Files
concrete/docs/execution-analysis/debug.md

317 lines
9.9 KiB
Markdown

# Debug
In this section, you will learn how to debug the compilation process easily and find help in the case that you cannot resolve your issue.
## Compiler debug and verbose modes
There are two [configuration](../guides/configure.md) options that you can use to understand what's happening under the hood during the compilation process.
* **compiler\_verbose\_mode** will print the passes applied by the compiler and let you see the transformations done by the compiler. Also, in the case of a crash, it could narrow down the crash location.
* **compiler\_debug\_mode** is a lot more detailed version of the verbose mode. This is even better for crashes.
{% hint style="warning" %}
These flags might not work as expected in Jupyter notebooks as they output to stderr directly from C++.
{% endhint %}
## Debug artifacts
**Concrete** has an artifact system to simplify the process of debugging issues.
### Automatic export.
In case of compilation failures, artifacts are exported automatically to the `.artifacts` directory under the working directory. Let's intentionally create a compilation failure to show what is exported.
```python
def f(x):
return np.sin(x)
```
This function fails to compile because **Concrete** does not support floating-point outputs. When you try to compile it, an exception will be raised and the artifacts will be exported automatically. If you go to the `.artifacts` directory under the working directory, you'll see the following files:
#### environment.txt
This file contains information about your setup (i.e., your operating system and python version).
```
Linux-5.12.13-arch1-2-x86_64-with-glibc2.29 #1 SMP PREEMPT Fri, 25 Jun 2021 22:56:51 +0000
Python 3.8.10
```
#### requirements.txt
This file contains information about Python packages and their versions installed on your system.
```
astroid==2.15.0
attrs==22.2.0
auditwheel==5.3.0
...
wheel==0.40.0
wrapt==1.15.0
zipp==3.15.0
```
#### function.txt
This file contains information about the function you tried to compile.
```
def f(x):
return np.sin(x)
```
#### parameters.txt
This file contains information about the encryption status of the parameters of the function you tried to compile.
```
x :: encrypted
```
#### 1.initial.graph.txt
This file contains the textual representation of the initial computation graph right after tracing.
```
%0 = x # EncryptedScalar<uint3>
%1 = sin(%0) # EncryptedScalar<float64>
return %1
```
#### 2.final.graph.txt
This file contains the textual representation of the final computation graph right before MLIR conversion.
```
%0 = x # EncryptedScalar<uint3>
%1 = sin(%0) # EncryptedScalar<float64>
return %1
```
#### traceback.txt
This file contains information about the error that was received.
```
Traceback (most recent call last):
File "/path/to/your/script.py", line 9, in <module>
circuit = f.compile(inputset)
File "/usr/local/lib/python3.10/site-packages/concrete/fhe/compilation/decorators.py", line 159, in compile
return self.compiler.compile(inputset, configuration, artifacts, **kwargs)
File "/usr/local/lib/python3.10/site-packages/concrete/fhe/compilation/compiler.py", line 437, in compile
mlir = GraphConverter.convert(self.graph)
File "/usr/local/lib/python3.10/site-packages/concrete/fhe/mlir/graph_converter.py", line 677, in convert
GraphConverter._check_graph_convertibility(graph)
File "/usr/local/lib/python3.10/site-packages/concrete/fhe/mlir/graph_converter.py", line 240, in _check_graph_convertibility
raise RuntimeError(message)
RuntimeError: Function you are trying to compile cannot be converted to MLIR
%0 = x # EncryptedScalar<uint3> ∈ [3, 5]
%1 = sin(%0) # EncryptedScalar<float64> ∈ [-0.958924, 0.14112]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ only integer operations are supported
/path/to/your/script.py:6
return %1
```
### Manual exports.
Manual exports are mostly used for visualization. They can be very useful for demonstrations. Here is how to perform one:
```python
from concrete import fhe
import numpy as np
artifacts = fhe.DebugArtifacts("/tmp/custom/export/path")
@fhe.compiler({"x": "encrypted"})
def f(x):
return 127 - (50 * (np.sin(x) + 1)).astype(np.int64)
inputset = range(2 ** 3)
circuit = f.compile(inputset, artifacts=artifacts)
artifacts.export()
```
If you go to the `/tmp/custom/export/path` directory, you'll see the following files:
#### 1.initial.graph.txt
This file contains the textual representation of the initial computation graph right after tracing.
```
%0 = x # EncryptedScalar<uint1>
%1 = sin(%0) # EncryptedScalar<float64>
%2 = 1 # ClearScalar<uint1>
%3 = add(%1, %2) # EncryptedScalar<float64>
%4 = 50 # ClearScalar<uint6>
%5 = multiply(%4, %3) # EncryptedScalar<float64>
%6 = astype(%5, dtype=int_) # EncryptedScalar<uint1>
%7 = 127 # ClearScalar<uint7>
%8 = subtract(%7, %6) # EncryptedScalar<uint1>
return %8
```
#### 2.after-fusing.graph.txt
This file contains the textual representation of the intermediate computation graph after fusing.
```
%0 = x # EncryptedScalar<uint1>
%1 = subgraph(%0) # EncryptedScalar<uint1>
%2 = 127 # ClearScalar<uint7>
%3 = subtract(%2, %1) # EncryptedScalar<uint1>
return %3
Subgraphs:
%1 = subgraph(%0):
%0 = input # EncryptedScalar<uint1>
%1 = sin(%0) # EncryptedScalar<float64>
%2 = 1 # ClearScalar<uint1>
%3 = add(%1, %2) # EncryptedScalar<float64>
%4 = 50 # ClearScalar<uint6>
%5 = multiply(%4, %3) # EncryptedScalar<float64>
%6 = astype(%5, dtype=int_) # EncryptedScalar<uint1>
return %6
```
#### 3.final.graph.txt
This file contains the textual representation of the final computation graph right before MLIR conversion.
```
%0 = x # EncryptedScalar<uint3> ∈ [0, 7]
%1 = subgraph(%0) # EncryptedScalar<uint7> ∈ [2, 95]
%2 = 127 # ClearScalar<uint7> ∈ [127, 127]
%3 = subtract(%2, %1) # EncryptedScalar<uint7> ∈ [32, 125]
return %3
Subgraphs:
%1 = subgraph(%0):
%0 = input # EncryptedScalar<uint1>
%1 = sin(%0) # EncryptedScalar<float64>
%2 = 1 # ClearScalar<uint1>
%3 = add(%1, %2) # EncryptedScalar<float64>
%4 = 50 # ClearScalar<uint6>
%5 = multiply(%4, %3) # EncryptedScalar<float64>
%6 = astype(%5, dtype=int_) # EncryptedScalar<uint1>
return %6
```
#### mlir.txt
This file contains information about the MLIR of the function which was compiled using the provided inputset.
```
module {
func.func @main(%arg0: !FHE.eint<7>) -> !FHE.eint<7> {
%c127_i8 = arith.constant 127 : i8
%cst = arith.constant dense<"..."> : tensor<128xi64>
%0 = "FHE.apply_lookup_table"(%arg0, %cst) : (!FHE.eint<7>, tensor<128xi64>) -> !FHE.eint<7>
%1 = "FHE.sub_int_eint"(%c127_i8, %0) : (i8, !FHE.eint<7>) -> !FHE.eint<7>
return %1 : !FHE.eint<7>
}
}
```
#### client\_parameters.json
This file contains information about the client parameters chosen by **Concrete**.
```
{
"bootstrapKeys": [
{
"baseLog": 22,
"glweDimension": 1,
"inputLweDimension": 908,
"inputSecretKeyID": 1,
"level": 1,
"outputSecretKeyID": 0,
"polynomialSize": 8192,
"variance": 4.70197740328915e-38
}
],
"functionName": "main",
"inputs": [
{
"encryption": {
"encoding": {
"isSigned": false,
"precision": 7
},
"secretKeyID": 0,
"variance": 4.70197740328915e-38
},
"shape": {
"dimensions": [],
"sign": false,
"size": 0,
"width": 7
}
}
],
"keyswitchKeys": [
{
"baseLog": 3,
"inputSecretKeyID": 0,
"level": 6,
"outputSecretKeyID": 1,
"variance": 1.7944329123150665e-13
}
],
"outputs": [
{
"encryption": {
"encoding": {
"isSigned": false,
"precision": 7
},
"secretKeyID": 0,
"variance": 4.70197740328915e-38
},
"shape": {
"dimensions": [],
"sign": false,
"size": 0,
"width": 7
}
}
],
"packingKeyswitchKeys": [],
"secretKeys": [
{
"dimension": 8192
},
{
"dimension": 908
}
]
}
```
## Asking the community
You can seek help with your issue by asking a question directly in the [community forum](https://community.zama.ai/).
## Submitting an issue
If you cannot find a solution in the community forum, or if you have found a bug in the library, you could create an issue in our GitHub repository.
In case of a bug, try to:
* minimize randomness;
* minimize your function as much as possible while keeping the bug - this will help to fix the bug faster;
* include your inputset in the issue;
* include reproduction steps in the issue;
* include debug artifacts in the issue.
In case of a feature request, try to:
* give a minimal example of the desired behavior;
* explain your use case.