mirror of
https://github.com/darkrenaissance/darkfi.git
synced 2026-01-09 14:48:08 -05:00
valuation of function at a local ring for elliptic curve
This commit is contained in:
106
script/research/ec/valuate.sage
Normal file
106
script/research/ec/valuate.sage
Normal file
@@ -0,0 +1,106 @@
|
||||
# $ sage -sh
|
||||
# $ pip install tabulate
|
||||
from tabulate import tabulate
|
||||
# P = (2, 4)
|
||||
# ord_P(y - 2x) = 2
|
||||
# from Washington example 11.4 page 345
|
||||
|
||||
K.<x, y> = Integers(11)[]
|
||||
Px, Py = K(2), K(4)
|
||||
|
||||
assert (3*Px^2 + 4) / (2*Py) == 2
|
||||
|
||||
basis = [(x - Px), (y - Py), 1]
|
||||
# Return components for basis
|
||||
def decomp(f, basis):
|
||||
comps = []
|
||||
r = f
|
||||
for b in basis:
|
||||
a, r = r.quo_rem(b)
|
||||
comps.append(a)
|
||||
assert r == 0
|
||||
return comps
|
||||
|
||||
def comp(comps, basis):
|
||||
return sum(a*b for a, b in zip(comps, basis))
|
||||
|
||||
f = y - 2*x
|
||||
assert comp(decomp(f, basis), basis) == f
|
||||
|
||||
# P = (a, b)
|
||||
# y² = x³ + Ax + B
|
||||
# (y - b)(y + b) = (x - a)³ + C(3,2)a(x - a)² + (3a² + A)(x - a)
|
||||
#
|
||||
# sage: ((x - a)^3 + binomial(3,2)*a*(x - a)^2 + (3*a^2 + A)*(x - a)).expand()
|
||||
# -a^3 + x^3 - A*a + A*x
|
||||
# But since (a, b) ∈ E(K) => b² = a³ + Aa + B
|
||||
# => B = b² - (a³ + Aa)
|
||||
#
|
||||
# So at every step we replace the component for (y - Py)
|
||||
# with the reduction to the component for (x - Px)
|
||||
|
||||
A = 4
|
||||
B = 0
|
||||
|
||||
E = y^2 - x^3 - A*x - B
|
||||
|
||||
# f / g
|
||||
# Technically we don't need g but we keep track of it anyway
|
||||
def apply_reduction(comp_f, comp_g, basis):
|
||||
#a1 = comp_f[1]
|
||||
#comp_f[1] = 0
|
||||
|
||||
b0, b1, _ = basis
|
||||
# so we can replace (y - Py) with this
|
||||
sub_poly_f = b0^2 + binomial(3,2)*Px*b0^1 + (3*Px^2 + A)
|
||||
sub_poly_g = (y + Py)
|
||||
assert E == b1*sub_poly_g - b0*sub_poly_f
|
||||
# b1 == b0 * f / g
|
||||
# so we can replace c b1 with (cf/g) b0
|
||||
|
||||
comp_f[0] = comp_f[0]*sub_poly_g + comp_g[2]*sub_poly_f
|
||||
comp_g[2] *= sub_poly_g
|
||||
|
||||
k = 1
|
||||
|
||||
table = []
|
||||
table.append(("", "f", "g", "k"))
|
||||
|
||||
def log(step_name, comp_f, comp_g, k):
|
||||
table.append((step_name, str(comp_f), str(comp_g), k))
|
||||
|
||||
comp_f = decomp(f, basis)
|
||||
comp_g = [0, 0, 1]
|
||||
log("start", comp_f, comp_g, k)
|
||||
|
||||
# Reduce
|
||||
apply_reduction(comp_f, comp_g, basis)
|
||||
log("reduce", comp_f, comp_g, k)
|
||||
|
||||
f = comp_f[0]
|
||||
# Decompose
|
||||
comp_f = decomp(f, basis)
|
||||
comp_g = [0, 0, 1]
|
||||
log("decomp", comp_f, comp_g, k)
|
||||
|
||||
assert comp(comp_f, basis) == (x - 2)^2 - 5*(x - 2) - 2*(y - 4)
|
||||
assert comp_f[2] == 0
|
||||
k += 1
|
||||
|
||||
# Reduce
|
||||
apply_reduction(comp_f, comp_g, basis)
|
||||
log("reduce", comp_f, comp_g, k)
|
||||
|
||||
f = comp_f[0]
|
||||
# Decompose
|
||||
comp_f = decomp(f, basis)
|
||||
comp_g = [0, 0, 1]
|
||||
log("decomp", comp_f, comp_g, k)
|
||||
|
||||
# Program terminates because remainder is nonzero
|
||||
assert comp_f[2] != 0
|
||||
|
||||
print(f"basis = {basis}")
|
||||
print(tabulate(table))
|
||||
print(f"k = {k}")
|
||||
|
||||
Reference in New Issue
Block a user