mirror of
https://github.com/zama-ai/concrete.git
synced 2026-02-09 03:55:04 -05:00
49 lines
1.2 KiB
Python
49 lines
1.2 KiB
Python
# bench: Unit Target: x[::-1]
|
|
|
|
import numpy as np
|
|
from common import BENCHMARK_CONFIGURATION
|
|
|
|
import concrete.numpy as hnp
|
|
|
|
|
|
def main():
|
|
def function_to_compile(x):
|
|
return x[::-1]
|
|
|
|
x = hnp.EncryptedTensor(hnp.UnsignedInteger(3), shape=(3,))
|
|
|
|
inputset = [(np.random.randint(0, 2 ** 3, size=(3,)),) for _ in range(32)]
|
|
|
|
# bench: Measure: Compilation Time (ms)
|
|
engine = hnp.compile_numpy_function(
|
|
function_to_compile,
|
|
{"x": x},
|
|
inputset,
|
|
compilation_configuration=BENCHMARK_CONFIGURATION,
|
|
)
|
|
# bench: Measure: End
|
|
|
|
inputs = []
|
|
labels = []
|
|
for _ in range(100):
|
|
sample_x = np.random.randint(0, 2 ** 3, size=(3,), dtype=np.uint8)
|
|
|
|
inputs.append([sample_x])
|
|
labels.append(function_to_compile(*inputs[-1]))
|
|
|
|
correct = 0
|
|
for input_i, label_i in zip(inputs, labels):
|
|
# bench: Measure: Evaluation Time (ms)
|
|
result_i = engine.run(*input_i)
|
|
# bench: Measure: End
|
|
|
|
if np.array_equal(result_i, label_i):
|
|
correct += 1
|
|
|
|
# bench: Measure: Accuracy (%) = (correct / len(inputs)) * 100
|
|
# bench: Alert: Accuracy (%) != 100
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|