Remove gui and gfx code, modules and dependencies.

This commit is contained in:
Nym
2021-06-26 15:32:58 +00:00
parent fe8f82e88d
commit 1f719bed60
11 changed files with 115 additions and 3625 deletions

1972
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -64,22 +64,6 @@ http-types = "2.9.0"
async-h1 = "2.3.0"
async-native-tls = "0.3.3"
# GUI deps
anyhow = "1.0"
bytemuck = { version = "1.4", features = [ "derive" ] }
image = "0.23"
winit = "0.23"
shaderc = "0.7"
cgmath = "0.17"
env_logger = "0.7"
wgpu = "0.7"
wgpu_glyph = "0.11"
tobj = "2.0.4"
# used by compile-shaders
fs_extra = "1.2"
glob = "0.3"
# zmq
zeromq = { git="https://github.com/zeromq/zmq.rs", default-features = false, features = ["async-std-runtime", "all-transport"] }
bytes = "1.0.1"
@@ -120,14 +104,6 @@ path = "src/bin/spend-classic.rs"
name = "tx"
path = "src/bin/tx.rs"
[[bin]]
name = "dfg"
path = "src/bin/dfg.rs"
[[bin]]
name = "compile-shaders"
path = "src/bin/compile-shaders.rs"
[[bin]]
name = "gatewayd"
path = "src/bin/gatewayd.rs"

View File

@@ -1,91 +0,0 @@
use anyhow::*;
use glob::glob;
use std::fs::{read_to_string, write};
use std::path::PathBuf;
struct ShaderData {
src: String,
src_path: PathBuf,
spv_path: PathBuf,
kind: shaderc::ShaderKind,
}
impl ShaderData {
pub fn load(src_path: PathBuf) -> Result<Self> {
let extension = src_path
.extension()
.context("File has no extension")?
.to_str()
.context("Extension cannot be converted to &str")?;
let kind = match extension {
"vert" => shaderc::ShaderKind::Vertex,
"frag" => shaderc::ShaderKind::Fragment,
"comp" => shaderc::ShaderKind::Compute,
_ => bail!("Unsupported shader: {}", src_path.display()),
};
let src = read_to_string(src_path.clone())?;
let spv_path = src_path.with_extension(format!("{}.spv", extension));
Ok(Self {
src,
src_path,
spv_path,
kind,
})
}
}
fn main() -> Result<()> {
// Collect all shaders recursively within /src/
let mut shader_paths = [
glob("./res/shader/**/*.vert")?,
glob("./res/shader/**/*.frag")?,
glob("./res/shader/**/*.comp")?,
];
// This could be parallelized
let shaders = shader_paths
.iter_mut()
.flatten()
.map(|glob_result| ShaderData::load(glob_result?))
.collect::<Vec<Result<_>>>()
.into_iter()
.collect::<Result<Vec<_>>>()?;
let mut compiler = shaderc::Compiler::new().context("Unable to create shader compiler")?;
// This can't be parallelized. The [shaderc::Compiler] is not
// thread safe. Also, it creates a lot of resources. You could
// spawn multiple processes to handle this, but it would probably
// be better just to only compile shaders that have been changed
// recently.
for shader in shaders {
// This tells cargo to rerun this script if something in /src/ changes.
println!(
"cargo:rerun-if-changed={}",
shader.src_path.as_os_str().to_str().unwrap()
);
let compiled = compiler.compile_into_spirv(
&shader.src,
shader.kind,
&shader.src_path.to_str().unwrap(),
"main",
None,
)?;
write(shader.spv_path, compiled.as_binary_u8())?;
}
// This tells cargo to rerun this script if something in /res/ changes.
println!("cargo:rerun-if-changed=res/*");
//let out_dir = env::var("OUT_DIR")?;
//let mut copy_options = CopyOptions::new();
//copy_options.overwrite = true;
//let mut paths_to_copy = Vec::new();
//paths_to_copy.push("res/");
//copy_items(&paths_to_copy, out_dir, &copy_options)?;
Ok(())
}

View File

@@ -1,927 +0,0 @@
use rand::Rng;
use std::iter;
use cgmath::prelude::*;
use wgpu::util::DeviceExt;
use winit::{
event::*,
event_loop::{ControlFlow, EventLoop},
window::Window,
};
use drk::gfx::{camera, model, texture};
use model::{DrawModel, Vertex};
use std::time::Instant;
#[macro_use]
extern crate lazy_static;
lazy_static! {
static ref START: Instant = Instant::now();
}
fn get_time() -> f32 {
START.elapsed().as_secs_f32()
}
const FONT_BYTES: &[u8] = include_bytes!("../../res/font/PressStart2P-Regular.ttf");
const NUM_INSTANCES_PER_ROW: u32 = 10;
#[repr(C)]
#[derive(Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
struct Uniforms {
view_position: [f32; 4],
view_proj: [[f32; 4]; 4],
}
impl Uniforms {
fn new() -> Self {
Self {
view_position: [0.0; 4],
view_proj: cgmath::Matrix4::identity().into(),
}
}
fn update_view_proj(&mut self, camera: &camera::Camera, projection: &camera::Projection) {
self.view_position = camera.position.to_homogeneous().into();
self.view_proj = (projection.calc_matrix() * camera.calc_matrix()).into()
}
}
struct Instance {
position: cgmath::Vector3<f32>,
rotation: cgmath::Quaternion<f32>,
}
impl Instance {
fn to_raw(&self) -> InstanceRaw {
InstanceRaw {
model: (cgmath::Matrix4::from_translation(self.position)
* cgmath::Matrix4::from(self.rotation))
.into(),
}
}
}
#[repr(C)]
#[derive(Debug, Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
struct InstanceRaw {
#[allow(dead_code)]
model: [[f32; 4]; 4],
}
impl model::Vertex for InstanceRaw {
fn desc<'a>() -> wgpu::VertexBufferLayout<'a> {
use std::mem;
wgpu::VertexBufferLayout {
array_stride: mem::size_of::<InstanceRaw>() as wgpu::BufferAddress,
// We need to switch from using a step mode of Vertex to Instance
// This means that our shaders will only change to use the next
// instance when the shader starts processing a new instance
step_mode: wgpu::InputStepMode::Instance,
attributes: &[
wgpu::VertexAttribute {
offset: 0,
// While our vertex shader only uses locations 0, and 1 now, in later tutorials
// we'll be using 2, 3, and 4, for Vertex. We'll start at
// slot 5 not conflict with them later
shader_location: 5,
format: wgpu::VertexFormat::Float4,
},
// A mat4 takes up 4 vertex slots as it is technically 4 vec4s. We need to define a
// slot for each vec4. We don't have to do this in code though.
wgpu::VertexAttribute {
offset: mem::size_of::<[f32; 4]>() as wgpu::BufferAddress,
shader_location: 6,
format: wgpu::VertexFormat::Float4,
},
wgpu::VertexAttribute {
offset: mem::size_of::<[f32; 8]>() as wgpu::BufferAddress,
shader_location: 7,
format: wgpu::VertexFormat::Float4,
},
wgpu::VertexAttribute {
offset: mem::size_of::<[f32; 12]>() as wgpu::BufferAddress,
shader_location: 8,
format: wgpu::VertexFormat::Float4,
},
],
}
}
}
#[repr(C)]
#[derive(Debug, Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
struct Light {
position: [f32; 3],
// Due to uniforms requiring 16 byte (4 float) spacing, we need to use a padding field here
_padding: u32,
color: [f32; 3],
}
pub const UNBOUNDED_F32: f32 = std::f32::INFINITY;
#[derive(Debug)]
pub struct Text {
pub position: cgmath::Vector2<f32>,
pub bounds: cgmath::Vector2<f32>,
pub color: cgmath::Vector4<f32>,
pub text: String,
pub size: f32,
pub visible: bool,
pub focused: bool,
pub centered: bool,
}
impl Default for Text {
fn default() -> Self {
Self {
position: (0.0, 0.0).into(),
bounds: (UNBOUNDED_F32, UNBOUNDED_F32).into(),
color: (1.0, 1.0, 1.0, 1.0).into(),
text: String::new(),
size: 16.0,
visible: false,
focused: false,
centered: false,
}
}
}
const VERTEX_Z: f32 = 0.0;
// (-1, 1) (1, 1)
// +-----------------------+
// | |
// | |
// | |
// | |
// | |
// | |
// | |
// +-----------------------+
// (-1, -1) (1, -1)
const VERTICES: &[model::ModelVertex] = &[
// top left
model::ModelVertex {
position: [-1.0, 1.0, VERTEX_Z],
tex_coords: [0.0, 0.0],
normal: [0.0, 0.0, -1.0],
},
// bottom left
model::ModelVertex {
position: [-1.0, 0.5, VERTEX_Z],
tex_coords: [0.0, 1.0],
normal: [0.0, 0.0, -1.0],
},
// bottom right
model::ModelVertex {
position: [-0.5, 0.5, VERTEX_Z],
tex_coords: [1.0, 1.0],
normal: [0.0, 0.0, -1.0],
},
// top right
model::ModelVertex {
position: [-0.5, 1.0, VERTEX_Z],
tex_coords: [1.0, 0.0],
normal: [0.0, 0.0, -1.0],
},
];
//const INDICES: &[u16] = &[0, 1, 4, 1, 2, 4, 2, 3, 4];
const INDICES: &[u16] = &[0, 1, 2, 0, 2, 3];
#[allow(dead_code)]
struct State {
surface: wgpu::Surface,
device: wgpu::Device,
queue: wgpu::Queue,
sc_desc: wgpu::SwapChainDescriptor,
swap_chain: wgpu::SwapChain,
render_pipeline: wgpu::RenderPipeline,
obj_model: model::Model,
camera: camera::Camera, // UPDATED!
projection: camera::Projection, // NEW!
camera_controller: camera::CameraController, // UPDATED!
uniforms: Uniforms,
uniform_buffer: wgpu::Buffer,
uniform_bind_group: wgpu::BindGroup,
instances: Vec<Instance>,
#[allow(dead_code)]
instance_buffer: wgpu::Buffer,
depth_texture: texture::Texture,
size: winit::dpi::PhysicalSize<u32>,
light: Light,
light_buffer: wgpu::Buffer,
light_bind_group: wgpu::BindGroup,
light_render_pipeline: wgpu::RenderPipeline,
ui_render_pipeline: wgpu::RenderPipeline,
vertex_buffer: wgpu::Buffer,
index_buffer: wgpu::Buffer,
num_indices: u32,
#[allow(dead_code)]
diffuse_texture: texture::Texture,
diffuse_bind_group: wgpu::BindGroup,
#[allow(dead_code)]
cartoon_texture: texture::Texture,
cartoon_bind_group: wgpu::BindGroup,
glyph_brush: wgpu_glyph::GlyphBrush<()>,
staging_belt: wgpu::util::StagingBelt,
is_space_pressed: bool,
mouse_pressed: bool,
}
fn create_render_pipeline(
device: &wgpu::Device,
layout: &wgpu::PipelineLayout,
color_format: wgpu::TextureFormat,
depth_format: Option<wgpu::TextureFormat>,
vertex_layouts: &[wgpu::VertexBufferLayout],
vs_src: wgpu::ShaderModuleDescriptor,
fs_src: wgpu::ShaderModuleDescriptor,
) -> wgpu::RenderPipeline {
let vs_module = device.create_shader_module(&vs_src);
let fs_module = device.create_shader_module(&fs_src);
device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Render Pipeline"),
layout: Some(&layout),
vertex: wgpu::VertexState {
module: &vs_module,
entry_point: "main",
buffers: vertex_layouts,
},
fragment: Some(wgpu::FragmentState {
module: &fs_module,
entry_point: "main",
targets: &[wgpu::ColorTargetState {
format: color_format,
alpha_blend: wgpu::BlendState::REPLACE,
color_blend: wgpu::BlendState::REPLACE,
write_mask: wgpu::ColorWrite::ALL,
}],
}),
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::TriangleList,
strip_index_format: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: wgpu::CullMode::Back,
// Setting this to anything other than Fill requires Features::NON_FILL_POLYGON_MODE
polygon_mode: wgpu::PolygonMode::Fill,
},
depth_stencil: depth_format.map(|format| wgpu::DepthStencilState {
format,
depth_write_enabled: true,
depth_compare: wgpu::CompareFunction::Less,
stencil: wgpu::StencilState::default(),
bias: wgpu::DepthBiasState::default(),
// Setting this to true requires Features::DEPTH_CLAMPING
clamp_depth: false,
}),
multisample: wgpu::MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
},
})
}
impl State {
async fn new(window: &Window) -> Self {
let size = window.inner_size();
// The instance is a handle to our GPU
// BackendBit::PRIMARY => Vulkan + Metal + DX12 + Browser WebGPU
let instance = wgpu::Instance::new(wgpu::BackendBit::PRIMARY);
let surface = unsafe { instance.create_surface(window) };
let adapter = instance
.request_adapter(&wgpu::RequestAdapterOptions {
power_preference: wgpu::PowerPreference::default(),
compatible_surface: Some(&surface),
})
.await
.unwrap();
let (device, queue) = adapter
.request_device(
&wgpu::DeviceDescriptor {
label: None,
features: wgpu::Features::empty(),
limits: wgpu::Limits::default(),
},
None, // Trace path
)
.await
.unwrap();
let sc_desc = wgpu::SwapChainDescriptor {
usage: wgpu::TextureUsage::RENDER_ATTACHMENT,
format: adapter.get_swap_chain_preferred_format(&surface),
width: size.width,
height: size.height,
present_mode: wgpu::PresentMode::Fifo,
};
let swap_chain = device.create_swap_chain(&surface, &sc_desc);
let texture_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::Texture {
multisampled: false,
view_dimension: wgpu::TextureViewDimension::D2,
sample_type: wgpu::TextureSampleType::Float { filterable: false },
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::Sampler {
comparison: false,
filtering: true,
},
count: None,
},
],
label: Some("texture_bind_group_layout"),
});
let camera = camera::Camera::new((0.0, 5.0, 10.0), cgmath::Deg(-90.0), cgmath::Deg(-20.0));
let projection =
camera::Projection::new(sc_desc.width, sc_desc.height, cgmath::Deg(45.0), 0.1, 100.0);
let camera_controller = camera::CameraController::new(4.0, 0.4);
let mut uniforms = Uniforms::new();
uniforms.update_view_proj(&camera, &projection);
let uniform_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Uniform Buffer"),
contents: bytemuck::cast_slice(&[uniforms]),
usage: wgpu::BufferUsage::UNIFORM | wgpu::BufferUsage::COPY_DST,
});
const SPACE_BETWEEN: f32 = 3.0;
let instances = (0..NUM_INSTANCES_PER_ROW)
.flat_map(|z| {
(0..NUM_INSTANCES_PER_ROW).map(move |x| {
let x = SPACE_BETWEEN * (x as f32 - NUM_INSTANCES_PER_ROW as f32 / 2.0);
let z = SPACE_BETWEEN * (z as f32 - NUM_INSTANCES_PER_ROW as f32 / 2.0);
let y = 0.0;
let position = cgmath::Vector3 { x, y, z };
let rotation = cgmath::Quaternion::from_axis_angle(
cgmath::Vector3::unit_z(),
cgmath::Deg(180.0 + 0.0),
);
Instance { position, rotation }
})
})
.collect::<Vec<_>>();
let instance_data = instances.iter().map(Instance::to_raw).collect::<Vec<_>>();
let instance_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Instance Buffer"),
contents: bytemuck::cast_slice(&instance_data),
usage: wgpu::BufferUsage::VERTEX | wgpu::BufferUsage::COPY_DST,
});
let uniform_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStage::VERTEX | wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}],
label: Some("uniform_bind_group_layout"),
});
let uniform_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &uniform_bind_group_layout,
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: uniform_buffer.as_entire_binding(),
}],
label: Some("uniform_bind_group"),
});
let res_dir = std::path::Path::new("res/model/");
let obj_model = model::Model::load(
&device,
&queue,
&texture_bind_group_layout,
res_dir.join("earth.obj"),
)
.unwrap();
let light = Light {
position: [4.0, 4.0, 2.0],
_padding: 0,
color: [1.0, 1.0, 1.0],
};
let light_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Light VB"),
contents: bytemuck::cast_slice(&[light]),
usage: wgpu::BufferUsage::UNIFORM | wgpu::BufferUsage::COPY_DST,
});
let light_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStage::VERTEX | wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}],
label: None,
});
let light_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &light_bind_group_layout,
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: light_buffer.as_entire_binding(),
}],
label: None,
});
let depth_texture =
texture::Texture::create_depth_texture(&device, &sc_desc, "depth_texture");
let render_pipeline_layout =
device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Render Pipeline Layout"),
bind_group_layouts: &[
&texture_bind_group_layout,
&uniform_bind_group_layout,
&light_bind_group_layout,
],
push_constant_ranges: &[],
});
let render_pipeline = create_render_pipeline(
&device,
&render_pipeline_layout,
sc_desc.format,
Some(texture::Texture::DEPTH_FORMAT),
&[model::ModelVertex::desc(), InstanceRaw::desc()],
wgpu::include_spirv!("../../res/shader/shader.vert.spv"),
wgpu::include_spirv!("../../res/shader/shader.frag.spv"),
);
let light_render_pipeline = {
let layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Light Pipeline Layout"),
bind_group_layouts: &[&uniform_bind_group_layout, &light_bind_group_layout],
push_constant_ranges: &[],
});
create_render_pipeline(
&device,
&layout,
sc_desc.format,
Some(texture::Texture::DEPTH_FORMAT),
&[model::ModelVertex::desc()],
wgpu::include_spirv!("../../res/shader/light.vert.spv"),
wgpu::include_spirv!("../../res/shader/light.frag.spv"),
)
};
//-------------------
let texture_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::Texture {
multisampled: false,
view_dimension: wgpu::TextureViewDimension::D2,
sample_type: wgpu::TextureSampleType::Float { filterable: false },
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::Sampler {
comparison: false,
filtering: true,
},
count: None,
},
],
label: Some("texture_bind_group_layout"),
});
let diffuse_bytes = include_bytes!("../../res/img/absolutely-proprietary.png");
let diffuse_texture =
texture::Texture::from_bytes(&device, &queue, diffuse_bytes, "stallman1").unwrap();
let diffuse_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &texture_bind_group_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(&diffuse_texture.view),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Sampler(&diffuse_texture.sampler),
},
],
label: Some("diffuse_bind_group"),
});
let cartoon_bytes = include_bytes!("../../res/img/absolutely-proprietary2.png");
let cartoon_texture =
texture::Texture::from_bytes(&device, &queue, cartoon_bytes, "stallman2").unwrap();
let cartoon_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &texture_bind_group_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(&cartoon_texture.view),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Sampler(&cartoon_texture.sampler),
},
],
label: Some("cartoon_bind_group"),
});
let render_pipeline_layout =
device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Render Pipeline Layout"),
bind_group_layouts: &[&texture_bind_group_layout],
push_constant_ranges: &[],
});
let ui_render_pipeline = create_render_pipeline(
&device,
&render_pipeline_layout,
sc_desc.format,
Some(texture::Texture::DEPTH_FORMAT),
&[model::ModelVertex::desc()],
wgpu::include_spirv!("../../res/shader/ui_shader.vert.spv"),
wgpu::include_spirv!("../../res/shader/ui_shader.frag.spv"),
);
let vertex_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Vertex Buffer"),
contents: bytemuck::cast_slice(VERTICES),
usage: wgpu::BufferUsage::VERTEX,
});
let index_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Index Buffer"),
contents: bytemuck::cast_slice(INDICES),
usage: wgpu::BufferUsage::INDEX,
});
let num_indices = INDICES.len() as u32;
let font = wgpu_glyph::ab_glyph::FontArc::try_from_slice(FONT_BYTES).unwrap();
let glyph_brush =
wgpu_glyph::GlyphBrushBuilder::using_font(font).build(&device, sc_desc.format);
let staging_belt = wgpu::util::StagingBelt::new(1024);
Self {
surface,
device,
queue,
sc_desc,
swap_chain,
render_pipeline,
obj_model,
camera,
projection,
camera_controller,
uniform_buffer,
uniform_bind_group,
uniforms,
instances,
instance_buffer,
depth_texture,
size,
light,
light_buffer,
light_bind_group,
light_render_pipeline,
ui_render_pipeline,
vertex_buffer,
index_buffer,
num_indices,
diffuse_texture,
diffuse_bind_group,
cartoon_texture,
cartoon_bind_group,
glyph_brush,
staging_belt,
is_space_pressed: true,
mouse_pressed: false,
}
}
fn resize(&mut self, new_size: winit::dpi::PhysicalSize<u32>) {
self.projection.resize(new_size.width, new_size.height);
self.size = new_size;
self.sc_desc.width = new_size.width;
self.sc_desc.height = new_size.height;
self.swap_chain = self.device.create_swap_chain(&self.surface, &self.sc_desc);
self.depth_texture =
texture::Texture::create_depth_texture(&self.device, &self.sc_desc, "depth_texture");
}
fn input(&mut self, event: &DeviceEvent) -> bool {
match event {
DeviceEvent::Key(KeyboardInput {
virtual_keycode: Some(key),
state,
..
}) => self.camera_controller.process_keyboard(*key, *state),
DeviceEvent::MouseWheel { delta, .. } => {
self.camera_controller.process_scroll(delta);
true
}
DeviceEvent::Button {
button: 1, // Left Mouse Button
state,
} => {
self.mouse_pressed = *state == ElementState::Pressed;
true
}
DeviceEvent::MouseMotion { delta } => {
if self.mouse_pressed {
self.camera_controller.process_mouse(delta.0, delta.1);
}
true
}
_ => false,
}
}
fn update(&mut self, dt: std::time::Duration) {
if rand::thread_rng().gen_range(0, 5) == 0 {
self.is_space_pressed = !self.is_space_pressed;
}
self.camera_controller.update_camera(&mut self.camera, dt);
self.uniforms
.update_view_proj(&self.camera, &self.projection);
self.queue.write_buffer(
&self.uniform_buffer,
0,
bytemuck::cast_slice(&[self.uniforms]),
);
let time = get_time();
const SPACE_BETWEEN: f32 = 3.0;
let instances = (0..NUM_INSTANCES_PER_ROW)
.flat_map(|z| {
(0..NUM_INSTANCES_PER_ROW).map(move |x| {
let x = SPACE_BETWEEN * (x as f32 - NUM_INSTANCES_PER_ROW as f32 / 2.0);
let z = SPACE_BETWEEN * (z as f32 - NUM_INSTANCES_PER_ROW as f32 / 2.0);
//println!("{} {} {}", x, z, time);
let y = ((x / 3.0 + time).sin() + (z / 3.0 + time).cos()) * 1.5;
let position = cgmath::Vector3 { x, y, z };
let rotation = cgmath::Quaternion::from_axis_angle(
cgmath::Vector3::unit_z(),
cgmath::Deg(180.0 + 0.0),
);
Instance { position, rotation }
})
})
.collect::<Vec<_>>();
let instance_data = instances.iter().map(Instance::to_raw).collect::<Vec<_>>();
self.queue.write_buffer(
&self.instance_buffer,
0,
bytemuck::cast_slice(&instance_data),
);
// Update the light
let old_position: cgmath::Vector3<_> = self.light.position.into();
self.light.position =
(cgmath::Quaternion::from_axis_angle((0.0, 1.0, 0.0).into(), cgmath::Deg(1.0))
* old_position)
.into();
self.queue
.write_buffer(&self.light_buffer, 0, bytemuck::cast_slice(&[self.light]));
}
fn render(&mut self) -> Result<(), wgpu::SwapChainError> {
let frame = self.swap_chain.get_current_frame()?.output;
let mut encoder = self
.device
.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: Some("Render Encoder"),
});
{
let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some("Render Pass"),
color_attachments: &[wgpu::RenderPassColorAttachmentDescriptor {
attachment: &frame.view,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(wgpu::Color {
r: 0.1,
g: 0.2,
b: 0.3,
a: 1.0,
}),
store: true,
},
}],
depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachmentDescriptor {
attachment: &self.depth_texture.view,
depth_ops: Some(wgpu::Operations {
load: wgpu::LoadOp::Clear(1.0),
store: true,
}),
stencil_ops: None,
}),
});
render_pass.set_vertex_buffer(1, self.instance_buffer.slice(..));
//render_pass.set_pipeline(&self.light_render_pipeline);
//render_pass.draw_light_model(
// &self.obj_model,
// &self.uniform_bind_group,
// &self.light_bind_group,
//);
render_pass.set_pipeline(&self.render_pipeline);
render_pass.draw_model_instanced(
&self.obj_model,
0..self.instances.len() as u32,
&self.uniform_bind_group,
&self.light_bind_group,
);
let bind_group = if self.is_space_pressed {
&self.cartoon_bind_group
} else {
&self.diffuse_bind_group
};
render_pass.set_pipeline(&self.ui_render_pipeline);
render_pass.set_bind_group(0, bind_group, &[]);
render_pass.set_vertex_buffer(0, self.vertex_buffer.slice(..));
render_pass.set_index_buffer(self.index_buffer.slice(..), wgpu::IndexFormat::Uint16);
render_pass.draw_indexed(0..self.num_indices, 0, 0..1);
}
let play_text = Text {
position: (40.0, 40.0).into(),
color: (1.0, 1.0, 1.0, 1.0).into(),
text: String::from("Absolutely Proprietary"),
size: 32.0,
centered: false,
..Default::default()
};
draw_text(&play_text, &mut self.glyph_brush);
self.glyph_brush
.draw_queued(
&self.device,
&mut self.staging_belt,
&mut encoder,
&frame.view,
self.sc_desc.width,
self.sc_desc.height,
)
.unwrap();
self.staging_belt.finish();
self.queue.submit(iter::once(encoder.finish()));
Ok(())
}
}
fn draw_text(text: &Text, glyph_brush: &mut wgpu_glyph::GlyphBrush<()>) {
let layout = wgpu_glyph::Layout::default().h_align(if text.centered {
wgpu_glyph::HorizontalAlign::Center
} else {
wgpu_glyph::HorizontalAlign::Left
});
let section = wgpu_glyph::Section {
screen_position: text.position.into(),
bounds: text.bounds.into(),
layout,
..Default::default()
}
.add_text(
wgpu_glyph::Text::new(&text.text)
.with_color(text.color)
.with_scale(if text.focused {
text.size + 8.0
} else {
text.size
}),
);
glyph_brush.queue(section);
}
fn main() {
env_logger::init();
let event_loop = EventLoop::new();
let title = env!("CARGO_PKG_NAME");
let window = winit::window::WindowBuilder::new()
.with_title(title)
.build(&event_loop)
.unwrap();
use futures::executor::block_on;
let mut state = block_on(State::new(&window));
let mut last_render_time = std::time::Instant::now();
event_loop.run(move |event, _, control_flow| {
*control_flow = ControlFlow::Poll;
match event {
Event::MainEventsCleared => window.request_redraw(),
Event::DeviceEvent {
ref event,
.. // We're not using device_id currently
} => {
state.input(event);
}
Event::WindowEvent {
ref event,
window_id,
} if window_id == window.id() => {
match event {
WindowEvent::CloseRequested => *control_flow = ControlFlow::Exit,
WindowEvent::KeyboardInput { input, .. } => match input {
KeyboardInput {
state: ElementState::Pressed,
virtual_keycode: Some(VirtualKeyCode::Escape),
..
} => {
*control_flow = ControlFlow::Exit;
}
_ => {}
},
WindowEvent::Resized(physical_size) => {
state.resize(*physical_size);
}
WindowEvent::ScaleFactorChanged { new_inner_size, .. } => {
state.resize(**new_inner_size);
}
_ => {}
}
}
Event::RedrawRequested(_) => {
let now = std::time::Instant::now();
let dt = now - last_render_time;
last_render_time = now;
state.update(dt);
match state.render() {
Ok(_) => {}
// Recreate the swap_chain if lost
Err(wgpu::SwapChainError::Lost) => state.resize(state.size),
// The system is out of memory, we should probably quit
Err(wgpu::SwapChainError::OutOfMemory) => *control_flow = ControlFlow::Exit,
// All other errors (Outdated, Timeout) should be resolved by the next frame
Err(e) => eprintln!("{:?}", e),
}
}
_ => {}
}
});
}

View File

@@ -1,191 +0,0 @@
use cgmath::*;
use std::f32::consts::FRAC_PI_2;
use std::time::Duration;
use winit::dpi::PhysicalPosition;
use winit::event::*;
#[rustfmt::skip]
pub const OPENGL_TO_WGPU_MATRIX: cgmath::Matrix4<f32> = cgmath::Matrix4::new(
1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.5, 0.0,
0.0, 0.0, 0.5, 1.0,
);
#[derive(Debug)]
pub struct Camera {
pub position: Point3<f32>,
yaw: Rad<f32>,
pitch: Rad<f32>,
}
impl Camera {
pub fn new<V: Into<Point3<f32>>, Y: Into<Rad<f32>>, P: Into<Rad<f32>>>(
position: V,
yaw: Y,
pitch: P,
) -> Self {
Self {
position: position.into(),
yaw: yaw.into(),
pitch: pitch.into(),
}
}
pub fn calc_matrix(&self) -> Matrix4<f32> {
Matrix4::look_at_dir(
self.position,
Vector3::new(self.yaw.0.cos(), self.pitch.0.sin(), self.yaw.0.sin()).normalize(),
Vector3::unit_y(),
)
}
}
pub struct Projection {
aspect: f32,
fovy: Rad<f32>,
znear: f32,
zfar: f32,
}
impl Projection {
pub fn new<F: Into<Rad<f32>>>(width: u32, height: u32, fovy: F, znear: f32, zfar: f32) -> Self {
Self {
aspect: width as f32 / height as f32,
fovy: fovy.into(),
znear,
zfar,
}
}
pub fn resize(&mut self, width: u32, height: u32) {
self.aspect = width as f32 / height as f32;
}
pub fn calc_matrix(&self) -> Matrix4<f32> {
OPENGL_TO_WGPU_MATRIX * perspective(self.fovy, self.aspect, self.znear, self.zfar)
}
}
#[derive(Debug)]
pub struct CameraController {
amount_left: f32,
amount_right: f32,
amount_forward: f32,
amount_backward: f32,
amount_up: f32,
amount_down: f32,
rotate_horizontal: f32,
rotate_vertical: f32,
scroll: f32,
speed: f32,
sensitivity: f32,
}
impl CameraController {
pub fn new(speed: f32, sensitivity: f32) -> Self {
Self {
amount_left: 0.0,
amount_right: 0.0,
amount_forward: 0.0,
amount_backward: 0.0,
amount_up: 0.0,
amount_down: 0.0,
rotate_horizontal: 0.0,
rotate_vertical: 0.0,
scroll: 0.0,
speed,
sensitivity,
}
}
pub fn process_keyboard(&mut self, key: VirtualKeyCode, state: ElementState) -> bool {
let amount = if state == ElementState::Pressed {
1.0
} else {
0.0
};
match key {
VirtualKeyCode::W | VirtualKeyCode::Up => {
self.amount_forward = amount;
true
}
VirtualKeyCode::S | VirtualKeyCode::Down => {
self.amount_backward = amount;
true
}
VirtualKeyCode::A | VirtualKeyCode::Left => {
self.amount_left = amount;
true
}
VirtualKeyCode::D | VirtualKeyCode::Right => {
self.amount_right = amount;
true
}
VirtualKeyCode::Space => {
self.amount_up = amount;
true
}
VirtualKeyCode::LShift => {
self.amount_down = amount;
true
}
_ => false,
}
}
pub fn process_mouse(&mut self, mouse_dx: f64, mouse_dy: f64) {
self.rotate_horizontal = mouse_dx as f32;
self.rotate_vertical = mouse_dy as f32;
}
pub fn process_scroll(&mut self, delta: &MouseScrollDelta) {
self.scroll = match delta {
// I'm assuming a line is about 100 pixels
MouseScrollDelta::LineDelta(_, scroll) => -scroll * 0.5,
MouseScrollDelta::PixelDelta(PhysicalPosition { y: scroll, .. }) => -*scroll as f32,
};
}
pub fn update_camera(&mut self, camera: &mut Camera, dt: Duration) {
let dt = dt.as_secs_f32();
// Move forward/backward and left/right
let (yaw_sin, yaw_cos) = camera.yaw.0.sin_cos();
let forward = Vector3::new(yaw_cos, 0.0, yaw_sin).normalize();
let right = Vector3::new(-yaw_sin, 0.0, yaw_cos).normalize();
camera.position += forward * (self.amount_forward - self.amount_backward) * self.speed * dt;
camera.position += right * (self.amount_right - self.amount_left) * self.speed * dt;
// Move in/out (aka. "zoom")
// Note: this isn't an actual zoom. The camera's position
// changes when zooming. I've added this to make it easier
// to get closer to an object you want to focus on.
let (pitch_sin, pitch_cos) = camera.pitch.0.sin_cos();
let scrollward =
Vector3::new(pitch_cos * yaw_cos, pitch_sin, pitch_cos * yaw_sin).normalize();
camera.position += scrollward * self.scroll * self.speed * self.sensitivity * dt;
self.scroll = 0.0;
// Move up/down. Since we don't use roll, we can just
// modify the y coordinate directly.
camera.position.y += (self.amount_up - self.amount_down) * self.speed * dt;
// Rotate
camera.yaw += Rad(self.rotate_horizontal) * self.sensitivity * dt;
camera.pitch += Rad(-self.rotate_vertical) * self.sensitivity * dt;
// If process_mouse isn't called every frame, these values
// will not get set to zero, and the camera will rotate
// when moving in a non cardinal direction.
self.rotate_horizontal = 0.0;
self.rotate_vertical = 0.0;
// Keep the camera's angle from going too high/low.
if camera.pitch < -Rad(FRAC_PI_2) {
camera.pitch = -Rad(FRAC_PI_2);
} else if camera.pitch > Rad(FRAC_PI_2) {
camera.pitch = Rad(FRAC_PI_2);
}
}
}

View File

@@ -1,3 +0,0 @@
pub mod camera;
pub mod model;
pub mod texture;

View File

@@ -1,317 +0,0 @@
use anyhow::*;
use std::ops::Range;
use std::path::Path;
use wgpu::util::DeviceExt;
use crate::gfx::texture;
pub trait Vertex {
fn desc<'a>() -> wgpu::VertexBufferLayout<'a>;
}
#[repr(C)]
#[derive(Copy, Clone, Debug, bytemuck::Pod, bytemuck::Zeroable)]
pub struct ModelVertex {
pub position: [f32; 3],
pub tex_coords: [f32; 2],
pub normal: [f32; 3],
}
impl Vertex for ModelVertex {
fn desc<'a>() -> wgpu::VertexBufferLayout<'a> {
use std::mem;
wgpu::VertexBufferLayout {
array_stride: mem::size_of::<ModelVertex>() as wgpu::BufferAddress,
step_mode: wgpu::InputStepMode::Vertex,
attributes: &[
wgpu::VertexAttribute {
offset: 0,
shader_location: 0,
format: wgpu::VertexFormat::Float3,
},
wgpu::VertexAttribute {
offset: mem::size_of::<[f32; 3]>() as wgpu::BufferAddress,
shader_location: 1,
format: wgpu::VertexFormat::Float2,
},
wgpu::VertexAttribute {
offset: mem::size_of::<[f32; 5]>() as wgpu::BufferAddress,
shader_location: 2,
format: wgpu::VertexFormat::Float3,
},
],
}
}
}
pub struct Material {
pub name: String,
pub diffuse_texture: texture::Texture,
pub bind_group: wgpu::BindGroup,
}
pub struct Mesh {
pub name: String,
pub vertex_buffer: wgpu::Buffer,
pub index_buffer: wgpu::Buffer,
pub num_elements: u32,
pub material: usize,
}
pub struct Model {
pub meshes: Vec<Mesh>,
pub materials: Vec<Material>,
}
impl Model {
pub fn load<P: AsRef<Path>>(
device: &wgpu::Device,
queue: &wgpu::Queue,
layout: &wgpu::BindGroupLayout,
path: P,
) -> Result<Self> {
let (obj_models, obj_materials) = tobj::load_obj(path.as_ref(), true)?;
// We're assuming that the texture files are stored with the obj file
let containing_folder = path.as_ref().parent().context("Directory has no parent")?;
let mut materials = Vec::new();
for mat in obj_materials {
let diffuse_path = mat.diffuse_texture;
let diffuse_texture =
texture::Texture::load(device, queue, containing_folder.join(diffuse_path))?;
let bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(&diffuse_texture.view),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Sampler(&diffuse_texture.sampler),
},
],
label: None,
});
materials.push(Material {
name: mat.name,
diffuse_texture,
bind_group,
});
}
let mut meshes = Vec::new();
for m in obj_models {
let mut vertices = Vec::new();
for i in 0..m.mesh.positions.len() / 3 {
vertices.push(ModelVertex {
position: [
m.mesh.positions[i * 3],
m.mesh.positions[i * 3 + 1],
m.mesh.positions[i * 3 + 2],
],
tex_coords: [1.0 - m.mesh.texcoords[i * 2], m.mesh.texcoords[i * 2 + 1]],
normal: [
m.mesh.normals[i * 3],
m.mesh.normals[i * 3 + 1],
m.mesh.normals[i * 3 + 2],
],
});
}
let vertex_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some(&format!("{:?} Vertex Buffer", path.as_ref())),
contents: bytemuck::cast_slice(&vertices),
usage: wgpu::BufferUsage::VERTEX,
});
let index_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some(&format!("{:?} Index Buffer", path.as_ref())),
contents: bytemuck::cast_slice(&m.mesh.indices),
usage: wgpu::BufferUsage::INDEX,
});
meshes.push(Mesh {
name: m.name,
vertex_buffer,
index_buffer,
num_elements: m.mesh.indices.len() as u32,
material: m.mesh.material_id.unwrap_or(0),
});
}
Ok(Self { meshes, materials })
}
}
pub trait DrawModel<'a, 'b>
where
'b: 'a,
{
fn draw_mesh(
&mut self,
mesh: &'b Mesh,
material: &'b Material,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
);
fn draw_mesh_instanced(
&mut self,
mesh: &'b Mesh,
material: &'b Material,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
);
fn draw_model(
&mut self,
model: &'b Model,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
);
fn draw_model_instanced(
&mut self,
model: &'b Model,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
);
}
impl<'a, 'b> DrawModel<'a, 'b> for wgpu::RenderPass<'a>
where
'b: 'a,
{
fn draw_mesh(
&mut self,
mesh: &'b Mesh,
material: &'b Material,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
self.draw_mesh_instanced(mesh, material, 0..1, uniforms, light);
}
fn draw_mesh_instanced(
&mut self,
mesh: &'b Mesh,
material: &'b Material,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
self.set_vertex_buffer(0, mesh.vertex_buffer.slice(..));
self.set_index_buffer(mesh.index_buffer.slice(..), wgpu::IndexFormat::Uint32);
self.set_bind_group(0, &material.bind_group, &[]);
self.set_bind_group(1, &uniforms, &[]);
self.set_bind_group(2, &light, &[]);
self.draw_indexed(0..mesh.num_elements, 0, instances);
}
fn draw_model(
&mut self,
model: &'b Model,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
self.draw_model_instanced(model, 0..1, uniforms, light);
}
fn draw_model_instanced(
&mut self,
model: &'b Model,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
for mesh in &model.meshes {
let material = &model.materials[mesh.material];
self.draw_mesh_instanced(mesh, material, instances.clone(), uniforms, light);
}
}
}
pub trait DrawLight<'a, 'b>
where
'b: 'a,
{
fn draw_light_mesh(
&mut self,
mesh: &'b Mesh,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
);
fn draw_light_mesh_instanced(
&mut self,
mesh: &'b Mesh,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) where
'b: 'a;
fn draw_light_model(
&mut self,
model: &'b Model,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
);
fn draw_light_model_instanced(
&mut self,
model: &'b Model,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
);
}
impl<'a, 'b> DrawLight<'a, 'b> for wgpu::RenderPass<'a>
where
'b: 'a,
{
fn draw_light_mesh(
&mut self,
mesh: &'b Mesh,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
self.draw_light_mesh_instanced(mesh, 0..1, uniforms, light);
}
fn draw_light_mesh_instanced(
&mut self,
mesh: &'b Mesh,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
self.set_vertex_buffer(0, mesh.vertex_buffer.slice(..));
self.set_index_buffer(mesh.index_buffer.slice(..), wgpu::IndexFormat::Uint32);
self.set_bind_group(0, uniforms, &[]);
self.set_bind_group(1, light, &[]);
self.draw_indexed(0..mesh.num_elements, 0, instances);
}
fn draw_light_model(
&mut self,
model: &'b Model,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
self.draw_light_model_instanced(model, 0..1, uniforms, light);
}
fn draw_light_model_instanced(
&mut self,
model: &'b Model,
instances: Range<u32>,
uniforms: &'b wgpu::BindGroup,
light: &'b wgpu::BindGroup,
) {
for mesh in &model.meshes {
self.draw_light_mesh_instanced(mesh, instances.clone(), uniforms, light);
}
}
}

View File

@@ -1,135 +0,0 @@
use anyhow::*;
use image::GenericImageView;
use std::path::Path;
pub struct Texture {
pub texture: wgpu::Texture,
pub view: wgpu::TextureView,
pub sampler: wgpu::Sampler,
}
impl Texture {
pub const DEPTH_FORMAT: wgpu::TextureFormat = wgpu::TextureFormat::Depth32Float;
pub fn load<P: AsRef<Path>>(
device: &wgpu::Device,
queue: &wgpu::Queue,
path: P,
) -> Result<Self> {
// Needed to appease the borrow checker
let path_copy = path.as_ref().to_path_buf();
let label = path_copy.to_str();
let img = image::open(path)?;
Self::from_image(device, queue, &img, label)
}
pub fn create_depth_texture(
device: &wgpu::Device,
sc_desc: &wgpu::SwapChainDescriptor,
label: &str,
) -> Self {
let size = wgpu::Extent3d {
width: sc_desc.width,
height: sc_desc.height,
depth: 1,
};
let desc = wgpu::TextureDescriptor {
label: Some(label),
size,
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: Self::DEPTH_FORMAT,
usage: wgpu::TextureUsage::RENDER_ATTACHMENT | wgpu::TextureUsage::SAMPLED,
};
let texture = device.create_texture(&desc);
let view = texture.create_view(&wgpu::TextureViewDescriptor::default());
let sampler = device.create_sampler(&wgpu::SamplerDescriptor {
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter: wgpu::FilterMode::Linear,
min_filter: wgpu::FilterMode::Linear,
mipmap_filter: wgpu::FilterMode::Nearest,
compare: Some(wgpu::CompareFunction::LessEqual),
lod_min_clamp: -100.0,
lod_max_clamp: 100.0,
..Default::default()
});
Self {
texture,
view,
sampler,
}
}
#[allow(dead_code)]
pub fn from_bytes(
device: &wgpu::Device,
queue: &wgpu::Queue,
bytes: &[u8],
label: &str,
) -> Result<Self> {
let img = image::load_from_memory(bytes)?;
Self::from_image(device, queue, &img, Some(label))
}
pub fn from_image(
device: &wgpu::Device,
queue: &wgpu::Queue,
img: &image::DynamicImage,
label: Option<&str>,
) -> Result<Self> {
let dimensions = img.dimensions();
let rgba = img.to_rgba8();
let size = wgpu::Extent3d {
width: dimensions.0,
height: dimensions.1,
depth: 1,
};
let texture = device.create_texture(&wgpu::TextureDescriptor {
label,
size,
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Rgba8UnormSrgb,
usage: wgpu::TextureUsage::SAMPLED | wgpu::TextureUsage::COPY_DST,
});
queue.write_texture(
wgpu::TextureCopyView {
texture: &texture,
mip_level: 0,
origin: wgpu::Origin3d::ZERO,
},
&rgba,
wgpu::TextureDataLayout {
offset: 0,
bytes_per_row: 4 * dimensions.0,
rows_per_image: dimensions.1,
},
size,
);
let view = texture.create_view(&wgpu::TextureViewDescriptor::default());
let sampler = device.create_sampler(&wgpu::SamplerDescriptor {
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter: wgpu::FilterMode::Linear,
min_filter: wgpu::FilterMode::Nearest,
mipmap_filter: wgpu::FilterMode::Nearest,
..Default::default()
});
Ok(Self {
texture,
view,
sampler,
})
}
}

View File

@@ -1 +0,0 @@
pub mod texture;

View File

@@ -1,77 +0,0 @@
use anyhow::*;
use image::GenericImageView;
pub struct Texture {
pub texture: wgpu::Texture,
pub view: wgpu::TextureView,
pub sampler: wgpu::Sampler,
}
impl Texture {
pub fn from_bytes(
device: &wgpu::Device,
queue: &wgpu::Queue,
bytes: &[u8],
label: &str,
) -> Result<Self> {
let img = image::load_from_memory(bytes)?;
Self::from_image(device, queue, &img, Some(label))
}
pub fn from_image(
device: &wgpu::Device,
queue: &wgpu::Queue,
img: &image::DynamicImage,
label: Option<&str>,
) -> Result<Self> {
let rgba = img.as_rgba8().unwrap();
let dimensions = img.dimensions();
let size = wgpu::Extent3d {
width: dimensions.0,
height: dimensions.1,
depth: 1,
};
let texture = device.create_texture(&wgpu::TextureDescriptor {
label,
size,
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Rgba8UnormSrgb,
usage: wgpu::TextureUsage::SAMPLED | wgpu::TextureUsage::COPY_DST,
});
queue.write_texture(
wgpu::TextureCopyView {
texture: &texture,
mip_level: 0,
origin: wgpu::Origin3d::ZERO,
},
rgba,
wgpu::TextureDataLayout {
offset: 0,
bytes_per_row: 4 * dimensions.0,
rows_per_image: dimensions.1,
},
size,
);
let view = texture.create_view(&wgpu::TextureViewDescriptor::default());
let sampler = device.create_sampler(&wgpu::SamplerDescriptor {
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter: wgpu::FilterMode::Linear,
min_filter: wgpu::FilterMode::Nearest,
mipmap_filter: wgpu::FilterMode::Nearest,
..Default::default()
});
Ok(Self {
texture,
view,
sampler,
})
}
}

View File

@@ -11,8 +11,6 @@ pub mod circuit;
pub mod crypto;
pub mod endian;
pub mod error;
pub mod gfx;
pub mod gui;
pub mod net;
pub mod rpc;
pub mod serial;