Files
concrete/compilers/concrete-compiler/compiler/lib/Support/Pipeline.cpp
Andi Drebes c8c969773e Rebase onto llvm-project 465ee9bfb26d with local changes
This commit rebases the compiler onto commit 465ee9bfb26d from
llvm-project with locally maintained patches on top, i.e.:

  * 5d8669d669ee: Fix the element alignment (size) for memrefCopy
  * 4239163ea337: fix: Do not fold the memref.subview if the offset are
                  != 0 and strides != 1
  * 72c5decfcc21: remove github stuff from llvm
  * 8d0ce8f9eca1: Support arbitrary element types in named operations
                  via attributes
  * 94f64805c38c: Copy attributes of scf.for on bufferization and make
                  it an allocation hoisting barrier

Main upstream changes from llvm-project that required modification of
concretecompiler:

  * Switch to C++17
  * Various changes in the interfaces for linalg named operations
  * Transition from `llvm::Optional` to `std::optional`
  * Use of enums instead of string values for iterator types in linalg
  * Changed default naming convention of getter methods in
    ODS-generated operation classes from `some_value()` to
    `getSomeValue()`
  * Renaming of Arithmetic dialect to Arith
  * Refactoring of side effect interfaces (i.e., renaming from
    `NoSideEffect` to `Pure`)
  * Re-design of the data flow analysis framework
  * Refactoring of build targets for Python bindings
  * Refactoring of array attributes with integer values
  * Renaming of `linalg.init_tensor` to `tensor.empty`
  * Emission of `linalg.map` operations in bufferization of the Tensor
    dialect requiring another linalg conversion pass and registration
    of the bufferization op interfaces for linalg operations
  * Refactoring of the one-shot bufferizer
  * Necessity to run the expand-strided-metadata, affine-to-std and
    finalize-memref-to-llvm passes before converson to the LLVM
    dialect
  * Renaming of `BlockAndValueMapping` to `IRMapping`
  * Changes in the build function of `LLVM::CallOp`
  * Refactoring of the construction of `llvm::ArrayRef` and
    `llvm::MutableArrayRef` (direct invocation of constructor instead
    of builder functions for some cases)
  * New naming conventions for generated SSA values requiring rewrite
    of some check tests
  * Refactoring of `mlir::LLVM::lookupOrCreateMallocFn()`
  * Interface changes in generated type parsers
  * New dependencies for to mlir_float16_utils and
    MLIRSparseTensorRuntime for the runtime
  * Overhaul of MLIR-c deleting `mlir-c/Registration.h`
  * Deletion of library MLIRLinalgToSPIRV
  * Deletion of library MLIRLinalgAnalysis
  * Deletion of library MLIRMemRefUtils
  * Deletion of library MLIRQuantTransforms
  * Deletion of library MLIRVectorToROCDL
2023-03-09 17:47:16 +01:00

436 lines
17 KiB
C++

// Part of the Concrete Compiler Project, under the BSD3 License with Zama
// Exceptions. See
// https://github.com/zama-ai/concrete-compiler-internal/blob/main/LICENSE.txt
// for license information.
#include <llvm/Support/TargetSelect.h>
#include <llvm/Support/Error.h>
#include <mlir/Conversion/BufferizationToMemRef/BufferizationToMemRef.h>
#include <mlir/Conversion/Passes.h>
#include <mlir/Dialect/Bufferization/Transforms/Passes.h>
#include <mlir/Dialect/Func/Transforms/Passes.h>
#include <mlir/Transforms/Passes.h>
#include <mlir/Dialect/Affine/Passes.h>
#include <mlir/Dialect/Arith/Transforms/Passes.h>
#include <mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h>
#include <mlir/Dialect/Bufferization/Transforms/Passes.h>
#include <mlir/Dialect/Linalg/Passes.h>
#include <mlir/Dialect/SCF/Transforms/Passes.h>
#include <mlir/Dialect/Tensor/Transforms/Passes.h>
#include <mlir/ExecutionEngine/OptUtils.h>
#include <mlir/Pass/PassManager.h>
#include <mlir/Pass/PassOptions.h>
#include <mlir/Support/LogicalResult.h>
#include <mlir/Target/LLVMIR/Dialect/LLVMIR/LLVMToLLVMIRTranslation.h>
#include <mlir/Target/LLVMIR/Dialect/OpenMP/OpenMPToLLVMIRTranslation.h>
#include <mlir/Target/LLVMIR/Export.h>
#include <mlir/Transforms/Passes.h>
#include "concretelang/Support/CompilerEngine.h"
#include "concretelang/Support/Error.h"
#include <concretelang/Conversion/Passes.h>
#include <concretelang/Dialect/Concrete/Transforms/Passes.h>
#include <concretelang/Dialect/FHE/Analysis/ConcreteOptimizer.h>
#include <concretelang/Dialect/FHE/Analysis/MANP.h>
#include <concretelang/Dialect/FHE/Transforms/BigInt/BigInt.h>
#include <concretelang/Dialect/FHE/Transforms/Boolean/Boolean.h>
#include <concretelang/Dialect/FHE/Transforms/EncryptedMulToDoubleTLU.h>
#include <concretelang/Dialect/FHE/Transforms/Max/Max.h>
#include <concretelang/Dialect/FHELinalg/Transforms/Tiling.h>
#include <concretelang/Dialect/RT/Analysis/Autopar.h>
#include <concretelang/Dialect/TFHE/Transforms/Optimization.h>
#include <concretelang/Support/Pipeline.h>
#include <concretelang/Support/logging.h>
#include <concretelang/Support/math.h>
#include <concretelang/Transforms/Passes.h>
namespace mlir {
namespace concretelang {
namespace pipeline {
static void pipelinePrinting(llvm::StringRef name, mlir::PassManager &pm,
mlir::MLIRContext &ctx) {
if (mlir::concretelang::isVerbose()) {
mlir::concretelang::log_verbose()
<< "##################################################\n"
<< "### " << name << " pipeline\n";
auto isModule = [](mlir::Pass *, mlir::Operation *op) {
return mlir::isa<mlir::ModuleOp>(op);
};
ctx.disableMultithreading(true);
pm.enableIRPrinting(isModule, isModule);
pm.enableStatistics();
pm.enableTiming();
pm.enableVerifier();
}
}
static void
addPotentiallyNestedPass(mlir::PassManager &pm, std::unique_ptr<Pass> pass,
std::function<bool(mlir::Pass *)> enablePass) {
if (!enablePass(pass.get())) {
return;
}
if (!pass->getOpName() || *pass->getOpName() == "builtin.module") {
pm.addPass(std::move(pass));
} else {
mlir::OpPassManager &p = pm.nest(*pass->getOpName());
p.addPass(std::move(pass));
}
}
llvm::Expected<std::map<std::string, std::optional<optimizer::Description>>>
getFHEContextFromFHE(mlir::MLIRContext &context, mlir::ModuleOp &module,
optimizer::Config config,
std::function<bool(mlir::Pass *)> enablePass) {
std::optional<size_t> oMax2norm;
std::optional<size_t> oMaxWidth;
optimizer::FunctionsDag dags;
mlir::PassManager pm(&context);
pipelinePrinting("ComputeFHEConstraintOnFHE", pm, context);
addPotentiallyNestedPass(pm, mlir::createCanonicalizerPass(), enablePass);
addPotentiallyNestedPass(pm, mlir::concretelang::createMANPPass(),
enablePass);
addPotentiallyNestedPass(
pm,
mlir::concretelang::createMaxMANPPass(
[&](const uint64_t manp, unsigned width) {
if (!oMax2norm.has_value() || oMax2norm.value() < manp)
oMax2norm.emplace(manp);
if (!oMaxWidth.has_value() || oMaxWidth.value() < width)
oMaxWidth.emplace(width);
}),
enablePass);
if (pm.run(module.getOperation()).failed()) {
return llvm::make_error<llvm::StringError>(
"Failed to determine the maximum Arithmetic Noise Padding and maximum"
" required precision",
llvm::inconvertibleErrorCode());
}
std::optional<mlir::concretelang::V0FHEConstraint> constraint = std::nullopt;
if (oMax2norm.has_value() && oMaxWidth.has_value()) {
constraint = std::optional<mlir::concretelang::V0FHEConstraint>(
{/*.norm2 = */ ceilLog2(oMax2norm.value()),
/*.p = */ oMaxWidth.value()});
}
addPotentiallyNestedPass(pm, optimizer::createDagPass(config, dags),
enablePass);
if (pm.run(module.getOperation()).failed()) {
return StreamStringError() << "Failed to create concrete-optimizer dag\n";
}
std::map<std::string, std::optional<optimizer::Description>> descriptions;
for (auto &entry_dag : dags) {
if (!constraint) {
descriptions.insert(
decltype(descriptions)::value_type(entry_dag.first, std::nullopt));
continue;
}
optimizer::Description description = {*constraint,
std::move(entry_dag.second)};
std::optional<optimizer::Description> opt_description{
std::move(description)};
descriptions.insert(decltype(descriptions)::value_type(
entry_dag.first, std::move(opt_description)));
}
return std::move(descriptions);
}
mlir::LogicalResult autopar(mlir::MLIRContext &context, mlir::ModuleOp &module,
std::function<bool(mlir::Pass *)> enablePass) {
mlir::PassManager pm(&context);
pipelinePrinting("AutoPar", pm, context);
addPotentiallyNestedPass(
pm, mlir::concretelang::createBuildDataflowTaskGraphPass(), enablePass);
addPotentiallyNestedPass(
pm, mlir::concretelang::createLowerDataflowTasksPass(), enablePass);
return pm.run(module.getOperation());
}
mlir::LogicalResult
tileMarkedFHELinalg(mlir::MLIRContext &context, mlir::ModuleOp &module,
std::function<bool(mlir::Pass *)> enablePass) {
mlir::PassManager pm(&context);
pipelinePrinting("TileMarkedFHELinalg", pm, context);
addPotentiallyNestedPass(pm, mlir::concretelang::createFHELinalgTilingPass(),
enablePass);
return pm.run(module.getOperation());
}
mlir::LogicalResult
markFHELinalgForTiling(mlir::MLIRContext &context, mlir::ModuleOp &module,
llvm::ArrayRef<int64_t> tileSizes,
std::function<bool(mlir::Pass *)> enablePass) {
mlir::PassManager pm(&context);
pipelinePrinting("MarkFHELinalgForTiling", pm, context);
addPotentiallyNestedPass(pm, createFHELinalgTilingMarkerPass(tileSizes),
enablePass);
return pm.run(module.getOperation());
}
mlir::LogicalResult
transformHighLevelFHEOps(mlir::MLIRContext &context, mlir::ModuleOp &module,
std::function<bool(mlir::Pass *)> enablePass) {
mlir::PassManager pm(&context);
pipelinePrinting("transformHighLevelFHEOps", pm, context);
addPotentiallyNestedPass(pm, createEncryptedMulToDoubleTLUPass(), enablePass);
addPotentiallyNestedPass(pm, createFHEMaxTransformPass(), enablePass);
return pm.run(module.getOperation());
}
mlir::LogicalResult
lowerFHELinalgToFHE(mlir::MLIRContext &context, mlir::ModuleOp &module,
std::optional<V0FHEContext> &fheContext,
std::function<bool(mlir::Pass *)> enablePass,
bool parallelizeLoops, bool batchOperations) {
mlir::PassManager pm(&context);
pipelinePrinting("FHELinalgToFHE", pm, context);
addPotentiallyNestedPass(
pm, mlir::concretelang::createConvertFHETensorOpsToLinalg(), enablePass);
addPotentiallyNestedPass(pm, mlir::createLinalgGeneralizationPass(),
enablePass);
addPotentiallyNestedPass(
pm,
mlir::concretelang::createLinalgGenericOpWithTensorsToLoopsPass(
parallelizeLoops),
enablePass);
if (batchOperations) {
addPotentiallyNestedPass(pm, mlir::concretelang::createBatchingPass(),
enablePass);
}
return pm.run(module.getOperation());
}
mlir::LogicalResult
transformFHEBoolean(mlir::MLIRContext &context, mlir::ModuleOp &module,
std::function<bool(mlir::Pass *)> enablePass) {
mlir::PassManager pm(&context);
addPotentiallyNestedPass(
pm, mlir::concretelang::createFHEBooleanTransformPass(), enablePass);
return pm.run(module.getOperation());
}
mlir::LogicalResult
transformFHEBigInt(mlir::MLIRContext &context, mlir::ModuleOp &module,
std::function<bool(mlir::Pass *)> enablePass,
unsigned int chunkSize, unsigned int chunkWidth) {
mlir::PassManager pm(&context);
addPotentiallyNestedPass(
pm,
mlir::concretelang::createFHEBigIntTransformPass(chunkSize, chunkWidth),
enablePass);
// We want to fully unroll for loops introduced by the BigInt transform since
// MANP doesn't support loops. This is a workaround that make the IR much
// bigger than it should be
addPotentiallyNestedPass(pm, mlir::createLoopUnrollPass(-1, false, true),
enablePass);
return pm.run(module.getOperation());
}
mlir::LogicalResult
lowerFHEToTFHE(mlir::MLIRContext &context, mlir::ModuleOp &module,
std::optional<V0FHEContext> &fheContext,
std::function<bool(mlir::Pass *)> enablePass) {
mlir::PassManager pm(&context);
if (fheContext.has_value() &&
fheContext->parameter.largeInteger.has_value()) {
pipelinePrinting("FHEToTFHECrt", pm, context);
auto dec =
fheContext.value().parameter.largeInteger.value().crtDecomposition;
auto mods = mlir::SmallVector<int64_t>(dec.begin(), dec.end());
addPotentiallyNestedPass(
pm,
mlir::concretelang::createConvertFHEToTFHECrtPass(
mlir::concretelang::CrtLoweringParameters(mods)),
enablePass);
} else if (fheContext.has_value()) {
pipelinePrinting("FHEToTFHEScalar", pm, context);
size_t polySize = fheContext.value().parameter.getPolynomialSize();
addPotentiallyNestedPass(
pm,
mlir::concretelang::createConvertFHEToTFHEScalarPass(
mlir::concretelang::ScalarLoweringParameters(polySize)),
enablePass);
}
return pm.run(module.getOperation());
}
mlir::LogicalResult
lowerTFHEToConcrete(mlir::MLIRContext &context, mlir::ModuleOp &module,
std::optional<V0FHEContext> &fheContext,
std::function<bool(mlir::Pass *)> enablePass) {
mlir::PassManager pm(&context);
pipelinePrinting("TFHEToConcrete", pm, context);
if (fheContext.has_value()) {
addPotentiallyNestedPass(
pm,
mlir::concretelang::createConvertTFHEGlobalParametrizationPass(
fheContext.value()),
enablePass);
}
addPotentiallyNestedPass(
pm, mlir::concretelang::createConvertTFHEToConcretePass(), enablePass);
return pm.run(module.getOperation());
}
mlir::LogicalResult optimizeTFHE(mlir::MLIRContext &context,
mlir::ModuleOp &module,
std::function<bool(mlir::Pass *)> enablePass) {
mlir::PassManager pm(&context);
pipelinePrinting("TFHEOptimization", pm, context);
addPotentiallyNestedPass(pm, mlir::concretelang::createTFHEOptimizationPass(),
enablePass);
return pm.run(module.getOperation());
}
mlir::LogicalResult extractSDFGOps(mlir::MLIRContext &context,
mlir::ModuleOp &module,
std::function<bool(mlir::Pass *)> enablePass,
bool unroll) {
mlir::PassManager pm(&context);
pipelinePrinting("extract SDFG ops from Concrete", pm, context);
addPotentiallyNestedPass(
pm, mlir::concretelang::createExtractSDFGOpsPass(unroll), enablePass);
LogicalResult res = pm.run(module.getOperation());
return res;
}
mlir::LogicalResult
lowerConcreteToStd(mlir::MLIRContext &context, mlir::ModuleOp &module,
std::function<bool(mlir::Pass *)> enablePass) {
mlir::PassManager pm(&context);
pipelinePrinting("ConcreteToStd", pm, context);
addPotentiallyNestedPass(pm, mlir::concretelang::createAddRuntimeContext(),
enablePass);
return pm.run(module.getOperation());
}
mlir::LogicalResult
lowerSDFGToStd(mlir::MLIRContext &context, mlir::ModuleOp &module,
std::function<bool(mlir::Pass *)> enablePass) {
mlir::PassManager pm(&context);
pipelinePrinting("SDFGToStd", pm, context);
addPotentiallyNestedPass(
pm, mlir::concretelang::createConvertSDFGToStreamEmulatorPass(),
enablePass);
return pm.run(module.getOperation());
}
mlir::LogicalResult
lowerStdToLLVMDialect(mlir::MLIRContext &context, mlir::ModuleOp &module,
std::function<bool(mlir::Pass *)> enablePass,
bool parallelizeLoops, bool gpu) {
mlir::PassManager pm(&context);
pipelinePrinting("StdToLLVM", pm, context);
// Bufferize
mlir::bufferization::OneShotBufferizationOptions bufferizationOptions;
bufferizationOptions.allowReturnAllocs = true;
bufferizationOptions.printConflicts = true;
bufferizationOptions.unknownTypeConverterFn =
[](Value value, Attribute memorySpace,
const mlir::bufferization::BufferizationOptions &options) {
return mlir::bufferization::getMemRefTypeWithStaticIdentityLayout(
value.getType().cast<TensorType>(), memorySpace);
};
bufferizationOptions.bufferizeFunctionBoundaries = true;
bufferizationOptions.createDeallocs = true;
std::unique_ptr<mlir::Pass> comprBuffPass =
mlir::bufferization::createOneShotBufferizePass(bufferizationOptions);
addPotentiallyNestedPass(pm, std::move(comprBuffPass), enablePass);
// The bufferization may create `linalg.map` operations; Add another
// conversion pass from linalg to loops
addPotentiallyNestedPass(pm, mlir::createConvertLinalgToLoopsPass(),
enablePass);
addPotentiallyNestedPass(
pm, mlir::concretelang::createBufferizeDataflowTaskOpsPass(), enablePass);
if (parallelizeLoops) {
addPotentiallyNestedPass(
pm, mlir::concretelang::createCollapseParallelLoops(), enablePass);
addPotentiallyNestedPass(pm, mlir::concretelang::createForLoopToParallel(),
enablePass);
}
if (parallelizeLoops)
addPotentiallyNestedPass(pm, mlir::createConvertSCFToOpenMPPass(),
enablePass);
// Lower affine
addPotentiallyNestedPass(pm, mlir::createLowerAffinePass(), enablePass);
// Finalize the lowering of RT/DFR which includes:
// - adding type and typesize information for dependences
// - issue _dfr_start and _dfr_stop calls to start/stop the runtime
// - remove deallocation calls for buffers managed through refcounting
addPotentiallyNestedPass(
pm, mlir::concretelang::createFinalizeTaskCreationPass(), enablePass);
addPotentiallyNestedPass(
pm, mlir::bufferization::createBufferDeallocationPass(), enablePass);
addPotentiallyNestedPass(pm, mlir::concretelang::createStartStopPass(),
enablePass);
addPotentiallyNestedPass(
pm, mlir::concretelang::createFixupBufferDeallocationPass(), enablePass);
addPotentiallyNestedPass(
pm, mlir::concretelang::createConvertConcreteToCAPIPass(gpu), enablePass);
addPotentiallyNestedPass(
pm, mlir::concretelang::createConvertTracingToCAPIPass(), enablePass);
// Convert to MLIR LLVM Dialect
addPotentiallyNestedPass(
pm, mlir::concretelang::createConvertMLIRLowerableDialectsToLLVMPass(),
enablePass);
return pm.run(module);
}
std::unique_ptr<llvm::Module>
lowerLLVMDialectToLLVMIR(mlir::MLIRContext &context,
llvm::LLVMContext &llvmContext,
mlir::ModuleOp &module) {
llvm::InitializeNativeTarget();
llvm::InitializeNativeTargetAsmPrinter();
mlir::registerLLVMDialectTranslation(*module->getContext());
mlir::registerOpenMPDialectTranslation(*module->getContext());
return mlir::translateModuleToLLVMIR(module, llvmContext);
}
mlir::LogicalResult optimizeLLVMModule(llvm::LLVMContext &llvmContext,
llvm::Module &module) {
std::function<llvm::Error(llvm::Module *)> optPipeline =
mlir::makeOptimizingTransformer(3, 0, nullptr);
if (optPipeline(&module))
return mlir::failure();
else
return mlir::success();
}
} // namespace pipeline
} // namespace concretelang
} // namespace mlir