feat(compiler): Add the HLFHELinalg.matmul_int_eint operator

This commit is contained in:
Quentin Bourgerie
2021-11-16 13:18:49 +01:00
parent ffe32f5e90
commit ddbafd713d
8 changed files with 376 additions and 56 deletions

View File

@@ -402,8 +402,47 @@ def MatMulEintIntOp : HLFHELinalg_Op<"matmul_eint_int", [TensorBinaryEintInt]> {
let results = (outs Type<And<[TensorOf<[EncryptedIntegerType]>.predicate, HasStaticShapePred]>>);
let verifier = [{
return ::mlir::zamalang::HLFHELinalg::verifyMatmul(*this);
return ::mlir::zamalang::HLFHELinalg::verifyMatmul<mlir::zamalang::HLFHELinalg::MatMulEintIntOp>(*this);
}];
}
def MatMulIntEintOp : HLFHELinalg_Op<"matmul_int_eint", [TensorBinaryIntEint]> {
let summary = "Returns a tensor that contains the result of the matrix multiplication of a matrix of clear integers and a matrix of encrypted integers.";
let description = [{
Performs a matrix multiplication of a matrix of clear integers and a matrix of encrypted integers.
The width of the clear integers must be less than or equals to the witdh of encrypted integers.
```mlir
"HLFHELinalg.matmul_int_eint(%a, %b) : (tensor<MxNxip'>, tensor<NxPxHLFHE.eint<p>>) -> tensor<MxPx!HLFHE.eint<p>>"
```
Examples:
```mlir
// Returns the matrix multiplication of a 3x2 matrix of clear integers and a 2x3 matrix of encrypted integers.
// [ 1, 2, 3]
// [ 2, 3, 4]
// *
// [1,2] [ 5, 8,11]
// [3,4] = [11,18,25]
// [5,6] [17,28,39]
//
"HLFHELinalg.matmul_int_eint"(%a, %b) : (tensor<3x2xi7>, tensor<2x3x!HLFHE.eint<6>>) -> tensor<3x3x!HLFHE.eint<6>>
```
}];
let arguments = (ins
Type<And<[TensorOf<[AnyInteger]>.predicate, HasStaticShapePred]>>:$lhs,
Type<And<[TensorOf<[EncryptedIntegerType]>.predicate, HasStaticShapePred]>>:$rhs
);
let results = (outs Type<And<[TensorOf<[EncryptedIntegerType]>.predicate, HasStaticShapePred]>>);
let verifier = [{
return ::mlir::zamalang::HLFHELinalg::verifyMatmul<mlir::zamalang::HLFHELinalg::MatMulIntEintOp>(*this);
}];
}
#endif

View File

@@ -598,11 +598,12 @@ struct HLFHELinalgNegEintToLinalgGeneric
};
};
// This rewrite pattern transforms any instance of
// operators `HLFHELinalg.matmul_eint_int` to an instance of `linalg.generic`
// with an appropriate region using `HLFHE.mul_eint_int` and `HLFHE.add_eint`
// operation, an appropriate specification for the iteration dimensions and
// appropriate operations managing the accumulator of `linalg.generic`.
// This template rewrite pattern transforms any instance of
// operators `HLFHELinalgMatmulOp` to an instance of `linalg.generic`
// with an appropriate region using a builder that create the multiplication
// operators and `HLFHE.add_eint` operation, an appropriate specification for
// the iteration dimensions and appropriate operations managing the accumulator
// of `linalg.generic`.
//
// Example:
//
@@ -633,27 +634,33 @@ struct HLFHELinalgNegEintToLinalgGeneric
// outs(%C : tensor<MxNx!HLFHE.eint<p>>)
// {
// ^bb0(%a: !HLFHE.eint<p>, %b: ip', %c: !HLFHE.eint<p>) :
// %d = "HLFHE.mul_eint_int"(%a, %b) :
// (!HLFHE.eint<p>, ip') -> !HLFHE.eint<p>
// %d = createMulOp(%a, %b): !HLFHE.eint<p>
// %e = "HLFHE.add_eint"(%c, %d):
// (!HLFHE.eint<p>, !HLFHE.eint<p>) -> !HLFHE.eint<p>
// linalg.yield %e : !HLFHE.eint<p>
// }
//
struct HLFHELinalgMatmulEintIntToLinalgGeneric
: public mlir::OpRewritePattern<
mlir::zamalang::HLFHELinalg::MatMulEintIntOp> {
HLFHELinalgMatmulEintIntToLinalgGeneric(::mlir::MLIRContext *context,
mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<mlir::zamalang::HLFHELinalg::MatMulEintIntOp>(
context, benefit) {}
template <typename HLFHELinalgMatmulOp>
struct HLFHELinalgMatmulToLinalgGeneric
: public mlir::OpRewritePattern<HLFHELinalgMatmulOp> {
HLFHELinalgMatmulToLinalgGeneric(
mlir::MLIRContext *context,
std::function<mlir::zamalang::HLFHE::MulEintIntOp(
mlir::OpBuilder &, mlir::Location, mlir::Type, mlir::Value,
mlir::Value)>
createMulOp,
mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<HLFHELinalgMatmulOp>(context, benefit),
createMulOp(createMulOp) {}
::mlir::LogicalResult
matchAndRewrite(mlir::zamalang::HLFHELinalg::MatMulEintIntOp matmulOp,
matchAndRewrite(HLFHELinalgMatmulOp matmulOp,
::mlir::PatternRewriter &rewriter) const override {
mlir::Location matmulLoc = matmulOp.getLoc();
mlir::RankedTensorType resultTy =
((mlir::Type)matmulOp->getResult(0).getType())
.cast<mlir::RankedTensorType>();
mlir::Type resultElementTy = resultTy.getElementType();
// Create tensor.generate for initial value
auto generateBody = [&](mlir::OpBuilder &nestedBuilder,
mlir::Location nestedLoc,
@@ -661,17 +668,13 @@ struct HLFHELinalgMatmulEintIntToLinalgGeneric
// %z = "HLFHE.zero" : () -> !HLFHE.eint<2>
mlir::zamalang::HLFHE::ZeroEintOp zeroOp =
nestedBuilder.create<mlir::zamalang::HLFHE::ZeroEintOp>(
matmulOp.getLoc(), resultTy.getElementType());
matmulLoc, resultElementTy);
// linalg.yield %z : !HLFHE.eint<p>
nestedBuilder.create<mlir::tensor::YieldOp>(matmulOp.getLoc(),
nestedBuilder.create<mlir::tensor::YieldOp>(matmulLoc,
zeroOp.getResult());
};
mlir::tensor::GenerateOp init = rewriter.create<mlir::tensor::GenerateOp>(
matmulOp.getLoc(), (mlir::Type)resultTy, mlir::ValueRange{},
generateBody);
// linalg.init_tensor for initial value
// mlir::Value init = rewriter.create<mlir::linalg::InitTensorOp>(
// matmulOp.getLoc(), resultTy.getShape(), resultTy.getElementType());
matmulLoc, (mlir::Type)resultTy, mlir::ValueRange{}, generateBody);
// Create the affine #maps_0
llvm::SmallVector<mlir::AffineMap> maps{
// (m, n, p) -> (m, p),
@@ -698,17 +701,15 @@ struct HLFHELinalgMatmulEintIntToLinalgGeneric
mlir::ValueRange blockArgs) {
// "HLFHE.mul_eint_int"(%a, %b) : (!HLFHE.eint<p>, ip') -> !HLFHE.eint<p>
mlir::zamalang::HLFHE::MulEintIntOp mulEintIntOp =
nestedBuilder.create<mlir::zamalang::HLFHE::MulEintIntOp>(
matmulOp.getLoc(), resultTy.getElementType(), blockArgs[0],
blockArgs[1]);
createMulOp(nestedBuilder, matmulLoc, resultElementTy, blockArgs[0],
blockArgs[1]);
// "HLFHE.add_eint"(%c, %d): (!HLFHE.eint<p>, !HLFHE.eint<p>) ->
// !HLFHE.eint<p>
mlir::zamalang::HLFHE::AddEintOp addEintOp =
nestedBuilder.create<mlir::zamalang::HLFHE::AddEintOp>(
matmulOp.getLoc(), resultTy.getElementType(), blockArgs[2],
mulEintIntOp);
matmulLoc, resultElementTy, blockArgs[2], mulEintIntOp);
// linalg.yield %e : !HLFHE.eint<p>
nestedBuilder.create<mlir::linalg::YieldOp>(matmulOp.getLoc(),
nestedBuilder.create<mlir::linalg::YieldOp>(matmulLoc,
addEintOp.getResult());
};
@@ -720,14 +721,19 @@ struct HLFHELinalgMatmulEintIntToLinalgGeneric
llvm::StringRef call{""};
mlir::linalg::GenericOp genericOp =
rewriter.create<mlir::linalg::GenericOp>(matmulOp.getLoc(), resTypes,
ins, outs, maps, iteratorTypes,
doc, call, bodyBuilder);
rewriter.create<mlir::linalg::GenericOp>(matmulLoc, resTypes, ins, outs,
maps, iteratorTypes, doc, call,
bodyBuilder);
rewriter.replaceOp(matmulOp, {genericOp.getResult(0)});
return ::mlir::success();
};
private:
std::function<mlir::zamalang::HLFHE::MulEintIntOp(
mlir::OpBuilder &, mlir::Location, mlir::Type, mlir::Value, mlir::Value)>
createMulOp;
};
namespace {
@@ -771,7 +777,20 @@ void HLFHETensorOpsToLinalg::runOnFunction() {
&getContext());
patterns.insert<HLFHELinalgApplyLookupTableToLinalgGeneric>(&getContext());
patterns.insert<HLFHELinalgNegEintToLinalgGeneric>(&getContext());
patterns.insert<HLFHELinalgMatmulEintIntToLinalgGeneric>(&getContext());
patterns.insert<HLFHELinalgMatmulToLinalgGeneric<
mlir::zamalang::HLFHELinalg::MatMulEintIntOp>>(
&getContext(), [](mlir::OpBuilder &builder, mlir::Location loc,
mlir::Type type, mlir::Value arg0, mlir::Value arg1) {
return builder.create<mlir::zamalang::HLFHE::MulEintIntOp>(loc, type,
arg0, arg1);
});
patterns.insert<HLFHELinalgMatmulToLinalgGeneric<
mlir::zamalang::HLFHELinalg::MatMulIntEintOp>>(
&getContext(), [](mlir::OpBuilder &builder, mlir::Location loc,
mlir::Type type, mlir::Value arg0, mlir::Value arg1) {
return builder.create<mlir::zamalang::HLFHE::MulEintIntOp>(loc, type,
arg1, arg0);
});
patterns.insert<HLFHELinalgApplyMultiLookupTableToLinalgGeneric>(
&getContext());

View File

@@ -686,6 +686,71 @@ static llvm::APInt getSqMANP(
return accNorm;
}
static llvm::APInt getSqMANP(
mlir::zamalang::HLFHELinalg::MatMulIntEintOp op,
llvm::ArrayRef<mlir::LatticeElement<MANPLatticeValue> *> operandMANPs) {
mlir::RankedTensorType rhsTy =
op.rhs().getType().cast<mlir::RankedTensorType>();
mlir::RankedTensorType lhsTy =
op.lhs().getType().cast<mlir::RankedTensorType>();
mlir::Type iTy = lhsTy.getElementType();
assert(iTy.isSignlessInteger() &&
"Only multiplications with signless integers are currently allowed");
assert(
operandMANPs.size() == 2 &&
operandMANPs[1]->getValue().getMANP().hasValue() &&
"Missing squared Minimal Arithmetic Noise Padding for encrypted operand");
llvm::APInt rhsNorm = operandMANPs[1]->getValue().getMANP().getValue();
// Initial value of the accumulator
llvm::APInt accNorm = llvm::APInt{1, 1, false};
mlir::arith::ConstantOp cstOp =
llvm::dyn_cast_or_null<mlir::arith::ConstantOp>(
op->getOpOperand(0).get().getDefiningOp());
mlir::DenseIntElementsAttr denseVals =
cstOp ? cstOp->getAttrOfType<mlir::DenseIntElementsAttr>("value")
: nullptr;
if (denseVals) {
// For a constant operand use actual constant to calculate 2-norm
// tensor<MxN> = tensor<MxP> * tensor<PxN> compute the max 2-norm of the
// result
int64_t M = lhsTy.getShape()[0];
int64_t N = rhsTy.getShape()[1];
int64_t P = rhsTy.getShape()[0];
for (int64_t m = 0; m < M; m++) {
for (int64_t n = 0; n < N; n++) {
llvm::APInt tmpNorm = llvm::APInt{1, 1, false};
for (int64_t p = 0; p < P; p++) {
llvm::APInt cst = denseVals.getFlatValue<llvm::APInt>(m * P + p);
llvm::APInt lhsNorm = APIntWidthExtendUSq(cst);
llvm::APInt mulNorm = APIntWidthExtendUMul(lhsNorm, rhsNorm);
tmpNorm = APIntWidthExtendUAdd(mulNorm, tmpNorm);
}
accNorm = APIntUMax(accNorm, tmpNorm);
}
}
} else {
// For a dynamic operand conservatively assume that the value is
// the maximum for the integer width
llvm::APInt lhsNorm = conservativeIntNorm2Sq(iTy);
// For tensor<MxN> = tensor<MxP> * tensor<PxN> they are P HLFHE.mul_eint_int
// and HLFHE.add_eint operations for each elements of the result
int64_t P = rhsTy.getShape()[0];
for (int64_t i = 0; i < P; i++) {
llvm::APInt mulNorm = APIntWidthExtendUMul(rhsNorm, lhsNorm);
accNorm = APIntWidthExtendUAdd(mulNorm, accNorm);
}
}
return accNorm;
}
static llvm::APInt getSqMANP(
mlir::tensor::ExtractOp op,
llvm::ArrayRef<mlir::LatticeElement<MANPLatticeValue> *> operandMANPs) {
@@ -823,6 +888,10 @@ struct MANPAnalysis : public mlir::ForwardDataFlowAnalysis<MANPLatticeValue> {
llvm::dyn_cast<mlir::zamalang::HLFHELinalg::MatMulEintIntOp>(
op)) {
norm2SqEquiv = getSqMANP(matmulEintIntOp, operands);
} else if (auto matmulIntEintOp =
llvm::dyn_cast<mlir::zamalang::HLFHELinalg::MatMulIntEintOp>(
op)) {
norm2SqEquiv = getSqMANP(matmulIntEintOp, operands);
} else if (llvm::isa<
mlir::zamalang::HLFHELinalg::ApplyLookupTableEintOp,
mlir::zamalang::HLFHELinalg::ApplyMultiLookupTableEintOp>(

View File

@@ -309,14 +309,15 @@ verifyApplyMultiLookupTable(ApplyMultiLookupTableEintOp &op) {
return ::mlir::success();
}
/// Verify the matmul shapes, the type of tensor elements are checked by
/// TensorBinaryEintInt
mlir::LogicalResult verifyMatmul(MatMulEintIntOp &op) {
auto lhsTy = op.lhs().getType().cast<mlir::RankedTensorType>();
/// Verify the matmul shapes, the type of tensor elements should be checked by
/// something else
template <typename MatMulOp> mlir::LogicalResult verifyMatmul(MatMulOp &op) {
auto lhsTy = ((mlir::Type)op.lhs().getType()).cast<mlir::RankedTensorType>();
auto rhsTy = op.rhs().getType().cast<mlir::RankedTensorType>();
auto rhsTy = ((mlir::Type)op.rhs().getType()).cast<mlir::RankedTensorType>();
auto resultTy = op.getResult().getType().cast<mlir::RankedTensorType>();
auto resultTy =
((mlir::Type)op.getResult().getType()).cast<mlir::RankedTensorType>();
if (lhsTy.getShape().size() != 2 || rhsTy.getShape().size() != 2) {
op.emitOpError() << "should have 2D tensors as operands";
@@ -333,9 +334,8 @@ mlir::LogicalResult verifyMatmul(MatMulEintIntOp &op) {
rhsTy.getDimSize(1)};
if (!resultTy.hasStaticShape(expectedShape)) {
op.emitOpError() << "should have the result shape compatible with operands "
"shape, expect "
<< expectedShape[0] << "x" << expectedShape[1]
<< " as the shape of the result";
<< "shape, expect " << expectedShape[0] << "x"
<< expectedShape[1] << " as the shape of the result";
return mlir::failure();
}
return mlir::success();

View File

@@ -137,6 +137,32 @@ func @apply_lookup_table_after_op(%t: tensor<8x!HLFHE.eint<2>>, %i: tensor<8xi3>
// -----
/////////////////////////////////////////////////
// HLFHELinalg.apply_multi_lookup_table
/////////////////////////////////////////////////
func @apply_multi_lookup_table(%t: tensor<3x3x!HLFHE.eint<2>>, %luts: tensor<3x3x4xi64>) -> tensor<3x3x!HLFHE.eint<3>> {
// CHECK: %[[RES:.*]] = "HLFHELinalg.apply_multi_lookup_table"(%[[T:.*]], %[[LUT:.*]]) {MANP = 1 : ui1} : (tensor<3x3x!HLFHE.eint<2>>, tensor<3x3x4xi64>) -> tensor<3x3x!HLFHE.eint<3>>
%res = "HLFHELinalg.apply_multi_lookup_table"(%t, %luts) : (tensor<3x3x!HLFHE.eint<2>>, tensor<3x3x4xi64>) -> tensor<3x3x!HLFHE.eint<3>>
return %res : tensor<3x3x!HLFHE.eint<3>>
}
// -----
func @apply_multi_lookup_table_after_op(%t: tensor<8x!HLFHE.eint<2>>, %i: tensor<8xi3>, %luts: tensor<8x4xi64>) -> tensor<8x!HLFHE.eint<3>> {
// CHECK: %[[V0:.*]] = "HLFHELinalg.mul_eint_int"([[T:.*]], %[[I:.*]]) {MANP = 8 : ui{{[0-9]+}}} : (tensor<8x!HLFHE.eint<2>>, tensor<8xi3>) -> tensor<8x!HLFHE.eint<2>>
%0 = "HLFHELinalg.mul_eint_int"(%t, %i) : (tensor<8x!HLFHE.eint<2>>, tensor<8xi3>) -> tensor<8x!HLFHE.eint<2>>
// CHECK-NEXT: %[[RES:.*]] = "HLFHELinalg.apply_multi_lookup_table"(%[[V0:.*]], %[[LUT:.*]]) {MANP = 1 : ui1} : (tensor<8x!HLFHE.eint<2>>, tensor<8x4xi64>) -> tensor<8x!HLFHE.eint<3>>
%res = "HLFHELinalg.apply_multi_lookup_table"(%0, %luts) : (tensor<8x!HLFHE.eint<2>>, tensor<8x4xi64>) -> tensor<8x!HLFHE.eint<3>>
return %res : tensor<8x!HLFHE.eint<3>>
}
// -----
/////////////////////////////////////////////////
// HLFHELinalg.matmul_ent_int
/////////////////////////////////////////////////
func @matmul_eint_int_dyn_p_1(%arg0: tensor<3x1x!HLFHE.eint<2>>, %arg1: tensor<1x2xi3>) -> tensor<3x2x!HLFHE.eint<2>> {
// p = 0
// acc = manp(0) = 1
@@ -214,20 +240,85 @@ func @matmul_eint_int_cst_p_2_n_1(%arg0: tensor<3x2x!HLFHE.eint<2>>) -> tensor<3
return %1 : tensor<3x2x!HLFHE.eint<2>>
}
/////////////////////////////////////////////////
// HLFHELinalg.matmul_int_eint
/////////////////////////////////////////////////
// -----
func @apply_multi_lookup_table(%t: tensor<3x3x!HLFHE.eint<2>>, %luts: tensor<3x3x4xi64>) -> tensor<3x3x!HLFHE.eint<3>> {
// CHECK: %[[RES:.*]] = "HLFHELinalg.apply_multi_lookup_table"(%[[T:.*]], %[[LUT:.*]]) {MANP = 1 : ui1} : (tensor<3x3x!HLFHE.eint<2>>, tensor<3x3x4xi64>) -> tensor<3x3x!HLFHE.eint<3>>
%res = "HLFHELinalg.apply_multi_lookup_table"(%t, %luts) : (tensor<3x3x!HLFHE.eint<2>>, tensor<3x3x4xi64>) -> tensor<3x3x!HLFHE.eint<3>>
return %res : tensor<3x3x!HLFHE.eint<3>>
func @matmul_int_eint_dyn_p_1(%arg0: tensor<3x1xi3>, %arg1: tensor<1x2x!HLFHE.eint<2>>) -> tensor<3x2x!HLFHE.eint<2>> {
// p = 0
// acc = manp(0) = 1
// mul = manp(mul_eint_int(eint<2>, i3) = 1 * (2^3)^2 = 64
// manp(add_eint(mul, acc)) = 64 + 1 = 65
// ceil(sqrt(65)) = 9
// CHECK: %[[V1:.*]] = "HLFHELinalg.matmul_int_eint"(%[[A0:.*]], %[[A1:.*]]) {MANP = 9 : ui{{[0-9]+}}}
%1 = "HLFHELinalg.matmul_int_eint"(%arg0, %arg1): (tensor<3x1xi3>, tensor<1x2x!HLFHE.eint<2>>) -> tensor<3x2x!HLFHE.eint<2>>
return %1 : tensor<3x2x!HLFHE.eint<2>>
}
// -----
func @apply_multi_lookup_table_after_op(%t: tensor<8x!HLFHE.eint<2>>, %i: tensor<8xi3>, %luts: tensor<8x4xi64>) -> tensor<8x!HLFHE.eint<3>> {
// CHECK: %[[V0:.*]] = "HLFHELinalg.mul_eint_int"([[T:.*]], %[[I:.*]]) {MANP = 8 : ui{{[0-9]+}}} : (tensor<8x!HLFHE.eint<2>>, tensor<8xi3>) -> tensor<8x!HLFHE.eint<2>>
%0 = "HLFHELinalg.mul_eint_int"(%t, %i) : (tensor<8x!HLFHE.eint<2>>, tensor<8xi3>) -> tensor<8x!HLFHE.eint<2>>
// CHECK-NEXT: %[[RES:.*]] = "HLFHELinalg.apply_multi_lookup_table"(%[[V0:.*]], %[[LUT:.*]]) {MANP = 1 : ui1} : (tensor<8x!HLFHE.eint<2>>, tensor<8x4xi64>) -> tensor<8x!HLFHE.eint<3>>
%res = "HLFHELinalg.apply_multi_lookup_table"(%0, %luts) : (tensor<8x!HLFHE.eint<2>>, tensor<8x4xi64>) -> tensor<8x!HLFHE.eint<3>>
return %res : tensor<8x!HLFHE.eint<3>>
}
func @matmul_int_eint_dyn_p_2(%arg0: tensor<3x2xi3>, %arg1: tensor<2x2x!HLFHE.eint<2>>) -> tensor<3x2x!HLFHE.eint<2>> {
// p = 0
// acc = manp(0) = 1
// mul = manp(mul_eint_int(eint<2>, i3) = 1 * (2^3)^2 = 64
// manp(add_eint(mul, acc)) = 64 + 1 = 65
// p = 1
// manp(mul_eint_int(eint<2>, i3) = 1 * (2^3)^2 = 64
// manp(add_eint(mul, acc)) = 64 + 65 = 129
// ceil(sqrt(129)) = 12
// CHECK: %[[V1:.*]] = "HLFHELinalg.matmul_int_eint"(%[[A0:.*]], %[[A1:.*]]) {MANP = 12 : ui{{[0-9]+}}}
%1 = "HLFHELinalg.matmul_int_eint"(%arg0, %arg1): (tensor<3x2xi3>, tensor<2x2x!HLFHE.eint<2>>) -> tensor<3x2x!HLFHE.eint<2>>
return %1 : tensor<3x2x!HLFHE.eint<2>>
}
// -----
func @matmul_int_eint_cst_p_1(%arg0: tensor<1x3x!HLFHE.eint<2>>) -> tensor<2x3x!HLFHE.eint<2>> {
%0 = arith.constant dense<[[3], [1]]> : tensor<2x1xi3>
// c(m,n) = a(m,p) * b(p,n) the max cst is used for m = 0
// acc = manp(0) = 1
// mul = manp(mul_eint_int(eint<2>, 3) = 1 * 3^2 = 9
// manp(add_eint(mul, acc)) = 9 + 1 = 10
// ceil(sqrt(10)) = 4
// CHECK: %[[V1:.*]] = "HLFHELinalg.matmul_int_eint"(%[[A0:.*]], %[[A1:.*]]) {MANP = 4 : ui{{[0-9]+}}}
%1 = "HLFHELinalg.matmul_int_eint"(%0, %arg0): (tensor<2x1xi3>, tensor<1x3x!HLFHE.eint<2>>) -> tensor<2x3x!HLFHE.eint<2>>
return %1 : tensor<2x3x!HLFHE.eint<2>>
}
// -----
func @matmul_int_eint_cst_p_2_n_0(%arg0: tensor<2x3x!HLFHE.eint<2>>) -> tensor<2x3x!HLFHE.eint<2>> {
%0 = arith.constant dense<[[3, 4],[1, 1]]> : tensor<2x2xi3>
// c(m,n) = a(m,p) * b(p,n) the max csts [4,3] are used for m = 0
// p = 0
// acc = manp(0) = 1
// mul = manp(mul_eint_int(eint<2>, 3) = 1 * 3^2 = 9
// manp(add_eint(mul, acc)) = 9 + 1 = 10
// p = 1
// mul = manp(mul_eint_int(eint<2>, 4) = 1 * 4^2 = 17
// manp(add_eint(mul, acc)) = 17 + 9 = 26
// ceil(sqrt(26)) = 6
// CHECK: %[[V1:.*]] = "HLFHELinalg.matmul_int_eint"(%[[A0:.*]], %[[A1:.*]]) {MANP = 6 : ui{{[0-9]+}}}
%1 = "HLFHELinalg.matmul_int_eint"(%0, %arg0): (tensor<2x2xi3>, tensor<2x3x!HLFHE.eint<2>>) -> tensor<2x3x!HLFHE.eint<2>>
return %1 : tensor<2x3x!HLFHE.eint<2>>
}
// -----
func @matmul_int_eint_cst_p_2_n_1(%arg0: tensor<2x3x!HLFHE.eint<2>>) -> tensor<2x3x!HLFHE.eint<2>> {
%0 = arith.constant dense<[[4, 1],[3, 1]]> : tensor<2x2xi3>
// c(m,n) = a(m,p) * b(p,n) the max csts [4,1] are used for m = 1
// p = 0
// acc = manp(0) = 1
// mul = manp(mul_eint_int(eint<2>, 4) = 1 * 4^2 = 16
// manp(add_eint(mul, acc)) = 16 + 1 = 17
// p = 1
// mul = manp(mul_eint_int(eint<2>, 1) = 1 * 1^2 = 1
// manp(add_eint(mul, acc)) = 1 + 17 = 18
// ceil(sqrt(18)) = 5
// CHECK: %[[V1:.*]] = "HLFHELinalg.matmul_int_eint"(%[[A0:.*]], %[[A1:.*]]) {MANP = 5 : ui{{[0-9]+}}}
%1 = "HLFHELinalg.matmul_int_eint"(%0, %arg0): (tensor<2x2xi3>, tensor<2x3x!HLFHE.eint<2>>) -> tensor<2x3x!HLFHE.eint<2>>
return %1 : tensor<2x3x!HLFHE.eint<2>>
}

View File

@@ -194,4 +194,38 @@ func @matmul_eint_int(%arg0: tensor<3x4x!HLFHE.eint<2>>, %arg1: tensor<4x2xi3>)
return %1 : tensor<4x2x!HLFHE.eint<2>>
}
// -----
/////////////////////////////////////////////////
// HLFHELinalg.matmul_int_eint
/////////////////////////////////////////////////
func @matmul_int_eint(%arg0: tensor<2x3x4xi3>, %arg1: tensor<4x2x!HLFHE.eint<2>>) -> tensor<3x2x!HLFHE.eint<2>> {
// expected-error @+1 {{'HLFHELinalg.matmul_int_eint' op should have 2D tensors as operands}}
%1 = "HLFHELinalg.matmul_int_eint"(%arg0, %arg1): (tensor<2x3x4xi3>, tensor<4x2x!HLFHE.eint<2>>) -> tensor<3x2x!HLFHE.eint<2>>
return %1 : tensor<3x2x!HLFHE.eint<2>>
}
// -----
func @matmul_int_eint(%arg0: tensor<3x4xi3>, %arg1: tensor<2x4x2x!HLFHE.eint<2>>) -> tensor<3x2x!HLFHE.eint<2>> {
// expected-error @+1 {{'HLFHELinalg.matmul_int_eint' op should have 2D tensors as operands}}
%1 = "HLFHELinalg.matmul_int_eint"(%arg0, %arg1): (tensor<3x4xi3>, tensor<2x4x2x!HLFHE.eint<2>>) -> tensor<3x2x!HLFHE.eint<2>>
return %1 : tensor<3x2x!HLFHE.eint<2>>
}
// -----
func @matmul_int_eint(%arg0: tensor<3x4xi3>, %arg1: tensor<5x2x!HLFHE.eint<2>>) -> tensor<3x2x!HLFHE.eint<2>> {
// expected-error @+1 {{'HLFHELinalg.matmul_int_eint' op should have the dimension #0 of operand #1equals to the dimension #1 of operand #0, expect 4 got 5}}
%1 = "HLFHELinalg.matmul_int_eint"(%arg0, %arg1): (tensor<3x4xi3>, tensor<5x2x!HLFHE.eint<2>>) -> tensor<3x2x!HLFHE.eint<2>>
return %1 : tensor<3x2x!HLFHE.eint<2>>
}
// -----
func @matmul_int_eint(%arg0: tensor<3x4xi3>, %arg1: tensor<4x2x!HLFHE.eint<2>>) -> tensor<4x2x!HLFHE.eint<2>> {
// expected-error @+1 {{'HLFHELinalg.matmul_int_eint' op should have the result shape compatible with operands shape, expect 3x2 as the shape of the result}}
%1 = "HLFHELinalg.matmul_int_eint"(%arg0, %arg1): (tensor<3x4xi3>, tensor<4x2x!HLFHE.eint<2>>) -> tensor<4x2x!HLFHE.eint<2>>
return %1 : tensor<4x2x!HLFHE.eint<2>>
}

View File

@@ -316,3 +316,16 @@ func @matmul_eint_int(%arg0: tensor<3x4x!HLFHE.eint<2>>, %arg1: tensor<4x2xi3>)
%1 = "HLFHELinalg.matmul_eint_int"(%arg0, %arg1): (tensor<3x4x!HLFHE.eint<2>>, tensor<4x2xi3>) -> tensor<3x2x!HLFHE.eint<2>>
return %1 : tensor<3x2x!HLFHE.eint<2>>
}
/////////////////////////////////////////////////
// HLFHELinalg.matmul_int_eint
/////////////////////////////////////////////////
// CHECK-LABEL: @matmul_int_eint(%arg0: tensor<3x4xi3>, %arg1: tensor<4x2x!HLFHE.eint<2>>) -> tensor<3x2x!HLFHE.eint<2>>
func @matmul_int_eint(%arg0: tensor<3x4xi3>, %arg1: tensor<4x2x!HLFHE.eint<2>>) -> tensor<3x2x!HLFHE.eint<2>> {
// CHECK-NEXT: %[[V1:.*]] = "HLFHELinalg.matmul_int_eint"(%arg0, %arg1) : (tensor<3x4xi3>, tensor<4x2x!HLFHE.eint<2>>) -> tensor<3x2x!HLFHE.eint<2>>
// CHECK-NEXT: return %[[V1]] : tensor<3x2x!HLFHE.eint<2>>
%1 = "HLFHELinalg.matmul_int_eint"(%arg0, %arg1): (tensor<3x4xi3>, tensor<4x2x!HLFHE.eint<2>>) -> tensor<3x2x!HLFHE.eint<2>>
return %1 : tensor<3x2x!HLFHE.eint<2>>
}

View File

@@ -1132,8 +1132,7 @@ TEST(End2EndJit_HLFHELinalg, apply_multi_lookup_table_with_boradcast) {
mlir::zamalang::TensorLambdaArgument<
mlir::zamalang::IntLambdaArgument<uint64_t>>
lutsArg(llvm::MutableArrayRef<uint64_t>((uint64_t *)luts, 3 * 4),
{3, 4});
lutsArg(llvm::MutableArrayRef<uint64_t>((uint64_t *)luts, 3 * 4), {3, 4});
llvm::Expected<std::vector<uint64_t>> res =
lambda.operator()<std::vector<uint64_t>>({&tArg, &lutsArg});
@@ -1276,6 +1275,62 @@ TEST(End2EndJit_HLFHELinalg, matmul_eint_int) {
}
}
///////////////////////////////////////////////////////////////////////////////
// HLFHELinalg matmul_eint_int ////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
TEST(End2EndJit_HLFHELinalg, matmul_int_eint) {
mlir::zamalang::JitCompilerEngine::Lambda lambda = checkedJit(R"XXX(
// Returns the matrix multiplication of a 3x2 matrix of encrypted integers and a 2x3 matrix of integers.
// [ 1, 2, 3]
// [ 2, 3, 4]
// *
// [1,2] [ 5, 8,11]
// [3,4] = [11,18,25]
// [5,6] [17,28,39]
func @main(%a: tensor<3x2xi7>, %b: tensor<2x3x!HLFHE.eint<6>>) -> tensor<3x3x!HLFHE.eint<6>> {
%0 = "HLFHELinalg.matmul_int_eint"(%a, %b) : (tensor<3x2xi7>, tensor<2x3x!HLFHE.eint<6>>) -> tensor<3x3x!HLFHE.eint<6>>
return %0 : tensor<3x3x!HLFHE.eint<6>>
}
)XXX");
const uint8_t A[3][2]{
{1, 2},
{3, 4},
{5, 6},
};
const uint8_t B[2][3]{
{1, 2, 3},
{2, 3, 4},
};
const uint8_t expected[3][3]{
{5, 8, 11},
{11, 18, 25},
{17, 28, 39},
};
mlir::zamalang::TensorLambdaArgument<
mlir::zamalang::IntLambdaArgument<uint8_t>>
aArg(llvm::ArrayRef<uint8_t>((const uint8_t *)A, 3 * 2), {3, 2});
mlir::zamalang::TensorLambdaArgument<
mlir::zamalang::IntLambdaArgument<uint8_t>>
bArg(llvm::ArrayRef<uint8_t>((const uint8_t *)B, 2 * 3), {2, 3});
llvm::Expected<std::vector<uint64_t>> res =
lambda.operator()<std::vector<uint64_t>>({&aArg, &bArg});
ASSERT_EXPECTED_SUCCESS(res);
ASSERT_EQ(res->size(), (uint64_t)3 * 3);
for (size_t i = 0; i < 3; i++) {
for (size_t j = 0; j < 3; j++) {
EXPECT_EQ((*res)[i * 3 + j], expected[i][j])
<< ", at pos(" << i << "," << j << ")";
}
}
}
///////////////////////////////////////////////////////////////////////////////
// linalg.tensor_collapse_shape ///////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
@@ -1376,4 +1431,4 @@ func @main(%a: tensor<2x8x!HLFHE.eint<6>>) -> tensor<2x2x4x!HLFHE.eint<6>> {
}
}
}
}
}