mirror of
https://github.com/zama-ai/concrete.git
synced 2026-02-15 07:05:09 -05:00
start getting multiprocessing to work
This commit is contained in:
146
new_scripts.py
146
new_scripts.py
@@ -4,9 +4,10 @@ from estimator_new import *
|
||||
from sage.all import oo, save
|
||||
from math import log2
|
||||
import gc
|
||||
from multiprocessing import *
|
||||
|
||||
|
||||
def old_models(security_level, sd, logq = 32):
|
||||
def old_models(security_level, sd, logq=32):
|
||||
"""
|
||||
Use the old model as a starting point for the data gathering step
|
||||
:param security_level: the security level under consideration
|
||||
@@ -14,12 +15,11 @@ def old_models(security_level, sd, logq = 32):
|
||||
:param logq : the (base 2 log) value of the LWE modulus q
|
||||
"""
|
||||
|
||||
def evaluate_model(sd, a, b):
|
||||
return (sd - b)/a
|
||||
def evaluate_model(a, b, stddev=sd):
|
||||
return (stddev - b)/a
|
||||
|
||||
models = dict()
|
||||
|
||||
# TODO: figure out a way to import these from a datafile, for future version
|
||||
models["80"] = (-0.04049295502947623, 1.1288318226557081 + logq)
|
||||
models["96"] = (-0.03416314056943681, 1.4704806061716345 + logq)
|
||||
models["112"] = (-0.02970984362676178, 1.7848907787798667 + logq)
|
||||
@@ -34,32 +34,38 @@ def old_models(security_level, sd, logq = 32):
|
||||
models["256"] = (-0.014530554319171845, 3.2094375376751745 + logq)
|
||||
|
||||
(a, b) = models["{}".format(security_level)]
|
||||
n_est = evaluate_model(sd, a, b)
|
||||
n_est = evaluate_model(a, b, sd)
|
||||
|
||||
return round(n_est)
|
||||
|
||||
def estimate(params, red_cost_model = RC.BDGL16):
|
||||
|
||||
def estimate(params, red_cost_model=RC.BDGL16, skip=("arora-gb", "bkw")):
|
||||
"""
|
||||
Retrieve an estimate using the Lattice Estimator, for a given set of input parameters
|
||||
:param params: the input LWE parameters
|
||||
:param red_cost_model: the lattice reduction cost model
|
||||
:param skip: attacks to skip
|
||||
"""
|
||||
|
||||
est = LWE.estimate(params, deny_list=("arora-gb", "bkw"), red_cost_model=red_cost_model)
|
||||
est = LWE.estimate(params, red_cost_model=red_cost_model, deny_list=skip)
|
||||
return est
|
||||
|
||||
def get_security_level(est, dp = 2):
|
||||
|
||||
def get_security_level(est, dp=2):
|
||||
"""
|
||||
Get the security level lambda from a Lattice Estimator output
|
||||
:param est: the Lattice Estimator output
|
||||
:param dp : the number of decimal places to consider
|
||||
:param dp: the number of decimal places to consider
|
||||
"""
|
||||
attack_costs = []
|
||||
for key in est.keys():
|
||||
# note: key does not need to be specified est vs est.keys()
|
||||
for key in est:
|
||||
attack_costs.append(est[key]["rop"])
|
||||
# get the security level correct to 'dp' decimal places
|
||||
security_level = round(log2(min(attack_costs)), dp)
|
||||
return security_level
|
||||
|
||||
|
||||
def inequality(x, y):
|
||||
""" A utility function which compresses the conditions x < y and x > y into a single condition via a multiplier
|
||||
:param x: the LHS of the inequality
|
||||
@@ -71,6 +77,7 @@ def inequality(x, y):
|
||||
if x > y:
|
||||
return -1
|
||||
|
||||
|
||||
def automated_param_select_n(params, target_security=128):
|
||||
""" A function used to generate the smallest value of n which allows for
|
||||
target_security bits of security, for the input values of (params.Xe.stddev,params.q)
|
||||
@@ -101,15 +108,15 @@ def automated_param_select_n(params, target_security=128):
|
||||
# n_log = log2(n_start)
|
||||
# n_start = 2**round(n_log)
|
||||
|
||||
|
||||
print("n_start = {}".format(n_start))
|
||||
params = params.updated(n=n_start)
|
||||
print(params)
|
||||
#
|
||||
costs2 = estimate(params)
|
||||
security_level = get_security_level(costs2, 2)
|
||||
costs2 = None
|
||||
z = inequality(security_level, target_security)
|
||||
|
||||
|
||||
# we keep n > 2 * target_security as a rough baseline for mitm security (on binary key guessing)
|
||||
while z * security_level < z * target_security:
|
||||
# if params.n > 1024:
|
||||
@@ -118,6 +125,9 @@ def automated_param_select_n(params, target_security=128):
|
||||
params = params.updated(n = params.n + z * 8)
|
||||
costs = estimate(params)
|
||||
security_level = get_security_level(costs, 2)
|
||||
# try none with delete, try none without delete
|
||||
# test the list of objects that are in memory before end of program
|
||||
costs = None
|
||||
|
||||
if -1 * params.Xe.stddev > 0:
|
||||
print("target security level is unatainable")
|
||||
@@ -127,14 +137,14 @@ def automated_param_select_n(params, target_security=128):
|
||||
if security_level < target_security:
|
||||
# we make n larger
|
||||
print("we make n larger")
|
||||
params = params.updated(n = params.n + 8)
|
||||
params = params.updated(n=params.n + 8)
|
||||
costs = estimate(params)
|
||||
security_level = get_security_level(costs, 2)
|
||||
|
||||
print("the finalised parameters are n = {}, log2(sd) = {}, log2(q) = {}, with a security level of {}-bits".format(params.n,
|
||||
log2(params.Xe.stddev),
|
||||
log2(params.q),
|
||||
security_level))
|
||||
security_level))
|
||||
|
||||
# final sanity check so we don't return insecure (or inf) parameters
|
||||
# TODO: figure out inf in new estimator
|
||||
@@ -142,12 +152,9 @@ def automated_param_select_n(params, target_security=128):
|
||||
if security_level < target_security:
|
||||
params.updated(n=None)
|
||||
|
||||
del(costs)
|
||||
del(costs2)
|
||||
gc.collect()
|
||||
|
||||
return params
|
||||
|
||||
|
||||
def generate_parameter_matrix(params_in, sd_range, target_security_levels=[128], name="v0.sobj"):
|
||||
"""
|
||||
:param sd_range: a tuple (sd_min, sd_max) giving the values of sd for which to generate parameters
|
||||
@@ -175,26 +182,107 @@ def generate_parameter_matrix(params_in, sd_range, target_security_levels=[128],
|
||||
gc.collect()
|
||||
return results
|
||||
|
||||
def generate_zama_curves64(sd_range=[2, 56], target_security_levels=[256], name="v0256.sobj"):
|
||||
|
||||
D = ND.DiscreteGaussian
|
||||
init_params = LWE.Parameters(n=1024, q=2 ** 64, Xs=D(0.50, -0.50), Xe=D(131072.00), m=oo, tag='TFHE_DEFAULT')
|
||||
raw_data = generate_parameter_matrix(init_params, sd_range=sd_range, target_security_levels=target_security_levels, name=name)
|
||||
def generate_parameter_matrix_para(params_in, sd_range, target_security_levels=[128], name="v0.sobj"):
|
||||
"""
|
||||
:param sd_range: a tuple (sd_min, sd_max) giving the values of sd for which to generate parameters
|
||||
:param params: the standard deviation of the LWE error
|
||||
:param target_security: the target number of bits of security, 128 is default
|
||||
|
||||
return raw_data
|
||||
EXAMPLE:
|
||||
sage: X = generate_parameter_matrix()
|
||||
sage: X
|
||||
"""
|
||||
if __name__ == "__main__":
|
||||
|
||||
def plota_curve(raw_data, security_level):
|
||||
results = dict()
|
||||
|
||||
data = raw_data["{}".format(security_level)]
|
||||
def test_memory(x):
|
||||
print("doing job...")
|
||||
print(x)
|
||||
y = LWE.estimate(x, deny_list=("arora-gb", "bkw"))
|
||||
return y
|
||||
|
||||
# grab min and max value/s of n
|
||||
(sd_min, sd_max) = sd_range
|
||||
print(sd_range)
|
||||
|
||||
for lam in target_security_levels:
|
||||
results["{}".format(lam)] = []
|
||||
names = range(sd_min, sd_max + 1)
|
||||
procs = []
|
||||
proc = Process(target=automated_param_select_n)
|
||||
procs.append(proc)
|
||||
proc.start()
|
||||
p = Pool(1)
|
||||
for name in names:
|
||||
proc = Process(target=test_memory, args=(name,))
|
||||
procs.append(proc)
|
||||
proc.start()
|
||||
proc.join()
|
||||
Xe_new = nd.NoiseDistribution.DiscreteGaussian(2**sd)
|
||||
params_out = automated_param_select_n(params_in.updated(Xe=Xe_new), target_security=lam)
|
||||
results["{}".format(lam)].append((params_out.n, params_out.q, params_out.Xe.stddev))
|
||||
save(results, "{}.sobj".format(name))
|
||||
params_out = None
|
||||
del(params_out)
|
||||
gc.collect()
|
||||
return results
|
||||
|
||||
# what we run
|
||||
|
||||
def generate_zama_curves64(sd_range=[2, 56], target_security_levels=[256], name="default", pools = 1):
|
||||
if __name__ == '__main__':
|
||||
|
||||
D = ND.DiscreteGaussian
|
||||
vals = sd_range
|
||||
p = Pool(pools)
|
||||
procs = []
|
||||
for val in vals:
|
||||
init_params = LWE.Parameters(n=1024, q=2 ** 64, Xs=D(0.50, -0.50), Xe=D(2**55), m=oo, tag='TFHE_DEFAULT')
|
||||
proc = Process(target=generate_parameter_matrix, args=(init_params, [val, val + 1], target_security_levels, name))
|
||||
procs.append(proc)
|
||||
proc.start()
|
||||
|
||||
return "done"
|
||||
|
||||
import sys
|
||||
a = int(sys.argv[1])
|
||||
print(a)
|
||||
print("input arg is {}".format(a))
|
||||
|
||||
D = ND.DiscreteGaussian
|
||||
init_params = LWE.Parameters(n=1024, q=2 ** 64, Xs=ND.UniformMod(2), Xe=D(131072.00), m=oo, tag='TFHE_DEFAULT')
|
||||
|
||||
generate_zama_curves64(target_security_levels=[a], name="{}".format(a))
|
||||
init_params = LWE.Parameters(n=1024, q=2 ** 32, Xs=ND.UniformMod(2), Xe=D(131072.00), m=oo, tag='TFHE_DEFAULT')
|
||||
#automated_param_select_n(init_params, target_security=128)
|
||||
#automated_param_select_n(init_params, target_security=192)
|
||||
generate_zama_curves64(sd_range=[50, 53], target_security_levels=[a], name="{}".format("testing"))
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#if __name__ == "__main__":
|
||||
# D = ND.DiscreteGaussian
|
||||
# params = LWE.Parameters(n=1024, q=2 ** 64, Xs=D(0.50, -0.50), Xe=D(2**57), m=oo, tag='TFHE_DEFAULT')
|
||||
#
|
||||
# names = [params, params.updated(n=761), params.updated(q=2**65), params.updated(n=762)]
|
||||
# procs = []
|
||||
# proc = Process(target=print_func)
|
||||
# procs.append(proc)
|
||||
# proc.start()
|
||||
# p = Pool(1)
|
||||
#
|
||||
# for name in names:
|
||||
# proc = Process(target=test_memory, args=(name,))
|
||||
# procs.append(proc)
|
||||
# proc.start()
|
||||
# proc.join()
|
||||
#
|
||||
# for proc in procs:
|
||||
# proc.join()
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user