Files
concrete/docs/tutorial/extensions.md
2022-06-24 19:25:25 +03:00

154 lines
3.4 KiB
Markdown

# Extensions
**Concrete Numpy** tries to support **NumPy** as much as possible, but due to some technical limitations, not everything can be supported. On top of that, there are some things **NumPy** lack, which are useful. In some of these situations, we provide extesions in **Concrete Numpy** to improve your experience.
## cnp.zero()
Allows you to create encrypted scalar zero:
```python
import concrete.numpy as cnp
import numpy as np
@cnp.compiler({"x": "encrypted"})
def f(x):
z = cnp.zero()
return x + z
inputset = range(10)
circuit = f.compile(inputset)
for x in range(10):
assert circuit.encrypt_run_decrypt(x) == x
```
## cnp.zeros(shape)
Allows you to create encrypted tensor of zeros:
```python
import concrete.numpy as cnp
import numpy as np
@cnp.compiler({"x": "encrypted"})
def f(x):
z = cnp.zeros((2, 3))
return x + z
inputset = range(10)
circuit = f.compile(inputset)
for x in range(10):
assert np.array_equal(circuit.encrypt_run_decrypt(x), np.array([[x, x, x], [x, x, x]]))
```
## cnp.one()
Allows you to create encrypted scalar one:
```python
import concrete.numpy as cnp
import numpy as np
@cnp.compiler({"x": "encrypted"})
def f(x):
z = cnp.one()
return x + z
inputset = range(10)
circuit = f.compile(inputset)
for x in range(10):
assert circuit.encrypt_run_decrypt(x) == x + 1
```
## cnp.ones(shape)
Allows you to create encrypted tensor of ones:
```python
import concrete.numpy as cnp
import numpy as np
@cnp.compiler({"x": "encrypted"})
def f(x):
z = cnp.ones((2, 3))
return x + z
inputset = range(10)
circuit = f.compile(inputset)
for x in range(10):
assert np.array_equal(circuit.encrypt_run_decrypt(x), np.array([[x, x, x], [x, x, x]]) + 1)
```
## cnp.univariate(function)
Allows you to wrap any univariate function into a single table lookup:
```python
import concrete.numpy as cnp
import numpy as np
def complex_univariate_function(x):
def per_element(element):
result = 0
for i in range(element):
result += i
return result
return np.vectorize(per_element)(x)
@cnp.compiler({"x": "encrypted"})
def f(x):
return cnp.univariate(complex_univariate_function)(x)
inputset = [np.random.randint(0, 5, size=(3, 2)) for _ in range(10)]
circuit = f.compile(inputset)
sample = np.array([
[0, 4],
[2, 1],
[3, 0],
])
assert np.array_equal(circuit.encrypt_run_decrypt(sample), complex_univariate_function(sample))
```
{% hint style="danger" %}
The wrapped function shouldn't have any side effects, and it should be deterministic.
{% endhint %}
## coonx.conv(...)
Allows you to perform a convolution operation, with the same semantic of [onnx.Conv](https://github.com/onnx/onnx/blob/main/docs/Operators.md#Conv):
```python
import concrete.numpy as cnp
import concrete.onnx as connx
import numpy as np
weight = np.array([[2, 1], [3, 2]]).reshape(1, 1, 2, 2)
@cnp.compiler({"x": "encrypted"})
def f(x):
return connx.conv(x, weight, strides=(2, 2), dilations=(1, 1), group=1)
inputset = [np.random.randint(0, 4, size=(1, 1, 4, 4)) for _ in range(10)]
circuit = f.compile(inputset)
sample = np.array(
[
[3, 2, 1, 0],
[3, 2, 1, 0],
[3, 2, 1, 0],
[3, 2, 1, 0],
]
).reshape(1, 1, 4, 4)
assert np.array_equal(circuit.encrypt_run_decrypt(sample), f(sample))
```
{% hint style="danger" %}
Only 2D convolutions with one groups and without padding are supported for the time being.
{% endhint %}