Files
concrete/compiler/lib/Support/CompilerTools.cpp

198 lines
6.4 KiB
C++

#include <llvm/Support/TargetSelect.h>
#include <mlir/Target/LLVMIR/Dialect/LLVMIR/LLVMToLLVMIRTranslation.h>
#include <mlir/Target/LLVMIR/Export.h>
#include "zamalang/Conversion/Passes.h"
#include "zamalang/Support/CompilerTools.h"
namespace mlir {
namespace zamalang {
// This is temporary while we doesn't yet have the high-level verification pass
FHECircuitConstraint defaultGlobalFHECircuitConstraint{.norm2 = 20, .p = 6};
void initLLVMNativeTarget() {
// Initialize LLVM targets.
llvm::InitializeNativeTarget();
llvm::InitializeNativeTargetAsmPrinter();
}
void addFilteredPassToPassManager(
mlir::PassManager &pm, std::unique_ptr<mlir::Pass> pass,
llvm::function_ref<bool(std::string)> enablePass) {
if (!enablePass(pass->getArgument().str())) {
return;
}
if (*pass->getOpName() == "module") {
pm.addPass(std::move(pass));
} else {
pm.nest(*pass->getOpName()).addPass(std::move(pass));
}
};
mlir::LogicalResult CompilerTools::lowerHLFHEToMlirStdsDialect(
mlir::MLIRContext &context, mlir::Operation *module,
FHECircuitConstraint &constraint,
llvm::function_ref<bool(std::string)> enablePass) {
mlir::PassManager pm(&context);
// Add all passes to lower from HLFHE to LLVM Dialect
addFilteredPassToPassManager(
pm, mlir::zamalang::createConvertHLFHETensorOpsToLinalg(), enablePass);
addFilteredPassToPassManager(
pm, mlir::zamalang::createConvertHLFHEToMidLFHEPass(), enablePass);
constraint = defaultGlobalFHECircuitConstraint;
// Run the passes
if (pm.run(module).failed()) {
return mlir::failure();
}
return mlir::success();
}
mlir::LogicalResult CompilerTools::lowerMlirStdsDialectToMlirLLVMDialect(
mlir::MLIRContext &context, mlir::Operation *module,
llvm::function_ref<bool(std::string)> enablePass) {
mlir::PassManager pm(&context);
addFilteredPassToPassManager(
pm, mlir::zamalang::createConvertMidLFHEToLowLFHEPass(), enablePass);
addFilteredPassToPassManager(
pm, mlir::zamalang::createConvertMLIRLowerableDialectsToLLVMPass(),
enablePass);
if (pm.run(module).failed()) {
return mlir::failure();
}
return mlir::success();
}
llvm::Expected<std::unique_ptr<llvm::Module>> CompilerTools::toLLVMModule(
llvm::LLVMContext &llvmContext, mlir::ModuleOp &module,
llvm::function_ref<llvm::Error(llvm::Module *)> optPipeline) {
initLLVMNativeTarget();
mlir::registerLLVMDialectTranslation(*module->getContext());
auto llvmModule = mlir::translateModuleToLLVMIR(module, llvmContext);
if (!llvmModule) {
return llvm::make_error<llvm::StringError>(
"failed to translate MLIR to LLVM IR", llvm::inconvertibleErrorCode());
}
if (auto err = optPipeline(llvmModule.get())) {
return llvm::make_error<llvm::StringError>("failed to optimize LLVM IR",
llvm::inconvertibleErrorCode());
}
return std::move(llvmModule);
}
llvm::Expected<std::unique_ptr<JITLambda>>
JITLambda::create(llvm::StringRef name, mlir::ModuleOp &module,
llvm::function_ref<llvm::Error(llvm::Module *)> optPipeline) {
// Looking for the function
auto rangeOps = module.getOps<mlir::LLVM::LLVMFuncOp>();
auto funcOp = llvm::find_if(rangeOps, [&](mlir::LLVM::LLVMFuncOp op) {
return op.getName() == name;
});
if (funcOp == rangeOps.end()) {
return llvm::make_error<llvm::StringError>(
"cannot find the function to JIT", llvm::inconvertibleErrorCode());
}
initLLVMNativeTarget();
mlir::registerLLVMDialectTranslation(*module->getContext());
// Create an MLIR execution engine. The execution engine eagerly
// JIT-compiles the module.
auto maybeEngine = mlir::ExecutionEngine::create(
module, /*llvmModuleBuilder=*/nullptr, optPipeline);
if (!maybeEngine) {
return llvm::make_error<llvm::StringError>(
"failed to construct the MLIR ExecutionEngine",
llvm::inconvertibleErrorCode());
}
auto &engine = maybeEngine.get();
auto lambda = std::make_unique<JITLambda>((*funcOp).getType(), name);
lambda->engine = std::move(engine);
return std::move(lambda);
}
llvm::Error JITLambda::invokeRaw(llvm::MutableArrayRef<void *> args) {
if (this->type.getNumParams() == args.size() - 1 /*For the result*/) {
return this->engine->invokePacked(this->name, args);
}
return llvm::make_error<llvm::StringError>(
"wrong number of argument when invoke the JIT lambda",
llvm::inconvertibleErrorCode());
}
llvm::Error JITLambda::invoke(Argument &args) { return invokeRaw(args.rawArg); }
JITLambda::Argument::Argument(KeySet &keySet) : keySet(keySet) {
inputs = std::vector<void *>(keySet.numInputs());
results = std::vector<void *>(keySet.numOutputs());
// The raw argument contains pointers to inputs and pointers to store the
// results
rawArg =
std::vector<void *>(keySet.numInputs() + keySet.numOutputs(), nullptr);
// Set the results pointer on the rawArg
for (auto i = keySet.numInputs(); i < rawArg.size(); i++) {
rawArg[i] = &results[i - keySet.numInputs()];
}
}
JITLambda::Argument::~Argument() {
int err;
for (auto i = 0; i < keySet.numInputs(); i++) {
if (keySet.isInputEncrypted(i)) {
free_lwe_ciphertext_u64(&err, (LweCiphertext_u64 *)(inputs[i]));
}
}
}
llvm::Expected<std::unique_ptr<JITLambda::Argument>>
JITLambda::Argument::create(KeySet &keySet) {
auto args = std::make_unique<JITLambda::Argument>(keySet);
return std::move(args);
}
llvm::Error JITLambda::Argument::setArg(size_t pos, uint64_t arg) {
// If argument is not encrypted, just save.
if (!keySet.isInputEncrypted(pos)) {
inputs[pos] = (void *)arg;
rawArg[pos] = &inputs[pos];
return llvm::Error::success();
}
// Else if is encryted, allocate ciphertext.
LweCiphertext_u64 *ctArg;
if (auto err = this->keySet.allocate_lwe(pos, &ctArg)) {
return std::move(err);
}
if (auto err = this->keySet.encrypt_lwe(pos, ctArg, arg)) {
return std::move(err);
}
inputs[pos] = ctArg;
rawArg[pos] = &inputs[pos];
return llvm::Error::success();
}
llvm::Error JITLambda::Argument::getResult(size_t pos, uint64_t &res) {
// If result is not encrypted, just set the result
if (!keySet.isOutputEncrypted(pos)) {
res = (uint64_t)(results[pos]);
return llvm::Error::success();
}
// Else if is encryted, decrypt
LweCiphertext_u64 *ct = (LweCiphertext_u64 *)(results[pos]);
if (auto err = this->keySet.decrypt_lwe(pos, ct, res)) {
return std::move(err);
}
return llvm::Error::success();
}
} // namespace zamalang
} // namespace mlir