Files
concrete/compilers/concrete-compiler/compiler/lib/Bindings/Python/CompilerEngine.cpp

619 lines
25 KiB
C++

// Part of the Concrete Compiler Project, under the BSD3 License with Zama
// Exceptions. See
// https://github.com/zama-ai/concrete-compiler-internal/blob/main/LICENSE.txt
// for license information.
#include "llvm/ADT/SmallString.h"
#include <cstdint>
#include <memory>
#include <stdexcept>
#include "capnp/message.h"
#include "concrete-protocol.capnp.h"
#include "concretelang/Bindings/Python/CompilerEngine.h"
#include "concretelang/Common/Compat.h"
#include "concretelang/Common/Keysets.h"
#include "concretelang/Common/Protocol.h"
#include "concretelang/Common/Values.h"
#include "concretelang/Runtime/DFRuntime.hpp"
#include "concretelang/Support/CompilerEngine.h"
// Library Support bindings ///////////////////////////////////////////////////
MLIR_CAPI_EXPORTED LibrarySupport_Py
library_support(const char *outputPath, const char *runtimeLibraryPath,
bool generateSharedLib, bool generateStaticLib,
bool generateClientParameters, bool generateCompilationFeedback,
bool generateCppHeader) {
return LibrarySupport_Py{mlir::concretelang::LibrarySupport(
outputPath, runtimeLibraryPath, generateSharedLib, generateStaticLib,
generateClientParameters, generateCompilationFeedback)};
}
MLIR_CAPI_EXPORTED std::unique_ptr<mlir::concretelang::LibraryCompilationResult>
library_compile(LibrarySupport_Py support, const char *module,
mlir::concretelang::CompilationOptions options) {
llvm::SourceMgr sm;
sm.AddNewSourceBuffer(llvm::MemoryBuffer::getMemBuffer(module),
llvm::SMLoc());
GET_OR_THROW_LLVM_EXPECTED(compilationResult,
support.support.compile(sm, options));
return std::move(*compilationResult);
}
MLIR_CAPI_EXPORTED std::unique_ptr<mlir::concretelang::LibraryCompilationResult>
library_compile_module(
LibrarySupport_Py support, mlir::ModuleOp module,
mlir::concretelang::CompilationOptions options,
std::shared_ptr<mlir::concretelang::CompilationContext> cctx) {
GET_OR_THROW_LLVM_EXPECTED(compilationResult,
support.support.compile(module, cctx, options));
return std::move(*compilationResult);
}
MLIR_CAPI_EXPORTED concretelang::clientlib::ClientParameters
library_load_client_parameters(
LibrarySupport_Py support,
mlir::concretelang::LibraryCompilationResult &result) {
GET_OR_THROW_LLVM_EXPECTED(clientParameters,
support.support.loadClientParameters(result));
return *clientParameters;
}
MLIR_CAPI_EXPORTED mlir::concretelang::CompilationFeedback
library_load_compilation_feedback(
LibrarySupport_Py support,
mlir::concretelang::LibraryCompilationResult &result) {
GET_OR_THROW_LLVM_EXPECTED(compilationFeedback,
support.support.loadCompilationFeedback(result));
return *compilationFeedback;
}
MLIR_CAPI_EXPORTED concretelang::serverlib::ServerLambda
library_load_server_lambda(LibrarySupport_Py support,
mlir::concretelang::LibraryCompilationResult &result,
bool useSimulation) {
GET_OR_THROW_LLVM_EXPECTED(
serverLambda, support.support.loadServerLambda(result, useSimulation));
return *serverLambda;
}
MLIR_CAPI_EXPORTED std::unique_ptr<concretelang::clientlib::PublicResult>
library_server_call(LibrarySupport_Py support,
concretelang::serverlib::ServerLambda lambda,
concretelang::clientlib::PublicArguments &args,
concretelang::clientlib::EvaluationKeys &evaluationKeys) {
GET_OR_THROW_LLVM_EXPECTED(
publicResult, support.support.serverCall(lambda, args, evaluationKeys));
return std::move(*publicResult);
}
MLIR_CAPI_EXPORTED std::unique_ptr<concretelang::clientlib::PublicResult>
library_simulate(LibrarySupport_Py support,
concretelang::serverlib::ServerLambda lambda,
concretelang::clientlib::PublicArguments &args) {
GET_OR_THROW_LLVM_EXPECTED(publicResult,
support.support.simulate(lambda, args));
return std::move(*publicResult);
}
MLIR_CAPI_EXPORTED std::string
library_get_shared_lib_path(LibrarySupport_Py support) {
return support.support.getSharedLibPath();
}
MLIR_CAPI_EXPORTED std::string
library_get_program_info_path(LibrarySupport_Py support) {
return support.support.getProgramInfoPath();
}
// Client Support bindings ///////////////////////////////////////////////////
MLIR_CAPI_EXPORTED std::unique_ptr<concretelang::clientlib::KeySet>
key_set(concretelang::clientlib::ClientParameters clientParameters,
std::optional<concretelang::clientlib::KeySetCache> cache,
uint64_t seedMsb, uint64_t seedLsb) {
if (cache.has_value()) {
GET_OR_THROW_RESULT(Keyset keyset,
(*cache).keysetCache.getKeyset(
clientParameters.programInfo.asReader().getKeyset(),
seedMsb, seedLsb));
concretelang::clientlib::KeySet output{keyset};
return std::make_unique<concretelang::clientlib::KeySet>(std::move(output));
} else {
__uint128_t seed = seedMsb;
seed <<= 64;
seed += seedLsb;
auto csprng = concretelang::csprng::ConcreteCSPRNG(seed);
auto keyset =
Keyset(clientParameters.programInfo.asReader().getKeyset(), csprng);
concretelang::clientlib::KeySet output{keyset};
return std::make_unique<concretelang::clientlib::KeySet>(std::move(output));
}
}
MLIR_CAPI_EXPORTED std::unique_ptr<concretelang::clientlib::PublicArguments>
encrypt_arguments(concretelang::clientlib::ClientParameters clientParameters,
concretelang::clientlib::KeySet &keySet,
llvm::ArrayRef<mlir::concretelang::LambdaArgument *> args) {
auto maybeProgram = ::concretelang::clientlib::ClientProgram::create(
clientParameters.programInfo.asReader(), keySet.keyset.client,
std::make_shared<CSPRNG>(::concretelang::csprng::ConcreteCSPRNG(0)),
false);
if (maybeProgram.has_failure()) {
throw std::runtime_error(maybeProgram.as_failure().error().mesg);
}
auto circuit = maybeProgram.value()
.getClientCircuit(clientParameters.programInfo.asReader()
.getCircuits()[0]
.getName())
.value();
std::vector<TransportValue> output;
for (size_t i = 0; i < args.size(); i++) {
auto info =
clientParameters.programInfo.asReader().getCircuits()[0].getInputs()[i];
auto typeTransformer = getPythonTypeTransformer(info);
auto input = typeTransformer(args[i]->value);
auto maybePrepared = circuit.prepareInput(input, i);
if (maybePrepared.has_failure()) {
throw std::runtime_error(maybePrepared.as_failure().error().mesg);
}
output.push_back(maybePrepared.value());
}
concretelang::clientlib::PublicArguments publicArgs{output};
return std::make_unique<concretelang::clientlib::PublicArguments>(
std::move(publicArgs));
}
MLIR_CAPI_EXPORTED std::vector<lambdaArgument>
decrypt_result(concretelang::clientlib::ClientParameters clientParameters,
concretelang::clientlib::KeySet &keySet,
concretelang::clientlib::PublicResult &publicResult) {
auto maybeProgram = ::concretelang::clientlib::ClientProgram::create(
clientParameters.programInfo.asReader(), keySet.keyset.client,
std::make_shared<CSPRNG>(::concretelang::csprng::ConcreteCSPRNG(0)),
false);
if (maybeProgram.has_failure()) {
throw std::runtime_error(maybeProgram.as_failure().error().mesg);
}
auto circuit = maybeProgram.value()
.getClientCircuit(clientParameters.programInfo.asReader()
.getCircuits()[0]
.getName())
.value();
std::vector<lambdaArgument> results;
for (auto e : llvm::enumerate(publicResult.values)) {
auto maybeProcessed = circuit.processOutput(e.value(), e.index());
if (maybeProcessed.has_failure()) {
throw std::runtime_error(maybeProcessed.as_failure().error().mesg);
}
mlir::concretelang::LambdaArgument out{maybeProcessed.value()};
lambdaArgument tensor_arg{
std::make_shared<mlir::concretelang::LambdaArgument>(std::move(out))};
results.push_back(tensor_arg);
}
return results;
}
MLIR_CAPI_EXPORTED std::unique_ptr<concretelang::clientlib::PublicArguments>
publicArgumentsUnserialize(
concretelang::clientlib::ClientParameters &clientParameters,
const std::string &buffer) {
auto publicArgumentsProto = Message<concreteprotocol::PublicArguments>();
if (publicArgumentsProto.readBinaryFromString(buffer).has_failure()) {
throw std::runtime_error("Failed to deserialize public arguments.");
}
std::vector<TransportValue> values;
for (auto arg : publicArgumentsProto.asReader().getArgs()) {
values.push_back(arg);
}
concretelang::clientlib::PublicArguments output{values};
return std::make_unique<concretelang::clientlib::PublicArguments>(
std::move(output));
}
MLIR_CAPI_EXPORTED std::string publicArgumentsSerialize(
concretelang::clientlib::PublicArguments &publicArguments) {
auto publicArgumentsProto = Message<concreteprotocol::PublicArguments>();
auto argBuilder =
publicArgumentsProto.asBuilder().initArgs(publicArguments.values.size());
for (size_t i = 0; i < publicArguments.values.size(); i++) {
argBuilder.setWithCaveats(i, publicArguments.values[i].asReader());
}
auto maybeBuffer = publicArgumentsProto.writeBinaryToString();
if (maybeBuffer.has_failure()) {
throw std::runtime_error("Failed to serialize public arguments.");
}
return maybeBuffer.value();
}
MLIR_CAPI_EXPORTED std::unique_ptr<concretelang::clientlib::PublicResult>
publicResultUnserialize(
concretelang::clientlib::ClientParameters &clientParameters,
const std::string &buffer) {
auto publicResultsProto = Message<concreteprotocol::PublicResults>();
if (publicResultsProto.readBinaryFromString(buffer).has_failure()) {
throw std::runtime_error("Failed to deserialize public results.");
}
std::vector<TransportValue> values;
for (auto res : publicResultsProto.asReader().getResults()) {
values.push_back(res);
}
concretelang::clientlib::PublicResult output{values};
return std::make_unique<concretelang::clientlib::PublicResult>(
std::move(output));
}
MLIR_CAPI_EXPORTED std::string
publicResultSerialize(concretelang::clientlib::PublicResult &publicResult) {
std::string buffer;
auto publicResultsProto = Message<concreteprotocol::PublicResults>();
auto resBuilder =
publicResultsProto.asBuilder().initResults(publicResult.values.size());
for (size_t i = 0; i < publicResult.values.size(); i++) {
resBuilder.setWithCaveats(i, publicResult.values[i].asReader());
}
auto maybeBuffer = publicResultsProto.writeBinaryToString();
if (maybeBuffer.has_failure()) {
throw std::runtime_error("Failed to serialize public results.");
}
return maybeBuffer.value();
}
MLIR_CAPI_EXPORTED concretelang::clientlib::EvaluationKeys
evaluationKeysUnserialize(const std::string &buffer) {
auto serverKeysetProto = Message<concreteprotocol::ServerKeyset>();
auto maybeError = serverKeysetProto.readBinaryFromString(
buffer, capnp::ReaderOptions{7000000000, 64});
if (maybeError.has_failure()) {
throw std::runtime_error("Failed to deserialize server keyset." +
maybeError.as_failure().error().mesg);
}
auto serverKeyset =
concretelang::keysets::ServerKeyset::fromProto(serverKeysetProto);
concretelang::clientlib::EvaluationKeys output{serverKeyset};
return output;
}
MLIR_CAPI_EXPORTED std::string evaluationKeysSerialize(
concretelang::clientlib::EvaluationKeys &evaluationKeys) {
auto serverKeysetProto = evaluationKeys.keyset.toProto();
auto maybeBuffer = serverKeysetProto.writeBinaryToString();
if (maybeBuffer.has_failure()) {
throw std::runtime_error("Failed to serialize evaluation keys.");
}
return maybeBuffer.value();
}
MLIR_CAPI_EXPORTED std::unique_ptr<concretelang::clientlib::KeySet>
keySetUnserialize(const std::string &buffer) {
auto keysetProto = Message<concreteprotocol::Keyset>();
auto maybeError = keysetProto.readBinaryFromString(
buffer, capnp::ReaderOptions{7000000000, 64});
if (maybeError.has_failure()) {
throw std::runtime_error("Failed to deserialize keyset." +
maybeError.as_failure().error().mesg);
}
auto keyset = concretelang::keysets::Keyset::fromProto(keysetProto);
concretelang::clientlib::KeySet output{keyset};
return std::make_unique<concretelang::clientlib::KeySet>(std::move(output));
}
MLIR_CAPI_EXPORTED std::string
keySetSerialize(concretelang::clientlib::KeySet &keySet) {
auto keysetProto = keySet.keyset.toProto();
auto maybeBuffer = keysetProto.writeBinaryToString();
if (maybeBuffer.has_failure()) {
throw std::runtime_error("Failed to serialize keys.");
}
return maybeBuffer.value();
}
MLIR_CAPI_EXPORTED concretelang::clientlib::SharedScalarOrTensorData
valueUnserialize(const std::string &buffer) {
auto inner = TransportValue();
if (inner.readBinaryFromString(buffer).has_failure()) {
throw std::runtime_error("Failed to deserialize Value");
}
return {inner};
}
MLIR_CAPI_EXPORTED std::string
valueSerialize(const concretelang::clientlib::SharedScalarOrTensorData &value) {
auto maybeString = value.value.writeBinaryToString();
if (maybeString.has_failure()) {
throw std::runtime_error("Failed to serialize Value");
}
return maybeString.value();
}
MLIR_CAPI_EXPORTED concretelang::clientlib::ValueExporter createValueExporter(
concretelang::clientlib::KeySet &keySet,
concretelang::clientlib::ClientParameters &clientParameters) {
auto maybeProgram = ::concretelang::clientlib::ClientProgram::create(
clientParameters.programInfo.asReader(), keySet.keyset.client,
std::make_shared<CSPRNG>(::concretelang::csprng::ConcreteCSPRNG(0)),
false);
if (maybeProgram.has_failure()) {
throw std::runtime_error(maybeProgram.as_failure().error().mesg);
}
auto maybeCircuit = maybeProgram.value().getClientCircuit(
clientParameters.programInfo.asReader().getCircuits()[0].getName());
return ::concretelang::clientlib::ValueExporter{maybeCircuit.value()};
}
MLIR_CAPI_EXPORTED concretelang::clientlib::SimulatedValueExporter
createSimulatedValueExporter(
concretelang::clientlib::ClientParameters &clientParameters) {
auto maybeProgram = ::concretelang::clientlib::ClientProgram::create(
clientParameters.programInfo, ::concretelang::keysets::ClientKeyset(),
std::make_shared<CSPRNG>(::concretelang::csprng::ConcreteCSPRNG(0)),
true);
if (maybeProgram.has_failure()) {
throw std::runtime_error(maybeProgram.as_failure().error().mesg);
}
auto maybeCircuit = maybeProgram.value().getClientCircuit(
clientParameters.programInfo.asReader().getCircuits()[0].getName());
return ::concretelang::clientlib::SimulatedValueExporter{
maybeCircuit.value()};
}
MLIR_CAPI_EXPORTED concretelang::clientlib::ValueDecrypter createValueDecrypter(
concretelang::clientlib::KeySet &keySet,
concretelang::clientlib::ClientParameters &clientParameters) {
auto maybeProgram = ::concretelang::clientlib::ClientProgram::create(
clientParameters.programInfo.asReader(), keySet.keyset.client,
std::make_shared<CSPRNG>(::concretelang::csprng::ConcreteCSPRNG(0)),
false);
if (maybeProgram.has_failure()) {
throw std::runtime_error(maybeProgram.as_failure().error().mesg);
}
auto maybeCircuit = maybeProgram.value().getClientCircuit(
clientParameters.programInfo.asReader().getCircuits()[0].getName());
return ::concretelang::clientlib::ValueDecrypter{maybeCircuit.value()};
}
MLIR_CAPI_EXPORTED concretelang::clientlib::SimulatedValueDecrypter
createSimulatedValueDecrypter(
concretelang::clientlib::ClientParameters &clientParameters) {
auto maybeProgram = ::concretelang::clientlib::ClientProgram::create(
clientParameters.programInfo.asReader(),
::concretelang::keysets::ClientKeyset(),
std::make_shared<CSPRNG>(::concretelang::csprng::ConcreteCSPRNG(0)),
true);
if (maybeProgram.has_failure()) {
throw std::runtime_error(maybeProgram.as_failure().error().mesg);
}
auto maybeCircuit = maybeProgram.value().getClientCircuit(
clientParameters.programInfo.asReader().getCircuits()[0].getName());
return ::concretelang::clientlib::SimulatedValueDecrypter{
maybeCircuit.value()};
}
MLIR_CAPI_EXPORTED concretelang::clientlib::ClientParameters
clientParametersUnserialize(const std::string &json) {
auto programInfo = Message<concreteprotocol::ProgramInfo>();
if (programInfo.readJsonFromString(json).has_failure()) {
throw std::runtime_error("Failed to deserialize client parameters");
}
return concretelang::clientlib::ClientParameters{programInfo, {}, {}, {}, {}};
}
MLIR_CAPI_EXPORTED std::string
clientParametersSerialize(concretelang::clientlib::ClientParameters &params) {
auto maybeJson = params.programInfo.writeJsonToString();
if (maybeJson.has_failure()) {
throw std::runtime_error("Failed to serialize client parameters");
}
return maybeJson.value();
}
MLIR_CAPI_EXPORTED void terminateDataflowParallelization() { _dfr_terminate(); }
MLIR_CAPI_EXPORTED void initDataflowParallelization() {
mlir::concretelang::dfr::_dfr_set_required(true);
}
MLIR_CAPI_EXPORTED std::string roundTrip(const char *module) {
std::shared_ptr<mlir::concretelang::CompilationContext> ccx =
mlir::concretelang::CompilationContext::createShared();
mlir::concretelang::CompilerEngine ce{ccx};
std::string backingString;
llvm::raw_string_ostream os(backingString);
llvm::Expected<mlir::concretelang::CompilerEngine::CompilationResult>
retOrErr = ce.compile(
module, mlir::concretelang::CompilerEngine::Target::ROUND_TRIP);
if (!retOrErr) {
os << "MLIR parsing failed: " << llvm::toString(retOrErr.takeError());
throw std::runtime_error(os.str());
}
retOrErr->mlirModuleRef->get().print(os);
return os.str();
}
MLIR_CAPI_EXPORTED bool lambdaArgumentIsTensor(lambdaArgument &lambda_arg) {
return !lambda_arg.ptr->value.isScalar();
}
MLIR_CAPI_EXPORTED std::vector<uint64_t>
lambdaArgumentGetTensorData(lambdaArgument &lambda_arg) {
if (auto tensor = lambda_arg.ptr->value.getTensor<uint8_t>(); tensor) {
Tensor<uint64_t> out = (Tensor<uint64_t>)tensor.value();
return out.values;
} else if (auto tensor = lambda_arg.ptr->value.getTensor<uint16_t>();
tensor) {
Tensor<uint64_t> out = (Tensor<uint64_t>)tensor.value();
return out.values;
} else if (auto tensor = lambda_arg.ptr->value.getTensor<uint32_t>();
tensor) {
Tensor<uint64_t> out = (Tensor<uint64_t>)tensor.value();
return out.values;
} else if (auto tensor = lambda_arg.ptr->value.getTensor<uint64_t>();
tensor) {
return tensor.value().values;
} else {
throw std::invalid_argument(
"LambdaArgument isn't a tensor or has an unsupported bitwidth");
}
}
MLIR_CAPI_EXPORTED std::vector<int64_t>
lambdaArgumentGetSignedTensorData(lambdaArgument &lambda_arg) {
if (auto tensor = lambda_arg.ptr->value.getTensor<int8_t>(); tensor) {
Tensor<int64_t> out = (Tensor<int64_t>)tensor.value();
return out.values;
} else if (auto tensor = lambda_arg.ptr->value.getTensor<int16_t>(); tensor) {
Tensor<int64_t> out = (Tensor<int64_t>)tensor.value();
return out.values;
} else if (auto tensor = lambda_arg.ptr->value.getTensor<int32_t>(); tensor) {
Tensor<int64_t> out = (Tensor<int64_t>)tensor.value();
return out.values;
} else if (auto tensor = lambda_arg.ptr->value.getTensor<int64_t>(); tensor) {
return tensor.value().values;
} else {
throw std::invalid_argument(
"LambdaArgument isn't a tensor or has an unsupported bitwidth");
}
}
MLIR_CAPI_EXPORTED std::vector<int64_t>
lambdaArgumentGetTensorDimensions(lambdaArgument &lambda_arg) {
std::vector<size_t> dims = lambda_arg.ptr->value.getDimensions();
return {dims.begin(), dims.end()};
}
MLIR_CAPI_EXPORTED bool lambdaArgumentIsScalar(lambdaArgument &lambda_arg) {
return lambda_arg.ptr->value.isScalar();
}
MLIR_CAPI_EXPORTED bool lambdaArgumentIsSigned(lambdaArgument &lambda_arg) {
return lambda_arg.ptr->value.isSigned();
}
MLIR_CAPI_EXPORTED uint64_t
lambdaArgumentGetScalar(lambdaArgument &lambda_arg) {
if (lambda_arg.ptr->value.isScalar() &&
lambda_arg.ptr->value.hasElementType<uint64_t>()) {
return lambda_arg.ptr->value.getTensor<uint64_t>()->values[0];
} else {
throw std::invalid_argument("LambdaArgument isn't a scalar, should "
"be an IntLambdaArgument<uint64_t>");
}
}
MLIR_CAPI_EXPORTED int64_t
lambdaArgumentGetSignedScalar(lambdaArgument &lambda_arg) {
if (lambda_arg.ptr->value.isScalar() &&
lambda_arg.ptr->value.hasElementType<int64_t>()) {
return lambda_arg.ptr->value.getTensor<int64_t>()->values[0];
} else {
throw std::invalid_argument("LambdaArgument isn't a scalar, should "
"be an IntLambdaArgument<int64_t>");
}
}
MLIR_CAPI_EXPORTED lambdaArgument lambdaArgumentFromTensorU8(
std::vector<uint8_t> data, std::vector<int64_t> dimensions) {
std::vector<size_t> dims(dimensions.begin(), dimensions.end());
auto val = Value{((Tensor<int64_t>)Tensor<uint8_t>(data, dims))};
mlir::concretelang::LambdaArgument out{val};
lambdaArgument tensor_arg{
std::make_shared<mlir::concretelang::LambdaArgument>(std::move(out))};
return tensor_arg;
}
MLIR_CAPI_EXPORTED lambdaArgument lambdaArgumentFromTensorI8(
std::vector<int8_t> data, std::vector<int64_t> dimensions) {
std::vector<size_t> dims(dimensions.begin(), dimensions.end());
auto val = Value{((Tensor<int64_t>)Tensor<int8_t>(data, dims))};
mlir::concretelang::LambdaArgument out{val};
lambdaArgument tensor_arg{
std::make_shared<mlir::concretelang::LambdaArgument>(std::move(out))};
return tensor_arg;
}
MLIR_CAPI_EXPORTED lambdaArgument lambdaArgumentFromTensorU16(
std::vector<uint16_t> data, std::vector<int64_t> dimensions) {
std::vector<size_t> dims(dimensions.begin(), dimensions.end());
auto val = Value{((Tensor<int64_t>)Tensor<uint16_t>(data, dims))};
mlir::concretelang::LambdaArgument out{val};
lambdaArgument tensor_arg{
std::make_shared<mlir::concretelang::LambdaArgument>(std::move(out))};
return tensor_arg;
}
MLIR_CAPI_EXPORTED lambdaArgument lambdaArgumentFromTensorI16(
std::vector<int16_t> data, std::vector<int64_t> dimensions) {
std::vector<size_t> dims(dimensions.begin(), dimensions.end());
auto val = Value{((Tensor<int64_t>)Tensor<int16_t>(data, dims))};
mlir::concretelang::LambdaArgument out{val};
lambdaArgument tensor_arg{
std::make_shared<mlir::concretelang::LambdaArgument>(std::move(out))};
return tensor_arg;
}
MLIR_CAPI_EXPORTED lambdaArgument lambdaArgumentFromTensorU32(
std::vector<uint32_t> data, std::vector<int64_t> dimensions) {
std::vector<size_t> dims(dimensions.begin(), dimensions.end());
auto val = Value{((Tensor<int64_t>)Tensor<uint32_t>(data, dims))};
mlir::concretelang::LambdaArgument out{val};
lambdaArgument tensor_arg{
std::make_shared<mlir::concretelang::LambdaArgument>(std::move(out))};
return tensor_arg;
}
MLIR_CAPI_EXPORTED lambdaArgument lambdaArgumentFromTensorI32(
std::vector<int32_t> data, std::vector<int64_t> dimensions) {
std::vector<size_t> dims(dimensions.begin(), dimensions.end());
auto val = Value{((Tensor<int64_t>)Tensor<int32_t>(data, dims))};
mlir::concretelang::LambdaArgument out{val};
lambdaArgument tensor_arg{
std::make_shared<mlir::concretelang::LambdaArgument>(std::move(out))};
return tensor_arg;
}
MLIR_CAPI_EXPORTED lambdaArgument lambdaArgumentFromTensorU64(
std::vector<uint64_t> data, std::vector<int64_t> dimensions) {
std::vector<size_t> dims(dimensions.begin(), dimensions.end());
auto val = Value{((Tensor<int64_t>)Tensor<uint64_t>(data, dims))};
mlir::concretelang::LambdaArgument out{val};
lambdaArgument tensor_arg{
std::make_shared<mlir::concretelang::LambdaArgument>(std::move(out))};
return tensor_arg;
}
MLIR_CAPI_EXPORTED lambdaArgument lambdaArgumentFromTensorI64(
std::vector<int64_t> data, std::vector<int64_t> dimensions) {
std::vector<size_t> dims(dimensions.begin(), dimensions.end());
auto val = Value{((Tensor<int64_t>)Tensor<int64_t>(data, dims))};
mlir::concretelang::LambdaArgument out{val};
lambdaArgument tensor_arg{
std::make_shared<mlir::concretelang::LambdaArgument>(std::move(out))};
return tensor_arg;
}
MLIR_CAPI_EXPORTED lambdaArgument lambdaArgumentFromScalar(uint64_t scalar) {
auto val = Value{((Tensor<int64_t>)Tensor<uint64_t>(scalar))};
mlir::concretelang::LambdaArgument out{val};
lambdaArgument scalar_arg{
std::make_shared<mlir::concretelang::LambdaArgument>(std::move(out))};
return scalar_arg;
}
MLIR_CAPI_EXPORTED lambdaArgument
lambdaArgumentFromSignedScalar(int64_t scalar) {
auto val = Value{Tensor<int64_t>(scalar)};
mlir::concretelang::LambdaArgument out{val};
lambdaArgument scalar_arg{
std::make_shared<mlir::concretelang::LambdaArgument>(std::move(out))};
return scalar_arg;
}