mirror of
https://github.com/darkrenaissance/darkfi.git
synced 2026-01-08 22:28:12 -05:00
research/dkg: Add more comments and complaint challenge handling.
This commit is contained in:
@@ -1,8 +1,8 @@
|
||||
# Distributed Key Generation
|
||||
# A naive approach.
|
||||
# Distributed Key Generation scheme
|
||||
|
||||
t = 4 # Threshold
|
||||
t = 4 # Threshold
|
||||
n = 10 # Participants
|
||||
assert t <= n
|
||||
|
||||
# Pallas
|
||||
p = 0x40000000000000000000000000000000224698fc094cf91b992d30ed00000001
|
||||
@@ -24,49 +24,70 @@ shares = {}
|
||||
public_values = []
|
||||
broadcast_values = {}
|
||||
|
||||
# The participants create their random polynomials and broadcast shares.
|
||||
for i in range(n):
|
||||
# Pick a random secret
|
||||
coeffs = [Fq.random_element()]
|
||||
# Generate random polynomial of degree t
|
||||
coeffs = [Fq.random_element() for _ in range(t+1)]
|
||||
# Set a_0 as a random secret
|
||||
coeffs[0] = Fq.random_element()
|
||||
for _ in range(t):
|
||||
coeffs.append(Fq.random_element())
|
||||
polynomials.append(coeffs)
|
||||
|
||||
# Compute and send secret shares
|
||||
shares[i+1] = [sum([coeffs[j] * (i+1)**j for j in range(t+1)]) for i in range(n)]
|
||||
shares[i+1] = [sum([coeffs[j] * (k**j) for j in range(t+1)]) for k in range(1, n+1)]
|
||||
# Compute public value
|
||||
public_values.append(coeffs[0] * G)
|
||||
# Broadcast f_i(1)*G, f_i(2)*G, ..., f_i(n)*G
|
||||
broadcast_values[i+1] = [sum([coeffs[j] * k**j for j in range(t+1)]) * G for k in range(1, n+1)]
|
||||
# Broadcast evaluations of the polynomial at public points
|
||||
broadcast_values[i+1] = [sum([coeffs[j] * (k**j) for j in range(t+1)]) * G for k in range(1, n+1)]
|
||||
|
||||
# ====================
|
||||
# Step 2: Verification
|
||||
# ====================
|
||||
|
||||
# In real-world, it is important to ensure that malicious participants
|
||||
# cannot raise false complaints to disqualify honest participants.
|
||||
# Having a robust mechanism to protect against Sybil attacks or malicious
|
||||
# complaint flodding is essential.
|
||||
complaints = {}
|
||||
for j in range(1, n+1): # For each participant P_j
|
||||
complaints[j] = []
|
||||
for i in range(1, n+1): # From each participant P_i
|
||||
|
||||
# Initial check against broadcasted values
|
||||
for i in range(1, n+1):
|
||||
for j in range(1, n+1):
|
||||
if shares[i][j-1] * G != broadcast_values[i][j-1]:
|
||||
complaints[j].append(i) # P_j complains against P_i
|
||||
if j not in complaints:
|
||||
complaints[j] = []
|
||||
complaints[j].append(i)
|
||||
|
||||
# Handle complaints
|
||||
for complainant, offenders in complaints.items():
|
||||
for offender in list(offenders): # Using list() to avoid runtime modification issues
|
||||
# The offender proves they sent a correct share to the complainant
|
||||
revealed_share = sum([polynomials[offender-1][k] * complainant**k for k in range(t+1)])
|
||||
if revealed_share * G == broadcast_values[offender][complainant-1]:
|
||||
complaints[complainant].remove(offender)
|
||||
|
||||
# Disqualification step
|
||||
disqualified = {i for i, comp in complaints.items() if len(comp) > 0}
|
||||
|
||||
# ===================================
|
||||
# Step 3: Secret Share Reconstruction
|
||||
# ===================================
|
||||
disqualified = {i for i, comp in complaints.items() if len(comp) > t}
|
||||
|
||||
# Sum the shares of qualified participants to get the group's secret share
|
||||
# This is assuming a single party holds enough shares.
|
||||
qualified_shares = [shares[i][i-1] for i in range(1, n+1) if i not in disqualified]
|
||||
# Sum the secrets of qualified participants to get the group's secret share
|
||||
# In a real-world application, this isn't safe and measures should be in
|
||||
# place to prevent this scenario.
|
||||
qualified_shares = [polynomials[i][0] for i in range(n) if i+1 not in disqualified]
|
||||
if len(qualified_shares) < t+1:
|
||||
raise Exception("Too many disqualifications. DKG failed.")
|
||||
raise ValueError("Too many disqualifications. DKG failed.")
|
||||
|
||||
group_secret = sum(qualified_shares)
|
||||
group_public_0 = group_secret * G
|
||||
|
||||
# However we can also do this without ever giving a single party enough
|
||||
# shares to reconstruct the secret:
|
||||
participant_pubkeys = [shares[i][i-1] * G for i in range(1, n+1) if i not in disqualified]
|
||||
participant_pubkeys = [polynomials[i][0] * G for i in range(n) if i+1 not in disqualified]
|
||||
if len(participant_pubkeys) < t+1:
|
||||
raise Exception("Too many disqualifications. DKG failed.")
|
||||
raise ValueError("Too many disqualifications. DKG failed.")
|
||||
|
||||
group_public_1 = sum(participant_pubkeys)
|
||||
assert group_public_0 == group_public_1
|
||||
|
||||
Reference in New Issue
Block a user