fix(compiler): Do not use C-style casts in multi_arity_call_dynamic_rank

C-style casts between function pointers result in an error using g++
8.3.0. This patch introduces a workaround based on `reinterpret_cast`,
in which the original function pointer is first cast into an unsigned
integer of sufficient size and then cast into the target function
pointer type.

TODO: Check that this is actually valid C++ with defined behavior on
all implementations / platforms.
This commit is contained in:
Andi Drebes
2022-03-25 23:28:46 +01:00
committed by Quentin Bourgerie
parent e83c421bce
commit 7cc0c01326
2 changed files with 102 additions and 34 deletions

View File

@@ -15,6 +15,23 @@
namespace concretelang {
namespace serverlib {
// Helper class template that yields an unsigned integer type given a
// size in bytes
template <std::size_t size> struct int_type_of_size {};
template <> struct int_type_of_size<4> { typedef uint32_t type; };
template <> struct int_type_of_size<8> { typedef uint64_t type; };
// Converts one function pointer into another
// TODO: Not sure this is valid in all implementations / on all
// architectures
template <typename FnDstT, typename FnSrcT> FnDstT convert_fnptr(FnSrcT src) {
static_assert(sizeof(FnDstT) == sizeof(FnSrcT),
"Size of function types must match");
using inttype = typename int_type_of_size<sizeof(FnDstT)>::type;
inttype raw = reinterpret_cast<inttype>(src);
return reinterpret_cast<FnDstT>(raw);
}
TensorData multi_arity_call_dynamic_rank(void *(*func)(void *...),
std::vector<void *> args,
size_t rank) {
@@ -22,135 +39,168 @@ TensorData multi_arity_call_dynamic_rank(void *(*func)(void *...),
constexpr auto convert = concretelang::clientlib::tensorDataFromMemRef;
switch (rank) {
case 0: {
auto m = multi_arity_call((MemRefDescriptor<1>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<1> (*)(void *...)>(func), args);
return convert(1, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 1: {
auto m = multi_arity_call((MemRefDescriptor<2>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<2> (*)(void *...)>(func), args);
return convert(2, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 2: {
auto m = multi_arity_call((MemRefDescriptor<3>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<3> (*)(void *...)>(func), args);
return convert(3, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 3: {
auto m = multi_arity_call((MemRefDescriptor<4>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<4> (*)(void *...)>(func), args);
return convert(4, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 4: {
auto m = multi_arity_call((MemRefDescriptor<5>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<5> (*)(void *...)>(func), args);
return convert(5, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 5: {
auto m = multi_arity_call((MemRefDescriptor<6>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<6> (*)(void *...)>(func), args);
return convert(6, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 6: {
auto m = multi_arity_call((MemRefDescriptor<7>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<7> (*)(void *...)>(func), args);
return convert(7, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 7: {
auto m = multi_arity_call((MemRefDescriptor<8>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<8> (*)(void *...)>(func), args);
return convert(8, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 8: {
auto m = multi_arity_call((MemRefDescriptor<9>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<9> (*)(void *...)>(func), args);
return convert(9, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 9: {
auto m = multi_arity_call((MemRefDescriptor<10>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<10> (*)(void *...)>(func), args);
return convert(10, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 10: {
auto m = multi_arity_call((MemRefDescriptor<11>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<11> (*)(void *...)>(func), args);
return convert(11, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 11: {
auto m = multi_arity_call((MemRefDescriptor<12>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<12> (*)(void *...)>(func), args);
return convert(12, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 12: {
auto m = multi_arity_call((MemRefDescriptor<13>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<13> (*)(void *...)>(func), args);
return convert(13, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 13: {
auto m = multi_arity_call((MemRefDescriptor<14>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<14> (*)(void *...)>(func), args);
return convert(14, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 14: {
auto m = multi_arity_call((MemRefDescriptor<15>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<15> (*)(void *...)>(func), args);
return convert(15, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 15: {
auto m = multi_arity_call((MemRefDescriptor<16>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<16> (*)(void *...)>(func), args);
return convert(16, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 16: {
auto m = multi_arity_call((MemRefDescriptor<17>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<17> (*)(void *...)>(func), args);
return convert(17, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 17: {
auto m = multi_arity_call((MemRefDescriptor<18>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<18> (*)(void *...)>(func), args);
return convert(18, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 18: {
auto m = multi_arity_call((MemRefDescriptor<19>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<19> (*)(void *...)>(func), args);
return convert(19, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 19: {
auto m = multi_arity_call((MemRefDescriptor<20>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<20> (*)(void *...)>(func), args);
return convert(20, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 20: {
auto m = multi_arity_call((MemRefDescriptor<21>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<21> (*)(void *...)>(func), args);
return convert(21, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 21: {
auto m = multi_arity_call((MemRefDescriptor<22>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<22> (*)(void *...)>(func), args);
return convert(22, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 22: {
auto m = multi_arity_call((MemRefDescriptor<23>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<23> (*)(void *...)>(func), args);
return convert(23, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 23: {
auto m = multi_arity_call((MemRefDescriptor<24>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<24> (*)(void *...)>(func), args);
return convert(24, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 24: {
auto m = multi_arity_call((MemRefDescriptor<25>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<25> (*)(void *...)>(func), args);
return convert(25, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 25: {
auto m = multi_arity_call((MemRefDescriptor<26>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<26> (*)(void *...)>(func), args);
return convert(26, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 26: {
auto m = multi_arity_call((MemRefDescriptor<27>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<27> (*)(void *...)>(func), args);
return convert(27, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 27: {
auto m = multi_arity_call((MemRefDescriptor<28>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<28> (*)(void *...)>(func), args);
return convert(28, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 28: {
auto m = multi_arity_call((MemRefDescriptor<29>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<29> (*)(void *...)>(func), args);
return convert(29, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 29: {
auto m = multi_arity_call((MemRefDescriptor<30>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<30> (*)(void *...)>(func), args);
return convert(30, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 30: {
auto m = multi_arity_call((MemRefDescriptor<31>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<31> (*)(void *...)>(func), args);
return convert(31, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 31: {
auto m = multi_arity_call((MemRefDescriptor<32>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<32> (*)(void *...)>(func), args);
return convert(32, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 32: {
auto m = multi_arity_call((MemRefDescriptor<33>(*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<33> (*)(void *...)>(func), args);
return convert(33, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}

View File

@@ -19,6 +19,23 @@ print(
namespace concretelang {
namespace serverlib {
// Helper class template that yields an unsigned integer type given a
// size in bytes
template <std::size_t size> struct int_type_of_size {};
template <> struct int_type_of_size<4> { typedef uint32_t type; };
template <> struct int_type_of_size<8> { typedef uint64_t type; };
// Converts one function pointer into another
// TODO: Not sure this is valid in all implementations / on all
// architectures
template <typename FnDstT, typename FnSrcT> FnDstT convert_fnptr(FnSrcT src) {
static_assert(sizeof(FnDstT) == sizeof(FnSrcT),
"Size of function types must match");
using inttype = typename int_type_of_size<sizeof(FnDstT)>::type;
inttype raw = reinterpret_cast<inttype>(src);
return reinterpret_cast<FnDstT>(raw);
}
TensorData multi_arity_call_dynamic_rank(void *(*func)(void *...),
std::vector<void *> args,
size_t rank) {
@@ -29,7 +46,8 @@ TensorData multi_arity_call_dynamic_rank(void *(*func)(void *...),
for tensor_rank in range(0, 33):
memref_rank = tensor_rank + 1
print(f""" case {tensor_rank}: {{
auto m = multi_arity_call((MemRefDescriptor<{memref_rank}> (*)(void *...))func, args);
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<{memref_rank}> (*)(void *...)>(func), args);
return convert({memref_rank}, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}}""")