Files
concrete/compiler/lib/Bindings/Python/CompilerAPIModule.cpp

198 lines
8.3 KiB
C++

// Part of the Concrete Compiler Project, under the BSD3 License with Zama
// Exceptions. See
// https://github.com/zama-ai/concrete-compiler-internal/blob/master/LICENSE.txt
// for license information.
#include "CompilerAPIModule.h"
#include "concretelang-c/Support/CompilerEngine.h"
#include "concretelang/Dialect/FHE/IR/FHEOpsDialect.h.inc"
#include "concretelang/Support/Jit.h"
#include "concretelang/Support/JitLambdaSupport.h"
#include <mlir/Dialect/MemRef/IR/MemRef.h>
#include <mlir/Dialect/StandardOps/IR/Ops.h>
#include <mlir/ExecutionEngine/OptUtils.h>
#include <mlir/Parser.h>
#include <pybind11/pybind11.h>
#include <pybind11/pytypes.h>
#include <pybind11/stl.h>
#include <stdexcept>
#include <string>
using mlir::concretelang::CompilationOptions;
using mlir::concretelang::JitLambdaSupport;
using mlir::concretelang::LambdaArgument;
/// Populate the compiler API python module.
void mlir::concretelang::python::populateCompilerAPISubmodule(
pybind11::module &m) {
m.doc() = "Concretelang compiler python API";
m.def("round_trip",
[](std::string mlir_input) { return roundTrip(mlir_input.c_str()); });
m.def("terminate_parallelization", &terminateParallelization);
pybind11::class_<CompilationOptions>(m, "CompilationOptions")
.def(pybind11::init(
[](std::string funcname) { return CompilationOptions(funcname); }))
.def("set_funcname",
[](CompilationOptions &options, std::string funcname) {
options.clientParametersFuncName = funcname;
})
.def("set_verify_diagnostics",
[](CompilationOptions &options, bool b) {
options.verifyDiagnostics = b;
})
.def("auto_parallelize", [](CompilationOptions &options,
bool b) { options.autoParallelize = b; })
.def("loop_parallelize", [](CompilationOptions &options,
bool b) { options.loopParallelize = b; })
.def("dataflow_parallelize", [](CompilationOptions &options, bool b) {
options.dataflowParallelize = b;
});
pybind11::class_<mlir::concretelang::JitCompilationResult>(
m, "JitCompilationResult");
pybind11::class_<mlir::concretelang::JITLambda,
std::shared_ptr<mlir::concretelang::JITLambda>>(m,
"JITLambda");
pybind11::class_<JITLambdaSupport_C>(m, "JITLambdaSupport")
.def(pybind11::init([](std::string runtimeLibPath) {
return jit_lambda_support(runtimeLibPath.c_str());
}))
.def("compile",
[](JITLambdaSupport_C &support, std::string mlir_program,
CompilationOptions options) {
return jit_compile(support, mlir_program.c_str(), options);
})
.def("load_client_parameters",
[](JITLambdaSupport_C &support,
mlir::concretelang::JitCompilationResult &result) {
return jit_load_client_parameters(support, result);
})
.def(
"load_server_lambda",
[](JITLambdaSupport_C &support,
mlir::concretelang::JitCompilationResult &result) {
return jit_load_server_lambda(support, result);
},
pybind11::return_value_policy::reference)
.def("server_call",
[](JITLambdaSupport_C &support, concretelang::JITLambda &lambda,
clientlib::PublicArguments &publicArguments) {
return jit_server_call(support, lambda, publicArguments);
});
pybind11::class_<mlir::concretelang::LibraryCompilationResult>(
m, "LibraryCompilationResult")
.def(pybind11::init([](std::string libraryPath, std::string funcname) {
return mlir::concretelang::LibraryCompilationResult{
libraryPath,
funcname,
};
}));
pybind11::class_<concretelang::serverlib::ServerLambda>(m, "LibraryLambda");
pybind11::class_<LibraryLambdaSupport_C>(m, "LibraryLambdaSupport")
.def(pybind11::init([](std::string outputPath) {
return library_lambda_support(outputPath.c_str());
}))
.def("compile",
[](LibraryLambdaSupport_C &support, std::string mlir_program,
mlir::concretelang::CompilationOptions options) {
return library_compile(support, mlir_program.c_str(), options);
})
.def("load_client_parameters",
[](LibraryLambdaSupport_C &support,
mlir::concretelang::LibraryCompilationResult &result) {
return library_load_client_parameters(support, result);
})
.def(
"load_server_lambda",
[](LibraryLambdaSupport_C &support,
mlir::concretelang::LibraryCompilationResult &result) {
return library_load_server_lambda(support, result);
},
pybind11::return_value_policy::reference)
.def("server_call",
[](LibraryLambdaSupport_C &support, serverlib::ServerLambda lambda,
clientlib::PublicArguments &publicArguments) {
return library_server_call(support, lambda, publicArguments);
});
class ClientSupport {};
pybind11::class_<ClientSupport>(m, "ClientSupport")
.def(pybind11::init())
.def_static(
"key_set",
[](clientlib::ClientParameters clientParameters,
clientlib::KeySetCache *cache) {
auto optCache =
cache == nullptr
? llvm::None
: llvm::Optional<clientlib::KeySetCache>(*cache);
return key_set(clientParameters, optCache);
},
pybind11::arg().none(false), pybind11::arg().none(true))
.def_static("encrypt_arguments",
[](clientlib::ClientParameters clientParameters,
clientlib::KeySet &keySet,
std::vector<lambdaArgument> args) {
std::vector<mlir::concretelang::LambdaArgument *> argsRef;
for (auto i = 0u; i < args.size(); i++) {
argsRef.push_back(args[i].ptr.get());
}
return encrypt_arguments(clientParameters, keySet, argsRef);
})
.def_static("decrypt_result", [](clientlib::KeySet &keySet,
clientlib::PublicResult &publicResult) {
return decrypt_result(keySet, publicResult);
});
pybind11::class_<clientlib::KeySetCache>(m, "KeySetCache")
.def(pybind11::init<std::string &>());
pybind11::class_<mlir::concretelang::ClientParameters>(m, "ClientParameters");
pybind11::class_<clientlib::KeySet>(m, "KeySet");
pybind11::class_<clientlib::PublicArguments>(m, "PublicArguments");
pybind11::class_<clientlib::PublicResult>(m, "PublicResult");
pybind11::class_<lambdaArgument>(m, "LambdaArgument")
.def_static("from_tensor",
[](std::vector<uint8_t> tensor, std::vector<int64_t> dims) {
return lambdaArgumentFromTensorU8(tensor, dims);
})
.def_static("from_tensor",
[](std::vector<uint16_t> tensor, std::vector<int64_t> dims) {
return lambdaArgumentFromTensorU16(tensor, dims);
})
.def_static("from_tensor",
[](std::vector<uint32_t> tensor, std::vector<int64_t> dims) {
return lambdaArgumentFromTensorU32(tensor, dims);
})
.def_static("from_tensor",
[](std::vector<uint64_t> tensor, std::vector<int64_t> dims) {
return lambdaArgumentFromTensorU64(tensor, dims);
})
.def_static("from_scalar", lambdaArgumentFromScalar)
.def("is_tensor",
[](lambdaArgument &lambda_arg) {
return lambdaArgumentIsTensor(lambda_arg);
})
.def("get_tensor_data",
[](lambdaArgument &lambda_arg) {
return lambdaArgumentGetTensorData(lambda_arg);
})
.def("get_tensor_shape",
[](lambdaArgument &lambda_arg) {
return lambdaArgumentGetTensorDimensions(lambda_arg);
})
.def("is_scalar",
[](lambdaArgument &lambda_arg) {
return lambdaArgumentIsScalar(lambda_arg);
})
.def("get_scalar", [](lambdaArgument &lambda_arg) {
return lambdaArgumentGetScalar(lambda_arg);
});
}