cleanup(python): Cleanup python bindings after refactoring of CompilerEngine

This commit is contained in:
Quentin Bourgerie
2022-03-16 14:39:31 +01:00
parent 8867d313ee
commit 1b984f5119
2 changed files with 43 additions and 130 deletions

View File

@@ -7,15 +7,10 @@ import os
import atexit
from typing import List, Union
from mlir._mlir_libs._concretelang._compiler import (
JitCompilerEngine as _JitCompilerEngine,
terminate_parallelization as _terminate_parallelization,
)
from mlir._mlir_libs._concretelang._compiler import LambdaArgument as _LambdaArgument
from mlir._mlir_libs._concretelang._compiler import terminate_parallelization as _terminate_parallelization
from mlir._mlir_libs._concretelang._compiler import round_trip as _round_trip
from mlir._mlir_libs._concretelang._compiler import library as _library
from mlir._mlir_libs._concretelang._compiler import JITLambdaSupport
from mlir._mlir_libs._concretelang._compiler import LibraryLambdaSupport
from mlir._mlir_libs._concretelang._compiler import ClientSupport as _ClientSupport
from mlir._mlir_libs._concretelang._compiler import ClientParameters
@@ -25,10 +20,13 @@ from mlir._mlir_libs._concretelang._compiler import KeySetCache
from mlir._mlir_libs._concretelang._compiler import PublicResult
from mlir._mlir_libs._concretelang._compiler import PublicArguments
from mlir._mlir_libs._concretelang._compiler import LambdaArgument as _LambdaArgument
from mlir._mlir_libs._concretelang._compiler import JITLambdaSupport as _JITLambdaSupport
from mlir._mlir_libs._concretelang._compiler import JitCompilationResult
from mlir._mlir_libs._concretelang._compiler import JITLambda
from mlir._mlir_libs._concretelang._compiler import LibraryLambdaSupport as _LibraryLambdaSupport
from mlir._mlir_libs._concretelang._compiler import LibraryCompilationResult
from mlir._mlir_libs._concretelang._compiler import LibraryLambda
import numpy as np
@@ -85,70 +83,6 @@ def round_trip(mlir_str: str) -> str:
return _round_trip(mlir_str)
_MLIR_MODULES_TYPE = 'mlir_modules must be an `iterable` of `str` or a `str'
def library(library_path: str, mlir_modules: Union['Iterable[str]', str]) -> str:
"""Compile the MLIR inputs to a library.
Args:
library_path (str): destination path of the library
mlir_modules (list[str]|str): code of MLIR modules
Raises:
TypeError: if arguments have incorrect types.
Returns:
str: parsed MLIR input.
"""
if not isinstance(library_path, str):
raise TypeError("library_path must be a `str`")
if isinstance(mlir_modules, str):
mlir_modules = [mlir_modules]
elif isinstance(mlir_modules, list):
pass
elif isinstance(mlir_modules, Iterable):
mlir_modules = list(mlir_modules)
else:
mlir_modules = [None]
raise TypeError(_MLIR_MODULES_TYPE)
if not all(isinstance(m, str) for m in mlir_modules):
raise TypeError(_MLIR_MODULES_TYPE)
return _library(library_path, mlir_modules)
def create_execution_argument(value: Union[int, np.ndarray]) -> _LambdaArgument:
"""Create an execution argument holding either an int or tensor value.
Args:
value (Union[int, numpy.array]): value of the argument, either an int, or a numpy array
Raises:
TypeError: if the values aren't in the expected range, or using a wrong type
Returns:
_LambdaArgument: lambda argument holding the appropriate value
"""
if not isinstance(value, ACCEPTED_TYPES):
raise TypeError(
"value of execution argument must be either int, numpy.array or numpy.uint{8,16,32,64}")
if isinstance(value, ACCEPTED_INTS):
if isinstance(value, int) and not (0 <= value < np.iinfo(np.uint64).max):
raise TypeError(
"single integer must be in the range [0, 2**64 - 1] (uint64)"
)
return _LambdaArgument.from_scalar(value)
else:
assert isinstance(value, np.ndarray)
if value.shape == ():
return _LambdaArgument.from_scalar(value)
if value.dtype not in ACCEPTED_NUMPY_UINTS:
raise TypeError("numpy.array must be of dtype uint{8,16,32,64}")
return _LambdaArgument.from_tensor(value.flatten().tolist(), value.shape)
class CompilerEngine:
def __init__(self, mlir_str: str = None):
self._engine = JITCompilerSupport()
@@ -264,7 +198,8 @@ class ClientSupport:
Returns:
PublicArguments: the public arguments
"""
execution_arguments = [create_execution_argument(arg) for arg in args]
execution_arguments = [
ClientSupport._create_execution_argument(arg) for arg in args]
return _ClientSupport.encrypt_arguments(client_parameters, key_set, execution_arguments)
def decrypt_result(key_set: KeySet, public_result: PublicResult) -> Union[int, np.ndarray]:
@@ -287,12 +222,42 @@ class ClientSupport:
else:
raise RuntimeError("unknown return type")
def _create_execution_argument(value: Union[int, np.ndarray]) -> _LambdaArgument:
"""Create an execution argument holding either an int or tensor value.
Args:
value (Union[int, numpy.array]): value of the argument, either an int, or a numpy array
Raises:
TypeError: if the values aren't in the expected range, or using a wrong type
Returns:
_LambdaArgument: lambda argument holding the appropriate value
"""
if not isinstance(value, ACCEPTED_TYPES):
raise TypeError(
"value of execution argument must be either int, numpy.array or numpy.uint{8,16,32,64}")
if isinstance(value, ACCEPTED_INTS):
if isinstance(value, int) and not (0 <= value < np.iinfo(np.uint64).max):
raise TypeError(
"single integer must be in the range [0, 2**64 - 1] (uint64)"
)
return _LambdaArgument.from_scalar(value)
else:
assert isinstance(value, np.ndarray)
if value.shape == ():
return _LambdaArgument.from_scalar(value)
if value.dtype not in ACCEPTED_NUMPY_UINTS:
raise TypeError(
"numpy.array must be of dtype uint{8,16,32,64}")
return _LambdaArgument.from_tensor(value.flatten().tolist(), value.shape)
class JITCompilerSupport:
def __init__(self, runtime_lib_path=None):
if runtime_lib_path is None:
runtime_lib_path = _lookup_runtime_lib()
self._support = JITLambdaSupport(runtime_lib_path)
self._support = _JITLambdaSupport(runtime_lib_path)
def compile(self, mlir_program: str, func_name: str = "main") -> JitCompilationResult:
"""JIT Compile a function define in the mlir_program to its homomorphic equivalent.
@@ -332,7 +297,7 @@ class JITCompilerSupport:
class LibraryCompilerSupport:
def __init__(self, outputPath="./out"):
self._library_path = outputPath
self._support = LibraryLambdaSupport(outputPath)
self._support = _LibraryLambdaSupport(outputPath)
def compile(self, mlir_program: str, func_name: str = "main") -> LibraryCompilationResult:
"""Compile a function define in the mlir_program to its homomorphic equivalent and save as library.

View File

@@ -3,7 +3,7 @@ import tempfile
import pytest
import numpy as np
from concrete.compiler import CompilerEngine, library
from concrete.compiler import CompilerEngine
from lib.Bindings.Python.concrete.compiler import JITCompilerSupport, LibraryCompilerSupport
from lib.Bindings.Python.concrete.compiler import ClientSupport
from lib.Bindings.Python.concrete.compiler import KeySetCache
@@ -313,7 +313,7 @@ def test_compile_and_run_invalid_arg_number(mlir_input, args):
engine.run(*args)
@pytest.mark.parametrize(
@ pytest.mark.parametrize(
"mlir_input, args, expected_result, tab_size",
[
pytest.param(
@@ -338,7 +338,7 @@ def test_compile_and_run_tlu(mlir_input, args, expected_result, tab_size):
assert abs(engine.run(*args) - expected_result) / tab_size < 0.1
@pytest.mark.parametrize(
@ pytest.mark.parametrize(
"mlir_input",
[
pytest.param(
@@ -359,55 +359,3 @@ def test_compile_invalid(mlir_input):
with pytest.raises(RuntimeError, match=r"cannot find the function for generate client parameters"):
engine.compile_fhe(
mlir_input, unsecure_key_set_cache_path=KEY_SET_CACHE_PATH)
MODULE_1 = """
func @test1()
{
return
}
"""
MODULE_2 = """
func @test2()
{
return
}
"""
LIB_PATH = './test_library_generation.so'
@pytest.mark.parametrize(
'mlir_modules',
[
pytest.param(MODULE_1, id='1 module'),
pytest.param([MODULE_1, MODULE_2], id='2 modules'),
pytest.param(iter([MODULE_1, MODULE_2]), id='iterable'),
],
)
def test_library_generation(mlir_modules):
library_path = library(LIB_PATH, mlir_modules)
assert os.path.exists(library_path)
@pytest.mark.parametrize(
'mlir_modules',
[
pytest.param(bytes(MODULE_1, encoding='utf-8'), id='bytes vs str'),
pytest.param(None, id='not iterable'),
pytest.param([None], id='not str'),
],
)
def test_library_generation_type_error(mlir_modules):
with pytest.raises(TypeError):
library(LIB_PATH, mlir_modules)
def test_library_call():
module = """
func @test(%a: i8) -> i8
{
return %a : i8
}
"""
from ctypes import CDLL
lib = CDLL(library(LIB_PATH, module))
assert lib.test(13) == 13