mirror of
https://github.com/zama-ai/concrete.git
synced 2026-02-08 19:44:57 -05:00
chore: Numpy, not NumPy.
This commit is contained in:
committed by
Benoit Chevallier
parent
721bc06eb7
commit
ef74f6b5f6
@@ -17,7 +17,7 @@ import concrete.numpy as hnp
|
||||
def f(x, y):
|
||||
return (2 * x) + y
|
||||
|
||||
# Create a NumPy FHE Compiler
|
||||
# Create a Numpy FHE Compiler
|
||||
compiler = hnp.NPFHECompiler(f, {"x": "encrypted", "y": "encrypted"})
|
||||
|
||||
# Compile an FHE Circuit using an inputset
|
||||
@@ -57,7 +57,7 @@ Here is the visual representation of the pipeline:
|
||||
|
||||
Compiling a torch Module is pretty straightforward.
|
||||
|
||||
The torch Module is first converted to a NumPy equivalent we call `NumpyModule` if all the layers in the torch Module are supported.
|
||||
The torch Module is first converted to a Numpy equivalent we call `NumpyModule` if all the layers in the torch Module are supported.
|
||||
|
||||
Then the module is quantized post-training to be compatible with our compiler which only works on integers. The post training quantization uses the provided dataset for calibration.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user