move out old schemas

This commit is contained in:
narodnik
2020-09-20 01:21:56 +02:00
parent 133e94b2d9
commit 5828bee338
5 changed files with 251 additions and 251 deletions

175
proofs/old/sapling.prf Normal file
View File

@@ -0,0 +1,175 @@
# You will need this repo:
# https://github.com/zcash/librustzcash/
# Then compare this code to the file:
# librustzcash/zcash_proofs/src/circuit/sapling.rs
# What is the LC stuff?
# Difference between AllocatedNum and Num
# Why BlsScalar vs JJScalar?
const:
G_VCV: Point
G_VCR: Point
G_SPEND: Point
G_PROOF: Point
G_NOTE_COMMIT_R: Point
G_NULL: Point
CRH_IVK: Blake2sPersonalization
NOTE_COMMIT: PedersenPersonalization
MERKLE: list<PedersenPersonalization>
PRF_NF: Blake2sPersonalization
def value_commit(value: u64, randomness: Scalar) -> (Point, list<bool>):
let value_bits: list<bool> = value as list<bool>
let value: Point = value * G_VCV
let rcv: list<bool> = randomness as list<bool>
let rcv: Point = rcv * G_VCR
let cv: Point = value + rcv
return cv, value_bits
# The parameters to this function are the same as in:
# struct Spend
def input_burn(
value: u64, # ValueCommitment.value
randomness: Scalar, # ValueCommitment.randomness
ak: Point, # from ProofGenerationKey
ar: Scalar,
nsk: Scalar, # from ProofGenerationKey
g_d: Point, # Computed from payment_address
commitment_randomness: Scalar,
auth_path: list<(Scalar, bool)>,
anchor: Scalar
) -> (Point, Point, Point, list<bool>):
let ak = witness(ak)
ak.assert_not_small_order()
let ar: list<bool> = ar as list<bool>
let ar: Point = ar * G_SPEND
let rk: Point = ak + ar
let nsk: list<bool> = nsk as list<bool>
let nk: Point = nsk * G_PROOF
let mut ivk_preimage: list<bool> = []
# Must be list<bool> as well
ivk_preimage.extend(ak.repr())
let mut nf_preimage: list<bool> = []
let nk_repr: list<bool> = nk.repr()
ivk_preimage.extend(nk_repr)
nf_preimage.extend(nk_repr)
assert len(ivk_preimage) == 512
assert len(nf_preimage) == 256
let mut ivk: list<bool> = blake2s(ivk_preimage, CRH_IVK)
ivk.truncate(Scalar::CAPACITY)
let g_d: Point = witness g_d
g_d.assert_not_small_order()
let pk_d: Point = ivk * g_d
let mut note_contents: list<bool> = []
let (cv: Point, value_bits: list<bool>) = value_commit(value, randomness)
let mut value_num: Num = Num.zero()
let mut coeff: Scalar = Scalar.one()
for bit in value_bits:
value_num = value_num.add_bool_with_coeff(bit, coeff)
coeff = coeff.double()
# Is this equivalent?
let value_num = value_bits as Num
note_contents.extend(value_bits)
note_contents.extend(g_d)
note_contents.extend(pk_d)
assert len(note_contents) == 64 + 256 + 256
let mut cm: Point = pedersen_hash(NOTE_COMMIT, note_contents)
let rcm: list<bool> = commitment_randomness as list<bool>
let rcm: Point = rcm * G_NOTE_COMMIT_R
cm += rcm
let mut position_bits: list<bool> = []
let mut cur: Scalar = cm.u
for i, (node, is_right) in enumerate(auth_path):
position_bits.push(is_right)
let node: EncryptedNum = EncryptedNum.from(node)
print(node)
let (left: list<bool>, right: list<bool>) = Num.swap_if(is_right, cur, node)
let mut preimage: list<bool> = []
preimage.extend(left)
preimage.extend(right)
cur = pedersen_hash(MERKLE_TREE[i], preimage).u
let rt: Point = EncryptedNum.from(anchor)
enforce (cur - rt) * value_num == 0
let position: Point = position_bits * G_NULL
let rho: Point = cm + position
nf_preimage.extend(rho)
assert len(nf_preimage) == 512
let nf: list<bool> = blake2s(nf_preimage, PRF_NF)
return (rk, cv, rt, nf)
def output_mint(
value: u64,
randomness: Scalar,
g_d: Point,
esk: Scalar,
pk_d: Point,
commitment_randomness: Scalar
) -> (Point, Point, Scalar):
let (cv: Point, value_bits: list<bool>) = value_commit(value, randomness)
let mut note_contents: list<bool> = []
note_contents.extend(value_bits)
let g_d: Point = witness g_d
assert is_not_small_order(g_d)
let esk: list<bool> = esk as list<bool>
let epk: Point = esk * g_d
let v_contents: list<bool> = pk_d.v as list<bool>
let sign_bit: bool = pk_d.u.is_odd() as bool
note_contents.extend(v_contents)
note_contents.push(sign_bit)
assert len(note_contents) == 64 + 256 + 256
let mut cm: Point = pedersen_hash(NOTE_COMMIT, note_contents)
let rcm: list<bool> = commitment_randomness as list<bool>
let rcm: Point = rcm * G_NOTE_COMMIT_R
cm += rcm
let cmu: Scalar = cm.u
return (cv, epk, cmu)

View File

@@ -1,175 +1,120 @@
# You will need this repo:
# https://github.com/zcash/librustzcash/
# Then compare this code to the file:
# librustzcash/zcash_proofs/src/circuit/sapling.rs
# What is the LC stuff?
# Difference between AllocatedNum and Num
# Why BlsScalar vs JJScalar?
# :set syntax=sapvi
# :source ../scripts/sapvi.vim
const:
G_VCV: Point
G_VCR: Point
G_SPEND: Point
G_PROOF: Point
G_NOTE_COMMIT_R: Point
G_NULL: Point
G_VCV: SubgroupPoint
G_VCR: SubgroupPoint
G_SPEND: SubgroupPoint
G_PROOF: SubgroupPoint
G_NOTE_COMMIT_R: SubgroupPoint
G_NULL: SubgroupPoint
CRH_IVK: Blake2sPersonalization
NOTE_COMMIT: PedersenPersonalization
MERKLE: list<PedersenPersonalization>
PRF_NF: Blake2sPersonalization
def value_commit(value: u64, randomness: Scalar) -> (Point, list<bool>):
let value_bits: list<bool> = value as list<bool>
let value: Point = value * G_VCV
let rcv: list<bool> = randomness as list<bool>
let rcv: Point = rcv * G_VCR
let cv: Point = value + rcv
return cv, value_bits
# The parameters to this function are the same as in:
# struct Spend
def input_burn(
value: u64, # ValueCommitment.value
randomness: Scalar, # ValueCommitment.randomness
ak: Point, # from ProofGenerationKey
ar: Scalar,
nsk: Scalar, # from ProofGenerationKey
g_d: Point, # Computed from payment_address
commitment_randomness: Scalar,
auth_path: list<(Scalar, bool)>,
contract input_spend(
value: U64 -> BinaryNumber
randomness: Fr -> BinaryNumber
ak: Point
ar: Fr -> BinaryNumber
nsk: Fr -> BinaryNumber
g_d: Point
commitment_randomness: Fr -> BinaryNumber
auth_path: [(Scalar, Bool)]
anchor: Scalar
) -> (Point, Point, Point, list<bool>):
let ak = witness(ak)
ak.assert_not_small_order()
) -> (Point, Point, Scalar, BinaryNumber):
let rk: Point = ak + ar * G_SPEND
emit rk
let ar: list<bool> = ar as list<bool>
let ar: Point = ar * G_SPEND
let rk: Point = ak + ar
let nsk: list<bool> = nsk as list<bool>
let nk: Point = nsk * G_PROOF
let mut ivk_preimage: list<bool> = []
# Must be list<bool> as well
ivk_preimage.extend(ak.repr())
let mut ivk_preimage: BinaryNumber = []
ivk_preimage.put(ak)
let mut nf_preimage: list<bool> = []
let nk_repr: list<bool> = nk.repr()
ivk_preimage.extend(nk_repr)
nf_preimage.extend(nk_repr)
let mut nf_preimage: BinaryNumber = []
assert len(ivk_preimage) == 512
assert len(nf_preimage) == 256
ivk_preimage.put(nk)
nf_preimage.put(nk)
let mut ivk: list<bool> = blake2s(ivk_preimage, CRH_IVK)
ivk.truncate(Scalar::CAPACITY)
let g_d: Point = witness g_d
g_d.assert_not_small_order()
assert ivk_preimage.len() == 512
assert nf_preimage.len() == 256
let mut ivk = blake2s(ivk_preimage, CRH_IVK)
ivk.truncate(JUBJUB_FR_CAPACITY)
# This will error if ivk.len() != 256
#let ivk: Fr = ivk as Fr
let pk_d: Point = ivk * g_d
let mut note_contents: list<bool> = []
let cv: Point = value * G_VCV + rcv * G_VCR
emit cv
let (cv: Point, value_bits: list<bool>) = value_commit(value, randomness)
let mut note_contents: BinaryNumber = []
note_contents.put(value)
note_contents.put(g_d)
note_contents.put(p_k)
assert note_contents.len() == 64 + 256 + 256
let mut value_num: Num = Num.zero()
let mut coeff: Scalar = Scalar.one()
for bit in value_bits:
value_num = value_num.add_bool_with_coeff(bit, coeff)
coeff = coeff.double()
# Is this equivalent?
let value_num = value_bits as Num
let mut cm = pedersen_hash(note_contents, NOTE_COMMIT)
cm += commitment_randomness * G_NOTE_COMMIT_R
note_contents.extend(value_bits)
note_contents.extend(g_d)
note_contents.extend(pk_d)
assert len(note_contents) == 64 + 256 + 256
let mut cm: Point = pedersen_hash(NOTE_COMMIT, note_contents)
let rcm: list<bool> = commitment_randomness as list<bool>
let rcm: Point = rcm * G_NOTE_COMMIT_R
cm += rcm
let mut position_bits: list<bool> = []
let mut position = []
let mut cur: Scalar = cm.u
for i, (node, is_right) in enumerate(auth_path):
position_bits.push(is_right)
for i in range(auth_path.size()):
let (node: Scalar, is_right: Bool) = auth_path[i]
let node: EncryptedNum = EncryptedNum.from(node)
print(node)
let (left: list<bool>, right: list<bool>) = Num.swap_if(is_right, cur, node)
position.push(is_right)
let mut preimage: list<bool> = []
preimage.extend(left)
preimage.extend(right)
# Scalar -> AllocatedNum
let (left: Scalar, right: Scalar) = swap_if(is_right, cur, node)
let mut preimage: BinaryNumber = []
preimage.put(left)
preimage.put(right)
cur = pedersen_hash(MERKLE_TREE[i], preimage).u
let rt: Point = EncryptedNum.from(anchor)
enforce cur == rt
emit rt
enforce (cur - rt) * value_num == 0
let rho: Point = rho + position * G_NULL
let position: Point = position_bits * G_NULL
let rho: Point = cm + position
nf_preimage.put(rho)
assert nf_preimage.len() == 512
nf_preimage.extend(rho)
assert len(nf_preimage) == 512
let nf: list<bool> = blake2s(nf_preimage, PRF_NF)
let nf: BinaryNumber = blake2s(nf_preimage, PRF_NF)
emit nf
return (rk, cv, rt, nf)
def output_mint(
value: u64,
randomness: Scalar,
g_d: Point,
esk: Scalar,
pk_d: Point,
commitment_randomness: Scalar
contract output_mint(
value: U64 -> BinaryNumber
randomness: Fr -> BinaryNumber
g_d: Point
esk: Fr -> BinaryNumber
pk_d: Point
commitment_randomness: Fr -> BinaryNumber
) -> (Point, Point, Scalar):
let (cv: Point, value_bits: list<bool>) = value_commit(value, randomness)
let cv: Point = value * G_VCV + rcv * G_VCR
emit cv
let mut note_contents: list<bool> = []
note_contents.extend(value_bits)
let mut note_contents: Binary = []
note_contents.put(value)
let g_d: Point = witness g_d
assert is_not_small_order(g_d)
let esk: list<bool> = esk as list<bool>
let epk: Point = esk * g_d
emit epk
let v_contents: list<bool> = pk_d.v as list<bool>
let v_contents: Scalar = pk_d.v
let sign_bit: Bool = pk_d.u.is_odd()
let sign_bit: bool = pk_d.u.is_odd() as bool
note_contents.extend(v_contents)
note_contents.push(sign_bit)
note_contents.put(v_contents)
note_contents.put(sign_bit)
assert len(note_contents) == 64 + 256 + 256
let mut cm: Point = pedersen_hash(NOTE_COMMIT, note_contents)
let rcm: list<bool> = commitment_randomness as list<bool>
let rcm: Point = rcm * G_NOTE_COMMIT_R
let mut cm: Point = pedersen_hash(note_contents, NOTE_COMMIT)
let rcm: Point = commitment_randomness * G_NOTE_COMMIT_R
cm += rcm
let cmu: Scalar = cm.u
return (cv, epk, cmu)
emit cmu

View File

@@ -1,120 +0,0 @@
# :set syntax=sapvi
# :source ../scripts/sapvi.vim
const:
G_VCV: SubgroupPoint
G_VCR: SubgroupPoint
G_SPEND: SubgroupPoint
G_PROOF: SubgroupPoint
G_NOTE_COMMIT_R: SubgroupPoint
G_NULL: SubgroupPoint
CRH_IVK: Blake2sPersonalization
NOTE_COMMIT: PedersenPersonalization
MERKLE: list<PedersenPersonalization>
PRF_NF: Blake2sPersonalization
contract input_spend(
value: U64 -> BinaryNumber
randomness: Fr -> BinaryNumber
ak: Point
ar: Fr -> BinaryNumber
nsk: Fr -> BinaryNumber
g_d: Point
commitment_randomness: Fr -> BinaryNumber
auth_path: [(Scalar, Bool)]
anchor: Scalar
) -> (Point, Point, Scalar, BinaryNumber):
let rk: Point = ak + ar * G_SPEND
emit rk
let nk: Point = nsk * G_PROOF
let mut ivk_preimage: BinaryNumber = []
ivk_preimage.put(ak)
let mut nf_preimage: BinaryNumber = []
ivk_preimage.put(nk)
nf_preimage.put(nk)
assert ivk_preimage.len() == 512
assert nf_preimage.len() == 256
let mut ivk = blake2s(ivk_preimage, CRH_IVK)
ivk.truncate(JUBJUB_FR_CAPACITY)
# This will error if ivk.len() != 256
#let ivk: Fr = ivk as Fr
let pk_d: Point = ivk * g_d
let cv: Point = value * G_VCV + rcv * G_VCR
emit cv
let mut note_contents: BinaryNumber = []
note_contents.put(value)
note_contents.put(g_d)
note_contents.put(p_k)
assert note_contents.len() == 64 + 256 + 256
let mut cm = pedersen_hash(note_contents, NOTE_COMMIT)
cm += commitment_randomness * G_NOTE_COMMIT_R
let mut position = []
let mut cur: Scalar = cm.u
for i in range(auth_path.size()):
let (node: Scalar, is_right: Bool) = auth_path[i]
position.push(is_right)
# Scalar -> AllocatedNum
let (left: Scalar, right: Scalar) = swap_if(is_right, cur, node)
let mut preimage: BinaryNumber = []
preimage.put(left)
preimage.put(right)
cur = pedersen_hash(MERKLE_TREE[i], preimage).u
enforce cur == rt
emit rt
let rho: Point = rho + position * G_NULL
nf_preimage.put(rho)
assert nf_preimage.len() == 512
let nf: BinaryNumber = blake2s(nf_preimage, PRF_NF)
emit nf
contract output_mint(
value: U64 -> BinaryNumber
randomness: Fr -> BinaryNumber
g_d: Point
esk: Fr -> BinaryNumber
pk_d: Point
commitment_randomness: Fr -> BinaryNumber
) -> (Point, Point, Scalar):
let cv: Point = value * G_VCV + rcv * G_VCR
emit cv
let mut note_contents: Binary = []
note_contents.put(value)
let epk: Point = esk * g_d
emit epk
let v_contents: Scalar = pk_d.v
let sign_bit: Bool = pk_d.u.is_odd()
note_contents.put(v_contents)
note_contents.put(sign_bit)
assert len(note_contents) == 64 + 256 + 256
let mut cm: Point = pedersen_hash(note_contents, NOTE_COMMIT)
let rcm: Point = commitment_randomness * G_NOTE_COMMIT_R
cm += rcm
let cmu: Scalar = cm.u
emit cmu