodes are created as the result of actions in the [grammar](grammar.html),
# but some are created by other nodes as a method of code generation. To convert
# the syntax tree into a string of JavaScript code, call `compile()` on the root.
# Set up for both **Node.js** and the browser, by
# including the [Scope](scope.html) class and the [helper](helpers.html) functions.
if process?
Scope: require('./scope').Scope
helpers: require('./helpers').helpers
else
this.exports: this
helpers: this.helpers
Scope: this.Scope
# Import the helpers we plan to use.
{compact, flatten, merge, del, include, indexOf, starts, ends}: helpers
#### BaseNode
# The **BaseNode** is the abstract base class for all nodes in the syntax tree.
# Each subclass implements the `compileNode` method, which performs the
# code generation for that node. To compile a node to JavaScript,
# call `compile` on it, which wraps `compileNode` in some generic extra smarts,
# to know when the generated code needs to be wrapped up in a closure.
# An options hash is passed and cloned throughout, containing information about
# the environment from higher in the tree (such as if a returned value is
# being requested by the surrounding function), information about the current
# scope, and indentation level.
exports.BaseNode: class BaseNode
# Common logic for determining whether to wrap this node in a closure before
# compiling it, or to compile directly. We need to wrap if this node is a
# *statement*, and it's not a *pureStatement*, and we're not at
# the top level of a block (which would be unnecessary), and we haven't
# already been asked to return the result (because statements know how to
# return results).
#
# If a Node is *topSensitive*, that means that it needs to compile differently
# depending on whether it's being used as part of a larger expression, or is a
# top-level statement within the function body.
compile: (o) ->
@options: merge o or {}
@tab: o.indent
unless this instanceof ValueNode or this instanceof CallNode
del @options, 'operation'
del @options, 'chainRoot' unless this instanceof AccessorNode or this instanceof IndexNode
top: if @topSensitive() then @options.top else del @options, 'top'
closure: @isStatement() and not @isPureStatement() and not top and
not @options.asStatement and not (this instanceof CommentNode) and
not @containsPureStatement()
if closure then @compileClosure(@options) else @compileNode(@options)
# Statements converted into expressions via closure-wrapping share a scope
# object with their parent closure, to preserve the expected lexical scope.
compileClosure: (o) ->
@tab: o.indent
o.sharedScope: o.scope
ClosureNode.wrap(this).compile o
# If the code generation wishes to use the result of a complex expression
# in multiple places, ensure that the expression is only ever evaluated once,
# by assigning it to a temporary variable.
compileReference: (o, options) ->
pair: if not ((this instanceof CallNode or @contains((n) -> n instanceof CallNode)) or
(this instanceof ValueNode and (not (@base instanceof LiteralNode) or @hasProperties())))
[this, this]
else
reference: literal o.scope.freeVariable()
compiled: new AssignNode reference, this
[compiled, reference]
return pair unless options and options.precompile
[pair[0].compile(o), pair[1].compile(o)]
# Convenience method to grab the current indentation level, plus tabbing in.
idt: (tabs) ->
idt: @tab or ''
num: (tabs or 0) + 1
idt: + TAB while num: - 1
idt
# Construct a node that returns the current node's result.
# Note that this is overridden for smarter behavior for
# many statement nodes (eg IfNode, ForNode)...
makeReturn: ->
new ReturnNode this
# Does this node, or any of its children, contain a node of a certain kind?
# Recursively traverses down the *children* of the nodes, yielding to a block
# and returning true when the block finds a match. `contains` does not cross
# scope boundaries.
contains: (block) ->
contains: false
@traverseChildren false, (node) ->
if block(node)
contains: true
return false
contains
# Is this node of a certain type, or does it contain the type?
containsType: (type) ->
this instanceof type or @contains (n) -> n instanceof type
# Convenience for the most common use of contains. Does the node contain
# a pure statement?
containsPureStatement: ->
@isPureStatement() or @contains (n) -> n.isPureStatement()
# Perform an in-order traversal of the AST. Crosses scope boundaries.
traverse: (block) -> @traverseChildren true, block
# `toString` representation of the node, for inspecting the parse tree.
# This is what `coffee --nodes` prints out.
toString: (idt, override) ->
idt: or ''
children: (child.toString idt + TAB for child in @collectChildren()).join('')
'\n' + idt + (override or @class) + children
eachChild: (func) ->
return unless @children
for attr in @children when this[attr]
for child in flatten [this[attr]]
return if func(child) is false
collectChildren: ->
nodes: []
@eachChild (node) -> nodes.push node
nodes
traverseChildren: (crossScope, func) ->
@eachChild (child) ->
func.apply(this, arguments)
child.traverseChildren(crossScope, func) if child instanceof BaseNode
# Default implementations of the common node properties and methods. Nodes
# will override these with custom logic, if needed.
class: 'BaseNode'
children: []
unwrap: -> this
isStatement: -> no
isPureStatement: -> no
topSensitive: -> no
#### Expressions
# The expressions body is the list of expressions that forms the body of an
# indented block of code -- the implementation of a function, a clause in an
# `if`, `switch`, or `try`, and so on...
exports.Expressions: class Expressions extends BaseNode
class: 'Expressions'
children: ['expressions']
isStatement: -> yes
constructor: (nodes) ->
@expressions: compact flatten nodes or []
# Tack an expression on to the end of this expression list.
push: (node) ->
@expressions.push(node)
this
# Add an expression at the beginning of this expression list.
unshift: (node) ->
@expressions.unshift(node)
this
# If this Expressions consists of just a single node, unwrap it by pulling
# it back out.
unwrap: ->
if @expressions.length is 1 then @expressions[0] else this
# Is this an empty block of code?
empty: ->
@expressions.length is 0
# An Expressions node does not return its entire body, rather it
# ensures that the final expression is returned.
makeReturn: ->
idx: @expressions.length - 1
last: @expressions[idx]
last: @expressions[idx: - 1] if last instanceof CommentNode
return this if not last or last instanceof ReturnNode
@expressions[idx]: last.makeReturn()
this
# A bound function uses a local `__this` variable instead of the real `this`.
rewriteThis: ->
@traverseChildren false, (child) ->
if child instanceof ValueNode and child.base.value is 'this'
child.base: literal '__this'
# An **Expressions** is the only node that can serve as the root.
compile: (o) ->
o: or {}
if o.scope then super(o) else @compileRoot(o)
compileNode: (o) ->
(@compileExpression(node, merge(o)) for node in @expressions).join("\n")
# If we happen to be the top-level **Expressions**, wrap everything in
# a safety closure, unless requested not to.
# It would be better not to generate them in the first place, but for now,
# clean up obvious double-parentheses.
compileRoot: (o) ->
o.indent: @tab: if o.noWrap then '' else TAB
o.scope: new Scope(null, this, null)
code: @compileWithDeclarations(o)
code: code.replace(TRAILING_WHITESPACE, '')
code: code.replace(DOUBLE_PARENS, '($1)')
if o.noWrap then code else "(function() {\n$code\n})();\n"
# Compile the expressions body for the contents of a function, with
# declarations of all inner variables pushed up to the top.
compileWithDeclarations: (o) ->
code: @compileNode(o)
code: "${@tab}var ${o.scope.compiledAssignments()};\n$code" if o.scope.hasAssignments(this)
code: "${@tab}var ${o.scope.compiledDeclarations()};\n$code" if not o.globals and o.scope.hasDeclarations(this)
code
# Compiles a single expression within the expressions body. If we need to
# return the result, and it's an expression, simply return it. If it's a
# statement, ask the statement to do so.
compileExpression: (node, o) ->
@tab: o.indent
compiledNode: node.compile merge o, {top: true}
if node.isStatement() then compiledNode else "${@idt()}$compiledNode;"
# Wrap up the given nodes as an **Expressions**, unless it already happens
# to be one.
Expressions.wrap: (nodes) ->
return nodes[0] if nodes.length is 1 and nodes[0] instanceof Expressions
new Expressions(nodes)
#### LiteralNode
# Literals are static values that can be passed through directly into
# JavaScript without translation, such as: strings, numbers,
# `true`, `false`, `null`...
exports.LiteralNode: class LiteralNode extends BaseNode
class: 'LiteralNode'
constructor: (value) ->
@value: value
# Break and continue must be treated as pure statements -- they lose their
# meaning when wrapped in a closure.
isStatement: ->
@value is 'break' or @value is 'continue'
isPureStatement: LiteralNode::isStatement
compileNode: (o) ->
idt: if @isStatement() then @idt() else ''
end: if @isStatement() then ';' else ''
"$idt$@value$end"
toString: (idt) ->
" \"$@value\""
#### ReturnNode
# A `return` is a *pureStatement* -- wrapping it in a closure wouldn't
# make sense.
exports.ReturnNode: class ReturnNode extends BaseNode
class: 'ReturnNode'
isStatement: -> yes
isPureStatement: -> yes
children: ['expression']
constructor: (expression) ->
@expression: expression
makeReturn: ->
this
compile: (o) ->
expr: @expression.makeReturn()
return expr.compile o unless expr instanceof ReturnNode
super o
compileNode: (o) ->
o.asStatement: true if @expression.isStatement()
"${@tab}return ${@expression.compile(o)};"
#### ValueNode
# A value, variable or literal or parenthesized, indexed or dotted into,
# or vanilla.
exports.ValueNode: class ValueNode extends BaseNode
SOAK: " == undefined ? undefined : "
class: 'ValueNode'
children: ['base', 'properties']
# A **ValueNode** has a base and a list of property accesses.
constructor: (base, properties) ->
@base: base
@properties: (properties or [])
# Add a property access to the list.
push: (prop) ->
@properties.push(prop)
this
hasProperties: ->
!!@properties.length
# Some boolean checks for the benefit of other nodes.
isArray: ->
@base instanceof ArrayNode and not @hasProperties()
isObject: ->
@base instanceof ObjectNode and not @hasProperties()
isSplice: ->
@hasProperties() and @properties[@properties.length - 1] instanceof SliceNode
makeReturn: ->
if @hasProperties() then super() else @base.makeReturn()
# The value can be unwrapped as its inner node, if there are no attached
# properties.
unwrap: ->
if @properties.length then this else @base
# Values are considered to be statements if their base is a statement.
isStatement: ->
@base.isStatement and @base.isStatement() and not @hasProperties()
isNumber: ->
@base instanceof LiteralNode and @base.value.match NUMBER
# Works out if the value is the start of a chain.
isStart: (o) ->
return true if this is o.chainRoot and @properties[0] instanceof AccessorNode
node: o.chainRoot.base or o.chainRoot.variable
while node instanceof CallNode then node: node.variable
node is this
# Override compile to unwrap the value when possible.
compile: (o) ->
if not o.top or @properties.length then super(o) else @base.compile(o)
# We compile a value to JavaScript by compiling and joining each property.
# Things get much more insteresting if the chain of properties has *soak*
# operators `?.` interspersed. Then we have to take care not to accidentally
# evaluate a anything twice when building the soak chain.
compileNode: (o) ->
only: del o, 'onlyFirst'
op: del o, 'operation'
props: if only then @properties[0...@properties.length - 1] else @properties
o.chainRoot: or this
baseline: @base.compile o
baseline: "($baseline)" if @hasProperties() and (@base instanceof ObjectNode or @isNumber())
complete: @last: baseline
for prop, i in props
@source: baseline
if prop.soakNode
if @base instanceof CallNode or @base.contains((n) -> n instanceof CallNode) and i is 0
temp: o.scope.freeVariable()
complete: "(${ baseline: temp } = ($complete))"
complete: "typeof $complete === \"undefined\" || $baseline" if i is 0 and @isStart(o)
complete: + @SOAK + (baseline: + prop.compile(o))
else
part: prop.compile(o)
baseline: + part
complete: + part
@last: part
if op and @wrapped then "($complete)" else complete
#### CommentNode
# CoffeeScript passes through block comments as JavaScript block comments
# at the same position.
exports.CommentNode: class CommentNode extends BaseNode
class: 'CommentNode'
isStatement: -> yes
constructor: (lines) ->
@lines: lines
makeReturn: ->
this
compileNode: (o) ->
sep: "\n$@tab"
"$@tab/*$sep${ @lines.join(sep) }\n$@tab*/"
#### CallNode
# Node for a function invocation. Takes care of converting `super()` calls into
# calls against the prototype's function of the same name.
exports.CallNode: class CallNode extends BaseNode
class: 'CallNode'
children: ['variable', 'args']
constructor: (variable, args) ->
@isNew: false
@isSuper: variable is 'super'
@variable: if @isSuper then null else variable
@args: (args or [])
@compileSplatArguments: (o) ->
SplatNode.compileSplattedArray.call(this, @args, o)
# Tag this invocation as creating a new instance.
newInstance: ->
@isNew: true
this
prefix: ->
if @isNew then 'new ' else ''
# Grab the reference to the superclass' implementation of the current method.
superReference: (o) ->
methname: o.scope.method.name
meth: if o.scope.method.proto
"${o.scope.method.proto}.__superClass__.$methname"
else if methname
"${methname}.__superClass__.constructor"
else throw new Error "cannot call super on an anonymous function."
# Compile a vanilla function call.
compileNode: (o) ->
o.chainRoot: this unless o.chainRoot
for arg in @args when arg instanceof SplatNode
compilation: @compileSplat(o)
unless compilation
args: (arg.compile(o) for arg in @args).join(', ')
compilation: if @isSuper then @compileSuper(args, o)
else "${@prefix()}${@variable.compile(o)}($args)"
if o.operation and @wrapped then "($compilation)" else compilation
# `super()` is converted into a call against the superclass's implementation
# of the current function.
compileSuper: (args, o) ->
"${@superReference(o)}.call(this${ if args.length then ', ' else '' }$args)"
# If you call a function with a splat, it's converted into a JavaScript
# `.apply()` call to allow an array of arguments to be passed.
# If it's a constructor, then things get real tricky. We have to inject an
# inner constructor in order to be able to pass the varargs.
compileSplat: (o) ->
meth: if @variable then @variable.compile(o) else @superReference(o)
obj: @variable and @variable.source or 'this'
if obj.match(/\(/)
temp: o.scope.freeVariable()
obj: temp
meth: "($temp = ${ @variable.source })${ @variable.last }"
if @isNew
utility 'extends'
"""
(function() {
${@idt(1)}var ctor = function(){};
${@idt(1)}__extends(ctor, $meth);
${@idt(1)}return ${meth}.apply(new ctor, ${ @compileSplatArguments(o) });
$@tab}).call(this)
"""
else
"${@prefix()}${meth}.apply($obj, ${ @compileSplatArguments(o) })"
#### ExtendsNode
# Node to extend an object's prototype with an ancestor object.
# After `goog.inherits` from the
# [Closure Library](http://closure-library.googlecode.com/svn/docs/closureGoogBase.js.html).
exports.ExtendsNode: class ExtendsNode extends BaseNode
class: 'ExtendsNode'
children: ['child', 'parent']
constructor: (child, parent) ->
@child: child
@parent: parent
# Hooks one constructor into another's prototype chain.
compileNode: (o) ->
ref: new ValueNode literal utility 'extends'
(new CallNode ref, [@child, @parent]).compile o
#### AccessorNode
# A `.` accessor into a property of a value, or the `::` shorthand for
# an accessor into the object's prototype.
exports.AccessorNode: class AccessorNode extends BaseNode
class: 'AccessorNode'
children: ['name']
constructor: (name, tag) ->
@name: name
@prototype: if tag is 'prototype' then '.prototype' else ''
@soakNode: tag is 'soak'
compileNode: (o) ->
name: @name.compile o
o.chainRoot.wrapped: or @soakNode
namePart: if name.match(IS_STRING) then "[$name]" else ".$name"
@prototype + namePart
#### IndexNode
# A `[ ... ]` indexed accessor into an array or object.
exports.IndexNode: class IndexNode extends BaseNode
class: 'IndexNode'
children: ['index']
constructor: (index) ->
@index: index
compileNode: (o) ->
o.chainRoot.wrapped: or @soakNode
idx: @index.compile o
prefix: if @proto then '.prototype' else ''
"$prefix[$idx]"
#### RangeNode
# A range literal. Ranges can be used to extract portions (slices) of arrays,
# to specify a range for comprehensions, or as a value, to be expanded into the
# corresponding array of integers at runtime.
exports.RangeNode: class RangeNode extends BaseNode
class: 'RangeNode'
children: ['from', 'to']
constructor: (from, to, exclusive) ->
@from: from
@to: to
@exclusive: !!exclusive
@equals: if @exclusive then '' else '='
# Compiles the range's source variables -- where it starts and where it ends.
# But only if they need to be cached to avoid double evaluation.
compileVariables: (o) ->
o: merge(o, {top: true})
[@from, @fromVar]: @from.compileReference o, {precompile: yes}
[@to, @toVar]: @to.compileReference o, {precompile: yes}
[@fromNum, @toNum]: [@fromVar.match(SIMPLENUM), @toVar.match(SIMPLENUM)]
parts: []
parts.push @from if @from isnt @fromVar
parts.push @to if @to isnt @toVar
if parts.length then "${parts.join('; ')}; " else ''
# When compiled normally, the range returns the contents of the *for loop*
# needed to iterate over the values in the range. Used by comprehensions.
compileNode: (o) ->
return @compileArray(o) unless o.index
return @compileSimple(o) if @fromNum and @toNum
idx: del o, 'index'
step: del o, 'step'
vars: "$idx = $@fromVar"
intro: "($@fromVar <= $@toVar ? $idx"
compare: "$intro <$@equals $@toVar : $idx >$@equals $@toVar)"
stepPart: if step then step.compile(o) else '1'
incr: if step then "$idx += $stepPart" else "$intro += $stepPart : $idx -= $stepPart)"
"$vars; $compare; $incr"
# Compile a simple range comprehension, with integers.
compileSimple: (o) ->
[from, to]: [parseInt(@fromNum, 10), parseInt(@toNum, 10)]
idx: del o, 'index'
step: del o, 'step'
step: and "$idx += ${step.compile(o)}"
if from <= to
"$idx = $from; $idx <$@equals $to; ${step or "$idx++"}"
else
"$idx = $from; $idx >$@equals $to; ${step or "$idx--"}"
# When used as a value, expand the range into the equivalent array.
compileArray: (o) ->
idt: @idt 1
vars: @compileVariables(merge(o, {indent: idt}))
result: o.scope.freeVariable()
i: o.scope.freeVariable()
pre: "\n${idt}${result} = []; ${vars}"
if @fromNum and @toNum
o.index: i
body: @compileSimple o
else
clause: "$@fromVar <= $@toVar ?"
body: "var $i = $@fromVar; $clause $i <$@equals $@toVar : $i >$@equals $@toVar; $clause $i += 1 : $i -= 1"
post: "{ ${result}.push($i) };\n${idt}return $result;\n$o.indent"
"(function() {${pre}\n${idt}for ($body)$post}).call(this)"
#### SliceNode
# An array slice literal. Unlike JavaScript's `Array#slice`, the second parameter
# specifies the index of the end of the slice, just as the first parameter
# is the index of the beginning.
exports.SliceNode: class SliceNode extends BaseNode
class: 'SliceNode'
children: ['range']
constructor: (range) ->
@range: range
compileNode: (o) ->
from: @range.from.compile(o)
to: @range.to.compile(o)
plusPart: if @range.exclusive then '' else ' + 1'
".slice($from, $to$plusPart)"
#### ObjectNode
# An object literal, nothing fancy.
exports.ObjectNode: class ObjectNode extends BaseNode
class: 'ObjectNode'
children: ['properties']
constructor: (props) ->
@objects: @properties: props or []
compileNode: (o) ->
o.indent: @idt 1
nonComments: prop for prop in @properties when not (prop instanceof CommentNode)
lastNoncom: nonComments[nonComments.length - 1]
props: for prop, i in @properties
join: ",\n"
join: "\n" if (prop is lastNoncom) or (prop instanceof CommentNode)
join: '' if i is @properties.length - 1
indent: if prop instanceof CommentNode then '' else @idt 1
prop: new AssignNode prop, prop, 'object' unless prop instanceof AssignNode or prop instanceof CommentNode
indent + prop.compile(o) + join
props: props.join('')
inner: if props then '\n' + props + '\n' + @idt() else ''
"{$inner}"
#### ArrayNode
# An array literal.
exports.ArrayNode: class ArrayNode extends BaseNode
class: 'ArrayNode'
children: ['objects']
constructor: (objects) ->
@objects: objects or []
@compileSplatLiteral: (o) ->
SplatNode.compileSplattedArray.call(this, @objects, o)
compileNode: (o) ->
o.indent: @idt 1
objects: []
for obj, i in @objects
code: obj.compile(o)
if obj instanceof SplatNode
return @compileSplatLiteral o
else if obj instanceof CommentNode
objects.push "\n$code\n$o.indent"
else if i is @objects.length - 1
objects.push code
else
objects.push "$code, "
objects: objects.join('')
if indexOf(objects, '\n') >= 0
"[\n${@idt(1)}$objects\n$@tab]"
else
"[$objects]"
#### ClassNode
# The CoffeeScript class definition.
exports.ClassNode: class ClassNode extends BaseNode
class: 'ClassNode'
children: ['variable', 'parent', 'properties']
isStatement: -> yes
# Initialize a **ClassNode** with its name, an optional superclass, and a
# list of prototype property assignments.
constructor: (variable, parent, props) ->
@variable: variable
@parent: parent
@properties: props or []
@returns: false
makeReturn: ->
@returns: true
this
# Instead of generating the JavaScript string directly, we build up the
# equivalent syntax tree and compile that, in pieces. You can see the
# constructor, property assignments, and inheritance getting built out below.
compileNode: (o) ->
extension: @parent and new ExtendsNode(@variable, @parent)
props: new Expressions
o.top: true
me: null
className: @variable.compile o
constScope: null
if @parent
applied: new ValueNode(@parent, [new AccessorNode(literal('apply'))])
constructor: new CodeNode([], new Expressions([
new CallNode(applied, [literal('this'), literal('arguments')])
]))
else
constructor: new CodeNode
for prop in @properties
[pvar, func]: [prop.variable, prop.value]
if pvar and pvar.base.value is 'constructor' and func instanceof CodeNode
throw new Error "cannot define a constructor as a bound function." if func.bound
func.name: className
func.body.push new ReturnNode literal 'this'
@variable: new ValueNode @variable
@variable.namespaced: include func.name, '.'
constructor: func
continue
if func instanceof CodeNode and func.bound
func.bound: false
constScope: or new Scope(o.scope, constructor.body, constructor)
me: or constScope.freeVariable()
pname: pvar.compile(o)
constructor.body.push new ReturnNode literal 'this' if constructor.body.empty()
constructor.body.unshift literal "this.${pname} = function(){ return ${className}.prototype.${pname}.apply($me, arguments); }"
if pvar
access: if prop.context is 'this' then pvar.base.properties[0] else new AccessorNode(pvar, 'prototype')
val: new ValueNode(@variable, [access])
prop: new AssignNode(val, func)
props.push prop
constructor.body.unshift literal "$me = this" if me
construct: @idt() + (new AssignNode(@variable, constructor)).compile(merge o, {sharedScope: constScope}) + ';'
props: if !props.empty() then '\n' + props.compile(o) else ''
extension: if extension then '\n' + @idt() + extension.compile(o) + ';' else ''
returns: if @returns then '\n' + new ReturnNode(@variable).compile(o) else ''
"$construct$extension$props$returns"
#### AssignNode
# The **AssignNode** is used to assign a local variable to value, or to set the
# property of an object -- including within object literals.
exports.AssignNode: class AssignNode extends BaseNode
# Matchers for detecting prototype assignments.
PROTO_ASSIGN: /^(\S+)\.prototype/
LEADING_DOT: /^\.(prototype\.)?/
class: 'AssignNode'
children: ['variable', 'value']
constructor: (variable, value, context) ->
@variable: variable
@value: value
@context: context
topSensitive: ->
true
isValue: ->
@variable instanceof ValueNode
makeReturn: ->
return new Expressions [this, new ReturnNode(@variable)]
isStatement: ->
@isValue() and (@variable.isArray() or @variable.isObject())
# Compile an assignment, delegating to `compilePatternMatch` or
# `compileSplice` if appropriate. Keep track of the name of the base object
# we've been assigned to, for correct internal references. If the variable
# has not been seen yet within the current scope, declare it.
compileNode: (o) ->
top: del o, 'top'
return @compilePatternMatch(o) if @isStatement()
return @compileSplice(o) if @isValue() and @variable.isSplice()
stmt: del o, 'asStatement'
name: @variable.compile(o)
last: if @isValue() then @variable.last.replace(@LEADING_DOT, '') else name
match: name.match(@PROTO_ASSIGN)
proto: match and match[1]
if @value instanceof CodeNode
@value.name: last if last.match(IDENTIFIER)
@value.proto: proto if proto
val: @value.compile o
return "$name: $val" if @context is 'object'
o.scope.find name unless @isValue() and (@variable.hasProperties() or @variable.namespaced)
val: "$name = $val"
return "$@tab$val;" if stmt
if top then val else "($val)"
# Brief implementation of recursive pattern matching, when assigning array or
# object literals to a value. Peeks at their properties to assign inner names.
# See the [ECMAScript Harmony Wiki](http://wiki.ecmascript.org/doku.php?id=harmony:destructuring)
# for details.
compilePatternMatch: (o) ->
valVar: o.scope.freeVariable()
value: if @value.isStatement() then ClosureNode.wrap(@value) else @value
assigns: ["$@tab$valVar = ${ value.compile(o) };"]
o.top: true
o.asStatement: true
splat: false
for obj, i in @variable.base.objects
# A regular array pattern-match.
idx: i
if @variable.isObject()
if obj instanceof AssignNode
# A regular object pattern-match.
[obj, idx]: [obj.value, obj.variable.base]
else
# A shorthand `{a, b, c}: val` pattern-match.
idx: obj
if not (obj instanceof ValueNode or obj instanceof SplatNode)
throw new Error 'pattern matching must use only identifiers on the left-hand side.'
isString: idx.value and idx.value.match IS_STRING
accessClass: if isString or @variable.isArray() then IndexNode else AccessorNode
if obj instanceof SplatNode and not splat
val: literal(obj.compileValue(o, valVar,
(oindex: indexOf(@variable.base.objects, obj)),
(olength: @variable.base.objects.length) - oindex - 1))
splat: true
else
idx: literal(if splat then "${valVar}.length - ${olength - idx}" else idx) if typeof idx isnt 'object'
val: new ValueNode(literal(valVar), [new accessClass(idx)])
assigns.push(new AssignNode(obj, val).compile(o))
code: assigns.join("\n")
code
# Compile the assignment from an array splice literal, using JavaScript's
# `Array#splice` method.
compileSplice: (o) ->
name: @variable.compile merge o, {onlyFirst: true}
l: @variable.properties.length
range: @variable.properties[l - 1].range
plus: if range.exclusive then '' else ' + 1'
from: range.from.compile(o)
to: range.to.compile(o) + ' - ' + from + plus
val: @value.compile(o)
"${name}.splice.apply($name, [$from, $to].concat($val))"
#### CodeNode
# A function definition. This is the only node that creates a new Scope.
# When for the purposes of walking the contents of a function body, the CodeNode
# has no *children* -- they're within the inner scope.
exports.CodeNode: class CodeNode extends BaseNode
class: 'CodeNode'
children: ['params', 'body']
constructor: (params, body, tag) ->
@params: params or []
@body: body or new Expressions
@bound: tag is 'boundfunc'
# Compilation creates a new scope unless explicitly asked to share with the
# outer scope. Handles splat parameters in the parameter list by peeking at
# the JavaScript `arguments` objects. If the function is bound with the `=>`
# arrow, generates a wrapper that saves the current value of `this` through
# a closure.
compileNode: (o) ->
sharedScope: del o, 'sharedScope'
top: del o, 'top'
o.scope: sharedScope or new Scope(o.scope, @body, this)
o.top: true
o.indent: @idt(if @bound then 2 else 1)
del o, 'noWrap'
del o, 'globals'
i: 0
splat: undefined
params: []
for param in @params
if param instanceof SplatNode and not splat?
splat: param
splat.index: i
splat.trailings: []
splat.arglength: @params.length
@body.unshift(splat)
else if splat?
splat.trailings.push(param)
else
params.push(param)
i: + 1
params: (param.compile(o) for param in params)
@body.makeReturn()
@body.rewriteThis() if @bound
(o.scope.parameter(param)) for param in params
code: if @body.expressions.length then "\n${ @body.compileWithDeclarations(o) }\n" else ''
func: "function(${ params.join(', ') }) {$code${ code and @idt(if @bound then 1 else 0) }}"
func: "($func)" if top and not @bound
return func unless @bound
"(function(__this) {\n${@idt(1)}return $func;\n$@tab})(this)"
topSensitive: ->
true
# Short-circuit traverseChildren method to prevent it from crossing scope boundaries
# unless crossScope is true
traverseChildren: (crossScope, func) -> super(crossScope, func) if crossScope
toString: (idt) ->
idt: or ''
children: (child.toString(idt + TAB) for child in @collectChildren()).join('')
"\n$idt$children"
#### SplatNode
# A splat, either as a parameter to a function, an argument to a call,
# or as part of a destructuring assignment.
exports.SplatNode: class SplatNode extends BaseNode
class: 'SplatNode'
children: ['name']
constructor: (name) ->
name: literal(name) unless name.compile
@name: name
compileNode: (o) ->
if @index? then @compileParam(o) else @name.compile(o)
# Compiling a parameter splat means recovering the parameters that succeed
# the splat in the parameter list, by slicing the arguments object.
compileParam: (o) ->
name: @name.compile(o)
o.scope.find name
len: o.scope.freeVariable()
o.scope.assign len, "arguments.length"
variadic: o.scope.freeVariable()
o.scope.assign variadic, "$len >= $@arglength"
for trailing, idx in @trailings
pos: @trailings.length - idx
o.scope.assign(trailing.compile(o), "arguments[$variadic ? $len - $pos : ${@index + idx}]")
"$name = ${utility('slice')}.call(arguments, $@index, $len - ${@trailings.length})"
# A compiling a splat as a destructuring assignment means slicing arguments
# from the right-hand-side's corresponding array.
compileValue: (o, name, index, trailings) ->
trail: if trailings then ", ${name}.length - $trailings" else ''
"${utility 'slice'}.call($name, $index$trail)"
# Utility function that converts arbitrary number of elements, mixed with
# splats, to a proper array
@compileSplattedArray: (list, o) ->
args: []
for arg, i in list
code: arg.compile o
prev: args[last: args.length - 1]
if not (arg instanceof SplatNode)
if prev and starts(prev, '[') and ends(prev, ']')
args[last]: "${prev.substr(0, prev.length - 1)}, $code]"
continue
else if prev and starts(prev, '.concat([') and ends(prev, '])')
args[last]: "${prev.substr(0, prev.length - 2)}, $code])"
continue
else
code: "[$code]"
args.push(if i is 0 then code else ".concat($code)")
args.join('')
#### WhileNode
# A while loop, the only sort of low-level loop exposed by CoffeeScript. From
# it, all other loops can be manufactured. Useful in cases where you need more
# flexibility or more speed than a comprehension can provide.
exports.WhileNode: class WhileNode extends BaseNode
class: 'WhileNode'
children: ['condition', 'guard', 'body']
isStatement: -> yes
constructor: (condition, opts) ->
if opts and opts.invert
condition: new ParentheticalNode condition if condition instanceof OpNode
condition: new OpNode('!', condition)
@condition: condition
@guard: opts and opts.guard
addBody: (body) ->
@body: body
this
makeReturn: ->
@returns: true
this
topSensitive: ->
true
# The main difference from a JavaScript *while* is that the CoffeeScript
# *while* can be used as a part of a larger expression -- while loops may
# return an array containing the computed result of each iteration.
compileNode: (o) ->
top: del(o, 'top') and not @returns
o.indent: @idt 1
o.top: true
cond: @condition.compile(o)
set: ''
unless top
rvar: o.scope.freeVariable()
set: "$@tab$rvar = [];\n"
@body: PushNode.wrap(rvar, @body) if @body
pre: "$set${@tab}while ($cond)"
@body: Expressions.wrap([new IfNode(@guard, @body)]) if @guard
if @returns
post: '\n' + new ReturnNode(literal(rvar)).compile(merge(o, {indent: @idt()}))
else
post: ''
"$pre {\n${ @body.compile(o) }\n$@tab}$post"
#### OpNode
# Simple Arithmetic and logical operations. Performs some conversion from
# CoffeeScript operations into their JavaScript equivalents.
exports.OpNode: class OpNode extends BaseNode
# The map of conversions from CoffeeScript to JavaScript symbols.
CONVERSIONS: {
'==': '==='
'!=': '!=='
}
# The list of operators for which we perform
# [Python-style comparison chaining](http://docs.python.org/reference/expressions.html#notin).
CHAINABLE: ['<', '>', '>=', '<=', '===', '!==']
# Our assignment operators that have no JavaScript equivalent.
ASSIGNMENT: ['||=', '&&=', '?=']
# Operators must come before their operands with a space.
PREFIX_OPERATORS: ['typeof', 'delete']
class: 'OpNode'
children: ['first', 'second']
constructor: (operator, first, second, flip) ->
@first: first
@second: second
@operator: @CONVERSIONS[operator] or operator
@flip: !!flip
isUnary: ->
not @second
isChainable: ->
indexOf(@CHAINABLE, @operator) >= 0
toString: (idt) ->
super(idt, @class + ' ' + @operator)
compileNode: (o) ->
o.operation: true
return @compileChain(o) if @isChainable() and @first.unwrap() instanceof OpNode and @first.unwrap().isChainable()
return @compileAssignment(o) if indexOf(@ASSIGNMENT, @operator) >= 0
return @compileUnary(o) if @isUnary()
return @compileExistence(o) if @operator is '?'
[@first.compile(o), @operator, @second.compile(o)].join ' '
# Mimic Python's chained comparisons when multiple comparison operators are
# used sequentially. For example:
#
# bin/coffee -e "puts 50 < 65 > 10"
# true
compileChain: (o) ->
shared: @first.unwrap().second
[@first.second, shared]: shared.compileReference(o) if shared.containsType CallNode
[first, second, shared]: [@first.compile(o), @second.compile(o), shared.compile(o)]
"($first) && ($shared $@operator $second)"
# When compiling a conditional assignment, take care to ensure that the
# operands are only evaluated once, even though we have to reference them
# more than once.
compileAssignment: (o) ->
[first, second]: [@first.compile(o), @second.compile(o)]
o.scope.find(first) if first.match(IDENTIFIER)
return "$first = ${ ExistenceNode.compileTest(o, @first) } ? $first : $second" if @operator is '?='
"$first = $first ${ @operator.substr(0, 2) } $second"
# If this is an existence operator, we delegate to `ExistenceNode.compileTest`
# to give us the safe references for the variables.
compileExistence: (o) ->
[first, second]: [@first.compile(o), @second.compile(o)]
test: ExistenceNode.compileTest(o, @first)
"$test ? $first : $second"
# Compile a unary **OpNode**.
compileUnary: (o) ->
space: if indexOf(@PREFIX_OPERATORS, @operator) >= 0 then ' ' else ''
parts: [@operator, space, @first.compile(o)]
parts: parts.reverse() if @flip
parts.join('')
#### InNode
exports.InNode: class InNode extends BaseNode
class: 'InNode'
children: ['object', 'array']
constructor: (object, array) ->
@object: object
@array: array
isArray: ->
@array instanceof ValueNode and @array.isArray()
compileNode: (o) ->
[@obj1, @obj2]: @object.compileReference o, {precompile: yes}
if @isArray() then @compileOrTest(o) else @compileLoopTest(o)
compileOrTest: (o) ->
tests: for item, i in @array.base.objects
"${item.compile(o)} === ${if i then @obj2 else @obj1}"
"(${tests.join(' || ')})"
compileLoopTest: (o) ->
[@arr1, @arr2]: @array.compileReference o, {precompile: yes}
[i, l]: [o.scope.freeVariable(), o.scope.freeVariable()]
prefix: if @obj1 isnt @obj2 then @obj1 + '; ' else ''
"!!(function(){ ${prefix}for (var $i=0, $l=${@arr1}.length; $i<$l; $i++) if (${@arr2}[$i] === $@obj2) return true; }).call(this)"
#### TryNode
# A classic *try/catch/finally* block.
exports.TryNode: class TryNode extends BaseNode
class: 'TryNode'
children: ['attempt', 'recovery', 'ensure']
isStatement: -> yes
constructor: (attempt, error, recovery, ensure) ->
@attempt: attempt
@recovery: recovery
@ensure: ensure
@error: error
makeReturn: ->
@attempt: @attempt.makeReturn() if @attempt
@recovery: @recovery.makeReturn() if @recovery
this
# Compilation is more or less as you would expect -- the *finally* clause
# is optional, the *catch* is not.
compileNode: (o) ->
o.indent: @idt 1
o.top: true
attemptPart: @attempt.compile(o)
errorPart: if @error then " (${ @error.compile(o) }) " else ' '
catchPart: if @recovery then " catch$errorPart{\n${ @recovery.compile(o) }\n$@tab}" else ''
finallyPart: (@ensure or '') and ' finally {\n' + @ensure.compile(merge(o)) + "\n$@tab}"
"${@tab}try {\n$attemptPart\n$@tab}$catchPart$finallyPart"
#### ThrowNode
# Simple node to throw an exception.
exports.ThrowNode: class ThrowNode extends BaseNode
class: 'ThrowNode'
children: ['expression']
isStatement: -> yes
constructor: (expression) ->
@expression: expression
# A **ThrowNode** is already a return, of sorts...
makeReturn: ->
return this
compileNode: (o) ->
"${@tab}throw ${@expression.compile(o)};"
#### ExistenceNode
# Checks a variable for existence -- not *null* and not *undefined*. This is
# similar to `.nil?` in Ruby, and avoids having to consult a JavaScript truth
# table.
exports.ExistenceNode: class ExistenceNode extends BaseNode
class: 'ExistenceNode'
children: ['expression']
constructor: (expression) ->
@expression: expression
compileNode: (o) ->
ExistenceNode.compileTest(o, @expression)
# The meat of the **ExistenceNode** is in this static `compileTest` method
# because other nodes like to check the existence of their variables as well.
# Be careful not to double-evaluate anything.
@compileTest: (o, variable) ->
[first, second]: variable.compileReference o
"(typeof ${first.compile(o)} !== \"undefined\" && ${second.compile(o)} !== null)"
#### ParentheticalNode
# An extra set of parentheses, specified explicitly in the source. At one time
# we tried to clean up the results by detecting and removing redundant
# parentheses, but no longer -- you can put in as many as you please.
#
# Parentheses are a good way to force any statement to become an expression.
exports.ParentheticalNode: class ParentheticalNode extends BaseNode
class: 'ParentheticalNode'
children: ['expression']
constructor: (expression) ->
@expression: expression
isStatement: ->
@expression.isStatement()
makeReturn: ->
@expression.makeReturn()
topSensitive: ->
yes
compileNode: (o) ->
top: del o, 'top'
code: @expression.compile(o)
if @isStatement()
return (if top then "$@tab$code;" else code)
l: code.length
code: code.substr(o, l-1) if code.substr(l-1, 1) is ';'
if @expression instanceof AssignNode then code else "($code)"
#### ForNode
# CoffeeScript's replacement for the *for* loop is our array and object
# comprehensions, that compile into *for* loops here. They also act as an
# expression, able to return the result of each filtered iteration.
#
# Unlike Python array comprehensions, they can be multi-line, and you can pass
# the current index of the loop as a second parameter. Unlike Ruby blocks,
# you can map and filter in a single pass.
exports.ForNode: class ForNode extends BaseNode
class: 'ForNode'
children: ['body', 'source', 'guard']
isStatement: -> yes
constructor: (body, source, name, index) ->
@body: body
@name: name
@index: index or null
@source: source.source
@guard: source.guard
@step: source.step
@raw: !!source.raw
@object: !!source.object
[@name, @index]: [@index, @name] if @object
@pattern: @name instanceof ValueNode
throw new Error('index cannot be a pattern matching expression') if @index instanceof ValueNode
@returns: false
topSensitive: ->
true
makeReturn: ->
@returns: true
this
compileReturnValue: (val, o) ->
return '\n' + new ReturnNode(literal(val)).compile(o) if @returns
return '\n' + val if val
''
# Welcome to the hairiest method in all of CoffeeScript. Handles the inner
# loop, filtering, stepping, and result saving for array, object, and range
# comprehensions. Some of the generated code can be shared in common, and
# some cannot.
compileNode: (o) ->
topLevel: del(o, 'top') and not @returns
range: @source instanceof ValueNode and @source.base instanceof RangeNode and not @source.properties.length
source: if range then @source.base else @source
codeInBody: @body.contains (n) -> n instanceof CodeNode
scope: o.scope
name: @name and @name.compile o
index: @index and @index.compile o
scope.find name if name and not @pattern and not codeInBody
scope.find index if index
rvar: scope.freeVariable() unless topLevel
ivar: if range then name else if codeInBody then scope.freeVariable() else index or scope.freeVariable()
varPart: ''
guardPart: ''
body: Expressions.wrap([@body])
if range
sourcePart: source.compileVariables(o)
forPart: source.compile merge o, {index: ivar, step: @step}
else
svar: scope.freeVariable()
sourcePart: "$svar = ${ @source.compile(o) };"
if @pattern
namePart: new AssignNode(@name, literal("$svar[$ivar]")).compile(merge o, {indent: @idt(1), top: true}) + '\n'
else
namePart: "$name = $svar[$ivar]" if name
unless @object
lvar: scope.freeVariable()
stepPart: if @step then "$ivar += ${ @step.compile(o) }" else "$ivar++"
forPart: "$ivar = 0, $lvar = ${svar}.length; $ivar < $lvar; $stepPart"
sourcePart: (if rvar then "$rvar = []; " else '') + sourcePart
sourcePart: if sourcePart then "$@tab$sourcePart\n$@tab" else @tab
returnResult: @compileReturnValue(rvar, o)
body: PushNode.wrap(rvar, body) unless topLevel
if @guard
body: Expressions.wrap([new IfNode(@guard, body)])
if codeInBody
body.unshift literal "var $namePart" if namePart
body.unshift literal "var $index = $ivar" if index
body: ClosureNode.wrap(body, true)
else
varPart: (namePart or '') and (if @pattern then namePart else "${@idt(1)}$namePart;\n")
if @object
forPart: "$ivar in $svar"
guardPart: "\n${@idt(1)}if (!${utility('hasProp')}.call($svar, $ivar)) continue;" unless @raw
body: body.compile(merge(o, {indent: @idt(1), top: true}))
vars: if range then name else "$name, $ivar"
"${sourcePart}for ($forPart) {$guardPart\n$varPart$body\n$@tab}$returnResult"
#### IfNode
# *If/else* statements. Our *switch/when* will be compiled into this. Acts as an
# expression by pushing down requested returns to the last line of each clause.
#
# Single-expression **IfNodes** are compiled into ternary operators if possible,
# because ternaries are already proper expressions, and don't need conversion.
exports.IfNode: class IfNode extends BaseNode
class: 'IfNode'
children: ['condition', 'switchSubject', 'body', 'elseBody', 'assigner']
constructor: (condition, body, tags) ->
@condition: condition
@body: body
@tags: tags or {}
if @tags.invert
@condition: new OpNode('!', new ParentheticalNode(@condition))
else if @condition instanceof OpNode and @condition.operator is 'instanceof'
@condition: new ParentheticalNode(@condition)
@elseBody: null
@isChain: false
bodyNode: -> @body?.unwrap()
elseBodyNode: -> @elseBody?.unwrap()
forceStatement: ->
@tags.statement: true
this
# Tag a chain of **IfNodes** with their object(s) to switch on for equality
# tests. `rewriteSwitch` will perform the actual change at compile time.
switchesOver: (expression) ->
@switchSubject: expression
this
# Rewrite a chain of **IfNodes** with their switch condition for equality.
# Ensure that the switch expression isn't evaluated more than once.
rewriteSwitch: (o) ->
@assigner: @switchSubject
unless (@switchSubject.unwrap() instanceof LiteralNode)
variable: literal(o.scope.freeVariable())
@assigner: new AssignNode(variable, @switchSubject)
@switchSubject: variable
@condition: for cond, i in flatten [@condition]
cond: new ParentheticalNode(cond) if cond instanceof OpNode
new OpNode('==', (if i is 0 then @assigner else @switchSubject), cond)
@elseBodyNode().switchesOver(@switchSubject) if @isChain
# prevent this rewrite from happening again
@switchSubject: undefined
this
# Rewrite a chain of **IfNodes** to add a default case as the final *else*.
addElse: (elseBody, statement) ->
if @isChain
@elseBodyNode().addElse elseBody, statement
else
@isChain: elseBody instanceof IfNode
@elseBody: @ensureExpressions elseBody
this
# The **IfNode** only compiles into a statement if either of its bodies needs
# to be a statement. Otherwise a ternary is safe.
isStatement: ->
@statement: or !!(@tags.statement or @bodyNode().isStatement() or (@elseBody and @elseBodyNode().isStatement()))
compileCondition: (o) ->
(cond.compile(o) for cond in flatten([@condition])).join(' || ')
compileNode: (o) ->
if @isStatement() then @compileStatement(o) else @compileTernary(o)
makeReturn: ->
if @isStatement()
@body: and @ensureExpressions(@body.makeReturn())
@elseBody: and @ensureExpressions(@elseBody.makeReturn())
this
else
new ReturnNode this
ensureExpressions: (node) ->
if node instanceof Expressions then node else new Expressions [node]
# Compile the **IfNode** as a regular *if-else* statement. Flattened chains
# force inner *else* bodies into statement form.
compileStatement: (o) ->
@rewriteSwitch(o) if @switchSubject
child: del o, 'chainChild'
condO: merge o
o.indent: @idt 1
o.top: true
ifDent: if child then '' else @idt()
comDent: if child then @idt() else ''
body: @body.compile(o)
ifPart: "${ifDent}if (${ @compileCondition(condO) }) {\n$body\n$@tab}"
return ifPart unless @elseBody
elsePart: if @isChain
' else ' + @elseBodyNode().compile(merge(o, {indent: @idt(), chainChild: true}))
else
" else {\n${ @elseBody.compile(o) }\n$@tab}"
"$ifPart$elsePart"
# Compile the IfNode as a ternary operator.
compileTernary: (o) ->
o.operation: true
ifPart: @condition.compile(o) + ' ? ' + @bodyNode().compile(o)
elsePart: if @elseBody then @elseBodyNode().compile(o) else 'null'
"$ifPart : $elsePart"
# Faux-Nodes
# ----------
#### PushNode
# Faux-nodes are never created by the grammar, but are used during code
# generation to generate other combinations of nodes. The **PushNode** creates
# the tree for `array.push(value)`, which is helpful for recording the result
# arrays from comprehensions.
PushNode: exports.PushNode: {
wrap: (array, expressions) ->
expr: expressions.unwrap()
return expressions if expr.isPureStatement() or expr.containsPureStatement()
Expressions.wrap([new CallNode(
new ValueNode(literal(array), [new AccessorNode(literal('push'))]), [expr]
)])
}
#### ClosureNode
# A faux-node used to wrap an expressions body in a closure.
ClosureNode: exports.ClosureNode: {
# Wrap the expressions body, unless it contains a pure statement,
# in which case, no dice. If the body mentions `this` or `arguments`,
# then make sure that the closure wrapper preserves the original values.
wrap: (expressions, statement) ->
return expressions if expressions.containsPureStatement()
func: new ParentheticalNode(new CodeNode([], Expressions.wrap([expressions])))
args: []
mentionsArgs: expressions.contains (n) ->
n instanceof LiteralNode and (n.value is 'arguments')
mentionsThis: expressions.contains (n) ->
(n instanceof LiteralNode and (n.value is 'this')) or
(n instanceof CodeNode and n.bound)
if mentionsArgs or mentionsThis
meth: literal(if mentionsArgs then 'apply' else 'call')
args: [literal('this')]
args.push literal 'arguments' if mentionsArgs
func: new ValueNode func, [new AccessorNode(meth)]
call: new CallNode(func, args)
if statement then Expressions.wrap([call]) else call
}
# Utility Functions
# -----------------
UTILITIES: {
# Correctly set up a prototype chain for inheritance, including a reference
# to the superclass for `super()` calls. See:
# [goog.inherits](http://closure-library.googlecode.com/svn/docs/closureGoogBase.js.source.html#line1206).
extends: """
function(child, parent) {
var ctor = function(){};
ctor.prototype = parent.prototype;
child.prototype = new ctor();
child.prototype.constructor = child;
if (typeof parent.extended === "function") parent.extended(child);
child.__superClass__ = parent.prototype;
}
"""
# Shortcuts to speed up the lookup time for native functions.
hasProp: 'Object.prototype.hasOwnProperty'
slice: 'Array.prototype.slice'
}
# Constants
# ---------
# Tabs are two spaces for pretty printing.
TAB: ' '
# Trim out all trailing whitespace, so that the generated code plays nice
# with Git.
TRAILING_WHITESPACE: /[ \t]+$/gm
# Obvious redundant parentheses should be removed.
DOUBLE_PARENS: /\(\(([^\(\)\n]*)\)\)/g
# Keep these identifier regexes in sync with the Lexer.
IDENTIFIER: /^[a-zA-Z\$_](\w|\$)*$/
NUMBER : /^(((\b0(x|X)[0-9a-fA-F]+)|((\b[0-9]+(\.[0-9]+)?|\.[0-9]+)(e[+\-]?[0-9]+)?)))\b$/i
SIMPLENUM : /^-?\d+/
# Is a literal value a string?
IS_STRING: /^['"]/
# Utility Functions
# -----------------
# Handy helper for a generating LiteralNode.
literal: (name) ->
new LiteralNode(name)
# Helper for ensuring that utility functions are assigned at the top level.
utility: (name) ->
ref: "__$name"
Scope.root.assign ref, UTILITIES[name]
ref