add concrete-cpu-noise-model crate

This commit is contained in:
Mayeul@Zama
2022-12-08 12:18:53 +01:00
committed by mayeul-zama
commit acbaad8f4c
14 changed files with 607 additions and 0 deletions

11
Cargo.toml Normal file
View File

@@ -0,0 +1,11 @@
[package]
# see https://doc.rust-lang.org/cargo/reference/manifest.html
name = "concrete-cpu-noise-model"
version = "0.1.0"
authors = [""]
edition = "2021"
[dependencies]
[dev-dependencies]
approx = "0.5"

3
src/gaussian_noise.rs Normal file
View File

@@ -0,0 +1,3 @@
pub mod conversion;
pub mod noise;
pub mod security;

View File

@@ -0,0 +1,15 @@
fn modular_variance_variance_ratio(ciphertext_modulus_log: u32) -> f64 {
2_f64.powi(2 * ciphertext_modulus_log as i32)
}
pub fn modular_variance_to_variance(modular_variance: f64, ciphertext_modulus_log: u32) -> f64 {
modular_variance / modular_variance_variance_ratio(ciphertext_modulus_log)
}
pub fn variance_to_modular_variance(variance: f64, ciphertext_modulus_log: u32) -> f64 {
variance * modular_variance_variance_ratio(ciphertext_modulus_log)
}
pub fn variance_to_std_dev(variance: f64) -> f64 {
variance.sqrt()
}

View File

@@ -0,0 +1,7 @@
pub mod blind_rotate;
pub mod cmux;
pub mod external_product_glwe;
pub mod keyswitch;
pub mod keyswitch_one_bit;
pub mod modulus_switching;
pub mod private_packing_keyswitch;

View File

@@ -0,0 +1,100 @@
use super::cmux::variance_cmux;
pub const FFT_SCALING_WEIGHT: f64 = -2.577_224_94;
/// Final reduced noise generated by the final bootstrap step.
/// Note that it does not depends from input noise, assuming the bootstrap is successful
pub fn variance_blind_rotate(
in_lwe_dimension: u64,
out_glwe_dimension: u64,
out_polynomial_size: u64,
log2_base: u64,
level: u64,
ciphertext_modulus_log: u32,
variance_bsk: f64,
) -> f64 {
in_lwe_dimension as f64
* variance_cmux(
out_glwe_dimension,
out_polynomial_size,
log2_base,
level,
ciphertext_modulus_log,
variance_bsk,
)
}
#[cfg(test)]
mod tests {
use crate::gaussian_noise::conversion::variance_to_modular_variance;
use crate::gaussian_noise::security::minimal_variance_glwe;
use super::*;
#[test]
fn security_variance_bootstrap_1() {
let ref_modular_variance = 4.078_296_369_990_673e31;
let polynomial_size = 1 << 12;
let glwe_dimension = 2;
let ciphertext_modulus_log = 64;
let security = 128;
let variance_bsk = minimal_variance_glwe(
glwe_dimension,
polynomial_size,
ciphertext_modulus_log,
security,
);
let actual = variance_blind_rotate(
2048,
glwe_dimension,
polynomial_size,
24,
2,
ciphertext_modulus_log,
variance_bsk,
);
approx::assert_relative_eq!(
variance_to_modular_variance(actual, ciphertext_modulus_log),
ref_modular_variance,
max_relative = 1e-8
);
}
#[test]
fn golden_python_prototype_security_variance_bootstrap_2() {
// golden value include fft correction
let golden_modular_variance = 3.269_722_907_894_341e55;
let polynomial_size = 1 << 12;
let glwe_dimension = 4;
let ciphertext_modulus_log = 128;
let security = 128;
let variance_bsk = minimal_variance_glwe(
glwe_dimension,
polynomial_size,
ciphertext_modulus_log,
security,
);
let actual = variance_blind_rotate(
1024,
glwe_dimension,
polynomial_size,
5,
9,
ciphertext_modulus_log,
variance_bsk,
);
approx::assert_relative_eq!(
variance_to_modular_variance(actual, ciphertext_modulus_log),
golden_modular_variance,
max_relative = 1e-8
);
}
}

View File

@@ -0,0 +1,20 @@
use super::external_product_glwe::variance_external_product_glwe;
// only valid in the blind rotate case
pub fn variance_cmux(
glwe_dimension: u64,
polynomial_size: u64,
log2_base: u64,
level: u64,
ciphertext_modulus_log: u32,
variance_ggsw: f64,
) -> f64 {
variance_external_product_glwe(
glwe_dimension,
polynomial_size,
log2_base,
level,
ciphertext_modulus_log,
variance_ggsw,
)
}

View File

@@ -0,0 +1,84 @@
use crate::gaussian_noise::conversion::modular_variance_to_variance;
use crate::utils::square;
pub fn variance_external_product_glwe(
glwe_dimension: u64,
polynomial_size: u64,
log2_base: u64,
level: u64,
ciphertext_modulus_log: u32,
variance_ggsw: f64,
) -> f64 {
theoretical_variance_external_product_glwe(
glwe_dimension,
polynomial_size,
log2_base,
level,
ciphertext_modulus_log,
variance_ggsw,
) + fft_noise_variance_external_product_glwe(
glwe_dimension,
polynomial_size,
log2_base,
level,
ciphertext_modulus_log,
)
}
fn theoretical_variance_external_product_glwe(
glwe_dimension: u64,
polynomial_size: u64,
log2_base: u64,
level: u64,
ciphertext_modulus_log: u32,
variance_ggsw: f64,
) -> f64 {
let variance_key_coefficient_binary: f64 =
modular_variance_to_variance(1. / 4., ciphertext_modulus_log);
let square_expectation_key_coefficient_binary: f64 =
modular_variance_to_variance(square(1. / 2.), ciphertext_modulus_log);
let k = glwe_dimension as f64;
let b = 2_f64.powi(log2_base as i32);
let b2l = 2_f64.powi((log2_base * 2 * level) as i32);
let l = level as f64;
let big_n = polynomial_size as f64;
let q_square = 2_f64.powi(2 * ciphertext_modulus_log as i32);
let res_1 = l * (k + 1.) * big_n * (square(b) + 2.) / 12. * variance_ggsw;
let res_2 = (q_square - b2l) / (24. * b2l)
* (modular_variance_to_variance(1., ciphertext_modulus_log)
+ k * big_n
* (variance_key_coefficient_binary + square_expectation_key_coefficient_binary))
+ k * big_n / 8. * variance_key_coefficient_binary
+ 1. / 16. * square(1. - k * big_n) * square_expectation_key_coefficient_binary;
res_1 + res_2
}
const FFT_SCALING_WEIGHT: f64 = -2.577_224_94;
/// Additional noise generated by fft computation
fn fft_noise_variance_external_product_glwe(
glwe_dimension: u64,
polynomial_size: u64,
log2_base: u64,
level: u64,
ciphertext_modulus_log: u32,
) -> f64 {
// https://github.com/zama-ai/concrete-optimizer/blob/prototype/python/optimizer/noise_formulas/bootstrap.py#L25
let b = 2_f64.powi(log2_base as i32);
let l = level as f64;
let big_n = polynomial_size as f64;
let k = glwe_dimension;
assert!(k > 0, "k = {k}");
assert!(k < 7, "k = {k}");
// 22 = 2 x 11, 11 = 64 -53
let scale_margin = (1_u64 << 22) as f64;
let res =
f64::exp2(FFT_SCALING_WEIGHT) * scale_margin * l * b * b * big_n.powi(2) * (k as f64 + 1.);
modular_variance_to_variance(res, ciphertext_modulus_log)
}

View File

@@ -0,0 +1,76 @@
use super::keyswitch_one_bit::variance_keyswitch_one_bit;
/// Additional noise generated by the keyswitch step.
pub fn variance_keyswitch(
input_lwe_dimension: u64, //n_big
log2_base: u64,
level: u64,
ciphertext_modulus_log: u32,
variance_ksk: f64,
) -> f64 {
input_lwe_dimension as f64
* variance_keyswitch_one_bit(log2_base, level, ciphertext_modulus_log, variance_ksk)
}
#[cfg(test)]
mod tests {
use crate::gaussian_noise::conversion::variance_to_modular_variance;
use crate::gaussian_noise::security::minimal_variance_lwe;
use super::*;
#[test]
fn golden_python_prototype_security_variance_keyswitch_1() {
let golden_modular_variance = 5.997_880_135_602_194e68;
let internal_ks_output_lwe_dimension = 1024;
let ciphertext_modulus_log = 128;
let security = 128;
let actual = variance_keyswitch(
4096,
5,
9,
ciphertext_modulus_log,
minimal_variance_lwe(
internal_ks_output_lwe_dimension,
ciphertext_modulus_log,
security,
),
);
approx::assert_relative_eq!(
variance_to_modular_variance(actual, ciphertext_modulus_log),
golden_modular_variance,
max_relative = 1e-8
);
}
#[test]
fn golden_python_prototype_security_variance_keyswitch_2() {
// let golden_modular_variance = 8.580795457940938e+66;
// the full npe implements a part of the full estimation
let golden_modular_variance = 7.407_691_550_271_225e48; // full estimation
let internal_ks_output_lwe_dimension = 512;
let ciphertext_modulus_log = 64;
let security = 128;
let actual = variance_keyswitch(
2048,
24,
2,
ciphertext_modulus_log,
minimal_variance_lwe(
internal_ks_output_lwe_dimension,
ciphertext_modulus_log,
security,
),
);
approx::assert_relative_eq!(
variance_to_modular_variance(actual, ciphertext_modulus_log),
golden_modular_variance,
max_relative = 1e-8
);
}
}

View File

@@ -0,0 +1,32 @@
use crate::gaussian_noise::conversion::modular_variance_to_variance;
use crate::utils::square;
/// Additional noise generated by the bit multiplication
pub fn variance_keyswitch_one_bit(
log2_base: u64,
level: u64,
ciphertext_modulus_log: u32,
variance_ksk: f64,
) -> f64 {
let variance_key_coefficient_binary: f64 =
modular_variance_to_variance(1. / 4., ciphertext_modulus_log);
let square_expectation_key_coefficient_binary: f64 =
modular_variance_to_variance(square(1. / 2.), ciphertext_modulus_log);
let base = 2_f64.powi(log2_base as i32);
let b2l = 2_f64.powi((log2_base * 2 * level) as i32);
let q_square = 2_f64.powi((2 * ciphertext_modulus_log) as i32);
// res 2
let res_2 = (q_square / (12. * b2l) - 1. / 12.)
* (variance_key_coefficient_binary + square_expectation_key_coefficient_binary);
// res 3
let res_3 = 1. / 4. * variance_key_coefficient_binary;
// res 4
let res_4 = (level as f64) * variance_ksk * (square(base) + 2.) / 12.;
res_2 + res_3 + res_4
}

View File

@@ -0,0 +1,16 @@
use crate::gaussian_noise::conversion::modular_variance_to_variance;
use crate::utils::square;
pub fn estimate_modulus_switching_noise_with_binary_key(
internal_ks_output_lwe_dimension: u64,
glwe_log2_polynomial_size: u64,
ciphertext_modulus_log: u32,
) -> f64 {
let nb_msb = glwe_log2_polynomial_size + 1;
let w = 2_f64.powi(nb_msb as i32);
let n = internal_ks_output_lwe_dimension as f64;
(1. / 12. + n / 24.) / square(w)
+ modular_variance_to_variance(-1. / 12. + n / 48., ciphertext_modulus_log)
}

View File

@@ -0,0 +1,39 @@
use crate::gaussian_noise::conversion::modular_variance_to_variance;
use crate::utils::square;
// packing private keyswitch for WoP-PBS, described in algorithm 3 of https://eprint.iacr.org/2018/421.pdf (TFHE paper)
pub fn estimate_packing_private_keyswitch(
var_glwe: f64,
var_ggsw: f64,
log2_base: u64,
level: u64,
output_glwe_dimension: u64,
output_polynomial_size: u64,
ciphertext_modulus_log: u32,
) -> f64 {
let variance_key_coefficient_binary: f64 = 1. / 4.;
let expectation_key_coefficient_binary: f64 = 1. / 2.;
let l = level as f64;
let b = (1 << log2_base) as f64;
let n = (output_glwe_dimension * output_polynomial_size) as f64; // param.internal_lwe_dimension.0 as f64;
let b2l = f64::powi(b, 2 * level as i32);
let var_s_w = 1. / 4.;
let mean_s_w = 1. / 2.;
let res_1 = l * (n + 1.) * var_ggsw * (square(b) + 2.) / 12.;
#[allow(clippy::cast_possible_wrap)]
let res_3 = (f64::powi(2., 2 * ciphertext_modulus_log as i32) - b2l) / (12. * b2l)
* modular_variance_to_variance(
1. + n * variance_key_coefficient_binary + square(expectation_key_coefficient_binary),
ciphertext_modulus_log,
)
+ n / 4.
* modular_variance_to_variance(variance_key_coefficient_binary, ciphertext_modulus_log)
+ var_glwe * (var_s_w + square(mean_s_w));
let res_5 = modular_variance_to_variance(var_s_w, ciphertext_modulus_log) * 1. / 4.
* square(1. - n * expectation_key_coefficient_binary);
res_1 + res_3 + res_5
}

View File

@@ -0,0 +1,65 @@
mod security_weight;
pub use security_weight::{security_weight, supported_security_levels};
/// Noise ensuring security
pub fn minimal_variance_lwe(
lwe_dimension: u64,
ciphertext_modulus_log: u32,
security_level: u64,
) -> f64 {
minimal_variance_glwe(lwe_dimension, 1, ciphertext_modulus_log, security_level)
}
/// Noise ensuring security
pub fn minimal_variance_glwe(
glwe_dimension: u64,
polynomial_size: u64,
ciphertext_modulus_log: u32,
security_level: u64,
) -> f64 {
let equiv_lwe_dimension = glwe_dimension * polynomial_size;
let security_weights = security_weight(security_level)
.unwrap_or_else(|| panic!("{security_level} bits of security is not supported"));
let secure_log2_std =
security_weights.secure_log2_std(equiv_lwe_dimension, ciphertext_modulus_log as f64);
let log2_var = 2.0 * secure_log2_std;
f64::exp2(log2_var)
}
#[cfg(test)]
mod tests {
use super::super::conversion::variance_to_std_dev;
use super::minimal_variance_glwe;
#[test]
fn golden_python_prototype_security_security_glwe_variance_low() {
// python securityFunc(10,14,64)= 0.3120089883926036
let integer_size = 64;
let golden_std_dev = 2.168_404_344_971_009e-19;
let security_level = 128;
let actual = minimal_variance_glwe(10, 1 << 14, integer_size, security_level);
approx::assert_relative_eq!(
golden_std_dev,
variance_to_std_dev(actual),
epsilon = f64::EPSILON
);
}
#[test]
fn golden_python_prototype_security_security_glwe_variance_high() {
// python securityFunc(3,8,32)= 2.6011445832514504
let integer_size = 32;
let golden_std_dev = 4.392_824_146_816_922_4e-6;
let security_level = 128;
let actual = minimal_variance_glwe(3, 1 << 8, integer_size, security_level);
approx::assert_relative_eq!(
golden_std_dev,
variance_to_std_dev(actual),
epsilon = f64::EPSILON
);
}
}

View File

@@ -0,0 +1,116 @@
#[derive(Clone, Copy)]
pub struct SecurityWeights {
slope: f64,
bias: f64,
minimal_lwe_dimension: u64,
}
impl SecurityWeights {
pub fn secure_log2_std(&self, lwe_dimension: u64, ciphertext_modulus_log: f64) -> f64 {
// ensure to have a minimal on std deviation covering the 2 lowest bits on modular scale
let epsilon_log2_std_modular = 2.0;
let epsilon_log2_std = epsilon_log2_std_modular - (ciphertext_modulus_log);
// ensure the requested lwe_dimension is bigger than the minimal lwe dimension
if self.minimal_lwe_dimension <= lwe_dimension {
f64::max(
self.slope * lwe_dimension as f64 + self.bias,
epsilon_log2_std,
)
} else {
ciphertext_modulus_log
}
}
}
// Security curves generated using the lattice-estimator
// (https://github.com/malb/lattice-estimator) on the 24th of June 2022
const SECURITY_WEIGHTS_ARRAY: [(u64, SecurityWeights); 9] = [
(
80,
SecurityWeights {
slope: -0.040_426_331_193_645_89,
bias: 1.660_978_864_143_672_2,
minimal_lwe_dimension: 450,
},
),
(
96,
SecurityWeights {
slope: -0.034_147_803_608_670_51,
bias: 2.017_310_258_660_345,
minimal_lwe_dimension: 450,
},
),
(
112,
SecurityWeights {
slope: -0.029_670_137_081_135_885,
bias: 2.162_463_714_083_856,
minimal_lwe_dimension: 450,
},
),
(
128,
SecurityWeights {
slope: -0.026_405_028_765_226_22,
bias: 2.482_642_269_104_317_7,
minimal_lwe_dimension: 450,
},
),
(
144,
SecurityWeights {
slope: -0.023_821_437_305_989_134,
bias: 2.717_778_944_063_667_3,
minimal_lwe_dimension: 450,
},
),
(
160,
SecurityWeights {
slope: -0.021_743_582_187_160_36,
bias: 2.938_810_548_493_322,
minimal_lwe_dimension: 498,
},
),
(
176,
SecurityWeights {
slope: -0.019_904_056_582_117_684,
bias: 2.816_125_280_154_224_7,
minimal_lwe_dimension: 551,
},
),
(
192,
SecurityWeights {
slope: -0.018_610_403_247_590_085,
bias: 3.299_623_684_839_900_8,
minimal_lwe_dimension: 606,
},
),
(
256,
SecurityWeights {
slope: -0.014_606_812_351_714_953,
bias: 3.849_362_923_469_300_3,
minimal_lwe_dimension: 826,
},
),
];
pub fn supported_security_levels() -> impl std::iter::Iterator<Item = u64> {
SECURITY_WEIGHTS_ARRAY
.iter()
.map(|(security_level, _)| *security_level)
}
pub fn security_weight(security_level: u64) -> Option<SecurityWeights> {
let index = SECURITY_WEIGHTS_ARRAY
.binary_search_by_key(&security_level, |(security_level, _weights)| {
*security_level
})
.ok()?;
Some(SECURITY_WEIGHTS_ARRAY[index].1)
}

23
src/lib.rs Normal file
View File

@@ -0,0 +1,23 @@
#![warn(clippy::nursery)]
#![warn(clippy::pedantic)]
#![warn(clippy::style)]
#![allow(clippy::cast_lossless)]
#![allow(clippy::cast_precision_loss)] // u64 to f64
#![allow(clippy::cast_possible_truncation)] // u64 to usize
#![allow(clippy::missing_panics_doc)]
#![allow(clippy::module_name_repetitions)]
#![allow(clippy::must_use_candidate)]
#![allow(clippy::suboptimal_flops)]
#![allow(clippy::cast_possible_wrap)]
#![warn(unused_results)]
pub mod gaussian_noise;
pub(crate) mod utils {
pub fn square<V>(v: V) -> V
where
V: std::ops::Mul<Output = V> + Copy,
{
v * v
}
}