mirror of
https://github.com/zama-ai/concrete.git
synced 2026-02-09 12:15:09 -05:00
style(test): Formatting
This commit is contained in:
committed by
Quentin Bourgerie
parent
de66044374
commit
0439ef47da
@@ -8,57 +8,52 @@ namespace CL = mlir::concretelang;
|
||||
TEST(Support, client_parameters_json_serde) {
|
||||
mlir::concretelang::ClientParameters params0;
|
||||
params0.secretKeys = {
|
||||
{mlir::concretelang::SMALL_KEY, {/*.size = */ 12}},
|
||||
{mlir::concretelang::BIG_KEY, {/*.size = */ 14}},
|
||||
{mlir::concretelang::SMALL_KEY, {/*.size = */ 12}},
|
||||
{mlir::concretelang::BIG_KEY, {/*.size = */ 14}},
|
||||
};
|
||||
params0.bootstrapKeys = {
|
||||
{
|
||||
"bsk_v0", {
|
||||
/*.inputSecretKeyID = */ mlir::concretelang::SMALL_KEY,
|
||||
{"bsk_v0",
|
||||
{/*.inputSecretKeyID = */ mlir::concretelang::SMALL_KEY,
|
||||
/*.outputSecretKeyID = */ mlir::concretelang::BIG_KEY,
|
||||
/*.level = */ 1,
|
||||
/*.baseLog = */ 2,
|
||||
/*.k = */ 3,
|
||||
/*.variance = */ 0.001
|
||||
}
|
||||
},{
|
||||
"wtf_bsk_v0", {
|
||||
/*.inputSecretKeyID = */ mlir::concretelang::BIG_KEY,
|
||||
/*.outputSecretKeyID = */ mlir::concretelang::SMALL_KEY,
|
||||
/*.level = */ 3,
|
||||
/*.baseLog = */ 2,
|
||||
/*.k = */ 1,
|
||||
/*.variance = */ 0.0001,
|
||||
}
|
||||
},
|
||||
/*.glweDimension = */ 3,
|
||||
/*.variance = */ 0.001}},
|
||||
{"wtf_bsk_v0",
|
||||
{
|
||||
/*.inputSecretKeyID = */ mlir::concretelang::BIG_KEY,
|
||||
/*.outputSecretKeyID = */ mlir::concretelang::SMALL_KEY,
|
||||
/*.level = */ 3,
|
||||
/*.baseLog = */ 2,
|
||||
/*.glweDimension = */ 1,
|
||||
/*.variance = */ 0.0001,
|
||||
}},
|
||||
};
|
||||
params0.keyswitchKeys = {
|
||||
{
|
||||
"ksk_v0", {
|
||||
/*.inputSecretKeyID = */ mlir::concretelang::BIG_KEY,
|
||||
/*.outputSecretKeyID = */ mlir::concretelang::SMALL_KEY,
|
||||
/*.level = */ 1,
|
||||
/*.baseLog = */ 2,
|
||||
/*.variance = */ 3,
|
||||
}
|
||||
}
|
||||
};
|
||||
{"ksk_v0",
|
||||
{
|
||||
/*.inputSecretKeyID = */ mlir::concretelang::BIG_KEY,
|
||||
/*.outputSecretKeyID = */ mlir::concretelang::SMALL_KEY,
|
||||
/*.level = */ 1,
|
||||
/*.baseLog = */ 2,
|
||||
/*.variance = */ 3,
|
||||
}}};
|
||||
params0.inputs = {
|
||||
{
|
||||
/*.encryption = */ {{CL::SMALL_KEY, 0.01, {4}}},
|
||||
/*.shape = */ {32, {1, 2, 3, 4}, 1 * 2 * 3 * 4},
|
||||
},
|
||||
{
|
||||
/*.encryption = */ {{CL::SMALL_KEY, 0.03, {5}}},
|
||||
/*.shape = */ {8, {4, 4, 4, 4}, 4 * 4 * 4 * 4},
|
||||
},
|
||||
{
|
||||
/*.encryption = */ {{CL::SMALL_KEY, 0.01, {4}}},
|
||||
/*.shape = */ {32, {1, 2, 3, 4}, 1 * 2 * 3 * 4},
|
||||
},
|
||||
{
|
||||
/*.encryption = */ {{CL::SMALL_KEY, 0.03, {5}}},
|
||||
/*.shape = */ {8, {4, 4, 4, 4}, 4 * 4 * 4 * 4},
|
||||
},
|
||||
};
|
||||
params0.outputs = {
|
||||
{
|
||||
/*.encryption = */ {{CL::SMALL_KEY, 0.03, {5}}},
|
||||
/*.shape = */ {8, {4, 4, 4, 4}, 4 * 4 * 4 * 4},
|
||||
},
|
||||
};
|
||||
{
|
||||
/*.encryption = */ {{CL::SMALL_KEY, 0.03, {5}}},
|
||||
/*.shape = */ {8, {4, 4, 4, 4}, 4 * 4 * 4 * 4},
|
||||
},
|
||||
};
|
||||
auto json = mlir::concretelang::toJSON(params0);
|
||||
std::string jsonStr;
|
||||
llvm::raw_string_ostream os(jsonStr);
|
||||
|
||||
@@ -68,10 +68,11 @@ TEST(End2EndJit_FHELinalg, add_eint_int_term_to_term_ret_lambda_argument) {
|
||||
|
||||
ASSERT_EXPECTED_SUCCESS(res);
|
||||
|
||||
mlir::concretelang::TensorLambdaArgument<mlir::concretelang::IntLambdaArgument<>>
|
||||
&resp = (*res)
|
||||
->cast<mlir::concretelang::TensorLambdaArgument<
|
||||
mlir::concretelang::IntLambdaArgument<>>>();
|
||||
mlir::concretelang::TensorLambdaArgument<
|
||||
mlir::concretelang::IntLambdaArgument<>> &resp =
|
||||
(*res)
|
||||
->cast<mlir::concretelang::TensorLambdaArgument<
|
||||
mlir::concretelang::IntLambdaArgument<>>>();
|
||||
|
||||
ASSERT_EQ(resp.getDimensions().size(), (size_t)1);
|
||||
ASSERT_EQ(resp.getDimensions().at(0), 4);
|
||||
@@ -112,10 +113,11 @@ TEST(End2EndJit_FHELinalg,
|
||||
|
||||
ASSERT_EXPECTED_SUCCESS(res);
|
||||
|
||||
mlir::concretelang::TensorLambdaArgument<mlir::concretelang::IntLambdaArgument<>>
|
||||
&resp = (*res)
|
||||
->cast<mlir::concretelang::TensorLambdaArgument<
|
||||
mlir::concretelang::IntLambdaArgument<>>>();
|
||||
mlir::concretelang::TensorLambdaArgument<
|
||||
mlir::concretelang::IntLambdaArgument<>> &resp =
|
||||
(*res)
|
||||
->cast<mlir::concretelang::TensorLambdaArgument<
|
||||
mlir::concretelang::IntLambdaArgument<>>>();
|
||||
|
||||
ASSERT_EQ(resp.getDimensions().size(), (size_t)3);
|
||||
ASSERT_EQ(resp.getDimensions().at(0), 4);
|
||||
@@ -1052,8 +1054,7 @@ TEST(End2EndJit_FHELinalg, apply_lookup_table) {
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// FHELinalg apply_multi_lookup_table
|
||||
// /////////////////////////////////////////////
|
||||
// FHELinalg apply_multi_lookup_table /////////////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
TEST(End2EndJit_FHELinalg, apply_multi_lookup_table) {
|
||||
@@ -1154,7 +1155,7 @@ TEST(End2EndJit_FHELinalg, apply_multi_lookup_table_with_boradcast) {
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// FHELinalg apply_mapped_lookup_table /////////////////////////////////////////////
|
||||
// FHELinalg apply_mapped_lookup_table ////////////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
TEST(End2EndJit_FHELinalg, apply_mapped_lookup_table_sequential) {
|
||||
@@ -1173,9 +1174,8 @@ TEST(End2EndJit_FHELinalg, apply_mapped_lookup_table_sequential) {
|
||||
{2, 3, 0},
|
||||
};
|
||||
uint64_t luts[9][4]{
|
||||
{3, 0, 0, 0}, {0, 3, 0, 0}, {0, 0, 3, 0},
|
||||
{0, 0, 0, 3}, {3, 0, 0, 0}, {0, 3, 0, 0},
|
||||
{0, 0, 3, 0}, {0, 0, 0, 3}, {3, 0, 0, 0},
|
||||
{3, 0, 0, 0}, {0, 3, 0, 0}, {0, 0, 3, 0}, {0, 0, 0, 3}, {3, 0, 0, 0},
|
||||
{0, 3, 0, 0}, {0, 0, 3, 0}, {0, 0, 0, 3}, {3, 0, 0, 0},
|
||||
};
|
||||
uint64_t map[3][3]{
|
||||
{0, 1, 2},
|
||||
@@ -1192,8 +1192,7 @@ TEST(End2EndJit_FHELinalg, apply_mapped_lookup_table_sequential) {
|
||||
tensorArgTy<uint64_t> lutsArg(luts), mapArg(map);
|
||||
|
||||
llvm::Expected<std::vector<uint64_t>> res =
|
||||
lambda.operator()<std::vector<uint64_t>>(
|
||||
{&tArg, &lutsArg, &mapArg});
|
||||
lambda.operator()<std::vector<uint64_t>>({&tArg, &lutsArg, &mapArg});
|
||||
|
||||
ASSERT_EXPECTED_SUCCESS(res);
|
||||
|
||||
@@ -1223,9 +1222,8 @@ TEST(End2EndJit_FHELinalg, apply_mapped_lookup_table_same_lut) {
|
||||
{2, 3, 0},
|
||||
};
|
||||
uint64_t luts[9][4]{
|
||||
{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0},
|
||||
{0, 0, 0, 0}, {1, 2, 3, 1}, {0, 0, 0, 0},
|
||||
{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0},
|
||||
{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {1, 2, 3, 1},
|
||||
{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0},
|
||||
};
|
||||
uint64_t map[3][3]{
|
||||
{4, 4, 4},
|
||||
@@ -1242,8 +1240,7 @@ TEST(End2EndJit_FHELinalg, apply_mapped_lookup_table_same_lut) {
|
||||
tensorArgTy<uint64_t> lutsArg(luts), mapArg(map);
|
||||
|
||||
llvm::Expected<std::vector<uint64_t>> res =
|
||||
lambda.operator()<std::vector<uint64_t>>(
|
||||
{&tArg, &lutsArg, &mapArg});
|
||||
lambda.operator()<std::vector<uint64_t>>({&tArg, &lutsArg, &mapArg});
|
||||
|
||||
ASSERT_EXPECTED_SUCCESS(res);
|
||||
|
||||
@@ -1281,7 +1278,7 @@ func @main(%arg0: tensor<4x!FHE.eint<7>>,
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// FHELinalg neg_eint /////////////////////////////////////////////
|
||||
// FHELinalg neg_eint /////////////////////////////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
TEST(End2EndJit_FHELinalg, neg_eint) {
|
||||
@@ -1447,7 +1444,7 @@ TEST(End2EndJit_Linalg, tensor_collapse_shape) {
|
||||
|
||||
mlir::concretelang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
|
||||
func @main(%a: tensor<2x2x4x!FHE.eint<6>>) -> tensor<2x8x!FHE.eint<6>> {
|
||||
%0 = linalg.tensor_collapse_shape %a [[0],[1,2]] : tensor<2x2x4x!FHE.eint<6>> into tensor<2x8x!FHE.eint<6>>
|
||||
%0 = linalg.tensor_collapse_shape %a [[0],[1,2]] : tensor<2x2x4x!FHE.eint<6>> into tensor<2x8x!FHE.eint<6>>
|
||||
return %0 : tensor<2x8x!FHE.eint<6>>
|
||||
}
|
||||
)XXX");
|
||||
@@ -1470,10 +1467,11 @@ func @main(%a: tensor<2x2x4x!FHE.eint<6>>) -> tensor<2x8x!FHE.eint<6>> {
|
||||
|
||||
ASSERT_EXPECTED_SUCCESS(res);
|
||||
|
||||
mlir::concretelang::TensorLambdaArgument<mlir::concretelang::IntLambdaArgument<>>
|
||||
&resp = (*res)
|
||||
->cast<mlir::concretelang::TensorLambdaArgument<
|
||||
mlir::concretelang::IntLambdaArgument<>>>();
|
||||
mlir::concretelang::TensorLambdaArgument<
|
||||
mlir::concretelang::IntLambdaArgument<>> &resp =
|
||||
(*res)
|
||||
->cast<mlir::concretelang::TensorLambdaArgument<
|
||||
mlir::concretelang::IntLambdaArgument<>>>();
|
||||
|
||||
ASSERT_EQ(resp.getDimensions().size(), (size_t)2);
|
||||
ASSERT_EQ(resp.getDimensions().at(0), 2);
|
||||
@@ -1496,7 +1494,7 @@ TEST(End2EndJit_Linalg, tensor_expand_shape) {
|
||||
|
||||
mlir::concretelang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
|
||||
func @main(%a: tensor<2x8x!FHE.eint<6>>) -> tensor<2x2x4x!FHE.eint<6>> {
|
||||
%0 = linalg.tensor_expand_shape %a [[0],[1,2]] : tensor<2x8x!FHE.eint<6>> into tensor<2x2x4x!FHE.eint<6>>
|
||||
%0 = linalg.tensor_expand_shape %a [[0],[1,2]] : tensor<2x8x!FHE.eint<6>> into tensor<2x2x4x!FHE.eint<6>>
|
||||
return %0 : tensor<2x2x4x!FHE.eint<6>>
|
||||
}
|
||||
)XXX");
|
||||
@@ -1520,10 +1518,11 @@ func @main(%a: tensor<2x8x!FHE.eint<6>>) -> tensor<2x2x4x!FHE.eint<6>> {
|
||||
|
||||
ASSERT_EXPECTED_SUCCESS(res);
|
||||
|
||||
mlir::concretelang::TensorLambdaArgument<mlir::concretelang::IntLambdaArgument<>>
|
||||
&resp = (*res)
|
||||
->cast<mlir::concretelang::TensorLambdaArgument<
|
||||
mlir::concretelang::IntLambdaArgument<>>>();
|
||||
mlir::concretelang::TensorLambdaArgument<
|
||||
mlir::concretelang::IntLambdaArgument<>> &resp =
|
||||
(*res)
|
||||
->cast<mlir::concretelang::TensorLambdaArgument<
|
||||
mlir::concretelang::IntLambdaArgument<>>>();
|
||||
|
||||
ASSERT_EQ(resp.getDimensions().size(), (size_t)3);
|
||||
ASSERT_EQ(resp.getDimensions().at(0), 2);
|
||||
|
||||
@@ -2,8 +2,6 @@
|
||||
|
||||
#include "end_to_end_jit_test.h"
|
||||
|
||||
const mlir::concretelang::V0FHEConstraint defaultV0Constraints{10, 7};
|
||||
|
||||
using Lambda = mlir::concretelang::JitCompilerEngine::Lambda;
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user