Files
concrete/compiler/lib/Support/ClientParameters.cpp
youben11 940cb96be4 chore: rename dialects
HLFHE to FHE
MidLFHE to TFHE
LowLFHE to Concrete
2021-12-29 15:13:34 +01:00

192 lines
6.7 KiB
C++

// Part of the Concrete Compiler Project, under the BSD3 License with Zama Exceptions.
// See https://github.com/zama-ai/homomorphizer/blob/master/LICENSE.txt for license information.
#include <llvm/ADT/STLExtras.h>
#include <llvm/Support/Error.h>
#include <mlir/Dialect/LLVMIR/LLVMDialect.h>
#include "concretelang/Dialect/Concrete/IR/ConcreteTypes.h"
#include "concretelang/Support/ClientParameters.h"
#include "concretelang/Support/V0Curves.h"
namespace mlir {
namespace concretelang {
const auto securityLevel = SECURITY_LEVEL_128;
const auto keyFormat = KEY_FORMAT_BINARY;
const auto v0Curve = getV0Curves(securityLevel, keyFormat);
// For the v0 the secretKeyID and precision are the same for all gates.
llvm::Expected<CircuitGate> gateFromMLIRType(std::string secretKeyID,
Precision precision,
Variance variance,
mlir::Type type) {
if (type.isIntOrIndex()) {
// TODO - The index type is dependant of the target architecture, so
// actually we assume we target only 64 bits, we need to have some the size
// of the word of the target system.
size_t width = 64;
if (!type.isIndex()) {
width = type.getIntOrFloatBitWidth();
}
return CircuitGate{
/*.encryption = */ llvm::None,
/*.shape = */
{
/*.width = */ width,
/*.dimensions = */ std::vector<int64_t>(),
/*.size = */ 0,
},
};
}
if (type.isa<mlir::concretelang::Concrete::LweCiphertextType>()) {
// TODO - Get the width from the LWECiphertextType instead of global
// precision (could be possible after merge concrete-ciphertext-parameter)
return CircuitGate{
.encryption = llvm::Optional<EncryptionGate>({
.secretKeyID = secretKeyID,
.variance = variance,
.encoding = {.precision = precision},
}),
/*.shape = */
{
/*.width = */ precision,
/*.dimensions = */ std::vector<int64_t>(),
/*.size = */ 0,
},
};
}
auto tensor = type.dyn_cast_or_null<mlir::RankedTensorType>();
if (tensor != nullptr) {
auto gate = gateFromMLIRType(secretKeyID, precision, variance,
tensor.getElementType());
if (auto err = gate.takeError()) {
return std::move(err);
}
gate->shape.dimensions = tensor.getShape().vec();
gate->shape.size = 1;
for (auto dimSize : gate->shape.dimensions) {
gate->shape.size *= dimSize;
}
return gate;
}
return llvm::make_error<llvm::StringError>(
"cannot convert MLIR type to shape", llvm::inconvertibleErrorCode());
}
llvm::Expected<ClientParameters>
createClientParametersForV0(V0FHEContext fheContext, llvm::StringRef name,
mlir::ModuleOp module) {
auto v0Param = fheContext.parameter;
Variance encryptionVariance =
v0Curve->getVariance(1, 1 << v0Param.logPolynomialSize, 64);
Variance keyswitchVariance = v0Curve->getVariance(1, v0Param.nSmall, 64);
// Static client parameters from global parameters for v0
ClientParameters c = {};
c.secretKeys = {
{"small", {/*.size = */ v0Param.nSmall}},
{"big", {/*.size = */ v0Param.getNBigGlweDimension()}},
};
c.bootstrapKeys = {
{
"bsk_v0",
{
/*.inputSecretKeyID = */ "small",
/*.outputSecretKeyID = */ "big",
/*.level = */ v0Param.brLevel,
/*.baseLog = */ v0Param.brLogBase,
/*.glweDimension = */ v0Param.glweDimension,
/*.variance = */ encryptionVariance,
},
},
};
c.keyswitchKeys = {
{
"ksk_v0",
{
/*.inputSecretKeyID = */ "big",
/*.outputSecretKeyID = */ "small",
/*.level = */ v0Param.ksLevel,
/*.baseLog = */ v0Param.ksLogBase,
/*.variance = */ keyswitchVariance,
},
},
};
// Find the input function
auto rangeOps = module.getOps<mlir::FuncOp>();
auto funcOp = llvm::find_if(
rangeOps, [&](mlir::FuncOp op) { return op.getName() == name; });
if (funcOp == rangeOps.end()) {
return llvm::make_error<llvm::StringError>(
"cannot find the function for generate client parameters",
llvm::inconvertibleErrorCode());
}
// For the v0 the precision is global
auto precision = fheContext.constraint.p;
// Create input and output circuit gate parameters
auto funcType = (*funcOp).getType();
bool hasContext =
funcType.getInputs().back().isa<mlir::concretelang::Concrete::ContextType>();
for (auto inType = funcType.getInputs().begin();
inType < funcType.getInputs().end() - hasContext; inType++) {
auto gate = gateFromMLIRType("big", precision, encryptionVariance, *inType);
if (auto err = gate.takeError()) {
return std::move(err);
}
c.inputs.push_back(gate.get());
}
for (auto outType : funcType.getResults()) {
auto gate = gateFromMLIRType("big", precision, encryptionVariance, outType);
if (auto err = gate.takeError()) {
return std::move(err);
}
c.outputs.push_back(gate.get());
}
return c;
}
// https://stackoverflow.com/a/38140932
static inline void hash(std::size_t &seed) {}
template <typename T, typename... Rest>
static inline void hash(std::size_t &seed, const T &v, Rest... rest) {
// See https://softwareengineering.stackexchange.com/a/402543
const auto GOLDEN_RATIO = 0x9e3779b97f4a7c15; // pseudo random bits
const std::hash<T> hasher;
seed ^= hasher(v) + GOLDEN_RATIO + (seed << 6) + (seed >> 2);
hash(seed, rest...);
}
void LweSecretKeyParam::hash(size_t &seed) { mlir::concretelang::hash(seed, size); }
void BootstrapKeyParam::hash(size_t &seed) {
mlir::concretelang::hash(seed, inputSecretKeyID, outputSecretKeyID, level,
baseLog, glweDimension, variance);
}
void KeyswitchKeyParam::hash(size_t &seed) {
mlir::concretelang::hash(seed, inputSecretKeyID, outputSecretKeyID, level,
baseLog, variance);
}
std::size_t ClientParameters::hash() {
std::size_t currentHash = 1;
for (auto secretKeyParam : secretKeys) {
mlir::concretelang::hash(currentHash, secretKeyParam.first);
secretKeyParam.second.hash(currentHash);
}
for (auto bootstrapKeyParam : bootstrapKeys) {
mlir::concretelang::hash(currentHash, bootstrapKeyParam.first);
bootstrapKeyParam.second.hash(currentHash);
}
for (auto keyswitchParam : keyswitchKeys) {
mlir::concretelang::hash(currentHash, keyswitchParam.first);
keyswitchParam.second.hash(currentHash);
}
return currentHash;
}
} // namespace concretelang
} // namespace mlir