mirror of
https://github.com/zama-ai/concrete.git
synced 2026-02-08 19:44:57 -05:00
fix(benchmarks): resolve simple errors in some of the benchmarks
This commit is contained in:
@@ -2,6 +2,7 @@
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
from common import BENCHMARK_CONFIGURATION
|
||||
|
||||
import concrete.numpy as hnp
|
||||
@@ -36,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -26,7 +26,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(4):
|
||||
sample_x = np.random.randint(0, 2 ** 6, size=(3,))
|
||||
sample_x = np.random.randint(0, 2 ** 6, size=(3,), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -18,7 +18,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(4):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(4, 5))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(4, 5), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -38,7 +38,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -7,19 +7,19 @@ import concrete.numpy as hnp
|
||||
|
||||
|
||||
def main():
|
||||
c = np.arange(20, 30).reshape((5, 2))
|
||||
c = np.arange(1, 7).reshape((3, 2))
|
||||
|
||||
def function_to_compile(x):
|
||||
return np.matmul(c, x)
|
||||
|
||||
x = hnp.EncryptedTensor(hnp.UnsignedInteger(3), shape=(2, 4))
|
||||
x = hnp.EncryptedTensor(hnp.UnsignedInteger(2), shape=(2, 3))
|
||||
|
||||
inputset = [(np.random.randint(0, 2 ** 3, size=(2, 4))) for _ in range(128)]
|
||||
inputset = [(np.random.randint(0, 2 ** 2, size=(2, 3)),) for _ in range(128)]
|
||||
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(4):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(2, 4))
|
||||
sample_x = np.random.randint(0, 2 ** 2, size=(2, 3), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -39,7 +39,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -38,7 +38,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(50):
|
||||
sample_x = np.random.randint(0, 2 ** input_bits, size=(3, 2))
|
||||
sample_x = np.random.randint(0, 2 ** input_bits, size=(3, 2), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -49,7 +49,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
from common import BENCHMARK_CONFIGURATION
|
||||
|
||||
import concrete.numpy as hnp
|
||||
@@ -41,7 +42,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -26,7 +26,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(100):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3, 2))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3, 2), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -26,7 +26,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(100):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -26,7 +26,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(100):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -26,7 +26,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(100):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3, 2))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3, 2), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -26,7 +26,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(100):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -26,7 +26,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(100):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -26,7 +26,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(100):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -18,7 +18,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(4):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(4, 5))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(4, 5), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -38,7 +38,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -21,8 +21,8 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(4):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(4, 5))
|
||||
sample_y = np.random.randint(0, 2 ** 3, size=(4, 5))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(4, 5), dtype=np.uint8)
|
||||
sample_y = np.random.randint(0, 2 ** 3, size=(4, 5), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x, sample_y])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -42,7 +42,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -44,7 +44,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -44,7 +44,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(100):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(5, 4, 2))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(5, 4, 2), dtype=np.uint8)
|
||||
sample_y = random.randint(0, (2 ** 2) - 1)
|
||||
sample_z = random.randint(0, (2 ** 1) - 1)
|
||||
|
||||
@@ -50,7 +50,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -50,7 +50,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -44,7 +44,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -32,7 +32,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(100):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(4, 5))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(4, 5), dtype=np.uint8)
|
||||
sample_y = random.randint(0, (2 ** 2) - 1)
|
||||
|
||||
inputs.append([sample_x, sample_y])
|
||||
@@ -44,7 +44,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -50,7 +50,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(100):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(4, 5, 2))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(4, 5, 2), dtype=np.uint8)
|
||||
sample_y = random.randint(0, (2 ** 2) - 1)
|
||||
sample_z = random.randint(0, (2 ** 1) - 1)
|
||||
|
||||
@@ -50,7 +50,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -32,7 +32,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(100):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(4, 2))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(4, 2), dtype=np.uint8)
|
||||
sample_y = random.randint(0, (2 ** 2) - 1)
|
||||
|
||||
inputs.append([sample_x, sample_y])
|
||||
@@ -44,7 +44,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -32,7 +32,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(100):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(4, 2))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(4, 2), dtype=np.uint8)
|
||||
sample_y = random.randint(0, (2 ** 2) - 1)
|
||||
|
||||
inputs.append([sample_x, sample_y])
|
||||
@@ -44,7 +44,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -50,7 +50,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(100):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(4, 2, 5))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(4, 2, 5), dtype=np.uint8)
|
||||
sample_y = random.randint(0, (2 ** 2) - 1)
|
||||
sample_z = random.randint(0, (2 ** 1) - 1)
|
||||
|
||||
@@ -50,7 +50,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -18,7 +18,7 @@ def main():
|
||||
|
||||
inputset = [
|
||||
(
|
||||
np.random.randint(0, 2 ** 3, size=(4, 2)),
|
||||
np.random.randint(0, 2 ** 3, size=(4, 2), dtype=np.uint8),
|
||||
random.randint(0, (2 ** 2) - 1),
|
||||
random.randint(0, (2 ** 1) - 1),
|
||||
)
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(100):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(4, 2))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(4, 2), dtype=np.uint8)
|
||||
sample_y = random.randint(0, (2 ** 2) - 1)
|
||||
sample_z = random.randint(0, (2 ** 1) - 1)
|
||||
|
||||
@@ -50,7 +50,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -50,7 +50,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -32,7 +32,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(100):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(4,))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(4,), dtype=np.uint8)
|
||||
sample_y = random.randint(0, (2 ** 2) - 1)
|
||||
|
||||
inputs.append([sample_x, sample_y])
|
||||
@@ -44,7 +44,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -32,7 +32,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(100):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(4,))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(4,), dtype=np.uint8)
|
||||
sample_y = random.randint(0, (2 ** 2) - 1)
|
||||
|
||||
inputs.append([sample_x, sample_y])
|
||||
@@ -44,7 +44,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -7,19 +7,19 @@ import concrete.numpy as hnp
|
||||
|
||||
|
||||
def main():
|
||||
c = np.arange(20).reshape((4, 5))
|
||||
c = np.arange(6).reshape((3, 2))
|
||||
|
||||
def function_to_compile(x):
|
||||
return np.matmul(x, c)
|
||||
|
||||
x = hnp.EncryptedTensor(hnp.UnsignedInteger(3), shape=(2, 4))
|
||||
x = hnp.EncryptedTensor(hnp.UnsignedInteger(2), shape=(2, 3))
|
||||
|
||||
inputset = [(np.random.randint(0, 2 ** 3, size=(2, 4))) for _ in range(128)]
|
||||
inputset = [(np.random.randint(0, 2 ** 2, size=(2, 3)),) for _ in range(128)]
|
||||
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(4):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(2, 4))
|
||||
sample_x = np.random.randint(0, 2 ** 2, size=(2, 3), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -39,7 +39,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -10,19 +10,19 @@ def main():
|
||||
def function_to_compile(x, y):
|
||||
return np.matmul(x, y)
|
||||
|
||||
x = hnp.EncryptedTensor(hnp.UnsignedInteger(3), shape=(2, 4))
|
||||
y = hnp.EncryptedTensor(hnp.UnsignedInteger(3), shape=(4, 5))
|
||||
x = hnp.EncryptedTensor(hnp.UnsignedInteger(2), shape=(2, 3))
|
||||
y = hnp.EncryptedTensor(hnp.UnsignedInteger(2), shape=(3, 2))
|
||||
|
||||
inputset = [
|
||||
(np.random.randint(0, 2 ** 3, size=(2, 4)), np.random.randint(0, 2 ** 3, size=(4, 5)))
|
||||
(np.random.randint(0, 2 ** 2, size=(2, 3)), np.random.randint(0, 2 ** 2, size=(3, 2)))
|
||||
for _ in range(128)
|
||||
]
|
||||
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(4):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(2, 4))
|
||||
sample_y = np.random.randint(0, 2 ** 3, size=(4, 5))
|
||||
sample_x = np.random.randint(0, 2 ** 2, size=(2, 3), dtype=np.uint8)
|
||||
sample_y = np.random.randint(0, 2 ** 2, size=(3, 2), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x, sample_y])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -42,7 +42,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -26,7 +26,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(4):
|
||||
sample_x = np.random.randint(3, 2 ** 3, size=(3,))
|
||||
sample_x = np.random.randint(3, 2 ** 3, size=(3,), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -28,7 +28,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(4):
|
||||
sample_x = np.random.randint(3, 2 ** 3, size=(2, 3))
|
||||
sample_x = np.random.randint(3, 2 ** 3, size=(2, 3), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -39,7 +39,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
from common import BENCHMARK_CONFIGURATION
|
||||
|
||||
import concrete.numpy as hnp
|
||||
@@ -36,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -26,7 +26,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(4):
|
||||
sample_x = np.random.randint(24, 2 ** 6, size=(3,))
|
||||
sample_x = np.random.randint(24, 2 ** 6, size=(3,), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
import itertools
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
from common import BENCHMARK_CONFIGURATION
|
||||
|
||||
import concrete.numpy as hnp
|
||||
@@ -41,7 +42,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -30,8 +30,8 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(4):
|
||||
sample_x = np.random.randint(4, 2 ** 3, size=(3,))
|
||||
sample_y = np.random.randint(0, 5, size=(2, 3))
|
||||
sample_x = np.random.randint(4, 2 ** 3, size=(3,), dtype=np.uint8)
|
||||
sample_y = np.random.randint(0, 5, size=(2, 3), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x, sample_y])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -42,7 +42,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -41,7 +41,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -29,8 +29,8 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(4):
|
||||
sample_x = np.random.randint(3, 2 ** 3, size=(3,))
|
||||
sample_y = np.random.randint(0, 4, size=(3,))
|
||||
sample_x = np.random.randint(3, 2 ** 3, size=(3,), dtype=np.uint8)
|
||||
sample_y = np.random.randint(0, 4, size=(3,), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x, sample_y])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -41,7 +41,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -17,7 +17,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(4):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(10, 6))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(10, 6), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -26,7 +26,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(4):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -26,7 +26,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(4):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(2, 3))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(2, 3), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
from common import BENCHMARK_CONFIGURATION
|
||||
|
||||
import concrete.numpy as hnp
|
||||
@@ -36,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
from common import BENCHMARK_CONFIGURATION
|
||||
|
||||
import concrete.numpy as hnp
|
||||
@@ -39,7 +40,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
from common import BENCHMARK_CONFIGURATION
|
||||
|
||||
import concrete.numpy as hnp
|
||||
@@ -39,7 +40,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
from common import BENCHMARK_CONFIGURATION
|
||||
|
||||
import concrete.numpy as hnp
|
||||
@@ -39,7 +40,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
from common import BENCHMARK_CONFIGURATION
|
||||
|
||||
import concrete.numpy as hnp
|
||||
@@ -39,7 +40,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
from common import BENCHMARK_CONFIGURATION
|
||||
|
||||
import concrete.numpy as hnp
|
||||
@@ -39,7 +40,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
from common import BENCHMARK_CONFIGURATION
|
||||
|
||||
import concrete.numpy as hnp
|
||||
@@ -39,7 +40,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
from common import BENCHMARK_CONFIGURATION
|
||||
|
||||
import concrete.numpy as hnp
|
||||
@@ -39,7 +40,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
from common import BENCHMARK_CONFIGURATION
|
||||
|
||||
import concrete.numpy as hnp
|
||||
@@ -39,7 +40,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
from common import BENCHMARK_CONFIGURATION
|
||||
|
||||
import concrete.numpy as hnp
|
||||
@@ -39,7 +40,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
from common import BENCHMARK_CONFIGURATION
|
||||
|
||||
import concrete.numpy as hnp
|
||||
@@ -39,7 +40,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
from common import BENCHMARK_CONFIGURATION
|
||||
|
||||
import concrete.numpy as hnp
|
||||
@@ -38,7 +39,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -30,8 +30,8 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(4):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,))
|
||||
sample_y = np.random.randint(0, 2 ** 3, size=(2, 3))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,), dtype=np.uint8)
|
||||
sample_y = np.random.randint(0, 2 ** 3, size=(2, 3), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x, sample_y])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -42,7 +42,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -29,7 +29,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(4):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,), dtype=np.uint8)
|
||||
sample_y = random.randint(0, 2 ** 3 - 1)
|
||||
|
||||
inputs.append([sample_x, sample_y])
|
||||
@@ -41,7 +41,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -30,8 +30,8 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(4):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,))
|
||||
sample_y = np.random.randint(0, 2 ** 3, size=(3,))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,), dtype=np.uint8)
|
||||
sample_y = np.random.randint(0, 2 ** 3, size=(3,), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x, sample_y])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -42,7 +42,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -17,7 +17,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(4):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(10, 6))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(10, 6), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -26,7 +26,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(4):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -26,7 +26,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(4):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(2, 3))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(2, 3), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
from common import BENCHMARK_CONFIGURATION
|
||||
|
||||
import concrete.numpy as hnp
|
||||
@@ -36,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -26,7 +26,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(4):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
import itertools
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
from common import BENCHMARK_CONFIGURATION
|
||||
|
||||
import concrete.numpy as hnp
|
||||
@@ -41,7 +42,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -30,8 +30,8 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(4):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,))
|
||||
sample_y = np.random.randint(0, 2 ** 3, size=(2, 3))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,), dtype=np.uint8)
|
||||
sample_y = np.random.randint(0, 2 ** 3, size=(2, 3), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x, sample_y])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -42,7 +42,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -41,7 +41,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -30,8 +30,8 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(4):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,))
|
||||
sample_y = np.random.randint(0, 2 ** 3, size=(3,))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(3,), dtype=np.uint8)
|
||||
sample_y = np.random.randint(0, 2 ** 3, size=(3,), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x, sample_y])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -42,7 +42,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -1,7 +1,8 @@
|
||||
# bench: Unit Target: x**2
|
||||
# bench: Unit Target: x ** 2
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
from common import BENCHMARK_CONFIGURATION
|
||||
|
||||
import concrete.numpy as hnp
|
||||
@@ -36,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -17,7 +17,7 @@ def main():
|
||||
inputs = []
|
||||
labels = []
|
||||
for _ in range(4):
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(2, 4))
|
||||
sample_x = np.random.randint(0, 2 ** 3, size=(2, 4), dtype=np.uint8)
|
||||
|
||||
inputs.append([sample_x])
|
||||
labels.append(function_to_compile(*inputs[-1]))
|
||||
@@ -37,7 +37,7 @@ def main():
|
||||
result_i = engine.run(*input_i)
|
||||
# bench: Measure: End
|
||||
|
||||
if result_i == label_i:
|
||||
if np.array_equal(result_i, label_i):
|
||||
correct += 1
|
||||
|
||||
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
||||
|
||||
@@ -14,7 +14,7 @@ def name_to_id(name):
|
||||
"""Convert a human readable name to a url friendly id (e.g., `x + y` to `x-plus-y`)"""
|
||||
|
||||
name = name.replace("-", "minus")
|
||||
name = name.replace("**", "-to-the-power-of-")
|
||||
name = name.replace(" ** ", "-to-the-power-of-")
|
||||
name = name.replace("+", "plus")
|
||||
name = name.replace("*", "times")
|
||||
name = name.replace("/", "over")
|
||||
@@ -24,6 +24,8 @@ def name_to_id(name):
|
||||
name = name.replace(" ", "-")
|
||||
name = name.replace("(", "")
|
||||
name = name.replace(")", "")
|
||||
name = name.replace("[", "")
|
||||
name = name.replace("]", "")
|
||||
name = name.replace(",", "")
|
||||
name = name.replace(".", "-")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user