feat(float-fusing): fuse float parts of an OPGraph during compilation

- this allows to be compatible with the current compiler and squash float
domains into a single int to int ArbitraryFunction
This commit is contained in:
Arthur Meyre
2021-08-16 14:04:49 +02:00
parent d48c4dba32
commit 4e40982f5a
5 changed files with 381 additions and 1 deletions

View File

@@ -0,0 +1 @@
"""Module holding various optimization/simplification code."""

View File

@@ -0,0 +1,240 @@
"""File holding topological optimization/simplification code."""
from copy import deepcopy
from typing import Dict, List, Optional, Set, Tuple
import networkx as nx
from ..data_types.floats import Float
from ..data_types.integers import Integer
from ..operator_graph import OPGraph
from ..representation import intermediate as ir
def fuse_float_operations(op_graph: OPGraph):
"""Finds and fuses float domains into single Integer to Integer ArbitraryFunction.
Args:
op_graph (OPGraph): The OPGraph to simplify
"""
nx_graph = op_graph.graph
processed_terminal_nodes: Set[ir.IntermediateNode] = set()
while True:
float_subgraph_search_result = find_float_subgraph_with_unique_terminal_node(
nx_graph, processed_terminal_nodes
)
if float_subgraph_search_result is None:
break
float_subgraph_start_nodes, terminal_node, subgraph_all_nodes = float_subgraph_search_result
processed_terminal_nodes.add(terminal_node)
subgraph_conversion_result = convert_float_subgraph_to_fused_node(
op_graph,
float_subgraph_start_nodes,
terminal_node,
subgraph_all_nodes,
)
# Not a subgraph we can handle, continue
if subgraph_conversion_result is None:
continue
fused_node, node_before_subgraph = subgraph_conversion_result
nx_graph.add_node(fused_node, content=fused_node)
if terminal_node in op_graph.output_nodes.values():
# Output value replace it
# As the graph changes recreate the output_node_to_idx dict
output_node_to_idx: Dict[ir.IntermediateNode, List[int]] = {
out_node: [] for out_node in op_graph.output_nodes.values()
}
for output_idx, output_node in op_graph.output_nodes.items():
output_node_to_idx[output_node].append(output_idx)
for output_idx in output_node_to_idx.get(terminal_node, []):
op_graph.output_nodes[output_idx] = fused_node
# Disconnect after terminal node and connect fused node instead
terminal_node_succ = list(nx_graph.successors(terminal_node))
for succ in terminal_node_succ:
succ_edge_data = deepcopy(nx_graph.get_edge_data(terminal_node, succ))
for edge_key, edge_data in succ_edge_data.items():
nx_graph.remove_edge(terminal_node, succ, key=edge_key)
nx_graph.add_edge(fused_node, succ, key=edge_key, **edge_data)
# Connect the node feeding the subgraph contained in fused_node
nx_graph.add_edge(node_before_subgraph, fused_node, input_idx=0)
op_graph.prune_nodes()
def convert_float_subgraph_to_fused_node(
op_graph: OPGraph,
float_subgraph_start_nodes: Set[ir.IntermediateNode],
terminal_node: ir.IntermediateNode,
subgraph_all_nodes: Set[ir.IntermediateNode],
) -> Optional[Tuple[ir.ArbitraryFunction, ir.IntermediateNode]]:
"""Converts a float subgraph to an equivalent fused ArbitraryFunction node.
Args:
op_graph (OPGraph): The OPGraph the float subgraph is part of.
float_subgraph_start_nodes (Set[ir.IntermediateNode]): The nodes starting the float subgraph
in `op_graph`.
terminal_node (ir.IntermediateNode): The node ending the float subgraph.
subgraph_all_nodes (Set[ir.IntermediateNode]): All the nodes in the float subgraph.
Returns:
Optional[Tuple[ir.ArbitraryFunction, ir.IntermediateNode]]: None if the float subgraph
cannot be fused, otherwise returns a tuple containing the fused node and the node whose
output must be plugged as the input to the subgraph.
"""
if not subgraph_has_unique_variable_input(float_subgraph_start_nodes):
return None
# Only one variable input node, find which node feeds its input
non_constant_input_nodes = [
node for node in float_subgraph_start_nodes if not isinstance(node, ir.ConstantInput)
]
assert len(non_constant_input_nodes) == 1
current_subgraph_variable_input = non_constant_input_nodes[0]
new_input_value = deepcopy(current_subgraph_variable_input.outputs[0])
nx_graph = op_graph.graph
nodes_after_input_set = subgraph_all_nodes.intersection(
nx_graph.succ[current_subgraph_variable_input]
)
float_subgraph = nx.MultiDiGraph(nx_graph.subgraph(subgraph_all_nodes))
new_subgraph_variable_input = ir.Input(new_input_value, "float_subgraph_input", 0)
float_subgraph.add_node(new_subgraph_variable_input)
for node_after_input in nodes_after_input_set:
# Connect the new input to our subgraph
edge_data_input_to_subgraph = deepcopy(
float_subgraph.get_edge_data(
current_subgraph_variable_input,
node_after_input,
)
)
for edge_key, edge_data in edge_data_input_to_subgraph.items():
float_subgraph.remove_edge(
current_subgraph_variable_input, node_after_input, key=edge_key
)
float_subgraph.add_edge(
new_subgraph_variable_input,
node_after_input,
key=edge_key,
**edge_data,
)
float_op_subgraph = OPGraph.from_graph(
float_subgraph,
[new_subgraph_variable_input],
[terminal_node],
)
# Create fused_node
fused_node = ir.ArbitraryFunction(
deepcopy(new_subgraph_variable_input.inputs[0]),
lambda x, float_op_subgraph, terminal_node: float_op_subgraph.evaluate({0: x})[
terminal_node
],
deepcopy(terminal_node.outputs[0].data_type),
op_kwargs={
"float_op_subgraph": float_op_subgraph,
"terminal_node": terminal_node,
},
op_name="Subgraph",
)
return (
fused_node,
current_subgraph_variable_input,
)
def find_float_subgraph_with_unique_terminal_node(
nx_graph: nx.MultiDiGraph,
processed_terminal_nodes: Set[ir.IntermediateNode],
) -> Optional[Tuple[Set[ir.IntermediateNode], ir.IntermediateNode, Set[ir.IntermediateNode]]]:
"""Find a subgraph of the graph with float computations.
The subgraph has a single terminal node with a single Integer output and has a single variable
predecessor node with a single Integer output.
Args:
nx_graph (nx.MultiDiGraph): The networkx graph to search in.
processed_terminal_nodes (Set[ir.IntermediateNode]): The set of terminal nodes for which
subgraphs have already been searched, those will be skipped.
Returns:
Optional[Tuple[Set[ir.IntermediateNode], ir.IntermediateNode, Set[ir.IntermediateNode]]]:
None if there are no float subgraphs to process in `nx_graph`. Otherwise returns a tuple
containing the set of nodes beginning a float subgraph, the terminal node of the
subgraph and the set of all the nodes in the subgraph.
"""
def is_float_to_single_int_node(node: ir.IntermediateNode) -> bool:
return (
any(isinstance(input_.data_type, Float) for input_ in node.inputs)
and len(node.outputs) == 1
and isinstance(node.outputs[0].data_type, Integer)
)
def single_int_output_node(node: ir.IntermediateNode) -> bool:
return len(node.outputs) == 1 and isinstance(node.outputs[0].data_type, Integer)
float_subgraphs_terminal_nodes = (
node
for node in nx_graph.nodes()
if is_float_to_single_int_node(node) and node not in processed_terminal_nodes
)
terminal_node: ir.IntermediateNode
try:
terminal_node = next(float_subgraphs_terminal_nodes)
except StopIteration:
return None
# Use dict as ordered set
current_nodes = {terminal_node: None}
float_subgraph_start_nodes: Set[ir.IntermediateNode] = set()
subgraph_all_nodes: Set[ir.IntermediateNode] = set()
while current_nodes:
next_nodes: Dict[ir.IntermediateNode, None] = dict()
for node in current_nodes:
subgraph_all_nodes.add(node)
predecessors = nx_graph.pred[node]
for pred in predecessors:
if single_int_output_node(pred):
# Limit of subgraph, record that and record the node as we won't visit it
float_subgraph_start_nodes.add(pred)
subgraph_all_nodes.add(pred)
else:
next_nodes.update({pred: None})
current_nodes = next_nodes
return float_subgraph_start_nodes, terminal_node, subgraph_all_nodes
def subgraph_has_unique_variable_input(
float_subgraph_start_nodes: Set[ir.IntermediateNode],
) -> bool:
"""Check that only one of the nodes starting the subgraph is variable.
Args:
float_subgraph_start_nodes (Set[ir.IntermediateNode]): The nodes starting the subgraph.
Returns:
bool: True if only one of the nodes is not an ir.ConstantInput
"""
# Only one input to the subgraph where computations are done in floats is variable, this
# is the only case we can manage with ArbitraryFunction fusing
return sum(not isinstance(node, ir.ConstantInput) for node in float_subgraph_start_nodes) == 1

View File

@@ -1,8 +1,9 @@
"""hnumpy compilation function."""
from typing import Any, Callable, Dict, Iterator, Optional, Tuple
from typing import Any, Callable, Dict, Iterator, List, Optional, Tuple
from ..common.bounds_measurement.dataset_eval import eval_op_graph_bounds_on_dataset
from ..common.common_helpers import check_op_graph_is_integer_program
from ..common.compilation import CompilationArtifacts
from ..common.data_types import BaseValue
from ..common.mlir.utils import (
@@ -10,6 +11,8 @@ from ..common.mlir.utils import (
update_bit_width_for_mlir,
)
from ..common.operator_graph import OPGraph
from ..common.optimization.topological import fuse_float_operations
from ..common.representation import intermediate as ir
from ..hnumpy.tracing import trace_numpy_function
@@ -38,6 +41,20 @@ def compile_numpy_function(
# Trace
op_graph = trace_numpy_function(function_to_trace, function_parameters)
# Fuse float operations to have int to int ArbitraryFunction
if not check_op_graph_is_integer_program(op_graph):
fuse_float_operations(op_graph)
# TODO: To be removed once we support more than integers
offending_non_integer_nodes: List[ir.IntermediateNode] = []
op_grap_is_int_prog = check_op_graph_is_integer_program(op_graph, offending_non_integer_nodes)
if not op_grap_is_int_prog:
raise ValueError(
f"{function_to_trace.__name__} cannot be compiled as it has nodes with either float "
f"inputs or outputs.\nOffending nodes : "
f"{', '.join(str(node) for node in offending_non_integer_nodes)}"
)
# Find bounds with the dataset
node_bounds = eval_op_graph_bounds_on_dataset(op_graph, dataset)

View File

@@ -0,0 +1,107 @@
"""Test file for float subgraph fusing"""
from inspect import signature
import numpy
import pytest
from hdk.common.data_types.integers import Integer
from hdk.common.data_types.values import EncryptedValue
from hdk.common.optimization.topological import fuse_float_operations
from hdk.hnumpy.tracing import trace_numpy_function
def no_fuse(x):
"""No fuse"""
return x + 2
def no_fuse_unhandled(x, y):
"""No fuse unhandled"""
x_1 = x + 0.7
y_1 = y + 1.3
intermediate = x_1 + y_1
return intermediate.astype(numpy.int32)
def simple_fuse_not_output(x):
"""Simple fuse not output"""
intermediate = x.astype(numpy.float64)
intermediate = intermediate.astype(numpy.int32)
return intermediate + 2
def simple_fuse_output(x):
"""Simple fuse output"""
return x.astype(numpy.float64).astype(numpy.int32)
def complex_fuse_indirect_input(x, y):
"""Complex fuse"""
intermediate = x + y
intermediate = intermediate + 2
intermediate = intermediate.astype(numpy.float32)
intermediate = intermediate.astype(numpy.int32)
x_p_1 = intermediate + 1.5
x_p_2 = intermediate + 2.7
x_p_3 = numpy.rint(x_p_1 + x_p_2)
return (
x_p_3.astype(numpy.int32),
x_p_2.astype(numpy.int32),
(x_p_2 + 3).astype(numpy.int32),
x_p_3.astype(numpy.int32) + 67,
y,
(y + 4.7).astype(numpy.int32) + 3,
)
def complex_fuse_direct_input(x, y):
"""Complex fuse"""
x_p_1 = x + 1.5
x_p_2 = x + 2.7
x_p_3 = numpy.rint(x_p_1 + x_p_2)
return (
x_p_3.astype(numpy.int32),
x_p_2.astype(numpy.int32),
(x_p_2 + 3).astype(numpy.int32),
x_p_3.astype(numpy.int32) + 67,
y,
(y + 4.7).astype(numpy.int32) + 3,
)
@pytest.mark.parametrize(
"function_to_trace,fused",
[
pytest.param(no_fuse, False, id="no_fuse"),
pytest.param(no_fuse_unhandled, False, id="no_fuse_unhandled"),
pytest.param(simple_fuse_not_output, True, id="no_fuse"),
pytest.param(simple_fuse_output, True, id="no_fuse"),
pytest.param(complex_fuse_indirect_input, True, id="complex_fuse_indirect_input"),
pytest.param(complex_fuse_direct_input, True, id="complex_fuse_direct_input"),
],
)
@pytest.mark.parametrize("input_", [0, 2, 42, 44])
def test_fuse_float_operations(function_to_trace, fused, input_):
"""Test function for fuse_float_operations"""
params_names = signature(function_to_trace).parameters.keys()
op_graph = trace_numpy_function(
function_to_trace,
{param_name: EncryptedValue(Integer(32, True)) for param_name in params_names},
)
orig_num_nodes = len(op_graph.graph)
fuse_float_operations(op_graph)
fused_num_nodes = len(op_graph.graph)
if fused:
assert fused_num_nodes < orig_num_nodes
else:
assert fused_num_nodes == orig_num_nodes
input_ = numpy.int32(input_)
num_params = len(params_names)
inputs = (input_,) * num_params
assert function_to_trace(*inputs) == op_graph(*inputs)

View File

@@ -1,6 +1,7 @@
"""Test file for hnumpy compilation functions"""
import itertools
import numpy
import pytest
from hdk.common.data_types.integers import Integer
@@ -10,6 +11,14 @@ from hdk.common.extensions.table import LookupTable
from hdk.hnumpy.compile import compile_numpy_function
def no_fuse_unhandled(x, y):
"""No fuse unhandled"""
x_intermediate = x + 2.8
y_intermediate = y + 9.3
intermediate = x_intermediate + y_intermediate
return intermediate.astype(numpy.int32)
@pytest.mark.parametrize(
"function,input_ranges,list_of_arg_names",
[
@@ -21,6 +30,12 @@ from hdk.hnumpy.compile import compile_numpy_function
((4, 8), (3, 4), (0, 4)),
["x", "y", "z"],
),
pytest.param(
no_fuse_unhandled,
((-2, 2), (-2, 2)),
["x", "y"],
marks=pytest.mark.xfail(raises=ValueError),
),
],
)
def test_compile_function_multiple_outputs(function, input_ranges, list_of_arg_names):