Files
concrete/hdk/hnumpy/compile.py
Arthur Meyre 4e40982f5a feat(float-fusing): fuse float parts of an OPGraph during compilation
- this allows to be compatible with the current compiler and squash float
domains into a single int to int ArbitraryFunction
2021-08-17 18:27:31 +02:00

77 lines
3.3 KiB
Python

"""hnumpy compilation function."""
from typing import Any, Callable, Dict, Iterator, List, Optional, Tuple
from ..common.bounds_measurement.dataset_eval import eval_op_graph_bounds_on_dataset
from ..common.common_helpers import check_op_graph_is_integer_program
from ..common.compilation import CompilationArtifacts
from ..common.data_types import BaseValue
from ..common.mlir.utils import (
is_graph_values_compatible_with_mlir,
update_bit_width_for_mlir,
)
from ..common.operator_graph import OPGraph
from ..common.optimization.topological import fuse_float_operations
from ..common.representation import intermediate as ir
from ..hnumpy.tracing import trace_numpy_function
def compile_numpy_function(
function_to_trace: Callable,
function_parameters: Dict[str, BaseValue],
dataset: Iterator[Tuple[Any, ...]],
compilation_artifacts: Optional[CompilationArtifacts] = None,
) -> OPGraph:
"""Main API of hnumpy, to be able to compile an homomorphic program.
Args:
function_to_trace (Callable): The function you want to trace
function_parameters (Dict[str, BaseValue]): A dictionary indicating what each input of the
function is e.g. an EncryptedValue holding a 7bits unsigned Integer
dataset (Iterator[Tuple[Any, ...]]): The dataset over which op_graph is evaluated. It
needs to be an iterator on tuples which are of the same length than the number of
parameters in the function, and in the same order than these same parameters
compilation_artifacts (Optional[CompilationArtifacts]): Artifacts object to fill
during compilation
Returns:
OPGraph: currently returns a compilable graph, but later, it will return an MLIR compatible
with the compiler, and even later, it will return the result of the compilation
"""
# Trace
op_graph = trace_numpy_function(function_to_trace, function_parameters)
# Fuse float operations to have int to int ArbitraryFunction
if not check_op_graph_is_integer_program(op_graph):
fuse_float_operations(op_graph)
# TODO: To be removed once we support more than integers
offending_non_integer_nodes: List[ir.IntermediateNode] = []
op_grap_is_int_prog = check_op_graph_is_integer_program(op_graph, offending_non_integer_nodes)
if not op_grap_is_int_prog:
raise ValueError(
f"{function_to_trace.__name__} cannot be compiled as it has nodes with either float "
f"inputs or outputs.\nOffending nodes : "
f"{', '.join(str(node) for node in offending_non_integer_nodes)}"
)
# Find bounds with the dataset
node_bounds = eval_op_graph_bounds_on_dataset(op_graph, dataset)
# Update the graph accordingly: after that, we have the compilable graph
op_graph.update_values_with_bounds(node_bounds)
# Make sure the graph can be lowered to MLIR
if not is_graph_values_compatible_with_mlir(op_graph):
raise TypeError("signed integers aren't supported for MLIR lowering")
# Update bit_width for MLIR
update_bit_width_for_mlir(op_graph)
# Fill compilation artifacts
if compilation_artifacts is not None:
compilation_artifacts.operation_graph = op_graph
compilation_artifacts.bounds = node_bounds
return op_graph