Merge branch 'master' into hlfhelinalg-binary-op-lowering

This commit is contained in:
Quentin Bourgerie
2021-10-26 20:41:29 +02:00
committed by Andi Drebes
92 changed files with 2907 additions and 1847 deletions

View File

@@ -53,7 +53,7 @@ jobs:
cd /compiler
pip install pytest
export CONCRETE_PROJECT=/concrete
make -B BUILD_DIR=/build build
make -B BUILD_DIR=/build build-initialized
make BUILD_DIR=/build test
- name: Send Slack Notification

View File

@@ -1,3 +1,56 @@
# Homomorphizer
The homomorphizer is a compiler that takes a high level computation model and produces a programs that evaluate the model in an homomorphic way.
The homomorphizer is a compiler that takes a high level computation model and produces a programs that evaluate the model in an homomorphic way.
## Build tarball
The final tarball contains intallation instructions. We only support Linux x86_64 for the moment. You can find the output tarball under `/tarballs`.
```bash
$ cd compiler
$ make release_tarballs
```
## Build the Python Package
Currently supported platforms:
- Linux x86_64 for python 3.8, 3.9, and 3.10
### Linux
We use the [manylinux](https://github.com/pypa/manylinux) docker images for building python packages for Linux. Those packages should work on distributions that have GLIBC >= 2.24.
You can use Make to build the python wheels using these docker images:
```bash
$ cd compiler
$ make package_py38 # package_py39 package_py310
```
This will build the image for the appropriate python version then copy the wheels out under `/wheels`
### Build wheels in your environment
#### Temporary MLIR issue
Due to an issue with MLIR, you will need to manually add `__init__.py` files to the `mlir` python package after the build.
```bash
$ make python-bindings
$ touch build/tools/zamalang/python_packages/zamalang_core/mlir/__init__.py
$ touch build/tools/zamalang/python_packages/zamalang_core/mlir/dialects/__init__.py
```
#### Build wheel
Building the wheels is actually simple.
```bash
$ pip wheel --no-deps -w ../wheels .
```
Depending on the platform you are using (specially Linux), you might need to use `auditwheel` to specify the platform this wheel is targeting. For example, in our build of the package for Linux x86_64 and GLIBC 2.24, we also run:
```bash
$ auditwheel repair ../wheels/*.whl --plat manylinux_2_24_x86_64 -w ../wheels
```

View File

@@ -0,0 +1,23 @@
FROM quay.io/pypa/manylinux_2_24_x86_64
RUN apt-get update
RUN DEBIAN_FRONTEND="noninteractive" apt-get install -y build-essential ninja-build
# Set the python path. Options: [cp38-cp38, cp39-cp39, cp310-cp310]
ARG python_tag=cp38-cp38
# Install python deps
RUN /opt/python/${python_tag}/bin/pip install numpy pybind11==2.6.2 PyYAML
# Setup LLVM
COPY /llvm-project /llvm-project
# Setup Concrete
COPY --from=ghcr.io/zama-ai/concrete-api-env:latest /target/release /concrete/target/release
ENV CONCRETE_PROJECT=/concrete
# Setup and build compiler
COPY /compiler /compiler
WORKDIR /compiler
RUN make Python3_EXECUTABLE=/opt/python/${python_tag}/bin/python python-bindings
# Fix MLIR package
RUN touch build/tools/zamalang/python_packages/zamalang_core/mlir/__init__.py
RUN touch build/tools/zamalang/python_packages/zamalang_core/mlir/dialects/__init__.py
# Build wheel
RUN /opt/python/${python_tag}/bin/pip wheel --no-deps -w /wheels .
RUN auditwheel repair /wheels/*.whl --plat manylinux_2_24_x86_64 -w /wheels

View File

@@ -0,0 +1,23 @@
FROM quay.io/pypa/manylinux_2_24_x86_64
RUN apt-get update
RUN DEBIAN_FRONTEND="noninteractive" apt-get install -y build-essential ninja-build
# Setup LLVM
COPY /llvm-project /llvm-project
# Setup Concrete
COPY --from=ghcr.io/zama-ai/concrete-api-env:latest /target/release /concrete/target/release
ENV CONCRETE_PROJECT=/concrete
# Setup and build compiler
COPY /compiler /compiler
WORKDIR /compiler
RUN make BINDINGS_PYTHON_ENABLED=OFF zamacompiler
# Build tarball
RUN mkdir -p /tarballs/zamacompiler/lib /tarballs/zamacompiler/bin && \
cp /compiler/build/bin/zamacompiler /tarballs/zamacompiler/bin && \
cp /compiler/build/lib/libZamalangRuntime.so /tarballs/zamacompiler/lib
RUN echo "# Installation\n"\
"You can install the compiler by either:\n"\
"1. Extracting the tarball as is somewhere of your choosing, and add /path/to/tarball/zamacompiler/bin to your \$PATH\n"\
"2. Extracting the tarball and putting the bin/zamacompiler into a path already in your \$PATH, and lib/libZamalangRuntime.so into one of your lib folders (e.g /usr/lib)"\
>> /tarballs/zamacompiler/Installation.md
RUN cd /tarballs && tar -czvf zamacompiler.tar.gz zamacompiler

View File

@@ -12,7 +12,6 @@ COPY /llvm-project /llvm-project
COPY /compiler /compiler
WORKDIR /compiler
RUN mkdir -p /build
RUN make BUILD_DIR=/build -B build
RUN make BUILD_DIR=/build zamacompiler python-bindings
ENV PYTHONPATH "$PYTHONPATH:/build/tools/zamalang/python_packages/zamalang_core:/build/tools/zamalang/python_packages/zamalang_core/mlir/_mlir_libs/"
ENV PATH "$PATH:/build/bin"

View File

@@ -56,7 +56,18 @@ if(ZAMALANG_BINDINGS_PYTHON_ENABLED)
message(STATUS "ZamaLang Python bindings are enabled.")
include(MLIRDetectPythonEnv)
find_package(Python3 COMPONENTS Interpreter Development REQUIRED)
# After CMake 3.18, we are able to limit the scope of the search to just
# Development.Module. Searching for Development will fail in situations where
# the Python libraries are not available. When possible, limit to just
# Development.Module.
# See https://pybind11.readthedocs.io/en/stable/compiling.html#findpython-mode
if(CMAKE_VERSION VERSION_LESS "3.18.0")
set(_python_development_component Development)
else()
set(_python_development_component Development.Module)
endif()
find_package(Python3 COMPONENTS Interpreter ${_python_development_component} REQUIRED)
unset(_python_development_component)
message(STATUS "Found Python include dirs: ${Python3_INCLUDE_DIRS}")
message(STATUS "Found Python libraries: ${Python3_LIBRARIES}")
message(STATUS "Found Python executable: ${Python3_EXECUTABLE}")

View File

@@ -1,27 +1,34 @@
BUILD_DIR=./build
Python3_EXECUTABLE=
BINDINGS_PYTHON_ENABLED=ON
build:
$(BUILD_DIR)/configured.stamp:
cmake -B $(BUILD_DIR) -GNinja ../llvm-project/llvm/ \
-DLLVM_ENABLE_PROJECTS=mlir \
-DLLVM_BUILD_EXAMPLES=OFF \
-DLLVM_TARGETS_TO_BUILD="host" \
-DCMAKE_BUILD_TYPE=Release \
-DLLVM_ENABLE_ASSERTIONS=ON \
-DMLIR_ENABLE_BINDINGS_PYTHON=ON \
-DZAMALANG_BINDINGS_PYTHON_ENABLED=ON \
-DMLIR_ENABLE_BINDINGS_PYTHON=$(BINDINGS_PYTHON_ENABLED) \
-DZAMALANG_BINDINGS_PYTHON_ENABLED=$(BINDINGS_PYTHON_ENABLED) \
-DCONCRETE_FFI_RELEASE=${CONCRETE_PROJECT}/target/release \
-DLLVM_EXTERNAL_PROJECTS=zamalang \
-DLLVM_EXTERNAL_ZAMALANG_SOURCE_DIR=.
-DLLVM_EXTERNAL_ZAMALANG_SOURCE_DIR=. \
-DPython3_EXECUTABLE=${Python3_EXECUTABLE}
touch $@
build-end-to-end-jit: build
build-initialized: $(BUILD_DIR)/configured.stamp
build-end-to-end-jit: build-initialized
cmake --build $(BUILD_DIR) --target end_to_end_jit_test
zamacompiler: build
zamacompiler: build-initialized
cmake --build $(BUILD_DIR) --target zamacompiler
python-bindings: build
cmake --build $(BUILD_DIR) --target ZamalangMLIRPythonModules ZamalangPythonModules
python-bindings: build-initialized
cmake --build $(BUILD_DIR) --target ZamalangMLIRPythonModules
cmake --build $(BUILD_DIR) --target ZamalangPythonModules
test-check: zamacompiler file-check not
$(BUILD_DIR)/bin/llvm-lit -v tests/
@@ -30,7 +37,7 @@ test-end-to-end-jit: build-end-to-end-jit
$(BUILD_DIR)/bin/end_to_end_jit_test
test-python: python-bindings
PYTHONPATH=${PYTHONPATH}:$(BUILD_DIR)/tools/zamalang/python_packages/zamalang_core:$(BUILD_DIR)/tools/zamalang/python_packages/zamalang_core/mlir/_mlir_libs/ LD_PRELOAD=$(BUILD_DIR)/lib/libZamalangRuntime.so pytest -vs tests/python
PYTHONPATH=${PYTHONPATH}:$(BUILD_DIR)/tools/zamalang/python_packages/zamalang_core LD_PRELOAD=$(BUILD_DIR)/lib/libZamalangRuntime.so pytest -vs tests/python
test: test-check test-end-to-end-jit test-python
@@ -42,3 +49,39 @@ file-check:
cmake --build $(BUILD_DIR) --target FileCheck
not:
cmake --build $(BUILD_DIR) --target not
# Python packages
define build_image_and_copy_wheels
docker image build -t concretefhe-compiler-manylinux:$(1) --build-arg python_tag=$(1) -f ../builders/Dockerfile.release_manylinux_2_24_x86_64 ..
docker container run --rm -v ${PWD}/../wheels:/wheels_volume concretefhe-compiler-manylinux:$(1) cp -r /wheels/. /wheels_volume/.
endef
package_py38:
$(call build_image_and_copy_wheels,cp38-cp38)
package_py39:
$(call build_image_and_copy_wheels,cp39-cp39)
package_py310:
$(call build_image_and_copy_wheels,cp310-cp310)
release_tarballs:
docker image build -t concretefhe-compiler-manylinux:linux_x86_64_tarball -f ../builders/Dockerfile.release_tarball_linux_x86_64 ..
docker container run --rm -v ${PWD}/../tarballs:/tarballs_volume concretefhe-compiler-manylinux:linux_x86_64_tarball cp -r /tarballs/. /tarballs_volume/.
.PHONY: build-initialized \
build-end-to-end-jit \
zamacompiler \
python-bindings \
test-check \
test-end-to-end-jit \
test-python \
test \
add-deps \
file-check \
not \
package_py38 \
package_py39 \
package_py310 \
release_tarballs

View File

@@ -5,15 +5,17 @@
#include "mlir-c/Registration.h"
#include "zamalang/Support/CompilerEngine.h"
#include "zamalang/Support/ExecutionArgument.h"
#include "zamalang/Support/Jit.h"
#include "zamalang/Support/JitCompilerEngine.h"
#ifdef __cplusplus
extern "C" {
#endif
struct compilerEngine {
mlir::zamalang::CompilerEngine *ptr;
struct lambda {
mlir::zamalang::JitCompilerEngine::Lambda *ptr;
};
typedef struct compilerEngine compilerEngine;
typedef struct lambda lambda;
struct executionArguments {
mlir::zamalang::ExecutionArgument *data;
@@ -21,13 +23,12 @@ struct executionArguments {
};
typedef struct executionArguments exectuionArguments;
// Compile an MLIR module
MLIR_CAPI_EXPORTED void compilerEngineCompile(compilerEngine engine,
const char *module);
MLIR_CAPI_EXPORTED mlir::zamalang::JitCompilerEngine::Lambda
buildLambda(const char *module, const char *funcName);
// Run the compiled module
MLIR_CAPI_EXPORTED uint64_t compilerEngineRun(compilerEngine e,
executionArguments args);
MLIR_CAPI_EXPORTED uint64_t invokeLambda(lambda l, executionArguments args);
MLIR_CAPI_EXPORTED std::string roundTrip(const char *module);
#ifdef __cplusplus
}

View File

@@ -1,49 +1,128 @@
#ifndef ZAMALANG_SUPPORT_COMPILER_ENGINE_H
#define ZAMALANG_SUPPORT_COMPILER_ENGINE_H
#include "Jit.h"
#include <llvm/IR/Module.h>
#include <llvm/Support/Error.h>
#include <llvm/Support/SourceMgr.h>
#include <mlir/IR/BuiltinOps.h>
#include <mlir/IR/MLIRContext.h>
#include <mlir/Pass/Pass.h>
#include <zamalang/Conversion/Utils/GlobalFHEContext.h>
#include <zamalang/Support/ClientParameters.h>
namespace mlir {
namespace zamalang {
/// CompilerEngine is an tools that provides tools to implements the compilation
/// flow and manage the compilation flow state.
// Compilation context that acts as the root owner of LLVM and MLIR
// data structures directly and indirectly referenced by artefacts
// produced by the `CompilerEngine`.
class CompilationContext {
public:
CompilationContext();
~CompilationContext();
mlir::MLIRContext *getMLIRContext();
llvm::LLVMContext *getLLVMContext();
static std::shared_ptr<CompilationContext> createShared();
protected:
mlir::MLIRContext *mlirContext;
llvm::LLVMContext *llvmContext;
};
class CompilerEngine {
public:
CompilerEngine() {
context = new mlir::MLIRContext();
loadDialects();
}
~CompilerEngine() {
if (context != nullptr)
delete context;
}
// Result of an invocation of the `CompilerEngine` with optional
// fields for the results produced by different stages.
class CompilationResult {
public:
CompilationResult(std::shared_ptr<CompilationContext> compilationContext =
CompilationContext::createShared())
: compilationContext(compilationContext) {}
// Compile an mlir programs from it's textual representation.
llvm::Error compile(
std::string mlirStr,
llvm::Optional<mlir::zamalang::V0FHEConstraint> overrideConstraints = {});
llvm::Optional<mlir::OwningModuleRef> mlirModuleRef;
llvm::Optional<mlir::zamalang::ClientParameters> clientParameters;
std::unique_ptr<llvm::Module> llvmModule;
llvm::Optional<mlir::zamalang::V0FHEContext> fheContext;
// Build the jit lambda argument.
llvm::Expected<std::unique_ptr<JITLambda::Argument>> buildArgument();
protected:
std::shared_ptr<CompilationContext> compilationContext;
};
// Call the compiled function with and argument object.
llvm::Error invoke(JITLambda::Argument &arg);
// Specification of the exit stage of the compilation pipeline
enum class Target {
// Only read sources and produce corresponding MLIR module
ROUND_TRIP,
// Call the compiled function with a list of integer arguments.
llvm::Expected<uint64_t> run(std::vector<uint64_t> args);
// Read sources and exit before any lowering
HLFHE,
// Get a printable representation of the compiled module
std::string getCompiledModule();
// Read sources and lower all HLFHE operations to MidLFHE
// operations
MIDLFHE,
// Read sources and lower all HLFHE and MidLFHE operations to LowLFHE
// operations
LOWLFHE,
// Read sources and lower all HLFHE, MidLFHE and LowLFHE
// operations to canonical MLIR dialects. Cryptographic operations
// are lowered to invocations of the concrete library.
STD,
// Read sources and lower all HLFHE, MidLFHE and LowLFHE
// operations to operations from the LLVM dialect. Cryptographic
// operations are lowered to invocations of the concrete library.
LLVM,
// Same as `LLVM`, but lowers to actual LLVM IR instead of the
// LLVM dialect
LLVM_IR,
// Same as `LLVM_IR`, but invokes the LLVM optimization pipeline
// to produce optimized LLVM IR
OPTIMIZED_LLVM_IR
};
CompilerEngine(std::shared_ptr<CompilationContext> compilationContext)
: overrideMaxEintPrecision(), overrideMaxMANP(),
clientParametersFuncName(), verifyDiagnostics(false),
generateClientParameters(false),
enablePass([](mlir::Pass *pass) { return true; }),
compilationContext(compilationContext) {}
llvm::Expected<CompilationResult> compile(llvm::StringRef s, Target target);
llvm::Expected<CompilationResult>
compile(std::unique_ptr<llvm::MemoryBuffer> buffer, Target target);
llvm::Expected<CompilationResult> compile(llvm::SourceMgr &sm, Target target);
void setFHEConstraints(const mlir::zamalang::V0FHEConstraint &c);
void setMaxEintPrecision(size_t v);
void setMaxMANP(size_t v);
void setVerifyDiagnostics(bool v);
void setGenerateClientParameters(bool v);
void setClientParametersFuncName(const llvm::StringRef &name);
void setEnablePass(std::function<bool(mlir::Pass *)> enablePass);
protected:
llvm::Optional<size_t> overrideMaxEintPrecision;
llvm::Optional<size_t> overrideMaxMANP;
llvm::Optional<std::string> clientParametersFuncName;
bool verifyDiagnostics;
bool generateClientParameters;
std::function<bool(mlir::Pass *)> enablePass;
std::shared_ptr<CompilationContext> compilationContext;
private:
// Load the necessary dialects into the engine's context
void loadDialects();
mlir::OwningModuleRef module_ref;
mlir::MLIRContext *context;
std::unique_ptr<mlir::zamalang::KeySet> keySet;
llvm::Expected<llvm::Optional<mlir::zamalang::V0FHEConstraint>>
getV0FHEConstraint(CompilationResult &res);
llvm::Error determineFHEParameters(CompilationResult &res);
};
} // namespace zamalang
} // namespace mlir

View File

@@ -0,0 +1,53 @@
#ifndef ZAMALANG_SUPPORT_STRING_ERROR_H
#define ZAMALANG_SUPPORT_STRING_ERROR_H
#include <llvm/Support/Error.h>
namespace mlir {
namespace zamalang {
// Internal error class that allows for composing `llvm::Error`s
// similar to `llvm::createStringError()`, but using stream-like
// composition with `operator<<`.
//
// Example:
//
// llvm::Error foo(int i, size_t s, ...) {
// ...
// if(...) {
// return StreamStringError()
// << "Some error message with an integer: "
// << i << " and a size_t: " << s;
// }
// ...
// }
class StreamStringError {
public:
StreamStringError(const llvm::StringRef &s) : buffer(s.str()), os(buffer){};
StreamStringError() : buffer(""), os(buffer){};
template <typename T> StreamStringError &operator<<(const T &v) {
this->os << v;
return *this;
}
operator llvm::Error() {
return llvm::make_error<llvm::StringError>(os.str(),
llvm::inconvertibleErrorCode());
}
template <typename T> operator llvm::Expected<T>() {
return this->operator llvm::Error();
}
protected:
std::string buffer;
llvm::raw_string_ostream os;
};
StreamStringError &operator<<(StreamStringError &se, llvm::Error &err);
} // namespace zamalang
} // namespace mlir
#endif

View File

@@ -9,11 +9,6 @@
namespace mlir {
namespace zamalang {
mlir::LogicalResult
runJit(mlir::ModuleOp module, llvm::StringRef func,
llvm::ArrayRef<uint64_t> funcArgs, mlir::zamalang::KeySet &keySet,
std::function<llvm::Error(llvm::Module *)> optPipeline,
llvm::raw_ostream &os);
/// JITLambda is a tool to JIT compile an mlir module and to invoke a function
/// of the module.
@@ -53,6 +48,10 @@ public:
// - or the size of the `res` buffser doesn't match the size of the tensor.
llvm::Error getResult(size_t pos, uint64_t *res, size_t size);
// Returns the number of elements of the result vector at position
// `pos` or an error if the result is a scalar value
llvm::Expected<size_t> getResultVectorSize(size_t pos);
private:
llvm::Error setArg(size_t pos, size_t width, void *data,
llvm::ArrayRef<int64_t> shape);
@@ -97,7 +96,7 @@ public:
private:
mlir::LLVM::LLVMFunctionType type;
llvm::StringRef name;
std::string name;
std::unique_ptr<mlir::ExecutionEngine> engine;
};

View File

@@ -0,0 +1,292 @@
#ifndef ZAMALANG_SUPPORT_JIT_COMPILER_ENGINE_H
#define ZAMALANG_SUPPORT_JIT_COMPILER_ENGINE_H
#include <mlir/Dialect/LLVMIR/LLVMDialect.h>
#include <zamalang/Support/CompilerEngine.h>
#include <zamalang/Support/Error.h>
#include <zamalang/Support/Jit.h>
#include <zamalang/Support/LambdaArgument.h>
namespace mlir {
namespace zamalang {
namespace {
// Generic function template as well as specializations of
// `typedResult` must be declared at namespace scope due to return
// type template specialization
// Helper function for `JitCompilerEngine::Lambda::operator()`
// implementing type-dependent preparation of the result.
template <typename ResT>
llvm::Expected<ResT> typedResult(JITLambda::Argument &arguments);
// Specialization of `typedResult()` for scalar results, forwarding
// scalar value to caller
template <>
inline llvm::Expected<uint64_t> typedResult(JITLambda::Argument &arguments) {
uint64_t res = 0;
if (auto err = arguments.getResult(0, res))
return StreamStringError() << "Cannot retrieve result:" << err;
return res;
}
// Specialization of `typedResult()` for vector results, initializing
// an `std::vector` of the right size with the results and forwarding
// it to the caller with move semantics.
template <>
inline llvm::Expected<std::vector<uint64_t>>
typedResult(JITLambda::Argument &arguments) {
llvm::Expected<size_t> n = arguments.getResultVectorSize(0);
if (auto err = n.takeError())
return std::move(err);
std::vector<uint64_t> res(*n);
if (auto err = arguments.getResult(0, res.data(), res.size()))
return StreamStringError() << "Cannot retrieve result:" << err;
return std::move(res);
}
// Adaptor class that adds arguments specified as instances of
// `LambdaArgument` to `JitLambda::Argument`.
class JITLambdaArgumentAdaptor {
public:
// Checks if the argument `arg` is an plaintext / encrypted integer
// argument or a plaintext / encrypted tensor argument with a
// backing integer type `IntT` and adds the argument to `jla` at
// position `pos`.
//
// Returns `true` if `arg` has one of the types above and its value
// was successfully added to `jla`, `false` if none of the types
// matches or an error if a type matched, but adding the argument to
// `jla` failed.
template <typename IntT>
static inline llvm::Expected<bool>
tryAddArg(JITLambda::Argument &jla, size_t pos, const LambdaArgument &arg) {
if (auto ila = arg.dyn_cast<IntLambdaArgument<IntT>>()) {
if (llvm::Error err = jla.setArg(pos, ila->getValue()))
return std::move(err);
else
return true;
} else if (auto tla = arg.dyn_cast<
TensorLambdaArgument<IntLambdaArgument<IntT>>>()) {
if (llvm::Error err =
jla.setArg(pos, tla->getValue(), tla->getDimensions()))
return std::move(err);
else
return true;
}
return false;
}
// Recursive case for `tryAddArg<IntT>(...)`
template <typename IntT, typename NextIntT, typename... IntTs>
static inline llvm::Expected<bool>
tryAddArg(JITLambda::Argument &jla, size_t pos, const LambdaArgument &arg) {
llvm::Expected<bool> successOrError = tryAddArg<IntT>(jla, pos, arg);
if (!successOrError)
return std::move(successOrError.takeError());
if (successOrError.get() == false)
return tryAddArg<NextIntT, IntTs...>(jla, pos, arg);
else
return true;
}
// Attempts to add a single argument `arg` to `jla` at position
// `pos`. Returns an error if either the argument type is
// unsupported or if the argument types is supported, but adding it
// to `jla` failed.
static inline llvm::Error addArgument(JITLambda::Argument &jla, size_t pos,
const LambdaArgument &arg) {
llvm::Expected<bool> successOrError =
JITLambdaArgumentAdaptor::tryAddArg<uint64_t, uint32_t, uint16_t,
uint8_t>(jla, pos, arg);
if (!successOrError)
return std::move(successOrError.takeError());
if (successOrError.get() == false)
return StreamStringError("Unknown argument type");
else
return llvm::Error::success();
}
};
} // namespace
// A compiler engine that JIT-compiles a source and produces a lambda
// object directly invocable through its call operator.
class JitCompilerEngine : public CompilerEngine {
public:
// Wrapper class around `JITLambda` and `JITLambda::Argument` that
// allows for direct invocation of a compiled function through
// `operator ()`.
class Lambda {
public:
Lambda(Lambda &&other)
: innerLambda(std::move(other.innerLambda)),
keySet(std::move(other.keySet)),
compilationContext(other.compilationContext) {}
Lambda(std::shared_ptr<CompilationContext> compilationContext,
std::unique_ptr<JITLambda> lambda, std::unique_ptr<KeySet> keySet)
: innerLambda(std::move(lambda)), keySet(std::move(keySet)),
compilationContext(compilationContext) {}
// Returns the number of arguments required for an invocation of
// the lambda
size_t getNumArguments() { return this->keySet->numInputs(); }
// Returns the number of results an invocation of the lambda
// produces
size_t getNumResults() { return this->keySet->numOutputs(); }
// Invocation with an dynamic list of arguments of different
// types, specified as `LambdaArgument`s
template <typename ResT = uint64_t>
llvm::Expected<ResT>
operator()(llvm::ArrayRef<LambdaArgument *> lambdaArgs) {
// Create the arguments of the JIT lambda
llvm::Expected<std::unique_ptr<JITLambda::Argument>> argsOrErr =
mlir::zamalang::JITLambda::Argument::create(*this->keySet.get());
if (llvm::Error err = argsOrErr.takeError())
return StreamStringError("Could not create lambda arguments");
// Set the arguments
std::unique_ptr<JITLambda::Argument> arguments =
std::move(argsOrErr.get());
for (size_t i = 0; i < lambdaArgs.size(); i++) {
if (llvm::Error err = JITLambdaArgumentAdaptor::addArgument(
*arguments, i, *lambdaArgs[i])) {
return std::move(err);
}
}
// Invoke the lambda
if (auto err = this->innerLambda->invoke(*arguments))
return StreamStringError() << "Cannot invoke lambda:" << err;
return std::move(typedResult<ResT>(*arguments));
}
// Invocation with an array of arguments of the same type
template <typename T, typename ResT = uint64_t>
llvm::Expected<ResT> operator()(const llvm::ArrayRef<T> args) {
// Create the arguments of the JIT lambda
llvm::Expected<std::unique_ptr<JITLambda::Argument>> argsOrErr =
mlir::zamalang::JITLambda::Argument::create(*this->keySet.get());
if (llvm::Error err = argsOrErr.takeError())
return StreamStringError("Could not create lambda arguments");
// Set the arguments
std::unique_ptr<JITLambda::Argument> arguments =
std::move(argsOrErr.get());
for (size_t i = 0; i < args.size(); i++) {
if (auto err = arguments->setArg(i, args[i])) {
return StreamStringError()
<< "Cannot push argument " << i << ": " << err;
}
}
// Invoke the lambda
if (auto err = this->innerLambda->invoke(*arguments))
return StreamStringError() << "Cannot invoke lambda:" << err;
return std::move(typedResult<ResT>(*arguments));
}
// Invocation with arguments of different types
template <typename ResT = uint64_t, typename... Ts>
llvm::Expected<ResT> operator()(const Ts... ts) {
// Create the arguments of the JIT lambda
llvm::Expected<std::unique_ptr<JITLambda::Argument>> argsOrErr =
mlir::zamalang::JITLambda::Argument::create(*this->keySet.get());
if (llvm::Error err = argsOrErr.takeError())
return StreamStringError("Could not create lambda arguments");
// Set the arguments
std::unique_ptr<JITLambda::Argument> arguments =
std::move(argsOrErr.get());
if (llvm::Error err = this->addArgs<0>(arguments.get(), ts...))
return std::move(err);
// Invoke the lambda
if (auto err = this->innerLambda->invoke(*arguments))
return StreamStringError() << "Cannot invoke lambda:" << err;
return std::move(typedResult<ResT>(*arguments));
}
protected:
template <int pos>
inline llvm::Error addArgs(JITLambda::Argument *jitArgs) {
// base case -- nothing to do
return llvm::Error::success();
}
// Recursive case for scalars: extract first scalar argument from
// parameter pack and forward rest
template <int pos, typename ArgT, typename... Ts>
inline llvm::Error addArgs(JITLambda::Argument *jitArgs, ArgT arg,
Ts... remainder) {
if (auto err = jitArgs->setArg(pos, arg)) {
return StreamStringError()
<< "Cannot push scalar argument " << pos << ": " << err;
}
return this->addArgs<pos + 1>(jitArgs, remainder...);
}
// Recursive case for tensors: extract pointer and size from
// parameter pack and forward rest
template <int pos, typename ArgT, typename... Ts>
inline llvm::Error addArgs(JITLambda::Argument *jitArgs, ArgT *arg,
size_t size, Ts... remainder) {
if (auto err = jitArgs->setArg(pos, arg, size)) {
return StreamStringError()
<< "Cannot push tensor argument " << pos << ": " << err;
}
return this->addArgs<pos + 1>(jitArgs, remainder...);
}
std::unique_ptr<JITLambda> innerLambda;
std::unique_ptr<KeySet> keySet;
std::shared_ptr<CompilationContext> compilationContext;
};
JitCompilerEngine(std::shared_ptr<CompilationContext> compilationContext =
CompilationContext::createShared(),
unsigned int optimizationLevel = 3);
llvm::Expected<Lambda> buildLambda(llvm::StringRef src,
llvm::StringRef funcName = "main");
llvm::Expected<Lambda> buildLambda(std::unique_ptr<llvm::MemoryBuffer> buffer,
llvm::StringRef funcName = "main");
llvm::Expected<Lambda> buildLambda(llvm::SourceMgr &sm,
llvm::StringRef funcName = "main");
protected:
llvm::Expected<mlir::LLVM::LLVMFuncOp> findLLVMFuncOp(mlir::ModuleOp module,
llvm::StringRef name);
unsigned int optimizationLevel;
};
} // namespace zamalang
} // namespace mlir
#endif

View File

@@ -0,0 +1,170 @@
#ifndef ZAMALANG_SUPPORT_LAMBDA_ARGUMENT_H
#define ZAMALANG_SUPPORT_LAMBDA_ARGUMENT_H
#include <cstdint>
#include <limits>
#include <llvm/ADT/ArrayRef.h>
#include <llvm/Support/Casting.h>
#include <llvm/Support/ExtensibleRTTI.h>
#include <zamalang/Support/Error.h>
namespace mlir {
namespace zamalang {
// Abstract base class for lambda arguments
class LambdaArgument
: public llvm::RTTIExtends<LambdaArgument, llvm::RTTIRoot> {
public:
LambdaArgument(LambdaArgument &) = delete;
template <typename T> bool isa() const { return llvm::isa<T>(*this); }
// Cast functions on constant instances
template <typename T> const T &cast() const { return llvm::cast<T>(*this); }
template <typename T> const T *dyn_cast() const {
return llvm::dyn_cast<T>(this);
}
// Cast functions for mutable instances
template <typename T> T &cast() { return llvm::cast<T>(*this); }
template <typename T> T *dyn_cast() { return llvm::dyn_cast<T>(this); }
static char ID;
protected:
LambdaArgument(){};
};
// Class for integer arguments. `BackingIntType` is used as the data
// type to hold the argument's value. The precision is the actual
// precision of the value, which might be different from the precision
// of the backing integer type.
template <typename BackingIntType = uint64_t>
class IntLambdaArgument
: public llvm::RTTIExtends<IntLambdaArgument<BackingIntType>,
LambdaArgument> {
public:
typedef BackingIntType value_type;
IntLambdaArgument(BackingIntType value,
unsigned int precision = 8 * sizeof(BackingIntType))
: precision(precision) {
if (precision < 8 * sizeof(BackingIntType)) {
this->value = value & (1 << (this->precision - 1));
} else {
this->value = value;
}
}
unsigned int getPrecision() const { return this->precision; }
BackingIntType getValue() const { return this->value; }
static char ID;
protected:
unsigned int precision;
BackingIntType value;
};
template <typename BackingIntType>
char IntLambdaArgument<BackingIntType>::ID = 0;
// Class for encrypted integer arguments. `BackingIntType` is used as
// the data type to hold the argument's plaintext value. The precision
// is the actual precision of the value, which might be different from
// the precision of the backing integer type.
template <typename BackingIntType = uint64_t>
class EIntLambdaArgument
: public llvm::RTTIExtends<EIntLambdaArgument<BackingIntType>,
IntLambdaArgument<BackingIntType>> {
public:
static char ID;
};
template <typename BackingIntType>
char EIntLambdaArgument<BackingIntType>::ID = 0;
namespace {
// Calculates `accu *= factor` or returns an error if the result
// would overflow
template <typename AccuT, typename ValT>
llvm::Error safeUnsignedMul(AccuT &accu, ValT factor) {
static_assert(std::numeric_limits<AccuT>::is_integer &&
std::numeric_limits<ValT>::is_integer &&
!std::numeric_limits<AccuT>::is_signed &&
!std::numeric_limits<ValT>::is_signed,
"Only unsigned integers are supported");
const AccuT left = std::numeric_limits<AccuT>::max() / accu;
if (left > factor) {
accu *= factor;
return llvm::Error::success();
}
return StreamStringError("Multiplying value ")
<< accu << " with " << factor << " would cause an overflow";
}
} // namespace
// Class for Tensor arguments. This can either be plaintext tensors
// (for `ScalarArgumentT = IntLambaArgument<T>`) or tensors
// representing encrypted integers (for `ScalarArgumentT =
// EIntLambaArgument<T>`).
template <typename ScalarArgumentT>
class TensorLambdaArgument
: public llvm::RTTIExtends<TensorLambdaArgument<ScalarArgumentT>,
LambdaArgument> {
public:
typedef ScalarArgumentT scalar_type;
// Construct tensor argument from the one-dimensional array `value`,
// but interpreting the array's values as a linearized
// multi-dimensional tensor with the sizes of the dimensions
// specified in `dimensions`.
TensorLambdaArgument(
llvm::MutableArrayRef<typename ScalarArgumentT::value_type> value,
llvm::ArrayRef<int64_t> dimensions)
: value(value), dimensions(dimensions.vec()) {}
// Construct a one-dimensional tensor argument from the
// array `value`.
TensorLambdaArgument(
llvm::MutableArrayRef<typename ScalarArgumentT::value_type> value)
: TensorLambdaArgument(value, {(int64_t)value.size()}) {}
const std::vector<int64_t> &getDimensions() const { return this->dimensions; }
// Returns the total number of elements in the tensor. If the number
// of elements cannot be represented as a `size_t`, the method
// returns an error.
llvm::Expected<size_t> getNumElements() const {
size_t accu = 1;
for (unsigned int dimSize : dimensions)
if (llvm::Error err = safeUnsignedMul(accu, dimSize))
return std::move(err);
return accu;
}
// Returns a bare pointer to the linearized values of the tensor.
typename ScalarArgumentT::value_type *getValue() const {
return this->value.data();
}
static char ID;
protected:
llvm::MutableArrayRef<typename ScalarArgumentT::value_type> value;
std::vector<int64_t> dimensions;
};
template <typename ScalarArgumentT>
char TensorLambdaArgument<ScalarArgumentT>::ID = 0;
} // namespace zamalang
} // namespace mlir
#endif

View File

@@ -4,43 +4,43 @@
#include <llvm/IR/Module.h>
#include <mlir/Dialect/LLVMIR/LLVMTypes.h>
#include <mlir/Support/LogicalResult.h>
#include <mlir/Transforms/Passes.h>
#include <zamalang/Support/V0Parameters.h>
namespace mlir {
namespace zamalang {
namespace pipeline {
mlir::LogicalResult invokeMANPPass(mlir::MLIRContext &context,
mlir::ModuleOp &module, bool debug);
llvm::Expected<llvm::Optional<mlir::zamalang::V0FHEConstraint>>
getFHEConstraintsFromHLFHE(mlir::MLIRContext &context, mlir::ModuleOp &module);
getFHEConstraintsFromHLFHE(mlir::MLIRContext &context, mlir::ModuleOp &module,
std::function<bool(mlir::Pass *)> enablePass);
mlir::LogicalResult lowerHLFHEToMidLFHE(mlir::MLIRContext &context,
mlir::ModuleOp &module, bool verbose);
mlir::LogicalResult
lowerHLFHEToMidLFHE(mlir::MLIRContext &context, mlir::ModuleOp &module,
std::function<bool(mlir::Pass *)> enablePass);
mlir::LogicalResult lowerMidLFHEToLowLFHE(mlir::MLIRContext &context,
mlir::ModuleOp &module,
V0FHEContext &fheContext,
bool parametrize);
mlir::LogicalResult
lowerMidLFHEToLowLFHE(mlir::MLIRContext &context, mlir::ModuleOp &module,
llvm::Optional<V0FHEContext> &fheContext,
std::function<bool(mlir::Pass *)> enablePass);
mlir::LogicalResult lowerLowLFHEToStd(mlir::MLIRContext &context,
mlir::ModuleOp &module);
mlir::LogicalResult
lowerLowLFHEToStd(mlir::MLIRContext &context, mlir::ModuleOp &module,
std::function<bool(mlir::Pass *)> enablePass);
mlir::LogicalResult lowerStdToLLVMDialect(mlir::MLIRContext &context,
mlir::ModuleOp &module, bool verbose);
mlir::LogicalResult
lowerStdToLLVMDialect(mlir::MLIRContext &context, mlir::ModuleOp &module,
std::function<bool(mlir::Pass *)> enablePass);
mlir::LogicalResult optimizeLLVMModule(llvm::LLVMContext &llvmContext,
llvm::Module &module);
mlir::LogicalResult lowerHLFHEToStd(mlir::MLIRContext &context,
mlir::ModuleOp &module,
V0FHEContext &fheContext, bool verbose);
std::unique_ptr<llvm::Module>
lowerLLVMDialectToLLVMIR(mlir::MLIRContext &context,
llvm::LLVMContext &llvmContext,
mlir::ModuleOp &module);
} // namespace pipeline
} // namespace zamalang
} // namespace mlir

View File

@@ -32,6 +32,7 @@ private:
StreamWrap<llvm::raw_ostream> &log_error(void);
StreamWrap<llvm::raw_ostream> &log_verbose(void);
void setupLogging(bool verbose);
bool isVerbose();
} // namespace zamalang
} // namespace mlir

View File

@@ -27,6 +27,7 @@ declare_mlir_python_sources(ZamalangBindingsPythonSources
SOURCES
zamalang/__init__.py
zamalang/compiler.py
zamalang/dialects/__init__.py
zamalang/dialects/_ods_common.py)
################################################################################

View File

@@ -1,8 +1,9 @@
#include "CompilerAPIModule.h"
#include "zamalang-c/Support/CompilerEngine.h"
#include "zamalang/Dialect/HLFHE/IR/HLFHEOpsDialect.h.inc"
#include "zamalang/Support/CompilerEngine.h"
#include "zamalang/Support/ExecutionArgument.h"
#include "zamalang/Support/Jit.h"
#include "zamalang/Support/JitCompilerEngine.h"
#include <mlir/Dialect/MemRef/IR/MemRef.h>
#include <mlir/Dialect/StandardOps/IR/Ops.h>
#include <mlir/ExecutionEngine/OptUtils.h>
@@ -14,27 +15,15 @@
#include <stdexcept>
#include <string>
using mlir::zamalang::CompilerEngine;
using mlir::zamalang::ExecutionArgument;
using mlir::zamalang::JitCompilerEngine;
/// Populate the compiler API python module.
void mlir::zamalang::python::populateCompilerAPISubmodule(pybind11::module &m) {
m.doc() = "Zamalang compiler python API";
m.def("round_trip", [](std::string mlir_input) {
mlir::MLIRContext context;
context.getOrLoadDialect<mlir::zamalang::HLFHE::HLFHEDialect>();
context.getOrLoadDialect<mlir::StandardOpsDialect>();
context.getOrLoadDialect<mlir::memref::MemRefDialect>();
auto module_ref = mlir::parseSourceString(mlir_input, &context);
if (!module_ref) {
throw std::logic_error("mlir parsing failed");
}
std::string result;
llvm::raw_string_ostream os(result);
module_ref->print(os);
return os.str();
});
m.def("round_trip",
[](std::string mlir_input) { return roundTrip(mlir_input.c_str()); });
pybind11::class_<ExecutionArgument, std::shared_ptr<ExecutionArgument>>(
m, "ExecutionArgument")
@@ -45,20 +34,19 @@ void mlir::zamalang::python::populateCompilerAPISubmodule(pybind11::module &m) {
.def("is_tensor", &ExecutionArgument::isTensor)
.def("is_int", &ExecutionArgument::isInt);
pybind11::class_<CompilerEngine>(m, "CompilerEngine")
pybind11::class_<JitCompilerEngine>(m, "JitCompilerEngine")
.def(pybind11::init())
.def("run",
[](CompilerEngine &engine, std::vector<ExecutionArgument> args) {
// wrap and call CAPI
compilerEngine e{&engine};
exectuionArguments a{args.data(), args.size()};
return compilerEngineRun(e, a);
})
.def("compile_fhe",
[](CompilerEngine &engine, std::string mlir_input) {
// wrap and call CAPI
compilerEngine e{&engine};
compilerEngineCompile(e, mlir_input.c_str());
})
.def("get_compiled_module", &CompilerEngine::getCompiledModule);
.def_static("build_lambda",
[](std::string mlir_input, std::string func_name) {
return buildLambda(mlir_input.c_str(), func_name.c_str());
});
pybind11::class_<JitCompilerEngine::Lambda>(m, "Lambda")
.def("invoke", [](JitCompilerEngine::Lambda &py_lambda,
std::vector<ExecutionArgument> args) {
// wrap and call CAPI
lambda c_lambda{&py_lambda};
exectuionArguments a{args.data(), args.size()};
return invokeLambda(c_lambda, a);
});
}

View File

@@ -1,3 +1,3 @@
"""Zamalang python module"""
from _zamalang import *
from mlir._mlir_libs._zamalang import *
from .compiler import CompilerEngine

View File

@@ -1,9 +1,8 @@
"""Compiler submodule"""
from typing import List, Union
from _zamalang._compiler import CompilerEngine as _CompilerEngine
from _zamalang._compiler import ExecutionArgument as _ExecutionArgument
from _zamalang._compiler import round_trip as _round_trip
from mlir._mlir_libs._zamalang._compiler import JitCompilerEngine as _JitCompilerEngine
from mlir._mlir_libs._zamalang._compiler import ExecutionArgument as _ExecutionArgument
from mlir._mlir_libs._zamalang._compiler import round_trip as _round_trip
def round_trip(mlir_str: str) -> str:
"""Parse the MLIR input, then return it back.
@@ -49,25 +48,24 @@ def create_execution_argument(value: Union[int, List[int]]) -> "_ExecutionArgume
class CompilerEngine:
def __init__(self, mlir_str: str = None):
self._engine = _CompilerEngine()
self._engine = _JitCompilerEngine()
self._lambda = None
if mlir_str is not None:
self.compile_fhe(mlir_str)
def compile_fhe(self, mlir_str: str) -> "CompilerEngine":
"""Compile the MLIR input and build a CompilerEngine.
def compile_fhe(self, mlir_str: str, func_name: str = "main"):
"""Compile the MLIR input.
Args:
mlir_str (str): MLIR to compile.
func_name (str): name of the function to set as entrypoint.
Raises:
TypeError: if the argument is not an str.
Returns:
CompilerEngine: engine used for execution.
"""
if not isinstance(mlir_str, str):
raise TypeError("input must be an `str`")
return self._engine.compile_fhe(mlir_str)
self._lambda = self._engine.build_lambda(mlir_str, func_name)
def run(self, *args: List[Union[int, List[int]]]) -> int:
"""Run the compiled code.
@@ -77,17 +75,12 @@ class CompilerEngine:
Raises:
TypeError: if execution arguments can't be constructed
RuntimeError: if the engine has not compiled any code yet
Returns:
int: result of execution.
"""
if self._lambda is None:
raise RuntimeError("need to compile an MLIR code first")
execution_arguments = [create_execution_argument(arg) for arg in args]
return self._engine.run(execution_arguments)
def get_compiled_module(self) -> str:
"""Compiled module in printable form.
Returns:
str: Compiled module in printable form.
"""
return self._engine.get_compiled_module()
return self._lambda.invoke(execution_arguments)

View File

@@ -1,3 +1,3 @@
"""HLFHE dialect module"""
from ._HLFHE_ops_gen import *
from _zamalang._hlfhe import *
from mlir._mlir_libs._zamalang._hlfhe import *

View File

@@ -1,62 +1,83 @@
#include "zamalang-c/Support/CompilerEngine.h"
#include "zamalang/Support/CompilerEngine.h"
#include "zamalang/Support/ExecutionArgument.h"
#include "zamalang/Support/Jit.h"
#include "zamalang/Support/JitCompilerEngine.h"
#include "zamalang/Support/logging.h"
using mlir::zamalang::CompilerEngine;
// using mlir::zamalang::CompilerEngine;
using mlir::zamalang::ExecutionArgument;
using mlir::zamalang::JitCompilerEngine;
void compilerEngineCompile(compilerEngine engine, const char *module) {
auto error = engine.ptr->compile(module);
if (error) {
llvm::errs() << "Compilation failed: " << error << "\n";
llvm::consumeError(std::move(error));
mlir::zamalang::JitCompilerEngine::Lambda buildLambda(const char *module,
const char *funcName) {
mlir::zamalang::JitCompilerEngine engine;
llvm::Expected<mlir::zamalang::JitCompilerEngine::Lambda> lambdaOrErr =
engine.buildLambda(module, funcName);
if (!lambdaOrErr) {
mlir::zamalang::log_error()
<< "Compilation failed: "
<< llvm::toString(std::move(lambdaOrErr.takeError())) << "\n";
throw std::runtime_error(
"failed compiling, see previous logs for more info");
}
return std::move(*lambdaOrErr);
}
uint64_t compilerEngineRun(compilerEngine engine, exectuionArguments args) {
auto args_size = args.size;
auto maybeArgument = engine.ptr->buildArgument();
if (auto err = maybeArgument.takeError()) {
llvm::errs() << "Execution failed: " << err << "\n";
llvm::consumeError(std::move(err));
throw std::runtime_error(
"failed building arguments, see previous logs for more info");
uint64_t invokeLambda(lambda l, executionArguments args) {
mlir::zamalang::JitCompilerEngine::Lambda *lambda_ptr =
(mlir::zamalang::JitCompilerEngine::Lambda *)l.ptr;
if (args.size != lambda_ptr->getNumArguments()) {
throw std::invalid_argument("wrong number of arguments");
}
// Set the integer/tensor arguments
auto arguments = std::move(maybeArgument.get());
for (auto i = 0; i < args_size; i++) {
std::vector<mlir::zamalang::LambdaArgument *> lambdaArgumentsRef;
for (auto i = 0; i < args.size; i++) {
if (args.data[i].isInt()) { // integer argument
if (auto err = arguments->setArg(i, args.data[i].getIntegerArgument())) {
llvm::errs() << "Execution failed: " << err << "\n";
llvm::consumeError(std::move(err));
throw std::runtime_error("failed pushing integer argument, see "
"previous logs for more info");
}
lambdaArgumentsRef.push_back(new mlir::zamalang::IntLambdaArgument<>(
args.data[i].getIntegerArgument()));
} else { // tensor argument
assert(args.data[i].isTensor() && "should be tensor argument");
if (auto err = arguments->setArg(i, args.data[i].getTensorArgument(),
args.data[i].getTensorSize())) {
llvm::errs() << "Execution failed: " << err << "\n";
llvm::consumeError(std::move(err));
throw std::runtime_error("failed pushing tensor argument, see "
"previous logs for more info");
}
llvm::MutableArrayRef<uint8_t> tensor(args.data[i].getTensorArgument(),
args.data[i].getTensorSize());
lambdaArgumentsRef.push_back(
new mlir::zamalang::TensorLambdaArgument<
mlir::zamalang::IntLambdaArgument<uint8_t>>(tensor));
}
}
// Invoke the lambda
if (auto err = engine.ptr->invoke(*arguments)) {
llvm::errs() << "Execution failed: " << err << "\n";
llvm::consumeError(std::move(err));
throw std::runtime_error("failed running, see previous logs for more info");
}
uint64_t result = 0;
if (auto err = arguments->getResult(0, result)) {
llvm::errs() << "Execution failed: " << err << "\n";
llvm::consumeError(std::move(err));
// Run lambda
llvm::Expected<uint64_t> resOrError = (*lambda_ptr)(
llvm::ArrayRef<mlir::zamalang::LambdaArgument *>(lambdaArgumentsRef));
// Free heap
for (size_t i = 0; i < lambdaArgumentsRef.size(); i++)
delete lambdaArgumentsRef[i];
if (!resOrError) {
mlir::zamalang::log_error()
<< "Lambda invokation failed: "
<< llvm::toString(std::move(resOrError.takeError())) << "\n";
throw std::runtime_error(
"failed getting result, see previous logs for more info");
"failed invoking lambda, see previous logs for more info");
}
return result;
}
return *resOrError;
}
std::string roundTrip(const char *module) {
std::shared_ptr<mlir::zamalang::CompilationContext> ccx =
mlir::zamalang::CompilationContext::createShared();
mlir::zamalang::JitCompilerEngine ce{ccx};
llvm::Expected<mlir::zamalang::CompilerEngine::CompilationResult> retOrErr =
ce.compile(module, mlir::zamalang::CompilerEngine::Target::ROUND_TRIP);
if (!retOrErr) {
mlir::zamalang::log_error()
<< llvm::toString(std::move(retOrErr.takeError())) << "\n";
throw std::runtime_error(
"mlir parsing failed, see previous logs for more info");
}
std::string result;
llvm::raw_string_ostream os(result);
retOrErr->mlirModuleRef->get().print(os);
return os.str();
}

View File

@@ -23,6 +23,51 @@
namespace mlir {
namespace zamalang {
namespace {
// Returns `true` if the given value is a scalar or tensor argument of
// a function, for which a MANP of 1 can be assumed.
static bool isEncryptedFunctionParameter(mlir::Value value) {
if (!value.isa<mlir::BlockArgument>())
return false;
mlir::Block *block = value.cast<mlir::BlockArgument>().getOwner();
if (!block || !block->getParentOp() ||
!llvm::isa<mlir::FuncOp>(block->getParentOp())) {
return false;
}
return (value.getType().isa<mlir::zamalang::HLFHE::EncryptedIntegerType>() ||
(value.getType().isa<mlir::TensorType>() &&
value.getType()
.cast<mlir::TensorType>()
.getElementType()
.isa<mlir::zamalang::HLFHE::EncryptedIntegerType>()));
}
// Returns the bit width of `value` if `value` is an encrypted integer
// or the bit width of the elements if `value` is a tensor of
// encrypted integers.
static unsigned int getEintPrecision(mlir::Value value) {
if (auto ty = value.getType()
.dyn_cast_or_null<
mlir::zamalang::HLFHE::EncryptedIntegerType>()) {
return ty.getWidth();
} else if (auto tensorTy =
value.getType().dyn_cast_or_null<mlir::TensorType>()) {
if (auto ty = tensorTy.getElementType()
.dyn_cast_or_null<
mlir::zamalang::HLFHE::EncryptedIntegerType>())
return ty.getWidth();
}
assert(false &&
"Value is neither an encrypted integer nor a tensor of encrypted "
"integers");
return 0;
}
// The `MANPLatticeValue` represents the squared Minimal Arithmetic
// Noise Padding for an operation using the squared 2-norm of an
// equivalent dot operation. This can either be an actual value if the
@@ -41,13 +86,7 @@ struct MANPLatticeValue {
//
// TODO: Provide a mechanism to propagate Minimal Arithmetic Noise
// Padding across function calls.
if (value.isa<mlir::BlockArgument>() &&
(value.getType().isa<mlir::zamalang::HLFHE::EncryptedIntegerType>() ||
(value.getType().isa<mlir::TensorType>() &&
value.getType()
.cast<mlir::TensorType>()
.getElementType()
.isa<mlir::zamalang::HLFHE::EncryptedIntegerType>()))) {
if (isEncryptedFunctionParameter(value)) {
return MANPLatticeValue(llvm::APInt{1, 1, false});
} else {
// All other operations have an unknown Minimal Arithmetic Noise
@@ -450,7 +489,7 @@ struct MANPAnalysis : public mlir::ForwardDataFlowAnalysis<MANPLatticeValue> {
bool isDummy = false;
llvm::APInt norm2SqEquiv;
// HLFHE Operaors
// HLFHE Operators
if (auto dotOp = llvm::dyn_cast<mlir::zamalang::HLFHE::Dot>(op)) {
norm2SqEquiv = getSqMANP(dotOp, operands);
} else if (auto addEintIntOp =
@@ -599,6 +638,29 @@ struct MaxMANPPass : public MaxMANPBase<MaxMANPPass> {
protected:
void processOperation(mlir::Operation *op) {
static const llvm::APInt one{1, 1, false};
bool upd = false;
// Process all function arguments and use the default value of 1
// for MANP and the declarend precision
if (mlir::FuncOp func = llvm::dyn_cast_or_null<mlir::FuncOp>(op)) {
for (mlir::BlockArgument blockArg : func.getBody().getArguments()) {
if (isEncryptedFunctionParameter(blockArg)) {
unsigned int width = getEintPrecision(blockArg);
if (this->maxEintWidth < width) {
this->maxEintWidth = width;
}
if (APIntWidthExtendULT(this->maxMANP, one)) {
this->maxMANP = one;
upd = true;
}
}
}
}
// Process all results using MANP attribute from MANP pas
for (mlir::OpResult res : op->getResults()) {
mlir::zamalang::HLFHE::EncryptedIntegerType eTy =
res.getType()
@@ -613,7 +675,6 @@ protected:
}
if (eTy) {
bool upd = false;
if (this->maxEintWidth < eTy.getWidth()) {
this->maxEintWidth = eTy.getWidth();
upd = true;
@@ -630,11 +691,11 @@ protected:
this->maxMANP = MANP.getValue();
upd = true;
}
if (upd)
this->updateMax(this->maxMANP, this->maxEintWidth);
}
}
if (upd)
this->updateMax(this->maxMANP, this->maxEintWidth);
}
std::function<void(const llvm::APInt &, unsigned)> updateMax;

View File

@@ -1,7 +1,10 @@
add_mlir_library(ZamalangSupport
Error.cpp
Pipeline.cpp
Jit.cpp
CompilerEngine.cpp
JitCompilerEngine.cpp
LambdaArgument.cpp
V0Parameters.cpp
V0Curves.cpp
ClientParameters.cpp

View File

@@ -28,8 +28,13 @@ llvm::Expected<CircuitGate> gateFromMLIRType(std::string secretKeyID,
width = type.getIntOrFloatBitWidth();
}
return CircuitGate{
.encryption = llvm::None,
.shape = {.width = width, .size = 0},
/*.encryption = */ llvm::None,
/*.shape = */
{
/*.width = */ width,
/*.dimensions = */ std::vector<int64_t>(),
/*.size = */ 0,
},
};
}
if (type.isa<mlir::zamalang::LowLFHE::LweCiphertextType>()) {
@@ -41,7 +46,12 @@ llvm::Expected<CircuitGate> gateFromMLIRType(std::string secretKeyID,
.variance = variance,
.encoding = {.precision = precision},
}),
.shape = {.width = precision, .size = 0},
/*.shape = */
{
/*.width = */ precision,
/*.dimensions = */ std::vector<int64_t>(),
/*.size = */ 0,
},
};
}
auto tensor = type.dyn_cast_or_null<mlir::RankedTensorType>();
@@ -70,34 +80,33 @@ createClientParametersForV0(V0FHEContext fheContext, llvm::StringRef name,
v0Curve->getVariance(1, 1 << v0Param.polynomialSize, 64);
Variance keyswitchVariance = v0Curve->getVariance(1, v0Param.nSmall, 64);
// Static client parameters from global parameters for v0
ClientParameters c{
.secretKeys{
{"small", {.size = v0Param.nSmall}},
{"big", {.size = v0Param.getNBigGlweSize()}},
},
.bootstrapKeys{
ClientParameters c = {};
c.secretKeys = {
{"small", {/*.size = */ v0Param.nSmall}},
{"big", {/*.size = */ v0Param.getNBigGlweSize()}},
};
c.bootstrapKeys = {
{
"bsk_v0",
{
"bsk_v0",
{
.inputSecretKeyID = "small",
.outputSecretKeyID = "big",
.level = v0Param.brLevel,
.baseLog = v0Param.brLogBase,
.k = v0Param.k,
.variance = encryptionVariance,
},
/*.inputSecretKeyID = */ "small",
/*.outputSecretKeyID = */ "big",
/*.level = */ v0Param.brLevel,
/*.baseLog = */ v0Param.brLogBase,
/*.k = */ v0Param.k,
/*.variance = */ encryptionVariance,
},
},
.keyswitchKeys{
};
c.keyswitchKeys = {
{
"ksk_v0",
{
"ksk_v0",
{
.inputSecretKeyID = "big",
.outputSecretKeyID = "small",
.level = v0Param.ksLevel,
.baseLog = v0Param.ksLogBase,
.variance = keyswitchVariance,
},
/*.inputSecretKeyID = */ "big",
/*.outputSecretKeyID = */ "small",
/*.level = */ v0Param.ksLevel,
/*.baseLog = */ v0Param.ksLogBase,
/*.variance = */ keyswitchVariance,
},
},
};
@@ -134,4 +143,4 @@ createClientParametersForV0(V0FHEContext fheContext, llvm::StringRef name,
}
} // namespace zamalang
} // namespace mlir
} // namespace mlir

View File

@@ -1,3 +1,5 @@
#include <llvm/Support/Error.h>
#include <llvm/Support/SMLoc.h>
#include <mlir/Dialect/LLVMIR/LLVMDialect.h>
#include <mlir/Dialect/Linalg/IR/LinalgOps.h>
#include <mlir/Dialect/MemRef/IR/MemRef.h>
@@ -10,156 +12,285 @@
#include <zamalang/Dialect/LowLFHE/IR/LowLFHEDialect.h>
#include <zamalang/Dialect/MidLFHE/IR/MidLFHEDialect.h>
#include <zamalang/Support/CompilerEngine.h>
#include <zamalang/Support/Error.h>
#include <zamalang/Support/Jit.h>
#include <zamalang/Support/Pipeline.h>
namespace mlir {
namespace zamalang {
void CompilerEngine::loadDialects() {
context->getOrLoadDialect<mlir::zamalang::HLFHELinalg::HLFHELinalgDialect>();
context->getOrLoadDialect<mlir::zamalang::HLFHE::HLFHEDialect>();
context->getOrLoadDialect<mlir::zamalang::MidLFHE::MidLFHEDialect>();
context->getOrLoadDialect<mlir::zamalang::LowLFHE::LowLFHEDialect>();
context->getOrLoadDialect<mlir::StandardOpsDialect>();
context->getOrLoadDialect<mlir::memref::MemRefDialect>();
context->getOrLoadDialect<mlir::linalg::LinalgDialect>();
context->getOrLoadDialect<mlir::LLVM::LLVMDialect>();
// Creates a new compilation context that can be shared across
// compilation engines and results
std::shared_ptr<CompilationContext> CompilationContext::createShared() {
return std::make_shared<CompilationContext>();
}
std::string CompilerEngine::getCompiledModule() {
std::string compiledModule;
llvm::raw_string_ostream os(compiledModule);
module_ref->print(os);
return os.str();
CompilationContext::CompilationContext()
: mlirContext(nullptr), llvmContext(nullptr) {}
CompilationContext::~CompilationContext() {
delete this->mlirContext;
delete this->llvmContext;
}
llvm::Error CompilerEngine::compile(
std::string mlirStr,
llvm::Optional<mlir::zamalang::V0FHEConstraint> overrideConstraints) {
module_ref = mlir::parseSourceString(mlirStr, context);
if (!module_ref) {
return llvm::make_error<llvm::StringError>("mlir parsing failed",
llvm::inconvertibleErrorCode());
// Returns the MLIR context for a compilation context. Creates and
// initializes a new MLIR context if necessary.
mlir::MLIRContext *CompilationContext::getMLIRContext() {
if (this->mlirContext == nullptr) {
this->mlirContext = new mlir::MLIRContext();
this->mlirContext->getOrLoadDialect<mlir::zamalang::HLFHE::HLFHEDialect>();
this->mlirContext
->getOrLoadDialect<mlir::zamalang::MidLFHE::MidLFHEDialect>();
this->mlirContext
->getOrLoadDialect<mlir::zamalang::HLFHELinalg::HLFHELinalgDialect>();
this->mlirContext
->getOrLoadDialect<mlir::zamalang::LowLFHE::LowLFHEDialect>();
this->mlirContext->getOrLoadDialect<mlir::StandardOpsDialect>();
this->mlirContext->getOrLoadDialect<mlir::memref::MemRefDialect>();
this->mlirContext->getOrLoadDialect<mlir::linalg::LinalgDialect>();
this->mlirContext->getOrLoadDialect<mlir::LLVM::LLVMDialect>();
}
mlir::ModuleOp module = module_ref.get();
return this->mlirContext;
}
llvm::Optional<mlir::zamalang::V0FHEConstraint> fheConstraintsOpt =
overrideConstraints;
// Returns the LLVM context for a compilation context. Creates and
// initializes a new LLVM context if necessary.
llvm::LLVMContext *CompilationContext::getLLVMContext() {
if (this->llvmContext == nullptr)
this->llvmContext = new llvm::LLVMContext();
if (!fheConstraintsOpt.hasValue()) {
llvm::Expected<llvm::Optional<mlir::zamalang::V0FHEConstraint>>
fheConstraintsOrErr =
mlir::zamalang::pipeline::getFHEConstraintsFromHLFHE(*context,
module);
return this->llvmContext;
}
if (auto err = fheConstraintsOrErr.takeError())
return std::move(err);
// Sets the FHE constraints for the compilation. Overrides any
// automatically detected configuration and prevents the autodetection
// pass from running.
void CompilerEngine::setFHEConstraints(
const mlir::zamalang::V0FHEConstraint &c) {
this->overrideMaxEintPrecision = c.p;
this->overrideMaxMANP = c.norm2;
}
if (!fheConstraintsOrErr.get().hasValue()) {
return llvm::make_error<llvm::StringError>(
"Could not determine maximum required precision for encrypted "
"integers "
"and maximum value for the Minimal Arithmetic Noise Padding",
llvm::inconvertibleErrorCode());
}
void CompilerEngine::setVerifyDiagnostics(bool v) {
this->verifyDiagnostics = v;
}
fheConstraintsOpt = fheConstraintsOrErr.get();
void CompilerEngine::setGenerateClientParameters(bool v) {
this->generateClientParameters = v;
}
void CompilerEngine::setMaxEintPrecision(size_t v) {
this->overrideMaxEintPrecision = v;
}
void CompilerEngine::setMaxMANP(size_t v) { this->overrideMaxMANP = v; }
void CompilerEngine::setClientParametersFuncName(const llvm::StringRef &name) {
this->clientParametersFuncName = name.str();
}
void CompilerEngine::setEnablePass(
std::function<bool(mlir::Pass *)> enablePass) {
this->enablePass = enablePass;
}
// Returns the overwritten V0FHEConstraint or try to compute them from HLFHE
llvm::Expected<llvm::Optional<mlir::zamalang::V0FHEConstraint>>
CompilerEngine::getV0FHEConstraint(CompilationResult &res) {
mlir::MLIRContext &mlirContext = *this->compilationContext->getMLIRContext();
mlir::ModuleOp module = res.mlirModuleRef->get();
llvm::Optional<mlir::zamalang::V0FHEConstraint> fheConstraints;
// If the values has been overwritten returns
if (this->overrideMaxEintPrecision.hasValue() &&
this->overrideMaxMANP.hasValue()) {
return mlir::zamalang::V0FHEConstraint{
this->overrideMaxMANP.getValue(),
this->overrideMaxEintPrecision.getValue()};
}
// Else compute constraint from HLFHE
llvm::Expected<llvm::Optional<mlir::zamalang::V0FHEConstraint>>
fheConstraintsOrErr =
mlir::zamalang::pipeline::getFHEConstraintsFromHLFHE(
mlirContext, module, enablePass);
mlir::zamalang::V0FHEConstraint fheConstraints = fheConstraintsOpt.getValue();
const mlir::zamalang::V0Parameter *parameter = getV0Parameter(fheConstraints);
if (!parameter) {
std::string buffer;
llvm::raw_string_ostream strs(buffer);
strs << "Could not determine V0 parameters for 2-norm of "
<< fheConstraints.norm2 << " and p of " << fheConstraints.p;
return llvm::make_error<llvm::StringError>(strs.str(),
llvm::inconvertibleErrorCode());
}
mlir::zamalang::V0FHEContext fheContext{fheConstraints, *parameter};
// Lower to MLIR Std
if (mlir::zamalang::pipeline::lowerHLFHEToStd(*context, module, fheContext,
false)
.failed()) {
return llvm::make_error<llvm::StringError>("failed to lower to MLIR Std",
llvm::inconvertibleErrorCode());
}
// Create the client parameters
auto clientParameter = mlir::zamalang::createClientParametersForV0(
fheContext, "main", module_ref.get());
if (auto err = clientParameter.takeError()) {
if (auto err = fheConstraintsOrErr.takeError())
return std::move(err);
}
auto maybeKeySet =
mlir::zamalang::KeySet::generate(clientParameter.get(), 0, 0);
if (auto err = maybeKeySet.takeError()) {
return std::move(err);
}
keySet = std::move(maybeKeySet.get());
// Lower to MLIR LLVM Dialect
if (mlir::zamalang::pipeline::lowerStdToLLVMDialect(*context, module, false)
.failed()) {
return llvm::make_error<llvm::StringError>(
"failed to lower to LLVM dialect", llvm::inconvertibleErrorCode());
return fheConstraintsOrErr.get();
}
// set the fheContext field if the v0Constraint can be computed
llvm::Error CompilerEngine::determineFHEParameters(CompilationResult &res) {
auto fheConstraintOrErr = getV0FHEConstraint(res);
if (auto err = fheConstraintOrErr.takeError())
return std::move(err);
if (!fheConstraintOrErr.get().hasValue()) {
return llvm::Error::success();
}
const mlir::zamalang::V0Parameter *fheParams =
getV0Parameter(fheConstraintOrErr.get().getValue());
if (!fheParams) {
return StreamStringError()
<< "Could not determine V0 parameters for 2-norm of "
<< (*fheConstraintOrErr)->norm2 << " and p of "
<< (*fheConstraintOrErr)->p;
}
res.fheContext.emplace(mlir::zamalang::V0FHEContext{
(*fheConstraintOrErr).getValue(), *fheParams});
return llvm::Error::success();
}
llvm::Expected<std::unique_ptr<JITLambda::Argument>>
CompilerEngine::buildArgument() {
if (keySet.get() == nullptr) {
return llvm::make_error<llvm::StringError>(
"CompilerEngine::buildArgument: invalid engine state, the keySet has "
"not been generated",
llvm::inconvertibleErrorCode());
}
return JITLambda::Argument::create(*keySet);
}
// Compile the sources managed by the source manager `sm` to the
// target dialect `target`. If successful, the result can be retrieved
// using `getModule()` and `getLLVMModule()`, respectively depending
// on the target dialect.
llvm::Expected<CompilerEngine::CompilationResult>
CompilerEngine::compile(llvm::SourceMgr &sm, Target target) {
CompilationResult res(this->compilationContext);
llvm::Error CompilerEngine::invoke(JITLambda::Argument &arg) {
// Create the JIT lambda
auto defaultOptPipeline = mlir::makeOptimizingTransformer(3, 0, nullptr);
auto module = module_ref.get();
auto maybeLambda =
mlir::zamalang::JITLambda::create("main", module, defaultOptPipeline);
if (auto err = maybeLambda.takeError()) {
return std::move(err);
}
// Invoke the lambda
if (auto err = maybeLambda.get()->invoke(arg)) {
return std::move(err);
}
return llvm::Error::success();
}
mlir::MLIRContext &mlirContext = *this->compilationContext->getMLIRContext();
llvm::Expected<uint64_t> CompilerEngine::run(std::vector<uint64_t> args) {
// Build the argument of the JIT lambda.
auto maybeArgument = buildArgument();
if (auto err = maybeArgument.takeError()) {
return std::move(err);
mlir::SourceMgrDiagnosticVerifierHandler smHandler(sm, &mlirContext);
mlirContext.printOpOnDiagnostic(false);
mlir::OwningModuleRef mlirModuleRef =
mlir::parseSourceFile<mlir::ModuleOp>(sm, &mlirContext);
if (this->verifyDiagnostics) {
if (smHandler.verify().failed())
return StreamStringError("Verification of diagnostics failed");
else
return res;
}
// Set the integer arguments
auto arguments = std::move(maybeArgument.get());
for (auto i = 0; i < args.size(); i++) {
if (auto err = arguments->setArg(i, args[i])) {
return std::move(err);
if (!mlirModuleRef)
return StreamStringError("Could not parse source");
res.mlirModuleRef = std::move(mlirModuleRef);
mlir::ModuleOp module = res.mlirModuleRef->get();
if (target == Target::ROUND_TRIP)
return res;
// HLFHE High level pass to determine FHE parameters
if (auto err = this->determineFHEParameters(res))
return std::move(err);
if (target == Target::HLFHE)
return res;
// HLFHE -> MidLFHE
if (mlir::zamalang::pipeline::lowerHLFHEToMidLFHE(mlirContext, module,
enablePass)
.failed()) {
return StreamStringError("Lowering from HLFHE to MidLFHE failed");
}
if (target == Target::MIDLFHE)
return res;
// MidLFHE -> LowLFHE
if (mlir::zamalang::pipeline::lowerMidLFHEToLowLFHE(
mlirContext, module, res.fheContext, this->enablePass)
.failed()) {
return StreamStringError("Lowering from MidLFHE to LowLFHE failed");
}
if (target == Target::LOWLFHE)
return res;
// LowLFHE -> Canonical dialects
if (mlir::zamalang::pipeline::lowerLowLFHEToStd(mlirContext, module,
enablePass)
.failed()) {
return StreamStringError(
"Lowering from LowLFHE to canonical MLIR dialects failed");
}
if (target == Target::STD)
return res;
// Generate client parameters if requested
if (this->generateClientParameters) {
if (!this->clientParametersFuncName.hasValue()) {
return StreamStringError(
"Generation of client parameters requested, but no function name "
"specified");
}
if (!res.fheContext.hasValue()) {
return StreamStringError(
"Cannot generate client parameters, the fhe context is empty");
}
llvm::Expected<mlir::zamalang::ClientParameters> clientParametersOrErr =
mlir::zamalang::createClientParametersForV0(
*res.fheContext, *this->clientParametersFuncName, module);
if (llvm::Error err = clientParametersOrErr.takeError())
return std::move(err);
res.clientParameters = clientParametersOrErr.get();
}
// Invoke the lambda
if (auto err = invoke(*arguments)) {
return std::move(err);
// MLIR canonical dialects -> LLVM Dialect
if (mlir::zamalang::pipeline::lowerStdToLLVMDialect(mlirContext, module,
enablePass)
.failed()) {
return StreamStringError("Failed to lower to LLVM dialect");
}
uint64_t res = 0;
if (auto err = arguments->getResult(0, res)) {
return std::move(err);
if (target == Target::LLVM)
return res;
// Lowering to actual LLVM IR (i.e., not the LLVM dialect)
llvm::LLVMContext &llvmContext = *this->compilationContext->getLLVMContext();
res.llvmModule = mlir::zamalang::pipeline::lowerLLVMDialectToLLVMIR(
mlirContext, llvmContext, module);
if (!res.llvmModule)
return StreamStringError("Failed to convert from LLVM dialect to LLVM IR");
if (target == Target::LLVM_IR)
return res;
if (mlir::zamalang::pipeline::optimizeLLVMModule(llvmContext, *res.llvmModule)
.failed()) {
return StreamStringError("Failed to optimize LLVM IR");
}
if (target == Target::OPTIMIZED_LLVM_IR)
return res;
return res;
} // namespace zamalang
// Compile the source `s` to the target dialect `target`. If successful, the
// result can be retrieved using `getModule()` and `getLLVMModule()`,
// respectively depending on the target dialect.
llvm::Expected<CompilerEngine::CompilationResult>
CompilerEngine::compile(llvm::StringRef s, Target target) {
std::unique_ptr<llvm::MemoryBuffer> mb = llvm::MemoryBuffer::getMemBuffer(s);
llvm::Expected<CompilationResult> res = this->compile(std::move(mb), target);
return std::move(res);
}
// Compile the contained in `buffer` to the target dialect
// `target`. If successful, the result can be retrieved using
// `getModule()` and `getLLVMModule()`, respectively depending on the
// target dialect.
llvm::Expected<CompilerEngine::CompilationResult>
CompilerEngine::compile(std::unique_ptr<llvm::MemoryBuffer> buffer,
Target target) {
llvm::SourceMgr sm;
sm.AddNewSourceBuffer(std::move(buffer), llvm::SMLoc());
llvm::Expected<CompilationResult> res = this->compile(sm, target);
return std::move(res);
}
} // namespace zamalang
} // namespace mlir

View File

@@ -0,0 +1,12 @@
#include <zamalang/Support/Error.h>
namespace mlir {
namespace zamalang {
// Specialized `operator<<` for `llvm::Error` that marks the error
// as checked through `std::move` and `llvm::toString`
StreamStringError &operator<<(StreamStringError &se, llvm::Error &err) {
se << llvm::toString(std::move(err));
return se;
}
} // namespace zamalang
} // namespace mlir

View File

@@ -1,3 +1,4 @@
#include "llvm/Support/Error.h"
#include <llvm/ADT/ArrayRef.h>
#include <llvm/ADT/SmallVector.h>
#include <llvm/ADT/StringRef.h>
@@ -12,56 +13,6 @@
namespace mlir {
namespace zamalang {
// JIT-compiles `module` invokes `func` with the arguments passed in
// `jitArguments` and `keySet`
mlir::LogicalResult
runJit(mlir::ModuleOp module, llvm::StringRef func,
llvm::ArrayRef<uint64_t> funcArgs, mlir::zamalang::KeySet &keySet,
std::function<llvm::Error(llvm::Module *)> optPipeline,
llvm::raw_ostream &os) {
// Create the JIT lambda
auto maybeLambda =
mlir::zamalang::JITLambda::create(func, module, optPipeline);
if (!maybeLambda) {
return mlir::failure();
}
auto lambda = std::move(maybeLambda.get());
// Create the arguments of the JIT lambda
auto maybeArguments = mlir::zamalang::JITLambda::Argument::create(keySet);
if (auto err = maybeArguments.takeError()) {
::mlir::zamalang::log_error()
<< "Cannot create lambda arguments: " << err << "\n";
llvm::consumeError(std::move(err));
return mlir::failure();
}
// Set the arguments
auto arguments = std::move(maybeArguments.get());
for (size_t i = 0; i < funcArgs.size(); i++) {
if (auto err = arguments->setArg(i, funcArgs[i])) {
::mlir::zamalang::log_error()
<< "Cannot push argument " << i << ": " << err << "\n";
llvm::consumeError(std::move(err));
return mlir::failure();
}
}
// Invoke the lambda
if (auto err = lambda->invoke(*arguments)) {
::mlir::zamalang::log_error() << "Cannot invoke : " << err << "\n";
llvm::consumeError(std::move(err));
return mlir::failure();
}
uint64_t res = 0;
if (auto err = arguments->getResult(0, res)) {
::mlir::zamalang::log_error() << "Cannot get result : " << err << "\n";
llvm::consumeError(std::move(err));
return mlir::failure();
}
llvm::errs() << res << "\n";
return mlir::success();
}
llvm::Expected<std::unique_ptr<JITLambda>>
JITLambda::create(llvm::StringRef name, mlir::ModuleOp &module,
llvm::function_ref<llvm::Error(llvm::Module *)> optPipeline) {
@@ -379,6 +330,20 @@ llvm::Error JITLambda::Argument::getResult(size_t pos, uint64_t &res) {
return llvm::Error::success();
}
// Returns the number of elements of the result vector at position
// `pos` or an error if the result is a scalar value
llvm::Expected<size_t> JITLambda::Argument::getResultVectorSize(size_t pos) {
auto gate = outputGates[pos];
auto info = std::get<0>(gate);
if (info.shape.size == 0) {
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"Result at pos %zu is not a tensor", pos);
}
return info.shape.size;
}
llvm::Error JITLambda::Argument::getResult(size_t pos, uint64_t *res,
size_t size) {

View File

@@ -0,0 +1,118 @@
#include "llvm/Support/Error.h"
#include <llvm/ADT/STLExtras.h>
#include <llvm/Support/TargetSelect.h>
#include <mlir/ExecutionEngine/OptUtils.h>
#include <mlir/Target/LLVMIR/Dialect/LLVMIR/LLVMToLLVMIRTranslation.h>
#include <zamalang/Support/JitCompilerEngine.h>
namespace mlir {
namespace zamalang {
JitCompilerEngine::JitCompilerEngine(
std::shared_ptr<CompilationContext> compilationContext,
unsigned int optimizationLevel)
: CompilerEngine(compilationContext), optimizationLevel(optimizationLevel) {
}
// Returns the `LLVMFuncOp` operation in the compiled module with the
// specified name. If no LLVMFuncOp with that name exists or if there
// was no prior call to `compile()` resulting in an MLIR module in the
// LLVM dialect, an error is returned.
llvm::Expected<mlir::LLVM::LLVMFuncOp>
JitCompilerEngine::findLLVMFuncOp(mlir::ModuleOp module, llvm::StringRef name) {
auto funcOps = module.getOps<mlir::LLVM::LLVMFuncOp>();
auto funcOp = llvm::find_if(
funcOps, [&](mlir::LLVM::LLVMFuncOp op) { return op.getName() == name; });
if (funcOp == funcOps.end()) {
return StreamStringError()
<< "Module does not contain function named '" << name.str() << "'";
}
return *funcOp;
}
// Build a lambda from the function with the name given in
// `funcName` from the sources in `buffer`.
llvm::Expected<JitCompilerEngine::Lambda>
JitCompilerEngine::buildLambda(std::unique_ptr<llvm::MemoryBuffer> buffer,
llvm::StringRef funcName) {
llvm::SourceMgr sm;
sm.AddNewSourceBuffer(std::move(buffer), llvm::SMLoc());
llvm::Expected<JitCompilerEngine::Lambda> res =
this->buildLambda(sm, funcName);
return std::move(res);
}
// Build a lambda from the function with the name given in `funcName`
// from the source string `s`.
llvm::Expected<JitCompilerEngine::Lambda>
JitCompilerEngine::buildLambda(llvm::StringRef s, llvm::StringRef funcName) {
std::unique_ptr<llvm::MemoryBuffer> mb = llvm::MemoryBuffer::getMemBuffer(s);
llvm::Expected<JitCompilerEngine::Lambda> res =
this->buildLambda(std::move(mb), funcName);
return std::move(res);
}
// Build a lambda from the function with the name given in
// `funcName` from the sources managed by the source manager `sm`.
llvm::Expected<JitCompilerEngine::Lambda>
JitCompilerEngine::buildLambda(llvm::SourceMgr &sm, llvm::StringRef funcName) {
MLIRContext &mlirContext = *this->compilationContext->getMLIRContext();
this->setGenerateClientParameters(true);
this->setClientParametersFuncName(funcName);
// First, compile to LLVM Dialect
llvm::Expected<CompilerEngine::CompilationResult> compResOrErr =
this->compile(sm, Target::LLVM_IR);
if (!compResOrErr)
return std::move(compResOrErr.takeError());
mlir::ModuleOp module = compResOrErr->mlirModuleRef->get();
// Locate function to JIT-compile
llvm::Expected<mlir::LLVM::LLVMFuncOp> funcOrError =
this->findLLVMFuncOp(compResOrErr->mlirModuleRef->get(), funcName);
if (!funcOrError)
return std::move(funcOrError.takeError());
// Prepare LLVM infrastructure for JIT compilation
llvm::InitializeNativeTarget();
llvm::InitializeNativeTargetAsmPrinter();
mlir::registerLLVMDialectTranslation(mlirContext);
llvm::function_ref<llvm::Error(llvm::Module *)> optPipeline =
mlir::makeOptimizingTransformer(3, 0, nullptr);
llvm::Expected<std::unique_ptr<JITLambda>> lambdaOrErr =
mlir::zamalang::JITLambda::create(funcName, module, optPipeline);
// Generate the KeySet for encrypting lambda arguments, decrypting lambda
// results
if (!compResOrErr->clientParameters.hasValue()) {
return StreamStringError("Cannot generate the keySet since client "
"parameters has not been computed");
}
llvm::Expected<std::unique_ptr<mlir::zamalang::KeySet>> keySetOrErr =
mlir::zamalang::KeySet::generate(*compResOrErr->clientParameters, 0, 0);
if (auto err = keySetOrErr.takeError())
return std::move(err);
if (!lambdaOrErr)
return std::move(lambdaOrErr.takeError());
return Lambda{this->compilationContext, std::move(lambdaOrErr.get()),
std::move(*keySetOrErr)};
}
} // namespace zamalang
} // namespace mlir

View File

@@ -0,0 +1,7 @@
#include <zamalang/Support/LambdaArgument.h>
namespace mlir {
namespace zamalang {
char LambdaArgument::ID = 0;
} // namespace zamalang
} // namespace mlir

View File

@@ -19,35 +19,52 @@
namespace mlir {
namespace zamalang {
namespace pipeline {
static void addPotentiallyNestedPass(mlir::PassManager &pm,
std::unique_ptr<Pass> pass) {
if (!pass->getOpName() || *pass->getOpName() == "builtin.module") {
pm.addPass(std::move(pass));
} else {
pm.nest(*pass->getOpName()).addPass(std::move(pass));
static void pipelinePrinting(llvm::StringRef name, mlir::PassManager &pm,
mlir::MLIRContext &ctx) {
if (mlir::zamalang::isVerbose()) {
mlir::zamalang::log_verbose()
<< "##################################################\n"
<< "### " << name << " pipeline\n";
auto isModule = [](mlir::Pass *, mlir::Operation *op) {
return mlir::isa<mlir::ModuleOp>(op);
};
ctx.disableMultithreading(true);
pm.enableIRPrinting(isModule, isModule);
pm.enableStatistics();
pm.enableTiming();
pm.enableVerifier();
}
}
// Creates an instance of the Minimal Arithmetic Noise Padding pass
// and invokes it for all functions of `module`.
mlir::LogicalResult invokeMANPPass(mlir::MLIRContext &context,
mlir::ModuleOp &module, bool debug) {
mlir::PassManager pm(&context);
pm.addNestedPass<mlir::FuncOp>(mlir::zamalang::createMANPPass(debug));
return pm.run(module);
static void
addPotentiallyNestedPass(mlir::PassManager &pm, std::unique_ptr<Pass> pass,
std::function<bool(mlir::Pass *)> enablePass) {
if (!enablePass(pass.get())) {
return;
}
if (!pass->getOpName() || *pass->getOpName() == "builtin.module") {
pm.addPass(std::move(pass));
} else {
mlir::OpPassManager &p = pm.nest(*pass->getOpName());
p.addPass(std::move(pass));
}
}
llvm::Expected<llvm::Optional<mlir::zamalang::V0FHEConstraint>>
getFHEConstraintsFromHLFHE(mlir::MLIRContext &context, mlir::ModuleOp &module) {
getFHEConstraintsFromHLFHE(mlir::MLIRContext &context, mlir::ModuleOp &module,
std::function<bool(mlir::Pass *)> enablePass) {
llvm::Optional<size_t> oMax2norm;
llvm::Optional<size_t> oMaxWidth;
mlir::PassManager pm(&context);
addPotentiallyNestedPass(pm, mlir::zamalang::createMANPPass());
pipelinePrinting("ComputeFHEConstraintOnHLFHE", pm, context);
addPotentiallyNestedPass(pm, mlir::zamalang::createMANPPass(), enablePass);
addPotentiallyNestedPass(
pm, mlir::zamalang::createMaxMANPPass([&](const llvm::APInt &currMaxMANP,
unsigned currMaxWidth) {
pm,
mlir::zamalang::createMaxMANPPass([&](const llvm::APInt &currMaxMANP,
unsigned currMaxWidth) {
assert((uint64_t)currMaxWidth < std::numeric_limits<size_t>::max() &&
"Maximum width does not fit into size_t");
@@ -63,105 +80,95 @@ getFHEConstraintsFromHLFHE(mlir::MLIRContext &context, mlir::ModuleOp &module) {
if (!oMaxWidth.hasValue() || oMaxWidth.getValue() < width)
oMaxWidth.emplace(width);
}));
}),
enablePass);
if (pm.run(module.getOperation()).failed()) {
return llvm::make_error<llvm::StringError>(
"Failed to determine the maximum Arithmetic Noise Padding and maximum"
"required precision",
llvm::inconvertibleErrorCode());
}
llvm::Optional<mlir::zamalang::V0FHEConstraint> ret;
if (oMax2norm.hasValue() && oMaxWidth.hasValue()) {
ret = llvm::Optional<mlir::zamalang::V0FHEConstraint>(
{.norm2 = ceilLog2(oMax2norm.getValue()), .p = oMaxWidth.getValue()});
{/*.norm2 = */ ceilLog2(oMax2norm.getValue()),
/*.p = */ oMaxWidth.getValue()});
}
return ret;
}
mlir::LogicalResult lowerHLFHEToMidLFHE(mlir::MLIRContext &context,
mlir::ModuleOp &module, bool verbose) {
mlir::LogicalResult
lowerHLFHEToMidLFHE(mlir::MLIRContext &context, mlir::ModuleOp &module,
std::function<bool(mlir::Pass *)> enablePass) {
mlir::PassManager pm(&context);
pipelinePrinting("HLFHEToMidLFHE", pm, context);
if (verbose) {
mlir::zamalang::log_verbose()
<< "##################################################\n"
<< "### HLFHE to MidLFHE pipeline\n";
addPotentiallyNestedPass(
pm, mlir::zamalang::createConvertHLFHETensorOpsToLinalg(), enablePass);
addPotentiallyNestedPass(
pm, mlir::zamalang::createConvertHLFHEToMidLFHEPass(), enablePass);
pm.enableIRPrinting();
pm.enableStatistics();
pm.enableTiming();
pm.enableVerifier();
return pm.run(module.getOperation());
}
mlir::LogicalResult
lowerMidLFHEToLowLFHE(mlir::MLIRContext &context, mlir::ModuleOp &module,
llvm::Optional<V0FHEContext> &fheContext,
std::function<bool(mlir::Pass *)> enablePass) {
mlir::PassManager pm(&context);
pipelinePrinting("MidLFHEToLowLFHE", pm, context);
if (fheContext.hasValue()) {
addPotentiallyNestedPass(
pm,
mlir::zamalang::createConvertMidLFHEGlobalParametrizationPass(
fheContext.getValue()),
enablePass);
}
addPotentiallyNestedPass(
pm, mlir::zamalang::createConvertHLFHETensorOpsToLinalg());
addPotentiallyNestedPass(pm,
mlir::zamalang::createConvertHLFHEToMidLFHEPass());
pm, mlir::zamalang::createConvertMidLFHEToLowLFHEPass(), enablePass);
return pm.run(module.getOperation());
}
mlir::LogicalResult lowerMidLFHEToLowLFHE(mlir::MLIRContext &context,
mlir::ModuleOp &module,
V0FHEContext &fheContext,
bool parametrize) {
mlir::PassManager pm(&context);
if (parametrize) {
addPotentiallyNestedPass(
pm, mlir::zamalang::createConvertMidLFHEGlobalParametrizationPass(
fheContext));
}
addPotentiallyNestedPass(pm,
mlir::zamalang::createConvertMidLFHEToLowLFHEPass());
return pm.run(module.getOperation());
}
mlir::LogicalResult lowerLowLFHEToStd(mlir::MLIRContext &context,
mlir::ModuleOp &module) {
mlir::LogicalResult
lowerLowLFHEToStd(mlir::MLIRContext &context, mlir::ModuleOp &module,
std::function<bool(mlir::Pass *)> enablePass) {
mlir::PassManager pm(&context);
pipelinePrinting("LowLFHEToStd", pm, context);
pm.addPass(mlir::zamalang::createConvertLowLFHEToConcreteCAPIPass());
return pm.run(module.getOperation());
}
mlir::LogicalResult lowerStdToLLVMDialect(mlir::MLIRContext &context,
mlir::ModuleOp &module,
bool verbose) {
mlir::LogicalResult
lowerStdToLLVMDialect(mlir::MLIRContext &context, mlir::ModuleOp &module,
std::function<bool(mlir::Pass *)> enablePass) {
mlir::PassManager pm(&context);
if (verbose) {
mlir::zamalang::log_verbose()
<< "##################################################\n"
<< "### MlirStdsDialectToMlirLLVMDialect pipeline\n";
context.disableMultithreading();
pm.enableIRPrinting();
pm.enableStatistics();
pm.enableTiming();
pm.enableVerifier();
}
pipelinePrinting("StdToLLVM", pm, context);
// Unparametrize LowLFHE
addPotentiallyNestedPass(
pm, mlir::zamalang::createConvertLowLFHEUnparametrizePass());
pm, mlir::zamalang::createConvertLowLFHEUnparametrizePass(), enablePass);
// Bufferize
addPotentiallyNestedPass(pm, mlir::createTensorConstantBufferizePass());
addPotentiallyNestedPass(pm, mlir::createStdBufferizePass());
addPotentiallyNestedPass(pm, mlir::createTensorBufferizePass());
addPotentiallyNestedPass(pm, mlir::createLinalgBufferizePass());
addPotentiallyNestedPass(pm, mlir::createConvertLinalgToLoopsPass());
addPotentiallyNestedPass(pm, mlir::createFuncBufferizePass());
addPotentiallyNestedPass(pm, mlir::createFinalizingBufferizePass());
addPotentiallyNestedPass(pm, mlir::createTensorConstantBufferizePass(),
enablePass);
addPotentiallyNestedPass(pm, mlir::createStdBufferizePass(), enablePass);
addPotentiallyNestedPass(pm, mlir::createTensorBufferizePass(), enablePass);
addPotentiallyNestedPass(pm, mlir::createLinalgBufferizePass(), enablePass);
addPotentiallyNestedPass(pm, mlir::createConvertLinalgToLoopsPass(),
enablePass);
addPotentiallyNestedPass(pm, mlir::createFuncBufferizePass(), enablePass);
addPotentiallyNestedPass(pm, mlir::createFinalizingBufferizePass(),
enablePass);
// Convert to MLIR LLVM Dialect
addPotentiallyNestedPass(
pm, mlir::zamalang::createConvertMLIRLowerableDialectsToLLVMPass());
pm, mlir::zamalang::createConvertMLIRLowerableDialectsToLLVMPass(),
enablePass);
return pm.run(module);
}
@@ -179,7 +186,7 @@ lowerLLVMDialectToLLVMIR(mlir::MLIRContext &context,
mlir::LogicalResult optimizeLLVMModule(llvm::LLVMContext &llvmContext,
llvm::Module &module) {
std::function<llvm::Error(llvm::Module *)> optPipeline =
llvm::function_ref<llvm::Error(llvm::Module *)> optPipeline =
mlir::makeOptimizingTransformer(3, 0, nullptr);
if (optPipeline(&module))
@@ -188,18 +195,6 @@ mlir::LogicalResult optimizeLLVMModule(llvm::LLVMContext &llvmContext,
return mlir::success();
}
mlir::LogicalResult lowerHLFHEToStd(mlir::MLIRContext &context,
mlir::ModuleOp &module,
V0FHEContext &fheContext, bool verbose) {
if (lowerHLFHEToMidLFHE(context, module, verbose).failed() ||
lowerMidLFHEToLowLFHE(context, module, fheContext, true).failed() ||
lowerLowLFHEToStd(context, module).failed()) {
return mlir::failure();
} else {
return mlir::success();
}
}
} // namespace pipeline
} // namespace zamalang
} // namespace mlir

View File

@@ -18,5 +18,6 @@ StreamWrap<llvm::raw_ostream> &log_verbose(void) {
// Sets up logging. If `verbose` is false, messages passed to
// `log_verbose` will be discarded.
void setupLogging(bool verbose) { ::mlir::zamalang::verbose = verbose; }
bool isVerbose() { return verbose; }
} // namespace zamalang
} // namespace mlir

55
compiler/setup.py Normal file
View File

@@ -0,0 +1,55 @@
import os
import subprocess
import setuptools
from setuptools import Extension
from setuptools.command.build_ext import build_ext
def read(fname):
return open(os.path.join(os.path.dirname(__file__), fname)).read()
class MakeExtension(Extension):
def __init__(self, name, sourcedir=""):
Extension.__init__(self, name, sources=[])
self.sourcedir = os.path.abspath(sourcedir)
class MakeBuild(build_ext):
def run(self):
for ext in self.extensions:
self.build_extension(ext)
def build_extension(self, ext):
subprocess.check_call(["make", "python-bindings"])
setuptools.setup(
name="concretefhe-compiler",
version="0.1.0",
author="Zama Team",
author_email="hello@zama.ai",
description="Concrete Compiler",
license="",
keywords="homomorphic encryption compiler",
long_description=read("README.md"),
long_description_content_type="text/markdown",
url="https://github.com/zama-ai/homomorphizer",
packages=setuptools.find_packages(
where="build/tools/zamalang/python_packages/zamalang_core",
include=["zamalang", "zamalang.*", "mlir", "mlir.*"],
),
package_dir={"": "build/tools/zamalang/python_packages/zamalang_core"},
include_package_data=True,
package_data={"": ["*.so"]},
classifiers=[
"Programming Language :: C++",
"Programming Language :: Python :: 3",
"Topic :: Software Development :: Compilers",
"Topic :: Security :: Cryptography",
],
ext_modules=[MakeExtension("python-bindings")],
cmdclass=dict(build_ext=MakeBuild),
zip_safe=False,
)

View File

@@ -1,3 +1,4 @@
#include <cstdint>
#include <iostream>
#include <llvm/Support/CommandLine.h>
@@ -18,21 +19,19 @@
#include "zamalang/Conversion/Utils/GlobalFHEContext.h"
#include "zamalang/Dialect/HLFHE/IR/HLFHEDialect.h"
#include "zamalang/Dialect/HLFHE/IR/HLFHETypes.h"
#include "zamalang/Dialect/HLFHELinalg/IR/HLFHELinalgDialect.h"
#include "zamalang/Dialect/LowLFHE/IR/LowLFHEDialect.h"
#include "zamalang/Dialect/LowLFHE/IR/LowLFHETypes.h"
#include "zamalang/Dialect/MidLFHE/IR/MidLFHEDialect.h"
#include "zamalang/Dialect/MidLFHE/IR/MidLFHETypes.h"
#include "zamalang/Support/Jit.h"
#include "zamalang/Support/Error.h"
#include "zamalang/Support/JitCompilerEngine.h"
#include "zamalang/Support/KeySet.h"
#include "zamalang/Support/Pipeline.h"
#include "zamalang/Support/logging.h"
enum EntryDialect { HLFHE, MIDLFHE, LOWLFHE, STD, LLVM };
enum Action {
ROUND_TRIP,
DUMP_HLFHE_MANP,
DUMP_HLFHE,
DUMP_MIDLFHE,
DUMP_LOWLFHE,
DUMP_STD,
@@ -76,30 +75,10 @@ llvm::cl::opt<std::string> output("o",
llvm::cl::opt<bool> verbose("verbose", llvm::cl::desc("verbose logs"),
llvm::cl::init<bool>(false));
llvm::cl::opt<bool> parametrizeMidLFHE(
"parametrize-midlfhe",
llvm::cl::desc("Perform MidLFHE global parametrization pass"),
llvm::cl::init<bool>(true));
static llvm::cl::opt<enum EntryDialect> entryDialect(
"e", "entry-dialect", llvm::cl::desc("Entry dialect"),
llvm::cl::init<enum EntryDialect>(EntryDialect::HLFHE),
llvm::cl::ValueRequired, llvm::cl::NumOccurrencesFlag::Required,
llvm::cl::values(
clEnumValN(EntryDialect::HLFHE, "hlfhe",
"Input module is composed of HLFHE operations")),
llvm::cl::values(
clEnumValN(EntryDialect::MIDLFHE, "midlfhe",
"Input module is composed of MidLFHE operations")),
llvm::cl::values(
clEnumValN(EntryDialect::LOWLFHE, "lowlfhe",
"Input module is composed of LowLFHE operations")),
llvm::cl::values(
clEnumValN(EntryDialect::STD, "std",
"Input module is composed of operations from std")),
llvm::cl::values(
clEnumValN(EntryDialect::LLVM, "llvm",
"Input module is composed of operations from llvm")));
llvm::cl::list<std::string> passes(
"passes",
llvm::cl::desc("Specify the passes to run (use only for compiler tests)"),
llvm::cl::value_desc("passname"), llvm::cl::ZeroOrMore);
static llvm::cl::opt<enum Action> action(
"a", "action", llvm::cl::desc("output mode"), llvm::cl::ValueRequired,
@@ -107,9 +86,8 @@ static llvm::cl::opt<enum Action> action(
llvm::cl::values(
clEnumValN(Action::ROUND_TRIP, "roundtrip",
"Parse input module and regenerate textual representation")),
llvm::cl::values(clEnumValN(Action::DUMP_HLFHE_MANP, "dump-hlfhe-manp",
"Dump HLFHE module after running the Minimal "
"Arithmetic Noise Padding pass")),
llvm::cl::values(clEnumValN(Action::DUMP_HLFHE, "dump-hlfhe",
"Dump HLFHE module")),
llvm::cl::values(clEnumValN(Action::DUMP_MIDLFHE, "dump-midlfhe",
"Lower to MidLFHE and dump result")),
llvm::cl::values(clEnumValN(Action::DUMP_LOWLFHE, "dump-lowlfhe",
@@ -159,50 +137,7 @@ llvm::cl::opt<llvm::Optional<size_t>, false, OptionalSizeTParser> assumeMaxMANP(
llvm::cl::desc(
"Assume a maximum for the Minimum Arithmetic Noise Padding"));
}; // namespace cmdline
std::function<llvm::Error(llvm::Module *)> defaultOptPipeline =
mlir::makeOptimizingTransformer(3, 0, nullptr);
std::unique_ptr<mlir::zamalang::KeySet>
generateKeySet(mlir::ModuleOp &module, mlir::zamalang::V0FHEContext &fheContext,
const std::string &jitFuncName) {
std::unique_ptr<mlir::zamalang::KeySet> keySet;
mlir::zamalang::log_verbose()
<< "### Global FHE constraint: {norm2:" << fheContext.constraint.norm2
<< ", p:" << fheContext.constraint.p << "}\n";
mlir::zamalang::log_verbose()
<< "### FHE parameters for the atomic pattern: {k: "
<< fheContext.parameter.k
<< ", polynomialSize: " << fheContext.parameter.polynomialSize
<< ", nSmall: " << fheContext.parameter.nSmall
<< ", brLevel: " << fheContext.parameter.brLevel
<< ", brLogBase: " << fheContext.parameter.brLogBase
<< ", ksLevel: " << fheContext.parameter.ksLevel
<< ", ksLogBase: " << fheContext.parameter.ksLogBase << "}\n";
// Create the client parameters
auto clientParameter = mlir::zamalang::createClientParametersForV0(
fheContext, jitFuncName, module);
if (auto err = clientParameter.takeError()) {
mlir::zamalang::log_error()
<< "cannot generate client parameters: " << err << "\n";
return nullptr;
}
mlir::zamalang::log_verbose() << "### Generate the key set\n";
auto maybeKeySet = mlir::zamalang::KeySet::generate(clientParameter.get(), 0,
0); // TODO: seed
if (auto err = maybeKeySet.takeError()) {
llvm::errs() << err;
return nullptr;
}
return std::move(maybeKeySet.get());
}
} // namespace cmdline
llvm::Expected<mlir::zamalang::V0FHEContext> buildFHEContext(
llvm::Optional<mlir::zamalang::V0FHEConstraint> autoFHEConstraints,
@@ -210,65 +145,48 @@ llvm::Expected<mlir::zamalang::V0FHEContext> buildFHEContext(
llvm::Optional<size_t> overrideMaxMANP) {
if (!autoFHEConstraints.hasValue() &&
(!overrideMaxMANP.hasValue() || !overrideMaxEintPrecision.hasValue())) {
return llvm::make_error<llvm::StringError>(
return mlir::zamalang::StreamStringError(
"Maximum encrypted integer precision and maximum for the Minimal"
"Arithmetic Noise Passing are required, but were neither specified"
"explicitly nor determined automatically",
llvm::inconvertibleErrorCode());
"explicitly nor determined automatically");
}
mlir::zamalang::V0FHEConstraint fheConstraints{
.norm2 = overrideMaxMANP.hasValue() ? overrideMaxMANP.getValue()
: autoFHEConstraints.getValue().norm2,
.p = overrideMaxEintPrecision.hasValue()
? overrideMaxEintPrecision.getValue()
: autoFHEConstraints.getValue().p};
overrideMaxMANP.hasValue() ? overrideMaxMANP.getValue()
: autoFHEConstraints.getValue().norm2,
overrideMaxEintPrecision.hasValue() ? overrideMaxEintPrecision.getValue()
: autoFHEConstraints.getValue().p};
const mlir::zamalang::V0Parameter *parameter = getV0Parameter(fheConstraints);
if (!parameter) {
std::string buffer;
llvm::raw_string_ostream strs(buffer);
strs << "Could not determine V0 parameters for 2-norm of "
<< fheConstraints.norm2 << " and p of " << fheConstraints.p;
return llvm::make_error<llvm::StringError>(strs.str(),
llvm::inconvertibleErrorCode());
return mlir::zamalang::StreamStringError()
<< "Could not determine V0 parameters for 2-norm of "
<< fheConstraints.norm2 << " and p of " << fheConstraints.p;
}
return mlir::zamalang::V0FHEContext{fheConstraints, *parameter};
}
mlir::LogicalResult buildAssignFHEContext(
llvm::Optional<mlir::zamalang::V0FHEContext> &fheContext,
llvm::Optional<mlir::zamalang::V0FHEConstraint> autoFHEConstraints,
llvm::Optional<size_t> overrideMaxEintPrecision,
llvm::Optional<size_t> overrideMaxMANP) {
namespace llvm {
// This needs to be wrapped into the llvm namespace for proper
// operator lookup
llvm::raw_ostream &operator<<(llvm::raw_ostream &os,
const llvm::ArrayRef<uint64_t> arr) {
os << "(";
for (size_t i = 0; i < arr.size(); i++) {
os << arr[i];
if (fheContext.hasValue())
return mlir::success();
llvm::Expected<mlir::zamalang::V0FHEContext> fheContextOrErr =
buildFHEContext(autoFHEConstraints, overrideMaxEintPrecision,
overrideMaxMANP);
if (auto err = fheContextOrErr.takeError()) {
mlir::zamalang::log_error() << err;
return mlir::failure();
if (i != arr.size() - 1)
os << ", ";
}
fheContext.emplace(fheContextOrErr.get());
return mlir::success();
return os;
}
} // namespace llvm
// Process a single source buffer
//
// The parameter `entryDialect` must specify the FHE dialect to which
// belong all FHE operations used in the source buffer. The input
// program must only contain FHE operations from that single FHE
// dialect, otherwise processing might fail.
//
// The parameter `action` specifies how the buffer should be processed
// and thus defines the output.
//
@@ -277,15 +195,14 @@ mlir::LogicalResult buildAssignFHEContext(
// using the parameters given in `jitArgs`.
//
// The parameter `parametrizeMidLFHE` defines, whether the
// parametrization pass for MidLFHE is executed. If the pair of
// `entryDialect` and `action` does not involve any MidlFHE
// manipulation, this parameter does not have any effect.
// parametrization pass for MidLFHE is executed. If the `action` does
// not involve any MidlFHE manipulation, this parameter does not have
// any effect.
//
// The parameters `overrideMaxEintPrecision` and `overrideMaxMANP`, if
// set, override the values for the maximum required precision of
// encrypted integers and the maximum value for the Minimum Arithmetic
// Noise Padding otherwise determined automatically if the entry
// dialect is HLFHE..
// Noise Padding otherwise determined automatically.
//
// If `verifyDiagnostics` is `true`, the procedure only checks if the
// diagnostic messages provided in the source buffer using
@@ -293,164 +210,106 @@ mlir::LogicalResult buildAssignFHEContext(
// the procedure checks if the parsed module is valid and if all
// requested transformations succeeded.
//
// If `verbose` is true, debug messages are displayed throughout the
// compilation process.
//
// Compilation output is written to the stream specified by `os`.
mlir::LogicalResult processInputBuffer(
mlir::MLIRContext &context, std::unique_ptr<llvm::MemoryBuffer> buffer,
enum EntryDialect entryDialect, enum Action action,
const std::string &jitFuncName, llvm::ArrayRef<uint64_t> jitArgs,
bool parametrizeMidlHFE, llvm::Optional<size_t> overrideMaxEintPrecision,
llvm::Optional<size_t> overrideMaxMANP, bool verifyDiagnostics,
bool verbose, llvm::raw_ostream &os) {
llvm::SourceMgr sourceMgr;
sourceMgr.AddNewSourceBuffer(std::move(buffer), llvm::SMLoc());
mlir::LogicalResult
processInputBuffer(std::unique_ptr<llvm::MemoryBuffer> buffer,
enum Action action, const std::string &jitFuncName,
llvm::ArrayRef<uint64_t> jitArgs,
llvm::Optional<size_t> overrideMaxEintPrecision,
llvm::Optional<size_t> overrideMaxMANP,
bool verifyDiagnostics, llvm::raw_ostream &os) {
std::shared_ptr<mlir::zamalang::CompilationContext> ccx =
mlir::zamalang::CompilationContext::createShared();
mlir::SourceMgrDiagnosticVerifierHandler sourceMgrHandler(sourceMgr,
&context);
mlir::OwningModuleRef moduleRef = mlir::parseSourceFile(sourceMgr, &context);
mlir::zamalang::JitCompilerEngine ce{ccx};
llvm::Optional<mlir::zamalang::V0FHEConstraint> fheConstraints;
llvm::Optional<mlir::zamalang::V0FHEContext> fheContext;
std::unique_ptr<mlir::zamalang::KeySet> keySet = nullptr;
if (verbose)
context.disableMultithreading();
if (verifyDiagnostics)
return sourceMgrHandler.verify();
if (!moduleRef)
return mlir::failure();
mlir::ModuleOp module = moduleRef.get();
if (action == Action::ROUND_TRIP) {
module->print(os);
return mlir::success();
ce.setVerifyDiagnostics(verifyDiagnostics);
if (cmdline::passes.size() != 0) {
ce.setEnablePass([](mlir::Pass *pass) {
return std::any_of(
cmdline::passes.begin(), cmdline::passes.end(),
[&](const std::string &p) { return pass->getArgument() == p; });
});
}
// Lowering pipeline. Each stage is represented as a label in the
// switch statement, from the most abstract dialect to the lowest
// level. Every labels acts as an entry point into the pipeline with
// a fallthrough mechanism to the next stage. Actions act as exit
// points from the pipeline.
switch (entryDialect) {
case EntryDialect::HLFHE:
if (action == Action::DUMP_HLFHE_MANP) {
if (mlir::zamalang::pipeline::invokeMANPPass(context, module, false)
.failed()) {
return mlir::failure();
}
if (overrideMaxEintPrecision.hasValue())
ce.setMaxEintPrecision(overrideMaxEintPrecision.getValue());
module.print(os);
return mlir::success();
} else {
llvm::Expected<llvm::Optional<mlir::zamalang::V0FHEConstraint>>
fheConstraintsOrErr =
mlir::zamalang::pipeline::getFHEConstraintsFromHLFHE(context,
module);
if (auto err = fheConstraintsOrErr.takeError()) {
mlir::zamalang::log_error() << err;
return mlir::failure();
} else {
fheConstraints = fheConstraintsOrErr.get();
}
}
if (overrideMaxMANP.hasValue())
ce.setMaxMANP(overrideMaxMANP.getValue());
if (mlir::zamalang::pipeline::lowerHLFHEToMidLFHE(context, module, verbose)
.failed())
return mlir::failure();
if (action == Action::JIT_INVOKE) {
llvm::Expected<mlir::zamalang::JitCompilerEngine::Lambda> lambdaOrErr =
ce.buildLambda(std::move(buffer), jitFuncName);
// fallthrough
case EntryDialect::MIDLFHE:
if (action == Action::DUMP_MIDLFHE) {
module.print(os);
return mlir::success();
}
if (buildAssignFHEContext(fheContext, fheConstraints,
overrideMaxEintPrecision, overrideMaxMANP)
.failed()) {
return mlir::failure();
}
if (mlir::zamalang::pipeline::lowerMidLFHEToLowLFHE(
context, module, fheContext.getValue(), parametrizeMidlHFE)
.failed())
return mlir::failure();
// fallthrough
case EntryDialect::LOWLFHE:
if (action == Action::DUMP_LOWLFHE) {
module.print(os);
return mlir::success();
}
if (mlir::zamalang::pipeline::lowerLowLFHEToStd(context, module).failed())
return mlir::failure();
// fallthrough
case EntryDialect::STD:
if (action == Action::DUMP_STD) {
module.print(os);
return mlir::success();
} else if (action == Action::JIT_INVOKE) {
if (buildAssignFHEContext(fheContext, fheConstraints,
overrideMaxEintPrecision, overrideMaxMANP)
.failed()) {
return mlir::failure();
}
keySet = generateKeySet(module, fheContext.getValue(), jitFuncName);
}
if (mlir::zamalang::pipeline::lowerStdToLLVMDialect(context, module,
verbose)
.failed())
return mlir::failure();
// fallthrough
case EntryDialect::LLVM: {
if (action == Action::DUMP_LLVM_DIALECT) {
module.print(os);
return mlir::success();
} else if (action == Action::JIT_INVOKE) {
return mlir::zamalang::runJit(module, jitFuncName, jitArgs, *keySet,
defaultOptPipeline, os);
}
llvm::LLVMContext llvmContext;
std::unique_ptr<llvm::Module> llvmModule =
mlir::zamalang::pipeline::lowerLLVMDialectToLLVMIR(context, llvmContext,
module);
if (!llvmModule) {
if (!lambdaOrErr) {
mlir::zamalang::log_error()
<< "Failed to translate LLVM dialect to LLVM IR\n";
<< "Failed to JIT-compile " << jitFuncName << ": "
<< llvm::toString(std::move(lambdaOrErr.takeError()));
return mlir::failure();
}
if (action == Action::DUMP_LLVM_IR) {
llvmModule->dump();
return mlir::success();
}
llvm::Expected<uint64_t> resOrErr = (*lambdaOrErr)(jitArgs);
if (mlir::zamalang::pipeline::optimizeLLVMModule(llvmContext, *llvmModule)
.failed()) {
mlir::zamalang::log_error() << "Failed to optimize LLVM IR\n";
if (!resOrErr) {
mlir::zamalang::log_error()
<< "Failed to JIT-invoke " << jitFuncName << " with arguments "
<< jitArgs << ": " << llvm::toString(std::move(resOrErr.takeError()));
return mlir::failure();
}
if (action == Action::DUMP_OPTIMIZED_LLVM_IR) {
llvmModule->dump();
return mlir::success();
os << *resOrErr << "\n";
} else {
enum mlir::zamalang::CompilerEngine::Target target;
switch (action) {
case Action::ROUND_TRIP:
target = mlir::zamalang::CompilerEngine::Target::ROUND_TRIP;
break;
case Action::DUMP_HLFHE:
target = mlir::zamalang::CompilerEngine::Target::HLFHE;
break;
case Action::DUMP_MIDLFHE:
target = mlir::zamalang::CompilerEngine::Target::MIDLFHE;
break;
case Action::DUMP_LOWLFHE:
target = mlir::zamalang::CompilerEngine::Target::LOWLFHE;
break;
case Action::DUMP_STD:
target = mlir::zamalang::CompilerEngine::Target::STD;
break;
case Action::DUMP_LLVM_DIALECT:
target = mlir::zamalang::CompilerEngine::Target::LLVM;
break;
case Action::DUMP_LLVM_IR:
target = mlir::zamalang::CompilerEngine::Target::LLVM_IR;
break;
case Action::DUMP_OPTIMIZED_LLVM_IR:
target = mlir::zamalang::CompilerEngine::Target::OPTIMIZED_LLVM_IR;
break;
case JIT_INVOKE:
// Case just here to satisfy the compiler; already handled above
break;
}
break;
}
llvm::Expected<mlir::zamalang::CompilerEngine::CompilationResult> retOrErr =
ce.compile(std::move(buffer), target);
if (!retOrErr) {
mlir::zamalang::log_error()
<< llvm::toString(std::move(retOrErr.takeError())) << "\n";
return mlir::failure();
}
if (verifyDiagnostics) {
return mlir::success();
} else if (action == Action::DUMP_LLVM_IR ||
action == Action::DUMP_OPTIMIZED_LLVM_IR) {
retOrErr->llvmModule->print(os, nullptr);
} else {
retOrErr->mlirModuleRef->get().print(os);
}
}
return mlir::success();
@@ -460,45 +319,11 @@ mlir::LogicalResult compilerMain(int argc, char **argv) {
// Parse command line arguments
llvm::cl::ParseCommandLineOptions(argc, argv);
// Initialize the MLIR context
mlir::MLIRContext context;
mlir::zamalang::setupLogging(cmdline::verbose);
// String for error messages from library functions
std::string errorMessage;
if (cmdline::action == Action::DUMP_HLFHE_MANP &&
cmdline::entryDialect != EntryDialect::HLFHE) {
mlir::zamalang::log_error()
<< "Can only invoke Minimal Arithmetic Noise pass on HLFHE programs";
return mlir::failure();
}
if (cmdline::action == Action::JIT_INVOKE &&
cmdline::entryDialect != EntryDialect::HLFHE &&
cmdline::entryDialect != EntryDialect::MIDLFHE &&
cmdline::entryDialect != EntryDialect::LOWLFHE &&
cmdline::entryDialect != EntryDialect::STD) {
mlir::zamalang::log_error()
<< "Can only JIT invoke HLFHE / MidLFHE / LowLFHE / STD programs";
return mlir::failure();
}
// Load our Dialect in this MLIR Context.
context.getOrLoadDialect<mlir::zamalang::HLFHELinalg::HLFHELinalgDialect>();
context.getOrLoadDialect<mlir::zamalang::HLFHE::HLFHEDialect>();
context.getOrLoadDialect<mlir::zamalang::MidLFHE::MidLFHEDialect>();
context.getOrLoadDialect<mlir::zamalang::LowLFHE::LowLFHEDialect>();
context.getOrLoadDialect<mlir::StandardOpsDialect>();
context.getOrLoadDialect<mlir::memref::MemRefDialect>();
context.getOrLoadDialect<mlir::linalg::LinalgDialect>();
context.getOrLoadDialect<mlir::tensor::TensorDialect>();
context.getOrLoadDialect<mlir::LLVM::LLVMDialect>();
if (cmdline::verifyDiagnostics)
context.printOpOnDiagnostic(false);
auto output = mlir::openOutputFile(cmdline::output, &errorMessage);
if (!output) {
@@ -525,20 +350,18 @@ mlir::LogicalResult compilerMain(int argc, char **argv) {
[&](std::unique_ptr<llvm::MemoryBuffer> inputBuffer,
llvm::raw_ostream &os) {
return processInputBuffer(
context, std::move(inputBuffer), cmdline::entryDialect,
cmdline::action, cmdline::jitFuncName, cmdline::jitArgs,
cmdline::parametrizeMidLFHE,
std::move(inputBuffer), cmdline::action,
cmdline::jitFuncName, cmdline::jitArgs,
cmdline::assumeMaxEintPrecision, cmdline::assumeMaxMANP,
cmdline::verifyDiagnostics, cmdline::verbose, os);
cmdline::verifyDiagnostics, os);
},
output->os())))
return mlir::failure();
} else {
return processInputBuffer(
context, std::move(file), cmdline::entryDialect, cmdline::action,
cmdline::jitFuncName, cmdline::jitArgs, cmdline::parametrizeMidLFHE,
cmdline::assumeMaxEintPrecision, cmdline::assumeMaxMANP,
cmdline::verifyDiagnostics, cmdline::verbose, output->os());
std::move(file), cmdline::action, cmdline::jitFuncName,
cmdline::jitArgs, cmdline::assumeMaxEintPrecision,
cmdline::assumeMaxMANP, cmdline::verifyDiagnostics, output->os());
}
}

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler %s --entry-dialect=hlfhe --action=dump-midlfhe 2>&1| FileCheck %s
// RUN: zamacompiler %s --passes hlfhe-to-midlfhe --action=dump-midlfhe 2>&1| FileCheck %s
// CHECK-LABEL: func @add_eint(%arg0: !MidLFHE.glwe<{_,_,_}{7}>, %arg1: !MidLFHE.glwe<{_,_,_}{7}>) -> !MidLFHE.glwe<{_,_,_}{7}>
func @add_eint(%arg0: !HLFHE.eint<7>, %arg1: !HLFHE.eint<7>) -> !HLFHE.eint<7> {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler %s --entry-dialect=hlfhe --action=dump-midlfhe 2>&1| FileCheck %s
// RUN: zamacompiler %s --passes hlfhe-to-midlfhe --action=dump-midlfhe 2>&1| FileCheck %s
// CHECK-LABEL: func @add_eint_int(%arg0: !MidLFHE.glwe<{_,_,_}{7}>) -> !MidLFHE.glwe<{_,_,_}{7}>
func @add_eint_int(%arg0: !HLFHE.eint<7>) -> !HLFHE.eint<7> {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler %s --entry-dialect=hlfhe --action=dump-midlfhe 2>&1| FileCheck %s
// RUN: zamacompiler %s --passes hlfhe-to-midlfhe --action=dump-midlfhe 2>&1| FileCheck %s
// CHECK-LABEL: func @apply_lookup_table(%arg0: !MidLFHE.glwe<{_,_,_}{2}>, %arg1: tensor<4xi64>) -> !MidLFHE.glwe<{_,_,_}{2}>
func @apply_lookup_table(%arg0: !HLFHE.eint<2>, %arg1: tensor<4xi64>) -> !HLFHE.eint<2> {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler %s --entry-dialect=hlfhe --action=dump-midlfhe 2>&1| FileCheck %s
// RUN: zamacompiler %s --passes hlfhe-to-midlfhe --action=dump-midlfhe 2>&1| FileCheck %s
// CHECK-LABEL: func @apply_lookup_table_cst(%arg0: !MidLFHE.glwe<{_,_,_}{7}>) -> !MidLFHE.glwe<{_,_,_}{7}>
func @apply_lookup_table_cst(%arg0: !HLFHE.eint<7>) -> !HLFHE.eint<7> {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler %s --entry-dialect=hlfhe --action=dump-midlfhe 2>&1| FileCheck %s
// RUN: zamacompiler %s --passes hlfhe-to-midlfhe --action=dump-midlfhe 2>&1| FileCheck %s
// CHECK: #map0 = affine_map<(d0) -> (d0)>
// CHECK-NEXT: #map1 = affine_map<(d0) -> (0)>

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler %s --entry-dialect=hlfhe --action=dump-midlfhe 2>&1| FileCheck %s
// RUN: zamacompiler %s --passes hlfhe-to-midlfhe --action=dump-midlfhe 2>&1| FileCheck %s
// CHECK-LABEL: func @mul_eint_int(%arg0: !MidLFHE.glwe<{_,_,_}{7}>) -> !MidLFHE.glwe<{_,_,_}{7}>
func @mul_eint_int(%arg0: !HLFHE.eint<7>) -> !HLFHE.eint<7> {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler %s --entry-dialect=hlfhe --action=dump-midlfhe 2>&1| FileCheck %s
// RUN: zamacompiler %s --passes hlfhe-to-midlfhe --action=dump-midlfhe 2>&1| FileCheck %s
// CHECK-LABEL: func @sub_int_eint(%arg0: !MidLFHE.glwe<{_,_,_}{7}>) -> !MidLFHE.glwe<{_,_,_}{7}>
func @sub_int_eint(%arg0: !HLFHE.eint<7>) -> !HLFHE.eint<7> {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --entry-dialect=lowlfhe --action=dump-std %s 2>&1| FileCheck %s
// RUN: zamacompiler --passes lowlfhe-to-concrete-c-api --action=dump-std %s 2>&1| FileCheck %s
// CHECK-LABEL: module
// CHECK-NEXT: func private @add_plaintext_list_glwe_ciphertext_u64(index, !LowLFHE.glwe_ciphertext, !LowLFHE.glwe_ciphertext, !LowLFHE.plaintext_list)

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --entry-dialect=lowlfhe --action=dump-std %s 2>&1| FileCheck %s
// RUN: zamacompiler --passes lowlfhe-to-concrete-c-api --action=dump-std %s 2>&1| FileCheck %s
// CHECK-LABEL: module
// CHECK-NEXT: func private @runtime_foreign_plaintext_list_u64(index, tensor<16xi64>, i64, i32) -> !LowLFHE.foreign_plaintext_list

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --entry-dialect=lowlfhe --action=dump-std %s 2>&1| FileCheck %s
// RUN: zamacompiler --passes lowlfhe-to-concrete-c-api --action=dump-std %s 2>&1| FileCheck %s
// CHECK-LABEL: module
// CHECK-NEXT: func private @add_plaintext_list_glwe_ciphertext_u64(index, !LowLFHE.glwe_ciphertext, !LowLFHE.glwe_ciphertext, !LowLFHE.plaintext_list)

View File

@@ -0,0 +1,7 @@
// RUN: zamacompiler --passes lowlfhe-unparametrize --action=dump-llvm-dialect %s 2>&1| FileCheck %s
// CHECK-LABEL: func @main(%arg0: !LowLFHE.lwe_ciphertext<_,_>) -> !LowLFHE.lwe_ciphertext<_,_>
func @main(%arg0: !LowLFHE.lwe_ciphertext<1024,4>) -> !LowLFHE.lwe_ciphertext<1024,4> {
// CHECK-NEXT: return %arg0 : !LowLFHE.lwe_ciphertext<_,_>
return %arg0: !LowLFHE.lwe_ciphertext<1024,4>
}

View File

@@ -0,0 +1,8 @@
// RUN: zamacompiler --passes lowlfhe-unparametrize --action=dump-llvm-dialect %s 2>&1| FileCheck %s
// CHECK-LABEL: func @main(%arg0: !LowLFHE.lwe_ciphertext<_,_>) -> !LowLFHE.lwe_ciphertext<_,_>
func @main(%arg0: !LowLFHE.lwe_ciphertext<1024,4>) -> !LowLFHE.lwe_ciphertext<_,_> {
// CHECK-NEXT: return %arg0 : !LowLFHE.lwe_ciphertext<_,_>
%0 = builtin.unrealized_conversion_cast %arg0 : !LowLFHE.lwe_ciphertext<1024,4> to !LowLFHE.lwe_ciphertext<_,_>
return %0: !LowLFHE.lwe_ciphertext<_,_>
}

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --entry-dialect=midlfhe --action=dump-lowlfhe --parametrize-midlfhe=false --assume-max-eint-precision=7 --assume-max-manp=10 %s 2>&1| FileCheck %s
// RUN: zamacompiler --passes midlfhe-to-lowlfhe --action=dump-lowlfhe %s 2>&1| FileCheck %s
// CHECK-LABEL: func @add_glwe(%arg0: !LowLFHE.lwe_ciphertext<2048,7>, %arg1: !LowLFHE.lwe_ciphertext<2048,7>) -> !LowLFHE.lwe_ciphertext<2048,7>
func @add_glwe(%arg0: !MidLFHE.glwe<{2048,1,64}{7}>, %arg1: !MidLFHE.glwe<{2048,1,64}{7}>) -> !MidLFHE.glwe<{2048,1,64}{7}> {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --entry-dialect=midlfhe --action=dump-lowlfhe --parametrize-midlfhe=false --assume-max-eint-precision=7 --assume-max-manp=10 %s 2>&1| FileCheck %s
// RUN: zamacompiler --passes midlfhe-to-lowlfhe --action=dump-lowlfhe %s 2>&1| FileCheck %s
// CHECK-LABEL: func @add_glwe_const_int(%arg0: !LowLFHE.lwe_ciphertext<1024,7>) -> !LowLFHE.lwe_ciphertext<1024,7>
func @add_glwe_const_int(%arg0: !MidLFHE.glwe<{1024,1,64}{7}>) -> !MidLFHE.glwe<{1024,1,64}{7}> {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --entry-dialect=midlfhe --action=dump-lowlfhe --parametrize-midlfhe=false --assume-max-eint-precision=7 --assume-max-manp=10 %s 2>&1| FileCheck %s
// RUN: zamacompiler --passes midlfhe-to-lowlfhe --action=dump-lowlfhe %s 2>&1| FileCheck %s
// CHECK-LABEL: func @apply_lookup_table(%arg0: !LowLFHE.lwe_ciphertext<1024,4>, %arg1: tensor<16xi64>) -> !LowLFHE.lwe_ciphertext<1024,4>
func @apply_lookup_table(%arg0: !MidLFHE.glwe<{1024,1,64}{4}>, %arg1: tensor<16xi64>) -> !MidLFHE.glwe<{1024,1,64}{4}> {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --entry-dialect=midlfhe --action=dump-lowlfhe --parametrize-midlfhe=false --assume-max-eint-precision=7 --assume-max-manp=10 %s 2>&1| FileCheck %s
// RUN: zamacompiler --passes midlfhe-to-lowlfhe --action=dump-lowlfhe %s 2>&1| FileCheck %s
// CHECK-LABEL: func @apply_lookup_table_cst(%arg0: !LowLFHE.lwe_ciphertext<2048,4>) -> !LowLFHE.lwe_ciphertext<2048,4>
func @apply_lookup_table_cst(%arg0: !MidLFHE.glwe<{2048,1,64}{4}>) -> !MidLFHE.glwe<{2048,1,64}{4}> {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --entry-dialect=midlfhe --action=dump-lowlfhe --parametrize-midlfhe=false --assume-max-eint-precision=7 --assume-max-manp=10 %s 2>&1| FileCheck %s
// RUN: zamacompiler --passes midlfhe-to-lowlfhe --action=dump-lowlfhe %s 2>&1| FileCheck %s
// CHECK-LABEL: func @mul_glwe_const_int(%arg0: !LowLFHE.lwe_ciphertext<1024,7>) -> !LowLFHE.lwe_ciphertext<1024,7>
func @mul_glwe_const_int(%arg0: !MidLFHE.glwe<{1024,1,64}{7}>) -> !MidLFHE.glwe<{1024,1,64}{7}> {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --entry-dialect=midlfhe --action=dump-lowlfhe --parametrize-midlfhe=false --assume-max-eint-precision=7 --assume-max-manp=10 %s 2>&1| FileCheck %s
// RUN: zamacompiler --passes midlfhe-to-lowlfhe --action=dump-lowlfhe %s 2>&1| FileCheck %s
// CHECK-LABEL: func @sub_const_int_glwe(%arg0: !LowLFHE.lwe_ciphertext<1024,7>) -> !LowLFHE.lwe_ciphertext<1024,7>
func @sub_const_int_glwe(%arg0: !MidLFHE.glwe<{1024,1,64}{7}>) -> !MidLFHE.glwe<{1024,1,64}{7}> {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --split-input-file --entry-dialect=hlfhe --action=dump-hlfhe-manp %s 2>&1 | FileCheck %s
// RUN: zamacompiler --passes MANP --action=dump-hlfhe --split-input-file %s 2>&1 | FileCheck %s
func @single_zero() -> !HLFHE.eint<2>
{

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --split-input-file --entry-dialect=hlfhe --action=dump-hlfhe-manp %s 2>&1 | FileCheck %s
// RUN: zamacompiler --passes MANP --action=dump-hlfhe --split-input-file %s 2>&1 | FileCheck %s
func @tensor_from_elements_1(%a: !HLFHE.eint<2>, %b: !HLFHE.eint<2>, %c: !HLFHE.eint<2>, %d: !HLFHE.eint<2>) -> tensor<4x!HLFHE.eint<2>>
{

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --split-input-file --verify-diagnostics --entry-dialect=hlfhe --action=roundtrip %s
// RUN: zamacompiler --split-input-file --verify-diagnostics --action=roundtrip %s
// Incompatible shapes
func @dot_incompatible_shapes(

View File

@@ -1,4 +1,4 @@
// RUN: not zamacompiler --entry-dialect=hlfhe --action=roundtrip %s 2>&1| FileCheck %s
// RUN: not zamacompiler --action=roundtrip %s 2>&1| FileCheck %s
// CHECK-LABEL: eint support only precision in ]0;7]
func @test(%arg0: !HLFHE.eint<8>) {

View File

@@ -1,4 +1,4 @@
// RUN: not zamacompiler --entry-dialect=hlfhe --action=roundtrip %s 2>&1| FileCheck %s
// RUN: not zamacompiler --action=roundtrip %s 2>&1| FileCheck %s
// CHECK-LABEL: eint support only precision in ]0;7]
func @test(%arg0: !HLFHE.eint<0>) {

View File

@@ -1,4 +1,4 @@
// RUN: not zamacompiler --entry-dialect=hlfhe --action=roundtrip %s 2>&1| FileCheck %s
// RUN: not zamacompiler --action=roundtrip %s 2>&1| FileCheck %s
// CHECK-LABEL: error: 'HLFHE.add_eint' op should have the width of encrypted inputs equals
func @add_eint(%arg0: !HLFHE.eint<2>, %arg1: !HLFHE.eint<3>) -> !HLFHE.eint<2> {

View File

@@ -1,4 +1,4 @@
// RUN: not zamacompiler --entry-dialect=hlfhe --action=roundtrip %s 2>&1| FileCheck %s
// RUN: not zamacompiler --action=roundtrip %s 2>&1| FileCheck %s
// CHECK-LABEL: error: 'HLFHE.add_eint' op should have the width of encrypted inputs and result equals
func @add_eint(%arg0: !HLFHE.eint<2>, %arg1: !HLFHE.eint<2>) -> !HLFHE.eint<3> {

View File

@@ -1,4 +1,4 @@
// RUN: not zamacompiler --entry-dialect=hlfhe --action=roundtrip %s 2>&1| FileCheck %s
// RUN: not zamacompiler --action=roundtrip %s 2>&1| FileCheck %s
// CHECK-LABEL: error: 'HLFHE.add_eint_int' op should have the width of plain input equals to width of encrypted input + 1
func @add_eint_int(%arg0: !HLFHE.eint<2>) -> !HLFHE.eint<2> {

View File

@@ -1,4 +1,4 @@
// RUN: not zamacompiler --entry-dialect=hlfhe --action=roundtrip %s 2>&1| FileCheck %s
// RUN: not zamacompiler --action=roundtrip %s 2>&1| FileCheck %s
// CHECK-LABEL: error: 'HLFHE.add_eint_int' op should have the width of encrypted inputs and result equals
func @add_eint_int(%arg0: !HLFHE.eint<2>) -> !HLFHE.eint<3> {

View File

@@ -1,4 +1,4 @@
// RUN: not zamacompiler --entry-dialect=hlfhe --action=roundtrip %s 2>&1| FileCheck %s
// RUN: not zamacompiler --action=roundtrip %s 2>&1| FileCheck %s
// CHECK-LABEL: error: 'HLFHE.apply_lookup_table' op should have as `l_cst` argument a shape of one dimension equals to 2^p, where p is the width of the `ct` argument.
func @apply_lookup_table(%arg0: !HLFHE.eint<2>, %arg1: tensor<8xi3>) -> !HLFHE.eint<2> {

View File

@@ -1,4 +1,4 @@
// RUN: not zamacompiler --entry-dialect=hlfhe --action=roundtrip %s 2>&1| FileCheck %s
// RUN: not zamacompiler --action=roundtrip %s 2>&1| FileCheck %s
// CHECK-LABEL: error: 'HLFHE.mul_eint_int' op should have the width of plain input equals to width of encrypted input + 1
func @mul_eint_int(%arg0: !HLFHE.eint<2>) -> !HLFHE.eint<2> {

View File

@@ -1,4 +1,4 @@
// RUN: not zamacompiler --entry-dialect=hlfhe --action=roundtrip %s 2>&1| FileCheck %s
// RUN: not zamacompiler --action=roundtrip %s 2>&1| FileCheck %s
// CHECK-LABEL: error: 'HLFHE.mul_eint_int' op should have the width of encrypted inputs and result equals
func @mul_eint_int(%arg0: !HLFHE.eint<2>) -> !HLFHE.eint<3> {

View File

@@ -1,4 +1,4 @@
// RUN: not zamacompiler --entry-dialect=hlfhe --action=roundtrip %s 2>&1| FileCheck %s
// RUN: not zamacompiler --action=roundtrip %s 2>&1| FileCheck %s
// CHECK-LABEL: error: 'HLFHE.sub_int_eint' op should have the width of plain input equals to width of encrypted input + 1
func @sub_int_eint(%arg0: !HLFHE.eint<2>) -> !HLFHE.eint<2> {

View File

@@ -1,4 +1,4 @@
// RUN: not zamacompiler --entry-dialect=hlfhe --action=roundtrip %s 2>&1| FileCheck %s
// RUN: not zamacompiler --action=roundtrip %s 2>&1| FileCheck %s
// CHECK-LABEL: error: 'HLFHE.sub_int_eint' op should have the width of encrypted inputs and result equals
func @sub_int_eint(%arg0: !HLFHE.eint<2>) -> !HLFHE.eint<3> {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --entry-dialect=hlfhe --action=roundtrip %s 2>&1| FileCheck %s
// RUN: zamacompiler --action=roundtrip %s 2>&1| FileCheck %s
// CHECK-LABEL: func @zero() -> !HLFHE.eint<2>
func @zero() -> !HLFHE.eint<2> {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler %s --entry-dialect=hlfhe --action=dump-midlfhe 2>&1 | FileCheck %s
// RUN: zamacompiler %s --action=dump-midlfhe 2>&1 | FileCheck %s
//CHECK: #map0 = affine_map<(d0) -> (d0)>
//CHECK-NEXT: #map1 = affine_map<(d0) -> (0)>

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --entry-dialect=hlfhe --action=roundtrip %s 2>&1| FileCheck %s
// RUN: zamacompiler --action=roundtrip %s 2>&1| FileCheck %s
// CHECK-LABEL: func @memref_arg(%arg0: memref<2x!HLFHE.eint<7>>
func @memref_arg(%arg0: memref<2x!HLFHE.eint<7>>) {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --split-input-file --verify-diagnostics --entry-dialect=hlfhe --action=roundtrip %s
// RUN: zamacompiler --split-input-file --verify-diagnostics --action=roundtrip %s
/////////////////////////////////////////////////
// HLFHELinalg.add_eint_int

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --entry-dialect=hlfhe --action=roundtrip %s 2>&1| FileCheck %s
// RUN: zamacompiler --action=roundtrip %s 2>&1| FileCheck %s
/////////////////////////////////////////////////
// HLFHELinalg.add_eint_int

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --entry-dialect=lowlfhe --action=roundtrip %s 2>&1| FileCheck %s
// RUN: zamacompiler --action=roundtrip %s 2>&1| FileCheck %s
// CHECK-LABEL: func @add_lwe_ciphertexts(%arg0: !LowLFHE.lwe_ciphertext<2048,7>, %arg1: !LowLFHE.lwe_ciphertext<2048,7>) -> !LowLFHE.lwe_ciphertext<2048,7>
func @add_lwe_ciphertexts(%arg0: !LowLFHE.lwe_ciphertext<2048,7>, %arg1: !LowLFHE.lwe_ciphertext<2048,7>) -> !LowLFHE.lwe_ciphertext<2048,7> {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --entry-dialect=lowlfhe --action=roundtrip %s 2>&1| FileCheck %s
// RUN: zamacompiler --action=roundtrip %s 2>&1| FileCheck %s
// CHECK-LABEL: func @type_enc_rand_gen(%arg0: !LowLFHE.enc_rand_gen) -> !LowLFHE.enc_rand_gen
func @type_enc_rand_gen(%arg0: !LowLFHE.enc_rand_gen) -> !LowLFHE.enc_rand_gen {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --split-input-file --verify-diagnostics --entry-dialect=midlfhe --action=roundtrip %s
// RUN: zamacompiler --split-input-file --verify-diagnostics --action=roundtrip %s
// GLWE p parameter result
func @add_glwe(%arg0: !MidLFHE.glwe<{1024,12,64}{7}>, %arg1: !MidLFHE.glwe<{1024,12,64}{7}>) -> !MidLFHE.glwe<{1024,12,64}{6}> {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --entry-dialect=midlfhe --action=roundtrip %s 2>&1| FileCheck %s
// RUN: zamacompiler --action=roundtrip %s 2>&1| FileCheck %s
// CHECK-LABEL: func @add_glwe(%arg0: !MidLFHE.glwe<{1024,12,64}{7}>, %arg1: !MidLFHE.glwe<{1024,12,64}{7}>) -> !MidLFHE.glwe<{1024,12,64}{7}>
func @add_glwe(%arg0: !MidLFHE.glwe<{1024,12,64}{7}>, %arg1: !MidLFHE.glwe<{1024,12,64}{7}>) -> !MidLFHE.glwe<{1024,12,64}{7}> {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --split-input-file --verify-diagnostics --entry-dialect=midlfhe --action=roundtrip %s
// RUN: zamacompiler --split-input-file --verify-diagnostics --action=roundtrip %s
// GLWE p parameter
func @add_glwe_int(%arg0: !MidLFHE.glwe<{1024,12,64}{7}>) -> !MidLFHE.glwe<{1024,12,64}{6}> {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --entry-dialect=midlfhe --action=roundtrip %s 2>&1| FileCheck %s
// RUN: zamacompiler --action=roundtrip %s 2>&1| FileCheck %s
// CHECK-LABEL: func @add_glwe_int(%arg0: !MidLFHE.glwe<{1024,12,64}{7}>) -> !MidLFHE.glwe<{1024,12,64}{7}>
func @add_glwe_int(%arg0: !MidLFHE.glwe<{1024,12,64}{7}>) -> !MidLFHE.glwe<{1024,12,64}{7}> {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --split-input-file --verify-diagnostics --entry-dialect=midlfhe --action=roundtrip %s
// RUN: zamacompiler --split-input-file --verify-diagnostics --action=roundtrip %s
// Bad dimension of the lookup table
func @apply_lookup_table(%arg0: !MidLFHE.glwe<{1024,12,64}{7}>, %arg1: tensor<4xi2>) -> !MidLFHE.glwe<{512,10,64}{2}> {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --entry-dialect=midlfhe --action=roundtrip %s 2>&1| FileCheck %s
// RUN: zamacompiler --action=roundtrip %s 2>&1| FileCheck %s
// CHECK-LABEL: func @apply_lookup_table(%arg0: !MidLFHE.glwe<{1024,12,64}{7}>, %arg1: tensor<128xi64>) -> !MidLFHE.glwe<{512,10,64}{2}>
func @apply_lookup_table(%arg0: !MidLFHE.glwe<{1024,12,64}{7}>, %arg1: tensor<128xi64>) -> !MidLFHE.glwe<{512,10,64}{2}> {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --split-input-file --verify-diagnostics --entry-dialect=midlfhe --action=roundtrip %s
// RUN: zamacompiler --split-input-file --verify-diagnostics --action=roundtrip %s
// GLWE p parameter
func @mul_glwe_int(%arg0: !MidLFHE.glwe<{1024,12,64}{7}>) -> !MidLFHE.glwe<{1024,12,64}{6}> {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --entry-dialect=midlfhe --action=roundtrip %s 2>&1| FileCheck %s
// RUN: zamacompiler --action=roundtrip %s 2>&1| FileCheck %s
// CHECK-LABEL: func @mul_glwe_int(%arg0: !MidLFHE.glwe<{1024,12,64}{7}>) -> !MidLFHE.glwe<{1024,12,64}{7}>
func @mul_glwe_int(%arg0: !MidLFHE.glwe<{1024,12,64}{7}>) -> !MidLFHE.glwe<{1024,12,64}{7}> {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --split-input-file --verify-diagnostics --entry-dialect=midlfhe --action=roundtrip %s
// RUN: zamacompiler --split-input-file --verify-diagnostics --action=roundtrip %s
// GLWE p parameter
func @sub_int_glwe(%arg0: !MidLFHE.glwe<{1024,12,64}{7}>) -> !MidLFHE.glwe<{1024,12,64}{6}> {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler --entry-dialect=midlfhe --action=roundtrip %s 2>&1| FileCheck %s
// RUN: zamacompiler --action=roundtrip %s 2>&1| FileCheck %s
// CHECK-LABEL: func @sub_int_glwe(%arg0: !MidLFHE.glwe<{1024,12,64}{7}>) -> !MidLFHE.glwe<{1024,12,64}{7}>
func @sub_int_glwe(%arg0: !MidLFHE.glwe<{1024,12,64}{7}>) -> !MidLFHE.glwe<{1024,12,64}{7}> {

View File

@@ -1,4 +1,4 @@
// RUN: zamacompiler %s --entry-dialect=midlfhe --action=roundtrip 2>&1| FileCheck %s
// RUN: zamacompiler %s --action=roundtrip 2>&1| FileCheck %s
// CHECK-LABEL: func @glwe_0(%arg0: !MidLFHE.glwe<{1024,12,64}{7}>) -> !MidLFHE.glwe<{1024,12,64}{7}>
func @glwe_0(%arg0: !MidLFHE.glwe<{1024,12,64}{7}>) -> !MidLFHE.glwe<{1024,12,64}{7}> {

View File

@@ -56,7 +56,7 @@ def test_compile_and_run(mlir_input, args, expected_result):
def test_compile_and_run_invalid_arg_number(mlir_input, args):
engine = CompilerEngine()
engine.compile_fhe(mlir_input)
with pytest.raises(RuntimeError, match=r"failed pushing integer argument"):
with pytest.raises(ValueError, match=r"wrong number of arguments"):
engine.run(*args)

View File

@@ -2,14 +2,23 @@ enable_testing()
include_directories(${PROJECT_SOURCE_DIR}/include)
add_executable(
end_to_end_jit_test
end_to_end_jit_clear_tensor.cc
end_to_end_jit_encrypted_tensor.cc
end_to_end_jit_hlfhelinalg.cc
end_to_end_jit_test.cc
)
set_source_files_properties(
end_to_end_jit_test.cc
end_to_end_jit_clear_tensor.cc
end_to_end_jit_encrypted_tensor.cc
end_to_end_jit_hlfhelinalg.cc
PROPERTIES COMPILE_FLAGS "-fno-rtti"
)
target_link_libraries(
end_to_end_jit_test
gtest_main

View File

@@ -5,382 +5,324 @@
///////////////////////////////////////////////////////////////////////////////
TEST(End2EndJit_ClearTensor_1D, identity) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(
R"XXX(
func @main(%t: tensor<10xi64>) -> tensor<10xi64> {
return %t : tensor<10xi64>
}
)XXX";
ASSERT_LLVM_ERROR(engine.compile(mlirStr, defaultV0Constraints()));
const size_t size = 10;
uint64_t arg[size]{0xFFFFFFFFFFFFFFFF,
0,
8978,
2587490,
90,
197864,
698735,
72132,
87474,
42};
auto maybeArgument = engine.buildArgument();
ASSERT_LLVM_ERROR(maybeArgument.takeError());
auto argument = std::move(maybeArgument.get());
// Set the %t argument
ASSERT_LLVM_ERROR(argument->setArg(0, arg, size));
// Invoke the function
ASSERT_LLVM_ERROR(engine.invoke(*argument));
// Get and assert the result
uint64_t result[size];
ASSERT_LLVM_ERROR(argument->getResult(0, result, size));
for (size_t i = 0; i < size; i++) {
EXPECT_EQ(arg[i], result[i]) << "result differ at index " << i;
)XXX",
"main", true);
uint64_t arg[]{0xFFFFFFFFFFFFFFFF,
0,
8978,
2587490,
90,
197864,
698735,
72132,
87474,
42};
llvm::Expected<std::vector<uint64_t>> res =
lambda.operator()<std::vector<uint64_t>>(arg, ARRAY_SIZE(arg));
ASSERT_EXPECTED_SUCCESS(res);
ASSERT_EQ(res->size(), (size_t)10);
for (size_t i = 0; i < res->size(); i++) {
EXPECT_EQ(arg[i], res->operator[](i)) << "result differ at index " << i;
}
}
TEST(End2EndJit_ClearTensor_1D, extract_64) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t: tensor<10xi64>, %i: index) -> i64{
%c = tensor.extract %t[%i] : tensor<10xi64>
return %c : i64
}
)XXX";
ASSERT_LLVM_ERROR(engine.compile(mlirStr, defaultV0Constraints()));
const size_t size = 10;
uint64_t t_arg[size]{0xFFFFFFFFFFFFFFFF,
0,
8978,
2587490,
90,
197864,
698735,
72132,
87474,
42};
for (size_t i = 0; i < size; i++) {
auto maybeArgument = engine.buildArgument();
ASSERT_LLVM_ERROR(maybeArgument.takeError());
auto argument = std::move(maybeArgument.get());
// Set the %t argument
ASSERT_LLVM_ERROR(argument->setArg(0, t_arg, size));
// Set the %i argument
ASSERT_LLVM_ERROR(argument->setArg(1, i));
// Invoke the function
ASSERT_LLVM_ERROR(engine.invoke(*argument));
// Get and assert the result
uint64_t res = 0;
ASSERT_LLVM_ERROR(argument->getResult(0, res));
ASSERT_EQ(res, t_arg[i]);
)XXX",
"main", true);
uint64_t arg[]{0xFFFFFFFFFFFFFFFF,
0,
8978,
2587490,
90,
197864,
698735,
72132,
87474,
42};
for (size_t i = 0; i < ARRAY_SIZE(arg); i++) {
ASSERT_EXPECTED_VALUE(lambda(arg, ARRAY_SIZE(arg), i), arg[i]);
}
}
TEST(End2EndJit_ClearTensor_1D, extract_32) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t: tensor<10xi32>, %i: index) -> i32{
%c = tensor.extract %t[%i] : tensor<10xi32>
return %c : i32
}
)XXX";
ASSERT_LLVM_ERROR(engine.compile(mlirStr, defaultV0Constraints()));
const size_t size = 10;
uint32_t t_arg[size]{0xFFFFFFFF, 0, 8978, 2587490, 90,
197864, 698735, 72132, 87474, 42};
for (size_t i = 0; i < size; i++) {
auto maybeArgument = engine.buildArgument();
ASSERT_LLVM_ERROR(maybeArgument.takeError());
auto argument = std::move(maybeArgument.get());
// Set the %t argument
ASSERT_LLVM_ERROR(argument->setArg(0, t_arg, size));
// Set the %i argument
ASSERT_LLVM_ERROR(argument->setArg(1, i));
// Invoke the function
ASSERT_LLVM_ERROR(engine.invoke(*argument));
// Get and assert the result
uint64_t res = 0;
ASSERT_LLVM_ERROR(argument->getResult(0, res));
ASSERT_EQ(res, t_arg[i]);
)XXX",
"main", true);
uint32_t arg[]{0xFFFFFFFF, 0, 8978, 2587490, 90,
197864, 698735, 72132, 87474, 42};
for (size_t i = 0; i < ARRAY_SIZE(arg); i++) {
ASSERT_EXPECTED_VALUE(lambda(arg, ARRAY_SIZE(arg), i), arg[i]);
}
}
TEST(End2EndJit_ClearTensor_1D, extract_16) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t: tensor<10xi16>, %i: index) -> i16{
%c = tensor.extract %t[%i] : tensor<10xi16>
return %c : i16
}
)XXX";
ASSERT_LLVM_ERROR(engine.compile(mlirStr, defaultV0Constraints()));
const size_t size = 10;
uint16_t t_arg[size]{0xFFFF, 0, 59589, 47826, 16227,
63269, 36435, 52380, 7401, 13313};
for (size_t i = 0; i < size; i++) {
auto maybeArgument = engine.buildArgument();
ASSERT_LLVM_ERROR(maybeArgument.takeError());
auto argument = std::move(maybeArgument.get());
// Set the %t argument
ASSERT_LLVM_ERROR(argument->setArg(0, t_arg, size));
// Set the %i argument
ASSERT_LLVM_ERROR(argument->setArg(1, i));
// Invoke the function
ASSERT_LLVM_ERROR(engine.invoke(*argument));
// Get and assert the result
uint64_t res = 0;
ASSERT_LLVM_ERROR(argument->getResult(0, res));
ASSERT_EQ(res, t_arg[i]);
)XXX",
"main", true);
uint16_t arg[]{0xFFFF, 0, 59589, 47826, 16227,
63269, 36435, 52380, 7401, 13313};
for (size_t i = 0; i < ARRAY_SIZE(arg); i++) {
ASSERT_EXPECTED_VALUE(lambda(arg, ARRAY_SIZE(arg), i), arg[i]);
}
}
TEST(End2EndJit_ClearTensor_1D, extract_8) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t: tensor<10xi8>, %i: index) -> i8{
%c = tensor.extract %t[%i] : tensor<10xi8>
return %c : i8
}
)XXX";
ASSERT_LLVM_ERROR(engine.compile(mlirStr, defaultV0Constraints()));
const size_t size = 10;
uint8_t t_arg[size]{0xFF, 0, 120, 225, 14, 177, 131, 84, 174, 93};
for (size_t i = 0; i < size; i++) {
auto maybeArgument = engine.buildArgument();
ASSERT_LLVM_ERROR(maybeArgument.takeError());
auto argument = std::move(maybeArgument.get());
// Set the %t argument
ASSERT_LLVM_ERROR(argument->setArg(0, t_arg, size));
// Set the %i argument
ASSERT_LLVM_ERROR(argument->setArg(1, i));
// Invoke the function
ASSERT_LLVM_ERROR(engine.invoke(*argument));
// Get and assert the result
uint64_t res = 0;
ASSERT_LLVM_ERROR(argument->getResult(0, res));
ASSERT_EQ(res, t_arg[i]);
)XXX",
"main", true);
uint8_t arg[]{0xFF, 0, 120, 225, 14, 177, 131, 84, 174, 93};
for (size_t i = 0; i < ARRAY_SIZE(arg); i++) {
ASSERT_EXPECTED_VALUE(lambda(arg, ARRAY_SIZE(arg), i), arg[i]);
}
}
TEST(End2EndJit_ClearTensor_1D, extract_5) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t: tensor<10xi5>, %i: index) -> i5{
%c = tensor.extract %t[%i] : tensor<10xi5>
return %c : i5
}
)XXX";
ASSERT_LLVM_ERROR(engine.compile(mlirStr, defaultV0Constraints()));
const size_t size = 10;
uint8_t t_arg[size]{32, 0, 10, 25, 14, 25, 18, 28, 14, 7};
for (size_t i = 0; i < size; i++) {
auto maybeArgument = engine.buildArgument();
ASSERT_LLVM_ERROR(maybeArgument.takeError());
auto argument = std::move(maybeArgument.get());
// Set the %t argument
ASSERT_LLVM_ERROR(argument->setArg(0, t_arg, size));
// Set the %i argument
ASSERT_LLVM_ERROR(argument->setArg(1, i));
// Invoke the function
ASSERT_LLVM_ERROR(engine.invoke(*argument));
// Get and assert the result
uint64_t res = 0;
ASSERT_LLVM_ERROR(argument->getResult(0, res));
ASSERT_EQ(res, t_arg[i]);
)XXX",
"main", true);
uint8_t arg[]{32, 0, 10, 25, 14, 25, 18, 28, 14, 7};
for (size_t i = 0; i < ARRAY_SIZE(arg); i++) {
ASSERT_EXPECTED_VALUE(lambda(arg, ARRAY_SIZE(arg), i), arg[i]);
}
}
TEST(End2EndJit_ClearTensor_1D, extract_1) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t: tensor<10xi1>, %i: index) -> i1{
%c = tensor.extract %t[%i] : tensor<10xi1>
return %c : i1
}
)XXX";
ASSERT_LLVM_ERROR(engine.compile(mlirStr, defaultV0Constraints()));
const size_t size = 10;
uint8_t t_arg[size]{0, 0, 1, 0, 1, 1, 0, 1, 1, 0};
for (size_t i = 0; i < size; i++) {
auto maybeArgument = engine.buildArgument();
ASSERT_LLVM_ERROR(maybeArgument.takeError());
auto argument = std::move(maybeArgument.get());
// Set the %t argument
ASSERT_LLVM_ERROR(argument->setArg(0, t_arg, size));
// Set the %i argument
ASSERT_LLVM_ERROR(argument->setArg(1, i));
// Invoke the function
ASSERT_LLVM_ERROR(engine.invoke(*argument));
// Get and assert the result
uint64_t res = 0;
ASSERT_LLVM_ERROR(argument->getResult(0, res));
ASSERT_EQ(res, t_arg[i]);
)XXX",
"main", true);
uint8_t arg[]{0, 0, 1, 0, 1, 1, 0, 1, 1, 0};
for (size_t i = 0; i < ARRAY_SIZE(arg); i++) {
ASSERT_EXPECTED_VALUE(lambda(arg, ARRAY_SIZE(arg), i), arg[i]);
}
}
///////////////////////////////////////////////////////////////////////////////
// 2D tensor //////////////////////////////////////////////////////////////////
// 2D tensor
//////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
const size_t numDim = 2;
const int64_t dim0 = 2;
const int64_t dim1 = 10;
const int64_t dims[numDim]{dim0, dim1};
const uint64_t tensor2D[dim0][dim1]{
{0xFFFFFFFFFFFFFFFF, 0, 8978, 2587490, 90, 197864, 698735, 72132, 87474,
42},
{986, 1873, 298493, 34939, 443, 59874, 43, 743, 8409, 9433},
static std::vector<uint64_t> tensor2D{
0xFFFFFFFFFFFFFFFF,
0,
8978,
2587490,
90,
197864,
698735,
72132,
87474,
42,
986,
1873,
298493,
34939,
443,
59874,
43,
743,
8409,
9433,
};
const llvm::ArrayRef<int64_t> shape2D(dims, numDim);
#define GET_2D(tensor, i, j) (tensor)[i * dims[1] + j]
#define TENSOR2D_GET(i, j) GET_2D(tensor2D, i, j)
TEST(End2EndJit_ClearTensor_2D, identity) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t: tensor<2x10xi64>) -> tensor<2x10xi64> {
return %t : tensor<2x10xi64>
}
)XXX";
ASSERT_LLVM_ERROR(engine.compile(mlirStr, defaultV0Constraints()));
)XXX",
"main", true);
auto maybeArgument = engine.buildArgument();
ASSERT_LLVM_ERROR(maybeArgument.takeError());
auto argument = std::move(maybeArgument.get());
// Set the %t argument
ASSERT_LLVM_ERROR(argument->setArg(0, (uint64_t *)tensor2D, shape2D));
// Invoke the function
ASSERT_LLVM_ERROR(engine.invoke(*argument));
// Get and assert the result
uint64_t result[dims[0]][dims[1]];
ASSERT_LLVM_ERROR(
argument->getResult(0, (uint64_t *)result, dims[0] * dims[1]));
for (size_t i = 0; i < dims[0]; i++) {
for (size_t j = 0; j < dims[1]; j++) {
EXPECT_EQ(tensor2D[i][j], result[i][j])
<< "result differ at pos " << i << "," << j;
}
mlir::zamalang::TensorLambdaArgument<
mlir::zamalang::IntLambdaArgument<uint64_t>>
arg(tensor2D, shape2D);
llvm::Expected<std::vector<uint64_t>> res =
lambda.operator()<std::vector<uint64_t>>({&arg});
ASSERT_EXPECTED_SUCCESS(res);
ASSERT_EQ(res->size(), tensor2D.size());
for (size_t i = 0; i < tensor2D.size(); i++) {
EXPECT_EQ(tensor2D[i], (*res)[i]) << "result differ at pos " << i;
}
}
TEST(End2EndJit_ClearTensor_2D, extract) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t: tensor<2x10xi64>, %i: index, %j: index) -> i64 {
%c = tensor.extract %t[%i, %j] : tensor<2x10xi64>
return %c : i64
}
)XXX";
ASSERT_LLVM_ERROR(engine.compile(mlirStr, defaultV0Constraints()));
auto maybeArgument = engine.buildArgument();
ASSERT_LLVM_ERROR(maybeArgument.takeError());
auto argument = std::move(maybeArgument.get());
// Set the %t argument
ASSERT_LLVM_ERROR(argument->setArg(0, (uint64_t *)tensor2D, shape2D));
)XXX",
"main", true);
mlir::zamalang::TensorLambdaArgument<
mlir::zamalang::IntLambdaArgument<uint64_t>>
arg(tensor2D, shape2D);
for (size_t i = 0; i < dims[0]; i++) {
for (size_t j = 0; j < dims[1]; j++) {
// Set %i, %j
ASSERT_LLVM_ERROR(argument->setArg(1, i));
ASSERT_LLVM_ERROR(argument->setArg(2, j));
// Invoke the function
ASSERT_LLVM_ERROR(engine.invoke(*argument));
// Get and assert the result
uint64_t res = 0;
ASSERT_LLVM_ERROR(argument->getResult(0, res));
ASSERT_EQ(res, tensor2D[i][j]);
auto pos = i * dims[1] + j;
mlir::zamalang::IntLambdaArgument<size_t> argi(i);
mlir::zamalang::IntLambdaArgument<size_t> argj(j);
ASSERT_EXPECTED_VALUE(lambda({&arg, &argi, &argj}), TENSOR2D_GET(i, j));
}
}
}
TEST(End2EndJit_ClearTensor_2D, extract_slice) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
func @main(%t: tensor<2x10xi64>) -> tensor<1x5xi64> {
%r = tensor.extract_slice %t[1, 5][1, 5][1, 1] : tensor<2x10xi64> to tensor<1x5xi64>
return %r : tensor<1x5xi64>
}
)XXX";
ASSERT_LLVM_ERROR(engine.compile(mlirStr, defaultV0Constraints()));
auto maybeArgument = engine.buildArgument();
ASSERT_LLVM_ERROR(maybeArgument.takeError());
auto argument = std::move(maybeArgument.get());
// Set the %t argument
ASSERT_LLVM_ERROR(argument->setArg(0, (uint64_t *)tensor2D, shape2D));
// Invoke the function
ASSERT_LLVM_ERROR(engine.invoke(*argument));
// Get and assert the result
uint64_t result[1][5];
ASSERT_LLVM_ERROR(argument->getResult(0, (uint64_t *)result, 1 * 5));
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t: tensor<2x10xi64>) -> tensor<1x5xi64> {
%r = tensor.extract_slice %t[1, 5][1, 5][1, 1] : tensor<2x10xi64> to
tensor<1x5xi64> return %r : tensor<1x5xi64>
}
)XXX",
"main", true);
mlir::zamalang::TensorLambdaArgument<
mlir::zamalang::IntLambdaArgument<uint64_t>>
arg(tensor2D, shape2D);
llvm::Expected<std::vector<uint64_t>> res =
lambda.operator()<std::vector<uint64_t>>({&arg});
ASSERT_EXPECTED_SUCCESS(res);
ASSERT_EQ(res->size(), 1 * 5);
// Check the sub slice
for (size_t i = 0; i < 1; i++) {
for (size_t j = 0; j < 5; j++) {
// Get and assert the result
ASSERT_EQ(result[i][j], tensor2D[i + 1][j + 5]);
}
for (size_t j = 0; j < 5; j++) {
// Get and assert the result
ASSERT_EQ((*res)[j], TENSOR2D_GET(1, j + 5));
}
}
TEST(End2EndJit_ClearTensor_2D, extract_slice_stride) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
func @main(%t: tensor<2x10xi64>) -> tensor<1x5xi64> {
%r = tensor.extract_slice %t[1, 0][1, 5][1, 2] : tensor<2x10xi64> to tensor<1x5xi64>
return %r : tensor<1x5xi64>
}
)XXX";
ASSERT_LLVM_ERROR(engine.compile(mlirStr, defaultV0Constraints()));
auto maybeArgument = engine.buildArgument();
ASSERT_LLVM_ERROR(maybeArgument.takeError());
auto argument = std::move(maybeArgument.get());
// Set the %t argument
ASSERT_LLVM_ERROR(argument->setArg(0, (uint64_t *)tensor2D, shape2D));
// Invoke the function
ASSERT_LLVM_ERROR(engine.invoke(*argument));
// Get and assert the result
uint64_t result[1][5];
ASSERT_LLVM_ERROR(argument->getResult(0, (uint64_t *)result, 1 * 5));
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t: tensor<2x10xi64>) -> tensor<1x5xi64> {
%r = tensor.extract_slice %t[1, 0][1, 5][1, 2] : tensor<2x10xi64> to
tensor<1x5xi64> return %r : tensor<1x5xi64>
}
)XXX",
"main", true);
mlir::zamalang::TensorLambdaArgument<
mlir::zamalang::IntLambdaArgument<uint64_t>>
arg(tensor2D, shape2D);
llvm::Expected<std::vector<uint64_t>> res =
lambda.operator()<std::vector<uint64_t>>({&arg});
ASSERT_EXPECTED_SUCCESS(res);
ASSERT_EQ(res->size(), 1 * 5);
// Check the sub slice
for (size_t i = 0; i < 1; i++) {
for (size_t j = 0; j < 5; j++) {
// Get and assert the result
ASSERT_EQ(result[i][j], tensor2D[i + 1][j * 2]);
}
for (size_t j = 0; j < 5; j++) {
// Get and assert the result
ASSERT_EQ((*res)[j], TENSOR2D_GET(1, j * 2));
}
}
TEST(End2EndJit_ClearTensor_2D, insert_slice) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
func @main(%t0: tensor<2x10xi64>, %t1: tensor<2x2xi64>) -> tensor<2x10xi64> {
%r = tensor.insert_slice %t1 into %t0[0, 5][2, 2][1, 1] : tensor<2x2xi64> into tensor<2x10xi64>
return %r : tensor<2x10xi64>
}
)XXX";
ASSERT_LLVM_ERROR(engine.compile(mlirStr, defaultV0Constraints()));
auto maybeArgument = engine.buildArgument();
ASSERT_LLVM_ERROR(maybeArgument.takeError());
auto argument = std::move(maybeArgument.get());
// Set the %t0 argument
ASSERT_LLVM_ERROR(argument->setArg(0, (uint64_t *)tensor2D, shape2D));
// Set the %t1 argument
int64_t t1_dim[2] = {2, 2};
uint64_t t1[2][2]{{6, 9}, {4, 0}};
ASSERT_LLVM_ERROR(
argument->setArg(1, (uint64_t *)t1, llvm::ArrayRef<int64_t>(t1_dim, 2)));
// Invoke the function
ASSERT_LLVM_ERROR(engine.invoke(*argument));
// Get and assert the result
uint64_t result[dim0][dim1];
ASSERT_LLVM_ERROR(argument->getResult(0, (uint64_t *)result, dim0 * dim1));
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t0: tensor<2x10xi64>, %t1: tensor<2x2xi64>) -> tensor<2x10xi64> {
%r = tensor.insert_slice %t1 into %t0[0, 5][2, 2][1, 1] : tensor<2x2xi64>
into tensor<2x10xi64> return %r : tensor<2x10xi64>
}
)XXX",
"main", true);
mlir::zamalang::TensorLambdaArgument<
mlir::zamalang::IntLambdaArgument<uint64_t>>
t0(tensor2D, shape2D);
int64_t t1Shape[] = {2, 2};
uint64_t t1Buffer[]{6, 9, 4, 0};
mlir::zamalang::TensorLambdaArgument<
mlir::zamalang::IntLambdaArgument<uint64_t>>
t1(t1Buffer, t1Shape);
llvm::Expected<std::vector<uint64_t>> res =
lambda.operator()<std::vector<uint64_t>>({&t0, &t1});
ASSERT_EXPECTED_SUCCESS(res);
ASSERT_EQ(res->size(), tensor2D.size());
// Check the sub slice
for (size_t i = 0; i < dim0; i++) {
for (size_t j = 0; j < dim1; j++) {
if (j < 5 || j >= 5 + 2) {
ASSERT_EQ(result[i][j], tensor2D[i][j])
ASSERT_EQ(GET_2D(*res, i, j), TENSOR2D_GET(i, j))
<< "at indexes (" << i << "," << j << ")";
} else {
// Get and assert the result
ASSERT_EQ(result[i][j], t1[i][j - 5])
ASSERT_EQ(GET_2D(*res, i, j), t1Buffer[i * 2 + j - 5])
<< "at indexes (" << i << "," << j << ")";
;
}

View File

@@ -8,164 +8,155 @@ const size_t numDim = 2;
const int64_t dim0 = 2;
const int64_t dim1 = 10;
const int64_t dims[numDim]{dim0, dim1};
const uint8_t tensor2D[dim0][dim1]{
{63, 12, 7, 43, 52, 9, 26, 34, 22, 0},
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
static std::vector<uint8_t> tensor2D{
63, 12, 7, 43, 52, 9, 26, 34, 22, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
};
const llvm::ArrayRef<int64_t> shape2D(dims, numDim);
#define GET_2D(tensor, i, j) (tensor)[i * dims[1] + j]
#define TENSOR2D_GET(i, j) GET_2D(tensor2D, i, j)
TEST(End2EndJit_EncryptedTensor_2D, identity) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t: tensor<2x10x!HLFHE.eint<6>>) -> tensor<2x10x!HLFHE.eint<6>> {
return %t : tensor<2x10x!HLFHE.eint<6>>
}
)XXX";
ASSERT_LLVM_ERROR(engine.compile(mlirStr, defaultV0Constraints()));
)XXX");
auto maybeArgument = engine.buildArgument();
ASSERT_LLVM_ERROR(maybeArgument.takeError());
auto argument = std::move(maybeArgument.get());
// Set the %t argument
ASSERT_LLVM_ERROR(argument->setArg(0, (uint8_t *)tensor2D, shape2D));
// Invoke the function
ASSERT_LLVM_ERROR(engine.invoke(*argument));
// Get and assert the result
uint64_t result[dims[0]][dims[1]];
ASSERT_LLVM_ERROR(
argument->getResult(0, (uint64_t *)result, dims[0] * dims[1]));
for (size_t i = 0; i < dims[0]; i++) {
for (size_t j = 0; j < dims[1]; j++) {
EXPECT_EQ(tensor2D[i][j], result[i][j])
<< "result differ at pos " << i << "," << j;
}
mlir::zamalang::TensorLambdaArgument<
mlir::zamalang::IntLambdaArgument<uint8_t>>
arg(tensor2D, shape2D);
llvm::Expected<std::vector<uint64_t>> res =
lambda.operator()<std::vector<uint64_t>>({&arg});
ASSERT_EXPECTED_SUCCESS(res);
ASSERT_EQ(res->size(), tensor2D.size());
for (size_t i = 0; i < tensor2D.size(); i++) {
EXPECT_EQ(tensor2D[i], (*res)[i]) << "result differ at pos " << i;
}
}
TEST(End2EndJit_EncryptedTensor_2D, extract) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
func @main(%t: tensor<2x10x!HLFHE.eint<6>>, %i: index, %j: index) -> !HLFHE.eint<6> {
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t: tensor<2x10x!HLFHE.eint<6>>, %i: index, %j: index) ->
!HLFHE.eint<6> {
%c = tensor.extract %t[%i, %j] : tensor<2x10x!HLFHE.eint<6>>
return %c : !HLFHE.eint<6>
}
)XXX";
ASSERT_LLVM_ERROR(engine.compile(mlirStr));
auto maybeArgument = engine.buildArgument();
ASSERT_LLVM_ERROR(maybeArgument.takeError());
auto argument = std::move(maybeArgument.get());
// Set the %t argument
ASSERT_LLVM_ERROR(argument->setArg(0, (uint8_t *)tensor2D, shape2D));
)XXX");
mlir::zamalang::TensorLambdaArgument<
mlir::zamalang::IntLambdaArgument<uint8_t>>
arg(tensor2D, shape2D);
for (size_t i = 0; i < dims[0]; i++) {
for (size_t j = 0; j < dims[1]; j++) {
// Set %i, %j
ASSERT_LLVM_ERROR(argument->setArg(1, i));
ASSERT_LLVM_ERROR(argument->setArg(2, j));
// Invoke the function
ASSERT_LLVM_ERROR(engine.invoke(*argument));
// Get and assert the result
uint64_t res = 0;
ASSERT_LLVM_ERROR(argument->getResult(0, res));
ASSERT_EQ(res, tensor2D[i][j]);
auto pos = i * dims[1] + j;
mlir::zamalang::IntLambdaArgument<size_t> argi(i);
mlir::zamalang::IntLambdaArgument<size_t> argj(j);
ASSERT_EXPECTED_VALUE(lambda({&arg, &argi, &argj}), TENSOR2D_GET(i, j));
}
}
}
TEST(End2EndJit_EncryptedTensor_2D, extract_slice) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t: tensor<2x10x!HLFHE.eint<6>>) -> tensor<1x5x!HLFHE.eint<6>> {
%r = tensor.extract_slice %t[1, 5][1, 5][1, 1] : tensor<2x10x!HLFHE.eint<6>> to tensor<1x5x!HLFHE.eint<6>>
return %r : tensor<1x5x!HLFHE.eint<6>>
%r = tensor.extract_slice %t[1, 5][1, 5][1, 1] :
tensor<2x10x!HLFHE.eint<6>> to tensor<1x5x!HLFHE.eint<6>> return %r :
tensor<1x5x!HLFHE.eint<6>>
}
)XXX";
)XXX");
mlir::zamalang::TensorLambdaArgument<
mlir::zamalang::IntLambdaArgument<uint8_t>>
arg(tensor2D, shape2D);
llvm::Expected<std::vector<uint64_t>> res =
lambda.operator()<std::vector<uint64_t>>({&arg});
ASSERT_EXPECTED_SUCCESS(res);
ASSERT_EQ(res->size(), 1 * 5);
ASSERT_LLVM_ERROR(engine.compile(mlirStr));
auto maybeArgument = engine.buildArgument();
ASSERT_LLVM_ERROR(maybeArgument.takeError());
auto argument = std::move(maybeArgument.get());
// Set the %t argument
ASSERT_LLVM_ERROR(argument->setArg(0, (uint8_t *)tensor2D, shape2D));
// Invoke the function
ASSERT_LLVM_ERROR(engine.invoke(*argument));
// Get and assert the result
uint64_t result[1][5];
ASSERT_LLVM_ERROR(argument->getResult(0, (uint64_t *)result, 1 * 5));
// Check the sub slice
for (size_t i = 0; i < 1; i++) {
for (size_t j = 0; j < 5; j++) {
// Get and assert the result
ASSERT_EQ(result[i][j], tensor2D[i + 1][j + 5]);
}
for (size_t j = 0; j < 5; j++) {
// Get and assert the result
ASSERT_EQ((*res)[j], TENSOR2D_GET(1, j + 5));
}
}
TEST(End2EndJit_EncryptedTensor_2D, extract_slice_stride) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
func @main(%t: tensor<2x10x!HLFHE.eint<6>>) -> tensor<1x5x!HLFHE.eint<6>> {
%r = tensor.extract_slice %t[1, 0][1, 5][1, 2] : tensor<2x10x!HLFHE.eint<6>> to tensor<1x5x!HLFHE.eint<6>>
return %r : tensor<1x5x!HLFHE.eint<6>>
}
)XXX";
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t: tensor<2x10x!HLFHE.eint<6>>) -> tensor<1x5x!HLFHE.eint<6>> {
%r = tensor.extract_slice %t[1, 0][1, 5][1, 2] :
tensor<2x10x!HLFHE.eint<6>> to tensor<1x5x!HLFHE.eint<6>> return %r :
tensor<1x5x!HLFHE.eint<6>>
}
)XXX");
mlir::zamalang::TensorLambdaArgument<
mlir::zamalang::IntLambdaArgument<uint8_t>>
arg(tensor2D, shape2D);
llvm::Expected<std::vector<uint64_t>> res =
lambda.operator()<std::vector<uint64_t>>({&arg});
ASSERT_EXPECTED_SUCCESS(res);
ASSERT_EQ(res->size(), 1 * 5);
ASSERT_LLVM_ERROR(engine.compile(mlirStr));
auto maybeArgument = engine.buildArgument();
ASSERT_LLVM_ERROR(maybeArgument.takeError());
auto argument = std::move(maybeArgument.get());
// Set the %t argument
ASSERT_LLVM_ERROR(argument->setArg(0, (uint8_t *)tensor2D, shape2D));
// Invoke the function
ASSERT_LLVM_ERROR(engine.invoke(*argument));
// Get and assert the result
uint64_t result[1][5];
ASSERT_LLVM_ERROR(argument->getResult(0, (uint64_t *)result, 1 * 5));
// Check the sub slice
for (size_t i = 0; i < 1; i++) {
for (size_t j = 0; j < 5; j++) {
// Get and assert the result
ASSERT_EQ(result[i][j], tensor2D[i + 1][j * 2]);
}
for (size_t j = 0; j < 5; j++) {
// Get and assert the result
ASSERT_EQ((*res)[j], TENSOR2D_GET(1, j * 2));
}
}
TEST(End2EndJit_EncryptedTensor_2D, insert_slice) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
func @main(%t0: tensor<2x10x!HLFHE.eint<6>>, %t1: tensor<2x2x!HLFHE.eint<6>>) -> tensor<2x10x!HLFHE.eint<6>> {
%r = tensor.insert_slice %t1 into %t0[0, 5][2, 2][1, 1] : tensor<2x2x!HLFHE.eint<6>> into tensor<2x10x!HLFHE.eint<6>>
return %r : tensor<2x10x!HLFHE.eint<6>>
}
)XXX";
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t0: tensor<2x10x!HLFHE.eint<6>>, %t1: tensor<2x2x!HLFHE.eint<6>>)
-> tensor<2x10x!HLFHE.eint<6>> {
%r = tensor.insert_slice %t1 into %t0[0, 5][2, 2][1, 1] :
tensor<2x2x!HLFHE.eint<6>> into tensor<2x10x!HLFHE.eint<6>> return %r :
tensor<2x10x!HLFHE.eint<6>>
}
)XXX");
mlir::zamalang::TensorLambdaArgument<
mlir::zamalang::IntLambdaArgument<uint8_t>>
t0(tensor2D, shape2D);
int64_t t1Shape[] = {2, 2};
uint8_t t1Buffer[]{6, 9, 4, 0};
mlir::zamalang::TensorLambdaArgument<
mlir::zamalang::IntLambdaArgument<uint8_t>>
t1(t1Buffer, t1Shape);
llvm::Expected<std::vector<uint64_t>> res =
lambda.operator()<std::vector<uint64_t>>({&t0, &t1});
ASSERT_EXPECTED_SUCCESS(res);
ASSERT_EQ(res->size(), tensor2D.size());
ASSERT_LLVM_ERROR(engine.compile(mlirStr));
auto maybeArgument = engine.buildArgument();
ASSERT_LLVM_ERROR(maybeArgument.takeError());
auto argument = std::move(maybeArgument.get());
// Set the %t0 argument
ASSERT_LLVM_ERROR(argument->setArg(0, (uint8_t *)tensor2D, shape2D));
// Set the %t1 argument
int64_t t1_dim[2] = {2, 2};
uint8_t t1[2][2]{{6, 9}, {4, 0}};
ASSERT_LLVM_ERROR(
argument->setArg(1, (uint8_t *)t1, llvm::ArrayRef<int64_t>(t1_dim, 2)));
// Invoke the function
ASSERT_LLVM_ERROR(engine.invoke(*argument));
// Get and assert the result
uint64_t result[dim0][dim1];
ASSERT_LLVM_ERROR(argument->getResult(0, (uint64_t *)result, dim0 * dim1));
// Check the sub slice
for (size_t i = 0; i < dim0; i++) {
for (size_t j = 0; j < dim1; j++) {
if (j < 5 || j >= 5 + 2) {
ASSERT_EQ(result[i][j], tensor2D[i][j])
ASSERT_EQ(GET_2D(*res, i, j), TENSOR2D_GET(i, j))
<< "at indexes (" << i << "," << j << ")";
} else {
// Get and assert the result
ASSERT_EQ(result[i][j], t1[i][j - 5])
ASSERT_EQ(GET_2D(*res, i, j), t1Buffer[i * 2 + j - 5])
<< "at indexes (" << i << "," << j << ")";
;
}
}
}
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,224 +1,308 @@
#include <cstdint>
#include <gtest/gtest.h>
#include <type_traits>
#include "end_to_end_jit_test.h"
mlir::zamalang::V0FHEConstraint defaultV0Constraints() {
return {.norm2 = 10, .p = 7};
}
mlir::zamalang::V0FHEConstraint defaultV0Constraints() { return {10, 7}; }
TEST(CompileAndRunHLFHE, add_eint) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%arg0: !HLFHE.eint<7>, %arg1: !HLFHE.eint<7>) -> !HLFHE.eint<7> {
%1 = "HLFHE.add_eint"(%arg0, %arg1): (!HLFHE.eint<7>, !HLFHE.eint<7>) -> (!HLFHE.eint<7>)
return %1: !HLFHE.eint<7>
}
)XXX";
ASSERT_FALSE(engine.compile(mlirStr));
auto maybeResult = engine.run({1, 2});
ASSERT_TRUE((bool)maybeResult);
uint64_t result = maybeResult.get();
ASSERT_EQ(result, 3);
)XXX");
ASSERT_EXPECTED_VALUE(lambda(1_u64, 2_u64), 3);
ASSERT_EXPECTED_VALUE(lambda(4_u64, 5_u64), 9);
ASSERT_EXPECTED_VALUE(lambda(1_u64, 1_u64), 2);
}
TEST(CompileAndRunHLFHE, add_eint_2) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
func @main(%arg0: !HLFHE.eint<2>) -> !HLFHE.eint<4> {
%cst = constant dense<[2, 1, 3, 10]> : tensor<4xi64>
%0 = "HLFHE.apply_lookup_table"(%arg0, %cst) : (!HLFHE.eint<2>, tensor<4xi64>) -> !HLFHE.eint<4>
return %0 : !HLFHE.eint<4>
// Same as CompileAndRunHLFHE::add_eint above, but using
// `LambdaArgument` instances
TEST(CompileAndRunHLFHE, add_eint_lambda_argument) {
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%arg0: !HLFHE.eint<7>, %arg1: !HLFHE.eint<7>) -> !HLFHE.eint<7> {
%1 = "HLFHE.add_eint"(%arg0, %arg1): (!HLFHE.eint<7>, !HLFHE.eint<7>) -> (!HLFHE.eint<7>)
return %1: !HLFHE.eint<7>
}
)XXX");
mlir::zamalang::IntLambdaArgument<> ila1(1);
mlir::zamalang::IntLambdaArgument<> ila2(2);
mlir::zamalang::IntLambdaArgument<> ila7(7);
mlir::zamalang::IntLambdaArgument<> ila9(9);
ASSERT_EXPECTED_VALUE(lambda({&ila1, &ila2}), 3);
ASSERT_EXPECTED_VALUE(lambda({&ila7, &ila9}), 16);
ASSERT_EXPECTED_VALUE(lambda({&ila1, &ila7}), 8);
ASSERT_EXPECTED_VALUE(lambda({&ila1, &ila9}), 10);
ASSERT_EXPECTED_VALUE(lambda({&ila2, &ila7}), 9);
}
TEST(CompileAndRunHLFHE, add_u64) {
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%arg0: i64, %arg1: i64) -> i64 {
%1 = addi %arg0, %arg1 : i64
return %1: i64
}
)XXX",
"main", true);
ASSERT_EXPECTED_VALUE(lambda(1_u64, 2_u64), (uint64_t)3);
ASSERT_EXPECTED_VALUE(lambda(4_u64, 5_u64), (uint64_t)9);
ASSERT_EXPECTED_VALUE(lambda(1_u64, 1_u64), (uint64_t)2);
}
TEST(CompileAndRunTensorStd, extract_64) {
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t: tensor<10xi64>, %i: index) -> i64{
%c = tensor.extract %t[%i] : tensor<10xi64>
return %c : i64
}
)XXX",
"main", "true");
static uint64_t t_arg[] = {0xFFFFFFFFFFFFFFFF,
0,
8978,
2587490,
90,
197864,
698735,
72132,
87474,
42};
for (size_t i = 0; i < ARRAY_SIZE(t_arg); i++)
ASSERT_EXPECTED_VALUE(lambda(t_arg, ARRAY_SIZE(t_arg), i), t_arg[i]);
}
TEST(CompileAndRunTensorStd, extract_32) {
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t: tensor<10xi32>, %i: index) -> i32{
%c = tensor.extract %t[%i] : tensor<10xi32>
return %c : i32
}
)XXX",
"main", "true");
static uint32_t t_arg[] = {0xFFFFFFFF, 0, 8978, 2587490, 90,
197864, 698735, 72132, 87474, 42};
for (size_t i = 0; i < ARRAY_SIZE(t_arg); i++)
ASSERT_EXPECTED_VALUE(lambda(t_arg, ARRAY_SIZE(t_arg), i), t_arg[i]);
}
// Same as `CompileAndRunTensorStd::extract_32` above, but using
// `LambdaArgument` instances
TEST(CompileAndRunTensorStd, extract_32_lambda_argument) {
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t: tensor<10xi32>, %i: index) -> i32{
%c = tensor.extract %t[%i] : tensor<10xi32>
return %c : i32
}
)XXX",
"main", "true");
static std::vector<uint32_t> t_arg{0xFFFFFFFF, 0, 8978, 2587490, 90,
197864, 698735, 72132, 87474, 42};
mlir::zamalang::TensorLambdaArgument<
mlir::zamalang::IntLambdaArgument<uint32_t>>
tla(t_arg);
for (size_t i = 0; i < ARRAY_SIZE(t_arg); i++) {
mlir::zamalang::IntLambdaArgument<size_t> idx(i);
ASSERT_EXPECTED_VALUE(lambda({&tla, &idx}), t_arg[i]);
}
)XXX";
ASSERT_FALSE(engine.compile(mlirStr));
auto maybeResult = engine.run({0});
ASSERT_TRUE((bool)maybeResult);
uint64_t result = maybeResult.get();
ASSERT_EQ(result, 2);
}
TEST(CompileAndRunTensorStd, extract_16) {
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t: tensor<10xi16>, %i: index) -> i16{
%c = tensor.extract %t[%i] : tensor<10xi16>
return %c : i16
}
)XXX",
"main", "true");
uint16_t t_arg[] = {0xFFFF, 0, 59589, 47826, 16227,
63269, 36435, 52380, 7401, 13313};
for (size_t i = 0; i < ARRAY_SIZE(t_arg); i++)
ASSERT_EXPECTED_VALUE(lambda(t_arg, ARRAY_SIZE(t_arg), i), t_arg[i]);
}
TEST(CompileAndRunTensorStd, extract_8) {
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t: tensor<10xi8>, %i: index) -> i8{
%c = tensor.extract %t[%i] : tensor<10xi8>
return %c : i8
}
)XXX",
"main", "true");
static uint8_t t_arg[] = {0xFF, 0, 120, 225, 14, 177, 131, 84, 174, 93};
for (size_t i = 0; i < ARRAY_SIZE(t_arg); i++)
ASSERT_EXPECTED_VALUE(lambda(t_arg, ARRAY_SIZE(t_arg), i), t_arg[i]);
}
TEST(CompileAndRunTensorStd, extract_5) {
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t: tensor<10xi5>, %i: index) -> i5{
%c = tensor.extract %t[%i] : tensor<10xi5>
return %c : i5
}
)XXX",
"main", "true");
static uint8_t t_arg[] = {32, 0, 10, 25, 14, 25, 18, 28, 14, 7};
for (size_t i = 0; i < ARRAY_SIZE(t_arg); i++)
ASSERT_EXPECTED_VALUE(lambda(t_arg, ARRAY_SIZE(t_arg), i), t_arg[i]);
}
TEST(CompileAndRunTensorStd, extract_1) {
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t: tensor<10xi1>, %i: index) -> i1{
%c = tensor.extract %t[%i] : tensor<10xi1>
return %c : i1
}
)XXX",
"main", "true");
static uint8_t t_arg[] = {0, 0, 1, 0, 1, 1, 0, 1, 1, 0};
for (size_t i = 0; i < ARRAY_SIZE(t_arg); i++)
ASSERT_EXPECTED_VALUE(lambda(t_arg, ARRAY_SIZE(t_arg), i), t_arg[i]);
}
TEST(CompileAndRunTensorEncrypted, extract_5) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t: tensor<10x!HLFHE.eint<5>>, %i: index) -> !HLFHE.eint<5>{
%c = tensor.extract %t[%i] : tensor<10x!HLFHE.eint<5>>
return %c : !HLFHE.eint<5>
}
)XXX";
ASSERT_LLVM_ERROR(engine.compile(mlirStr, defaultV0Constraints()));
const size_t size = 10;
uint8_t t_arg[size]{32, 0, 10, 25, 14, 25, 18, 28, 14, 7};
for (size_t i = 0; i < size; i++) {
auto maybeArgument = engine.buildArgument();
ASSERT_LLVM_ERROR(maybeArgument.takeError());
auto argument = std::move(maybeArgument.get());
// Set the %t argument
ASSERT_LLVM_ERROR(argument->setArg(0, t_arg, size));
// Set the %i argument
ASSERT_LLVM_ERROR(argument->setArg(1, i));
// Invoke the function
ASSERT_LLVM_ERROR(engine.invoke(*argument));
// Get and assert the result
uint64_t res = 0;
ASSERT_LLVM_ERROR(argument->getResult(0, res));
ASSERT_EQ(res, t_arg[i]);
}
)XXX");
static uint8_t t_arg[] = {32, 0, 10, 25, 14, 25, 18, 28, 14, 7};
for (size_t i = 0; i < ARRAY_SIZE(t_arg); i++)
ASSERT_EXPECTED_VALUE(lambda(t_arg, ARRAY_SIZE(t_arg), i), t_arg[i]);
}
TEST(CompileAndRunTensorEncrypted, extract_twice_and_add_5) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
func @main(%t: tensor<10x!HLFHE.eint<5>>, %i: index, %j: index) -> !HLFHE.eint<5>{
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t: tensor<10x!HLFHE.eint<5>>, %i: index, %j: index) ->
!HLFHE.eint<5>{
%ti = tensor.extract %t[%i] : tensor<10x!HLFHE.eint<5>>
%tj = tensor.extract %t[%j] : tensor<10x!HLFHE.eint<5>>
%c = "HLFHE.add_eint"(%ti, %tj) : (!HLFHE.eint<5>, !HLFHE.eint<5>) -> !HLFHE.eint<5>
return %c : !HLFHE.eint<5>
%c = "HLFHE.add_eint"(%ti, %tj) : (!HLFHE.eint<5>, !HLFHE.eint<5>) ->
!HLFHE.eint<5> return %c : !HLFHE.eint<5>
}
)XXX";
ASSERT_LLVM_ERROR(engine.compile(mlirStr, defaultV0Constraints()));
const size_t size = 10;
uint8_t t_arg[size]{32, 0, 10, 25, 14, 25, 18, 28, 14, 7};
for (size_t i = 0; i < size; i++) {
for (size_t j = 0; j < size; j++) {
auto maybeArgument = engine.buildArgument();
ASSERT_LLVM_ERROR(maybeArgument.takeError());
auto argument = std::move(maybeArgument.get());
// Set the %t argument
ASSERT_LLVM_ERROR(argument->setArg(0, t_arg, size));
// Set the %i argument
ASSERT_LLVM_ERROR(argument->setArg(1, i));
// Set the %j argument
ASSERT_LLVM_ERROR(argument->setArg(2, j));
// Invoke the function
ASSERT_LLVM_ERROR(engine.invoke(*argument));
// Get and assert the result
uint64_t res = 0;
ASSERT_LLVM_ERROR(argument->getResult(0, res));
ASSERT_EQ(res, t_arg[i] + t_arg[j]);
}
}
)XXX");
static uint8_t t_arg[] = {3, 0, 7, 12, 14, 6, 5, 4, 1, 2};
for (size_t i = 0; i < ARRAY_SIZE(t_arg); i++)
for (size_t j = 0; j < ARRAY_SIZE(t_arg); j++)
ASSERT_EXPECTED_VALUE(lambda(t_arg, ARRAY_SIZE(t_arg), i, j),
t_arg[i] + t_arg[j]);
}
TEST(CompileAndRunTensorEncrypted, dim_5) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%t: tensor<10x!HLFHE.eint<5>>) -> index{
%c0 = constant 0 : index
%c = tensor.dim %t, %c0 : tensor<10x!HLFHE.eint<5>>
return %c : index
}
)XXX";
ASSERT_LLVM_ERROR(engine.compile(mlirStr, defaultV0Constraints()));
const size_t size = 10;
uint8_t t_arg[size]{32, 0, 10, 25, 14, 25, 18, 28, 14, 7};
auto maybeArgument = engine.buildArgument();
ASSERT_LLVM_ERROR(maybeArgument.takeError());
auto argument = std::move(maybeArgument.get());
// Set the %t argument
ASSERT_LLVM_ERROR(argument->setArg(0, t_arg, size));
// Invoke the function
ASSERT_LLVM_ERROR(engine.invoke(*argument));
// Get and assert the result
uint64_t res = 0;
ASSERT_LLVM_ERROR(argument->getResult(0, res));
ASSERT_EQ(res, size);
)XXX");
static uint8_t t_arg[] = {32, 0, 10, 25, 14, 25, 18, 28, 14, 7};
ASSERT_EXPECTED_VALUE(lambda(t_arg, ARRAY_SIZE(t_arg)), ARRAY_SIZE(t_arg));
}
TEST(CompileAndRunTensorEncrypted, from_elements_5) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%0: !HLFHE.eint<5>) -> tensor<1x!HLFHE.eint<5>> {
%t = tensor.from_elements %0 : tensor<1x!HLFHE.eint<5>>
return %t: tensor<1x!HLFHE.eint<5>>
}
)XXX";
ASSERT_LLVM_ERROR(engine.compile(mlirStr, defaultV0Constraints()));
auto maybeArgument = engine.buildArgument();
ASSERT_LLVM_ERROR(maybeArgument.takeError());
auto argument = std::move(maybeArgument.get());
// Set the %t argument
ASSERT_LLVM_ERROR(argument->setArg(0, 10));
// Invoke the function
ASSERT_LLVM_ERROR(engine.invoke(*argument));
// Get and assert the result
const size_t size_res = 1;
uint64_t t_res[size_res];
ASSERT_LLVM_ERROR(argument->getResult(0, t_res, size_res));
ASSERT_EQ(t_res[0], 10);
)XXX");
llvm::Expected<std::vector<uint64_t>> res =
lambda.operator()<std::vector<uint64_t>>(10_u64);
ASSERT_EXPECTED_SUCCESS(res);
ASSERT_EQ(res->size(), (size_t)1);
ASSERT_EQ(res->at(0), 10_u64);
}
TEST(CompileAndRunTensorEncrypted, in_out_tensor_with_op_5) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%in: tensor<2x!HLFHE.eint<5>>) -> tensor<3x!HLFHE.eint<5>> {
%c_0 = constant 0 : index
%c_1 = constant 1 : index
%a = tensor.extract %in[%c_0] : tensor<2x!HLFHE.eint<5>>
%b = tensor.extract %in[%c_1] : tensor<2x!HLFHE.eint<5>>
%aplusa = "HLFHE.add_eint"(%a, %a): (!HLFHE.eint<5>, !HLFHE.eint<5>) -> (!HLFHE.eint<5>)
%aplusb = "HLFHE.add_eint"(%a, %b): (!HLFHE.eint<5>, !HLFHE.eint<5>) -> (!HLFHE.eint<5>)
%bplusb = "HLFHE.add_eint"(%b, %b): (!HLFHE.eint<5>, !HLFHE.eint<5>) -> (!HLFHE.eint<5>)
%out = tensor.from_elements %aplusa, %aplusb, %bplusb : tensor<3x!HLFHE.eint<5>>
%aplusa = "HLFHE.add_eint"(%a, %a): (!HLFHE.eint<5>, !HLFHE.eint<5>) ->
(!HLFHE.eint<5>) %aplusb = "HLFHE.add_eint"(%a, %b): (!HLFHE.eint<5>,
!HLFHE.eint<5>) -> (!HLFHE.eint<5>) %bplusb = "HLFHE.add_eint"(%b, %b):
(!HLFHE.eint<5>, !HLFHE.eint<5>) -> (!HLFHE.eint<5>) %out =
tensor.from_elements %aplusa, %aplusb, %bplusb : tensor<3x!HLFHE.eint<5>>
return %out: tensor<3x!HLFHE.eint<5>>
}
)XXX";
ASSERT_LLVM_ERROR(engine.compile(mlirStr, defaultV0Constraints()));
auto maybeArgument = engine.buildArgument();
ASSERT_LLVM_ERROR(maybeArgument.takeError());
auto argument = std::move(maybeArgument.get());
// Set the argument
const size_t in_size = 2;
uint8_t in[in_size] = {2, 16};
ASSERT_LLVM_ERROR(argument->setArg(0, in, in_size));
// Invoke the function
ASSERT_LLVM_ERROR(engine.invoke(*argument));
// Get and assert the result
const size_t size_res = 3;
uint64_t t_res[size_res];
ASSERT_LLVM_ERROR(argument->getResult(0, t_res, size_res));
ASSERT_EQ(t_res[0], in[0] + in[0]);
ASSERT_EQ(t_res[1], in[0] + in[1]);
ASSERT_EQ(t_res[2], in[1] + in[1]);
)XXX");
static uint8_t in[] = {2, 16};
llvm::Expected<std::vector<uint64_t>> res =
lambda.operator()<std::vector<uint64_t>>(in, ARRAY_SIZE(in));
ASSERT_EXPECTED_SUCCESS(res);
ASSERT_EQ(res->size(), (size_t)3);
ASSERT_EQ(res->at(0), (uint64_t)(in[0] + in[0]));
ASSERT_EQ(res->at(1), (uint64_t)(in[0] + in[1]));
ASSERT_EQ(res->at(2), (uint64_t)(in[1] + in[1]));
}
TEST(CompileAndRunTensorEncrypted, linalg_generic) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
#map0 = affine_map<(d0) -> (d0)>
#map1 = affine_map<(d0) -> (0)>
func @main(%arg0: tensor<2x!HLFHE.eint<7>>, %arg1: tensor<2xi8>, %acc: !HLFHE.eint<7>) -> !HLFHE.eint<7> {
func @main(%arg0: tensor<2x!HLFHE.eint<7>>, %arg1: tensor<2xi8>, %acc:
!HLFHE.eint<7>) -> !HLFHE.eint<7> {
%tacc = tensor.from_elements %acc : tensor<1x!HLFHE.eint<7>>
%2 = linalg.generic {indexing_maps = [#map0, #map0, #map1], iterator_types = ["reduction"]} ins(%arg0, %arg1 : tensor<2x!HLFHE.eint<7>>, tensor<2xi8>) outs(%tacc : tensor<1x!HLFHE.eint<7>>) {
^bb0(%arg2: !HLFHE.eint<7>, %arg3: i8, %arg4: !HLFHE.eint<7>): // no predecessors
%4 = "HLFHE.mul_eint_int"(%arg2, %arg3) : (!HLFHE.eint<7>, i8) -> !HLFHE.eint<7>
%5 = "HLFHE.add_eint"(%4, %arg4) : (!HLFHE.eint<7>, !HLFHE.eint<7>) -> !HLFHE.eint<7>
linalg.yield %5 : !HLFHE.eint<7>
%2 = linalg.generic {indexing_maps = [#map0, #map0, #map1], iterator_types
= ["reduction"]} ins(%arg0, %arg1 : tensor<2x!HLFHE.eint<7>>, tensor<2xi8>)
outs(%tacc : tensor<1x!HLFHE.eint<7>>) { ^bb0(%arg2: !HLFHE.eint<7>, %arg3:
i8, %arg4: !HLFHE.eint<7>): // no predecessors
%4 = "HLFHE.mul_eint_int"(%arg2, %arg3) : (!HLFHE.eint<7>, i8) ->
!HLFHE.eint<7> %5 = "HLFHE.add_eint"(%4, %arg4) : (!HLFHE.eint<7>,
!HLFHE.eint<7>) -> !HLFHE.eint<7> linalg.yield %5 : !HLFHE.eint<7>
} -> tensor<1x!HLFHE.eint<7>>
%c0 = constant 0 : index
%ret = tensor.extract %2[%c0] : tensor<1x!HLFHE.eint<7>>
return %ret : !HLFHE.eint<7>
}
)XXX";
ASSERT_LLVM_ERROR(engine.compile(mlirStr, defaultV0Constraints()));
auto maybeArgument = engine.buildArgument();
ASSERT_LLVM_ERROR(maybeArgument.takeError());
auto argument = std::move(maybeArgument.get());
// Set arg0, arg1, acc
const size_t in_size = 2;
uint8_t arg0[in_size] = {2, 8};
ASSERT_LLVM_ERROR(argument->setArg(0, arg0, in_size));
uint8_t arg1[in_size] = {6, 8};
ASSERT_LLVM_ERROR(argument->setArg(1, arg1, in_size));
ASSERT_LLVM_ERROR(argument->setArg(2, 0));
// Invoke the function
ASSERT_LLVM_ERROR(engine.invoke(*argument));
// Get and assert the result
uint64_t res;
ASSERT_LLVM_ERROR(argument->getResult(0, res));
ASSERT_EQ(res, 76);
)XXX",
"main", "true");
static uint8_t arg0[] = {2, 8};
static uint8_t arg1[] = {6, 8};
llvm::Expected<uint64_t> res =
lambda(arg0, ARRAY_SIZE(arg0), arg1, ARRAY_SIZE(arg1), 0_u64);
ASSERT_EXPECTED_VALUE(res, 76);
}
TEST(CompileAndRunTensorEncrypted, dot_eint_int_7) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%arg0: tensor<4x!HLFHE.eint<7>>,
%arg1: tensor<4xi8>) -> !HLFHE.eint<7>
{
@@ -226,68 +310,62 @@ func @main(%arg0: tensor<4x!HLFHE.eint<7>>,
(tensor<4x!HLFHE.eint<7>>, tensor<4xi8>) -> !HLFHE.eint<7>
return %ret : !HLFHE.eint<7>
}
)XXX";
ASSERT_LLVM_ERROR(engine.compile(mlirStr));
auto maybeArgument = engine.buildArgument();
ASSERT_LLVM_ERROR(maybeArgument.takeError());
auto argument = std::move(maybeArgument.get());
// Set arg0, arg1, acc
const size_t in_size = 4;
uint8_t arg0[in_size] = {0, 1, 2, 3};
ASSERT_LLVM_ERROR(argument->setArg(0, arg0, in_size));
uint8_t arg1[in_size] = {0, 1, 2, 3};
ASSERT_LLVM_ERROR(argument->setArg(1, arg1, in_size));
// Invoke the function
ASSERT_LLVM_ERROR(engine.invoke(*argument));
// Get and assert the result
uint64_t res;
ASSERT_LLVM_ERROR(argument->getResult(0, res));
ASSERT_EQ(res, 14);
)XXX");
static uint8_t arg0[] = {0, 1, 2, 3};
static uint8_t arg1[] = {0, 1, 2, 3};
llvm::Expected<uint64_t> res =
lambda(arg0, ARRAY_SIZE(arg0), arg1, ARRAY_SIZE(arg1));
ASSERT_EXPECTED_VALUE(res, 14);
}
class CompileAndRunWithPrecision : public ::testing::TestWithParam<int> {
protected:
mlir::zamalang::CompilerEngine engine;
void compile(std::string mlirStr) { ASSERT_FALSE(engine.compile(mlirStr)); }
void run(std::vector<uint64_t> args, uint64_t expected) {
auto maybeResult = engine.run(args);
ASSERT_TRUE((bool)maybeResult);
uint64_t result = maybeResult.get();
if (result == expected) {
ASSERT_TRUE(true);
} else {
// TODO: Better way to test the probability of exactness
llvm::errs() << "one fail retry\n";
maybeResult = engine.run(args);
ASSERT_TRUE((bool)maybeResult);
result = maybeResult.get();
ASSERT_EQ(result, expected);
}
}
};
class CompileAndRunWithPrecision : public ::testing::TestWithParam<int> {};
TEST_P(CompileAndRunWithPrecision, identity_func) {
int precision = GetParam();
uint64_t precision = GetParam();
std::ostringstream mlirProgram;
auto sizeOfTLU = 1 << precision;
mlirProgram << "func @main(%arg0: !HLFHE.eint<" << precision
<< ">) -> !HLFHE.eint<" << precision << "> { \n";
mlirProgram << " %tlu = std.constant dense<[0";
for (auto i = 1; i < sizeOfTLU; i++) {
mlirProgram << ", " << i;
}
mlirProgram << "]> : tensor<" << sizeOfTLU << "xi64>\n";
mlirProgram << " %1 = \"HLFHE.apply_lookup_table\"(%arg0, %tlu): "
"(!HLFHE.eint<"
<< precision << ">, tensor<" << sizeOfTLU
<< "xi64>) -> (!HLFHE.eint<" << precision << ">)\n ";
mlirProgram << "return %1: !HLFHE.eint<" << precision << ">\n";
uint64_t sizeOfTLU = 1 << precision;
mlirProgram << "}\n";
llvm::errs() << mlirProgram.str();
compile(mlirProgram.str());
for (auto i = 0; i < sizeOfTLU; i++) {
run({(uint64_t)i}, i);
mlirProgram << "func @main(%arg0: !HLFHE.eint<" << precision
<< ">) -> !HLFHE.eint<" << precision << "> { \n"
<< " %tlu = std.constant dense<[0";
for (uint64_t i = 1; i < sizeOfTLU; i++)
mlirProgram << ", " << i;
mlirProgram << "]> : tensor<" << sizeOfTLU << "xi64>\n"
<< " %1 = \"HLFHE.apply_lookup_table\"(%arg0, %tlu): "
<< "(!HLFHE.eint<" << precision << ">, tensor<" << sizeOfTLU
<< "xi64>) -> (!HLFHE.eint<" << precision << ">)\n "
<< "return %1: !HLFHE.eint<" << precision << ">\n"
<< "}\n";
mlir::zamalang::JitCompilerEngine::Lambda lambda =
checkedJit(mlirProgram.str());
if (precision == 7) {
// Test fails with a probability of 5% for a precision of 7. The
// probability of the test failing 5 times in a row is .05^5,
// which is less than 1:10,000 and comparable to the probability
// of failure for the other values.
static const int max_tries = 3;
for (uint64_t i = 0; i < sizeOfTLU; i++) {
for (int retry = 0; retry <= max_tries; retry++) {
if (retry == max_tries)
GTEST_FATAL_FAILURE_("Maximum number of tries exceeded");
llvm::Expected<uint64_t> val = lambda(i);
ASSERT_EXPECTED_SUCCESS(val);
if (*val == i)
break;
}
}
} else {
for (uint64_t i = 0; i < sizeOfTLU; i++)
ASSERT_EXPECTED_VALUE(lambda(i), i);
}
}
@@ -295,8 +373,7 @@ INSTANTIATE_TEST_SUITE_P(TestHLFHEApplyLookupTable, CompileAndRunWithPrecision,
::testing::Values(1, 2, 3, 4, 5, 6, 7));
TEST(TestHLFHEApplyLookupTable, multiple_precision) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%arg0: !HLFHE.eint<6>, %arg1: !HLFHE.eint<3>) -> !HLFHE.eint<6> {
%tlu_7 = std.constant dense<[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]> : tensor<64xi64>
%tlu_3 = std.constant dense<[0, 1, 2, 3, 4, 5, 6, 7]> : tensor<8xi64>
@@ -305,45 +382,22 @@ func @main(%arg0: !HLFHE.eint<6>, %arg1: !HLFHE.eint<3>) -> !HLFHE.eint<6> {
%a_plus_b = "HLFHE.add_eint"(%a, %b): (!HLFHE.eint<6>, !HLFHE.eint<6>) -> (!HLFHE.eint<6>)
return %a_plus_b: !HLFHE.eint<6>
}
)XXX";
ASSERT_FALSE(engine.compile(mlirStr));
uint64_t arg0 = 23;
uint64_t arg1 = 7;
uint64_t expected = 30;
auto maybeResult = engine.run({arg0, arg1});
ASSERT_TRUE((bool)maybeResult);
uint64_t result = maybeResult.get();
ASSERT_EQ(result, expected);
)XXX");
ASSERT_EXPECTED_VALUE(lambda(23_u64, 7_u64), 30);
}
TEST(CompileAndRunTLU, random_func) {
mlir::zamalang::CompilerEngine engine;
auto mlirStr = R"XXX(
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
func @main(%arg0: !HLFHE.eint<6>) -> !HLFHE.eint<6> {
%tlu = std.constant dense<[16, 91, 16, 83, 80, 74, 21, 96, 1, 63, 49, 122, 76, 89, 74, 55, 109, 110, 103, 54, 105, 14, 66, 47, 52, 89, 7, 10, 73, 44, 119, 92, 25, 104, 123, 100, 108, 86, 29, 121, 118, 52, 107, 48, 34, 37, 13, 122, 107, 48, 74, 59, 96, 36, 50, 55, 120, 72, 27, 45, 12, 5, 96, 12]> : tensor<64xi64>
%1 = "HLFHE.apply_lookup_table"(%arg0, %tlu): (!HLFHE.eint<6>, tensor<64xi64>) -> (!HLFHE.eint<6>)
return %1: !HLFHE.eint<6>
}
)XXX";
ASSERT_FALSE(engine.compile(mlirStr));
// first value
auto maybeResult = engine.run({5});
ASSERT_TRUE((bool)maybeResult);
uint64_t result = maybeResult.get();
ASSERT_EQ(result, 74);
// second value
maybeResult = engine.run({62});
ASSERT_TRUE((bool)maybeResult);
result = maybeResult.get();
ASSERT_EQ(result, 96);
// edge value low
maybeResult = engine.run({0});
ASSERT_TRUE((bool)maybeResult);
result = maybeResult.get();
ASSERT_EQ(result, 16);
// edge value high
maybeResult = engine.run({63});
ASSERT_TRUE((bool)maybeResult);
result = maybeResult.get();
ASSERT_EQ(result, 12);
)XXX");
ASSERT_EXPECTED_VALUE(lambda(5_u64), 74);
ASSERT_EXPECTED_VALUE(lambda(62_u64), 96);
ASSERT_EXPECTED_VALUE(lambda(0_u64), 16);
ASSERT_EXPECTED_VALUE(lambda(63_u64), 12);
}

View File

@@ -4,13 +4,117 @@
#include <gtest/gtest.h>
#include "zamalang/Support/CompilerEngine.h"
#include "zamalang/Support/JitCompilerEngine.h"
mlir::zamalang::V0FHEConstraint defaultV0Constraints();
#define ASSERT_LLVM_ERROR(err) \
if (err) { \
llvm::errs() << "error: " << err << "\n"; \
llvm::errs() << "error: " << std::move(err) << "\n"; \
ASSERT_TRUE(false); \
}
// Checks that the value `val` is not in an error state. Returns
// `true` if the test passes, otherwise `false`.
template <typename T>
static bool assert_expected_success(llvm::Expected<T> &val) {
if (!((bool)val)) {
llvm::errs() << llvm::toString(std::move(val.takeError()));
return false;
}
return true;
}
// Checks that the value `val` is not in an error state. Returns
// `true` if the test passes, otherwise `false`.
template <typename T>
static bool assert_expected_success(llvm::Expected<T> &&val) {
return assert_expected_success(val);
}
// Checks that the value `val` of type `llvm::Expected<T>` is not in
// an error state.
#define ASSERT_EXPECTED_SUCCESS(val) \
do { \
if (!assert_expected_success(val)) \
GTEST_FATAL_FAILURE_("Expected<T> contained in error state"); \
} while (0)
// Checks that the value `val` is not in an error state and is equal
// to the value given in `exp`. Returns `true` if the test passes,
// otherwise `false`.
template <typename T, typename V>
static bool assert_expected_value(llvm::Expected<T> &val, const V &exp) {
if (!assert_expected_success(val))
return false;
if (!(val.get() == static_cast<T>(exp))) {
llvm::errs() << "Expected value " << exp << ", but got " << val.get()
<< "\n";
return false;
}
return true;
}
// Checks that the value `val` is not in an error state and is equal
// to the value given in `exp`. Returns `true` if the test passes,
// otherwise `false`.
template <typename T, typename V>
static bool assert_expected_value(llvm::Expected<T> &&val, const V &exp) {
return assert_expected_value(val, exp);
}
// Checks that the value `val` of type `llvm::Expected<T>` is not in
// an error state and is equal to the value of type `T` given in
// `exp`.
#define ASSERT_EXPECTED_VALUE(val, exp) \
do { \
if (!assert_expected_value(val, exp)) { \
GTEST_FATAL_FAILURE_("Expected<T> with wrong value"); \
} \
} while (0)
// Jit-compiles the function specified by `func` from `src` and
// returns the corresponding lambda. Any compilation errors are caught
// and reult in abnormal termination.
template <typename F>
mlir::zamalang::JitCompilerEngine::Lambda
internalCheckedJit(F checkfunc, llvm::StringRef src,
llvm::StringRef func = "main",
bool useDefaultFHEConstraints = false) {
mlir::zamalang::JitCompilerEngine engine;
if (useDefaultFHEConstraints)
engine.setFHEConstraints(defaultV0Constraints());
llvm::Expected<mlir::zamalang::JitCompilerEngine::Lambda> lambdaOrErr =
engine.buildLambda(src, func);
checkfunc(lambdaOrErr);
return std::move(*lambdaOrErr);
}
// Shorthands to create integer literals of a specific type
static inline uint8_t operator"" _u8(unsigned long long int v) { return v; }
static inline uint16_t operator"" _u16(unsigned long long int v) { return v; }
static inline uint32_t operator"" _u32(unsigned long long int v) { return v; }
static inline uint64_t operator"" _u64(unsigned long long int v) { return v; }
// Evaluates to the number of elements of a statically initialized
// array
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof(arr[0]))
// Wrapper around `internalCheckedJit` that causes
// `ASSERT_EXPECTED_SUCCESS` to use the file and line number of the
// caller instead of `internalCheckedJit`.
#define checkedJit(...) \
internalCheckedJit( \
[](llvm::Expected<mlir::zamalang::JitCompilerEngine::Lambda> &lambda) { \
ASSERT_EXPECTED_SUCCESS(lambda); \
}, \
__VA_ARGS__)
#endif