feat: implement generalized Freivalds' algorithm for arbitrary einsum expressions (#1006)

---------

Co-authored-by: therealyingtong <yingtong.lai@gmail.com>
This commit is contained in:
DoHoon Kim
2025-08-22 22:34:51 +09:00
committed by GitHub
parent 2ba6417913
commit be5fb23ef4
18 changed files with 2659 additions and 276 deletions

View File

@@ -1,53 +1,132 @@
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Throughput};
use criterion::{
criterion_group, criterion_main, AxisScale, BenchmarkId, Criterion, PlotConfiguration,
Throughput,
};
use ezkl::circuit::einsum::analysis::analyze_einsum_usage;
use ezkl::circuit::poly::PolyOp;
use ezkl::circuit::*;
use ezkl::pfsys::create_proof_circuit;
use ezkl::pfsys::TranscriptType;
use ezkl::pfsys::{create_keys, srs::gen_srs};
use ezkl::pfsys::create_keys;
use ezkl::pfsys::srs::gen_srs;
use ezkl::tensor::*;
use halo2_proofs::circuit::floor_planner::V1;
use halo2_proofs::plonk::create_proof;
use halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme;
use halo2_proofs::poly::kzg::multiopen::ProverSHPLONK;
use halo2_proofs::poly::kzg::multiopen::VerifierSHPLONK;
use halo2_proofs::poly::kzg::strategy::SingleStrategy;
use halo2_proofs::transcript::{Blake2bWrite, Challenge255, TranscriptWriterBuffer};
use halo2_proofs::{
arithmetic::Field,
circuit::{Layouter, SimpleFloorPlanner, Value},
circuit::{Layouter, Value},
plonk::{Circuit, ConstraintSystem, Error},
};
use halo2curves::bn256::{Bn256, Fr};
use halo2curves::ff::PrimeField;
use itertools::Itertools;
use rand::rngs::OsRng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use std::collections::HashMap;
use std::marker::PhantomData;
static mut LEN: usize = 4;
const K: usize = 16;
static mut K: usize = 15;
#[derive(Clone)]
struct MyCircuit {
inputs: [ValTensor<Fr>; 2],
_marker: PhantomData<Fr>,
struct MyCircuit<F: PrimeField + TensorType + PartialOrd> {
inputs: [ValTensor<F>; 2],
einsum: Einsum<F>,
}
impl Circuit<Fr> for MyCircuit {
#[derive(Clone, Default)]
struct Einsum<F: PrimeField + TensorType + PartialOrd> {
equation: String,
input_axes_to_dims: HashMap<char, usize>,
_marker: PhantomData<F>,
}
impl<F: PrimeField + TensorType + PartialOrd> Einsum<F> {
pub fn new(equation: &str, inputs: &[&Tensor<Value<F>>]) -> Result<Self, CircuitError> {
let mut eq = equation.split("->");
let inputs_eq = eq.next().ok_or(CircuitError::InvalidEinsum)?;
let inputs_eq = inputs_eq.split(',').collect::<Vec<_>>();
// Check that the number of inputs matches the number of inputs in the equation
if inputs.len() != inputs_eq.len() {
return Err(TensorError::DimMismatch("einsum".to_string()).into());
}
let mut input_axes_to_dims = HashMap::new();
for (i, input) in inputs.iter().enumerate() {
for j in 0..inputs_eq[i].len() {
let c = inputs_eq[i]
.chars()
.nth(j)
.ok_or(CircuitError::InvalidEinsum)?;
if let std::collections::hash_map::Entry::Vacant(e) = input_axes_to_dims.entry(c) {
e.insert(input.dims()[j]);
} else if input_axes_to_dims[&c] != input.dims()[j] {
return Err(TensorError::DimMismatch("einsum".to_string()).into());
}
}
}
Ok(Self {
equation: equation.to_owned(),
input_axes_to_dims,
_marker: PhantomData,
})
}
}
impl Circuit<Fr> for MyCircuit<Fr> {
type Config = BaseConfig<Fr>;
type FloorPlanner = SimpleFloorPlanner;
type Params = ();
type FloorPlanner = V1;
type Params = Einsum<Fr>;
fn without_witnesses(&self) -> Self {
self.clone()
}
fn configure_with_params(cs: &mut ConstraintSystem<Fr>, params: Self::Params) -> Self::Config {
let mut config = Self::Config::default();
let mut equations = HashMap::new();
equations.insert(params.equation, params.input_axes_to_dims);
let analysis = analyze_einsum_usage(&equations).unwrap();
let num_einsum_inner_cols = 2;
unsafe {
config
.configure_einsums(cs, &analysis, num_einsum_inner_cols, K)
.unwrap();
}
config
}
fn params(&self) -> Self::Params {
Einsum::<Fr>::new(
&self.einsum.equation,
&[
&self.inputs[0].get_inner().unwrap(),
&self.inputs[1].get_inner().unwrap(),
],
)
.unwrap()
}
fn configure(cs: &mut ConstraintSystem<Fr>) -> Self::Config {
let len = unsafe { LEN };
let mut config = Self::Config::default();
let a = VarTensor::new_advice(cs, K, 1, len * len);
let default_params = Self::Params::default();
let b = VarTensor::new_advice(cs, K, 1, len * len);
let mut equations = HashMap::new();
equations.insert(default_params.equation, default_params.input_axes_to_dims);
let analysis = analyze_einsum_usage(&equations).unwrap();
let num_einsum_inner_cols = 1;
unsafe {
config
.configure_einsums(cs, &analysis, num_einsum_inner_cols, K)
.unwrap();
}
let output = VarTensor::new_advice(cs, K, 1, (len + 1) * len);
Self::Config::configure(cs, &[a, b], &output, CheckMode::UNSAFE)
config
}
fn synthesize(
@@ -55,16 +134,30 @@ impl Circuit<Fr> for MyCircuit {
mut config: Self::Config,
mut layouter: impl Layouter<Fr>,
) -> Result<(), Error> {
let challenges = config
.einsums
.challenges()
.iter()
.map(|c| layouter.get_challenge(*c))
.collect_vec();
layouter.assign_region(
|| "",
|region| {
let mut region = region::RegionCtx::new(region, 0, 1, 1024, 2);
let mut region = region::RegionCtx::new_with_challenges(
region,
0,
1,
1024,
2,
challenges.clone(),
);
config
.layout(
&mut region,
&self.inputs.iter().collect_vec(),
Box::new(PolyOp::Einsum {
equation: "ab,bc->ac".to_string(),
equation: self.einsum.equation.clone(),
}),
)
.unwrap();
@@ -77,68 +170,64 @@ impl Circuit<Fr> for MyCircuit {
fn runmatmul(c: &mut Criterion) {
let mut group = c.benchmark_group("accum_einsum_matmul");
let params = gen_srs::<KZGCommitmentScheme<_>>(17);
for &len in [4, 32].iter() {
unsafe {
LEN = len;
group.plot_config(PlotConfiguration::default().summary_scale(AxisScale::Linear));
group.sampling_mode(criterion::SamplingMode::Flat);
group.sample_size(10);
let len = 512;
unsafe {
LEN = len;
}
for k in 19..20 {
let params = unsafe {
K = k;
gen_srs::<KZGCommitmentScheme<_>>(K as u32)
};
let mut a = Tensor::from((0..len * len).map(|_| Value::known(Fr::random(OsRng))));
a.reshape(&[len, len]).unwrap();
// parameters
let mut b = Tensor::from((0..len * len).map(|_| Value::known(Fr::random(OsRng))));
b.reshape(&[len, len]).unwrap();
let einsum = Einsum::<Fr>::new("ij,jk->ik", &[&a, &b]).unwrap();
let circuit = MyCircuit {
inputs: [ValTensor::from(a), ValTensor::from(b)],
_marker: PhantomData,
einsum,
};
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("pk", len), &len, |b, &_| {
group.bench_with_input(BenchmarkId::new("pk", k), &k, |b, &_| {
b.iter(|| {
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true)
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit<Fr>>(&circuit, &params, true)
.unwrap();
});
});
let pk =
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true).unwrap();
let pk = create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit<Fr>>(&circuit, &params, false)
.unwrap();
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("prove", len), &len, |b, &_| {
group.bench_with_input(BenchmarkId::new("prove", k), &k, |b, &_| {
b.iter(|| {
let prover = create_proof_circuit::<
KZGCommitmentScheme<_>,
MyCircuit,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
let mut transcript = Blake2bWrite::<_, _, Challenge255<_>>::init(vec![]);
create_proof::<KZGCommitmentScheme<_>, ProverSHPLONK<_>, _, _, _, _>(
&params,
&pk,
CheckMode::UNSAFE,
ezkl::Commitments::KZG,
TranscriptType::EVM,
None,
None,
);
prover.unwrap();
&[circuit.clone()],
&[&[]],
OsRng,
&mut transcript,
)
.expect("proof generation should not fail");
transcript.finalize();
});
});
}
group.finish();
}
criterion_group! {
name = benches;
config = Criterion::default().with_plots();
targets = runmatmul
}
criterion_group!(benches, runmatmul);
criterion_main!(benches);

View File

@@ -0,0 +1,180 @@
use ezkl::circuit::einsum::analysis::analyze_einsum_usage;
use ezkl::circuit::poly::PolyOp;
use ezkl::circuit::*;
use ezkl::tensor::*;
use halo2_proofs::circuit::floor_planner::V1;
use halo2_proofs::dev::MockProver;
use halo2_proofs::{
arithmetic::Field,
circuit::{Layouter, Value},
plonk::{Circuit, ConstraintSystem, Error},
};
use halo2curves::bn256::Fr;
use halo2curves::ff::PrimeField;
use itertools::Itertools;
use rand::rngs::OsRng;
use std::collections::HashMap;
use std::marker::PhantomData;
const K: usize = 13;
#[derive(Clone)]
struct MyCircuit<F: PrimeField + TensorType + PartialOrd> {
inputs: [ValTensor<F>; 2],
einsum: Einsum<F>,
}
#[derive(Clone, Default)]
struct Einsum<F: PrimeField + TensorType + PartialOrd> {
equation: String,
input_axes_to_dims: HashMap<char, usize>,
_marker: PhantomData<F>,
}
impl<F: PrimeField + TensorType + PartialOrd> Einsum<F> {
pub fn new(equation: &str, inputs: &[&Tensor<Value<F>>]) -> Result<Self, CircuitError> {
let mut eq = equation.split("->");
let inputs_eq = eq.next().ok_or(CircuitError::InvalidEinsum)?;
let inputs_eq = inputs_eq.split(',').collect::<Vec<_>>();
// Check that the number of inputs matches the number of inputs in the equation
if inputs.len() != inputs_eq.len() {
return Err(TensorError::DimMismatch("einsum".to_string()).into());
}
let mut input_axes_to_dims = HashMap::new();
for (i, input) in inputs.iter().enumerate() {
for j in 0..inputs_eq[i].len() {
let c = inputs_eq[i]
.chars()
.nth(j)
.ok_or(CircuitError::InvalidEinsum)?;
if let std::collections::hash_map::Entry::Vacant(e) = input_axes_to_dims.entry(c) {
e.insert(input.dims()[j]);
} else if input_axes_to_dims[&c] != input.dims()[j] {
return Err(TensorError::DimMismatch("einsum".to_string()).into());
}
}
}
Ok(Self {
equation: equation.to_owned(),
input_axes_to_dims,
_marker: PhantomData,
})
}
}
impl Circuit<Fr> for MyCircuit<Fr> {
type Config = BaseConfig<Fr>;
type FloorPlanner = V1;
type Params = Einsum<Fr>;
fn without_witnesses(&self) -> Self {
self.clone()
}
fn configure_with_params(cs: &mut ConstraintSystem<Fr>, params: Self::Params) -> Self::Config {
let mut config = Self::Config::default();
let mut equations = HashMap::new();
equations.insert(params.equation, params.input_axes_to_dims);
let analysis = analyze_einsum_usage(&equations).unwrap();
let num_einsum_inner_cols = 1;
config
.configure_einsums(cs, &analysis, num_einsum_inner_cols, K)
.unwrap();
config
}
fn params(&self) -> Self::Params {
Einsum::<Fr>::new(
&self.einsum.equation,
&[
&self.inputs[0].get_inner().unwrap(),
&self.inputs[1].get_inner().unwrap(),
],
)
.unwrap()
}
fn configure(cs: &mut ConstraintSystem<Fr>) -> Self::Config {
let mut config = Self::Config::default();
let default_params = Self::Params::default();
let mut equations = HashMap::new();
equations.insert(default_params.equation, default_params.input_axes_to_dims);
let analysis = analyze_einsum_usage(&equations).unwrap();
let num_einsum_inner_cols = 1;
config
.configure_einsums(cs, &analysis, num_einsum_inner_cols, K)
.unwrap();
config
}
fn synthesize(
&self,
mut config: Self::Config,
mut layouter: impl Layouter<Fr>,
) -> Result<(), Error> {
let challenges = config
.einsums
.challenges()
.iter()
.map(|c| layouter.get_challenge(*c))
.collect_vec();
layouter.assign_region(
|| "",
|region| {
let mut region = region::RegionCtx::new_with_challenges(
region,
0,
1,
1024,
2,
challenges.clone(),
);
config
.layout(
&mut region,
&self.inputs.iter().collect_vec(),
Box::new(PolyOp::Einsum {
equation: self.einsum.equation.clone(),
}),
)
.unwrap();
Ok(())
},
)?;
Ok(())
}
}
fn runmatmul() {
let len = 64;
let mut a = Tensor::from((0..len * len).map(|_| Value::known(Fr::random(OsRng))));
a.reshape(&[len, len]).unwrap();
// parameters
let mut b = Tensor::from((0..len * len).map(|_| Value::known(Fr::random(OsRng))));
b.reshape(&[len, len]).unwrap();
let einsum = Einsum::<Fr>::new("ij,jk->ik", &[&a, &b]).unwrap();
let circuit = MyCircuit {
inputs: [ValTensor::from(a), ValTensor::from(b)],
einsum,
};
let mock_prover = MockProver::run(K as u32, &circuit, vec![]).unwrap();
mock_prover.assert_satisfied();
}
pub fn main() {
runmatmul()
}

188
examples/batch_mat_mul.rs Normal file
View File

@@ -0,0 +1,188 @@
use ezkl::circuit::einsum::analysis::analyze_einsum_usage;
use ezkl::circuit::poly::PolyOp;
use ezkl::circuit::*;
use ezkl::tensor::*;
use halo2_proofs::circuit::floor_planner::V1;
use halo2_proofs::dev::MockProver;
use halo2_proofs::{
arithmetic::Field,
circuit::{Layouter, Value},
plonk::{Circuit, ConstraintSystem, Error},
};
use halo2curves::bn256::Fr;
use halo2curves::ff::PrimeField;
use itertools::Itertools;
use rand::rngs::OsRng;
use std::collections::HashMap;
use std::marker::PhantomData;
static mut LEN: usize = 4;
const K: usize = 11;
#[derive(Clone)]
struct MyCircuit<F: PrimeField + TensorType + PartialOrd> {
inputs: [ValTensor<F>; 2],
einsum: Einsum<F>,
}
#[derive(Clone, Default)]
struct Einsum<F: PrimeField + TensorType + PartialOrd> {
equation: String,
input_axes_to_dims: HashMap<char, usize>,
_marker: PhantomData<F>,
}
impl<F: PrimeField + TensorType + PartialOrd> Einsum<F> {
pub fn new(equation: &str, inputs: &[&Tensor<Value<F>>]) -> Result<Self, CircuitError> {
let mut eq = equation.split("->");
let inputs_eq = eq.next().ok_or(CircuitError::InvalidEinsum)?;
let inputs_eq = inputs_eq.split(',').collect::<Vec<_>>();
// Check that the number of inputs matches the number of inputs in the equation
if inputs.len() != inputs_eq.len() {
return Err(TensorError::DimMismatch("einsum".to_string()).into());
}
let mut input_axes_to_dims = HashMap::new();
for (i, input) in inputs.iter().enumerate() {
for j in 0..inputs_eq[i].len() {
let c = inputs_eq[i]
.chars()
.nth(j)
.ok_or(CircuitError::InvalidEinsum)?;
if let std::collections::hash_map::Entry::Vacant(e) = input_axes_to_dims.entry(c) {
e.insert(input.dims()[j]);
} else if input_axes_to_dims[&c] != input.dims()[j] {
return Err(TensorError::DimMismatch("einsum".to_string()).into());
}
}
}
Ok(Self {
equation: equation.to_owned(),
input_axes_to_dims,
_marker: PhantomData,
})
}
}
impl Circuit<Fr> for MyCircuit<Fr> {
type Config = BaseConfig<Fr>;
type FloorPlanner = V1;
type Params = Einsum<Fr>;
fn without_witnesses(&self) -> Self {
self.clone()
}
fn configure_with_params(cs: &mut ConstraintSystem<Fr>, params: Self::Params) -> Self::Config {
let len = unsafe { LEN };
let a = VarTensor::new_advice(cs, K, 1, len);
let b = VarTensor::new_advice(cs, K, 1, len);
let output = VarTensor::new_advice(cs, K, 1, len);
let mut config = Self::Config::configure(cs, &[a, b], &output, CheckMode::UNSAFE);
let mut equations = HashMap::new();
equations.insert(params.equation, params.input_axes_to_dims);
let analysis = analyze_einsum_usage(&equations).unwrap();
let num_einsum_inner_cols = 1;
config
.configure_einsums(cs, &analysis, num_einsum_inner_cols, K)
.unwrap();
config
}
fn params(&self) -> Self::Params {
Einsum::<Fr>::new(
&self.einsum.equation,
&[
&self.inputs[0].get_inner().unwrap(),
&self.inputs[1].get_inner().unwrap(),
],
)
.unwrap()
}
fn configure(cs: &mut ConstraintSystem<Fr>) -> Self::Config {
let mut config = Self::Config::default();
let default_params = Self::Params::default();
let mut equations = HashMap::new();
equations.insert(default_params.equation, default_params.input_axes_to_dims);
let analysis = analyze_einsum_usage(&equations).unwrap();
let num_einsum_inner_cols = 1;
config
.configure_einsums(cs, &analysis, num_einsum_inner_cols, K)
.unwrap();
config
}
fn synthesize(
&self,
mut config: Self::Config,
mut layouter: impl Layouter<Fr>,
) -> Result<(), Error> {
let challenges = config
.einsums
.challenges()
.iter()
.map(|c| layouter.get_challenge(*c))
.collect_vec();
layouter.assign_region(
|| "",
|region| {
let mut region = region::RegionCtx::new_with_challenges(
region,
0,
1,
1024,
2,
challenges.clone(),
);
config
.layout(
&mut region,
&self.inputs.iter().collect_vec(),
Box::new(PolyOp::Einsum {
equation: self.einsum.equation.clone(),
}),
)
.unwrap();
Ok(())
},
)?;
Ok(())
}
}
fn runbatchmatmul() {
let batch_size = 5;
let len = 12;
let mut a = Tensor::from((0..batch_size * len * len).map(|_| Value::known(Fr::random(OsRng))));
a.reshape(&[batch_size, len, len]).unwrap();
// parameters
let mut b = Tensor::from((0..batch_size * len * len).map(|_| Value::known(Fr::random(OsRng))));
b.reshape(&[batch_size, len, len]).unwrap();
let einsum = Einsum::<Fr>::new("ijk,ikl->ijl", &[&a, &b]).unwrap();
let circuit = MyCircuit {
inputs: [ValTensor::from(a), ValTensor::from(b)],
einsum,
};
let mock_prover = MockProver::run(K as u32, &circuit, vec![]).unwrap();
mock_prover.assert_satisfied();
}
pub fn main() {
runbatchmatmul()
}

View File

@@ -0,0 +1,190 @@
use ezkl::circuit::einsum::analysis::analyze_einsum_usage;
use ezkl::circuit::poly::PolyOp;
use ezkl::circuit::*;
use ezkl::tensor::*;
use halo2_proofs::circuit::floor_planner::V1;
use halo2_proofs::dev::MockProver;
use halo2_proofs::{
arithmetic::Field,
circuit::{Layouter, Value},
plonk::{Circuit, ConstraintSystem, Error},
};
use halo2curves::bn256::Fr;
use halo2curves::ff::PrimeField;
use itertools::Itertools;
use rand::rngs::OsRng;
use std::collections::HashMap;
use std::marker::PhantomData;
static mut LEN: usize = 4;
const K: usize = 11;
#[derive(Clone)]
struct MyCircuit<F: PrimeField + TensorType + PartialOrd> {
inputs: [ValTensor<F>; 2],
einsum: Einsum<F>,
}
#[derive(Clone, Default)]
struct Einsum<F: PrimeField + TensorType + PartialOrd> {
equation: String,
input_axes_to_dims: HashMap<char, usize>,
_marker: PhantomData<F>,
}
impl<F: PrimeField + TensorType + PartialOrd> Einsum<F> {
pub fn new(equation: &str, inputs: &[&Tensor<Value<F>>]) -> Result<Self, CircuitError> {
let mut eq = equation.split("->");
let inputs_eq = eq.next().ok_or(CircuitError::InvalidEinsum)?;
let inputs_eq = inputs_eq.split(',').collect::<Vec<_>>();
// Check that the number of inputs matches the number of inputs in the equation
if inputs.len() != inputs_eq.len() {
return Err(TensorError::DimMismatch("einsum".to_string()).into());
}
let mut input_axes_to_dims = HashMap::new();
for (i, input) in inputs.iter().enumerate() {
for j in 0..inputs_eq[i].len() {
let c = inputs_eq[i]
.chars()
.nth(j)
.ok_or(CircuitError::InvalidEinsum)?;
if let std::collections::hash_map::Entry::Vacant(e) = input_axes_to_dims.entry(c) {
e.insert(input.dims()[j]);
} else if input_axes_to_dims[&c] != input.dims()[j] {
return Err(TensorError::DimMismatch("einsum".to_string()).into());
}
}
}
Ok(Self {
equation: equation.to_owned(),
input_axes_to_dims,
_marker: PhantomData,
})
}
}
impl Circuit<Fr> for MyCircuit<Fr> {
type Config = BaseConfig<Fr>;
type FloorPlanner = V1;
type Params = Einsum<Fr>;
fn without_witnesses(&self) -> Self {
self.clone()
}
fn configure_with_params(cs: &mut ConstraintSystem<Fr>, params: Self::Params) -> Self::Config {
let len = unsafe { LEN };
let a = VarTensor::new_advice(cs, K, 1, len);
let b = VarTensor::new_advice(cs, K, 1, len);
let output = VarTensor::new_advice(cs, K, 1, len);
let mut config = Self::Config::configure(cs, &[a, b], &output, CheckMode::UNSAFE);
let mut equations = HashMap::new();
equations.insert(params.equation, params.input_axes_to_dims);
let analysis = analyze_einsum_usage(&equations).unwrap();
let num_einsum_inner_cols = 2;
config
.configure_einsums(cs, &analysis, num_einsum_inner_cols, K)
.unwrap();
config
}
fn params(&self) -> Self::Params {
Einsum::<Fr>::new(
&self.einsum.equation,
&[
&self.inputs[0].get_inner().unwrap(),
&self.inputs[1].get_inner().unwrap(),
],
)
.unwrap()
}
fn configure(cs: &mut ConstraintSystem<Fr>) -> Self::Config {
let mut config = Self::Config::default();
let default_params = Self::Params::default();
let mut equations = HashMap::new();
equations.insert(default_params.equation, default_params.input_axes_to_dims);
let analysis = analyze_einsum_usage(&equations).unwrap();
let num_einsum_inner_cols = 1;
config
.configure_einsums(cs, &analysis, num_einsum_inner_cols, K)
.unwrap();
config
}
fn synthesize(
&self,
mut config: Self::Config,
mut layouter: impl Layouter<Fr>,
) -> Result<(), Error> {
let challenges = config
.einsums
.challenges()
.iter()
.map(|c| layouter.get_challenge(*c))
.collect_vec();
layouter.assign_region(
|| "",
|region| {
let mut region = region::RegionCtx::new_with_challenges(
region,
0,
1,
1024,
2,
challenges.clone(),
);
config
.layout(
&mut region,
&self.inputs.iter().collect_vec(),
Box::new(PolyOp::Einsum {
equation: self.einsum.equation.clone(),
}),
)
.unwrap();
Ok(())
},
)?;
Ok(())
}
}
fn runmatmul() {
let i = 10;
let n = 10;
let j = 40;
let k = 10;
let mut a = Tensor::from((0..i * n * j).map(|_| Value::known(Fr::random(OsRng))));
a.reshape(&[i, n, j]).unwrap();
// parameters
let mut b = Tensor::from((0..j * k).map(|_| Value::known(Fr::random(OsRng))));
b.reshape(&[j, k]).unwrap();
let einsum = Einsum::<Fr>::new("inj,jk->ik", &[&a, &b]).unwrap();
let circuit = MyCircuit {
inputs: [ValTensor::from(a), ValTensor::from(b)],
einsum,
};
let mock_prover = MockProver::run(K as u32, &circuit, vec![]).unwrap();
mock_prover.assert_satisfied();
}
pub fn main() {
runmatmul()
}

View File

@@ -7,18 +7,14 @@ use halo2_proofs::{
};
use log::debug;
#[cfg(feature = "python-bindings")]
use pyo3::{
conversion::FromPyObject,
exceptions::PyValueError,
IntoPyObject,
prelude::*,
};
use pyo3::{conversion::FromPyObject, exceptions::PyValueError, prelude::*, IntoPyObject};
use serde::{Deserialize, Serialize};
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use tosubcommand::ToFlags;
use crate::{
circuit::{
chip::einsum::analysis::EinsumAnalysis,
ops::base::BaseOp,
table::{Range, RangeCheck, Table},
},
@@ -29,6 +25,9 @@ use std::{collections::BTreeMap, marker::PhantomData};
use super::{lookup::LookupOp, region::RegionCtx, CircuitError, Op};
use halo2curves::ff::{Field, PrimeField};
///
pub mod einsum;
#[allow(missing_docs)]
/// An enum representing activating the sanity checks we can perform on the accumulated arguments
#[derive(
@@ -271,6 +270,8 @@ pub struct BaseConfig<F: PrimeField + TensorType + PartialOrd> {
pub range_checks: RangeChecks<F>,
/// [Selector]s for the shuffles
pub shuffles: Shuffles,
/// Einsum-specific configuration
pub einsums: einsum::Einsums<F>,
/// Activate sanity checks
pub check_mode: CheckMode,
_marker: PhantomData<F>,
@@ -285,6 +286,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
custom_gates: CustomGates::dummy(col_size, num_inner_cols),
static_lookups: StaticLookups::dummy(col_size, num_inner_cols),
dynamic_lookups: DynamicLookups::dummy(col_size, num_inner_cols),
einsums: einsum::Einsums::<F>::dummy(col_size, num_inner_cols),
shuffles: Shuffles::dummy(col_size, num_inner_cols),
range_checks: RangeChecks::dummy(col_size, num_inner_cols),
check_mode: CheckMode::SAFE,
@@ -419,6 +421,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
},
static_lookups: StaticLookups::default(),
dynamic_lookups: DynamicLookups::default(),
einsums: einsum::Einsums::<F>::default(),
shuffles: Shuffles::default(),
range_checks: RangeChecks::default(),
shared_table_inputs: vec![],
@@ -693,6 +696,22 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
Ok(())
}
/// Configures and creates einsums
#[allow(clippy::too_many_arguments)]
pub fn configure_einsums(
&mut self,
cs: &mut ConstraintSystem<F>,
analysis: &EinsumAnalysis,
num_inner_cols: usize,
logrows: usize,
) -> Result<(), CircuitError>
where
F: Field,
{
self.einsums = einsum::Einsums::configure_universal(cs, analysis, num_inner_cols, logrows);
Ok(())
}
/// Configures and creates lookup selectors
#[allow(clippy::too_many_arguments)]
pub fn configure_shuffles(

View File

@@ -0,0 +1,175 @@
use std::collections::HashMap;
use itertools::Itertools;
use crate::circuit::{
einsum::reduction_planner::{self, Reduction},
CircuitError,
};
///
#[derive(Debug, Clone)]
pub struct EinsumAnalysis {
/// max size of input tensors
pub max_input_size: usize,
/// max size of output tensors
pub max_output_size: usize,
/// max number of input tensors
pub max_num_inputs: usize,
/// max number of output axes
pub max_num_output_axes: usize,
///
pub longest_challenge_vector: usize,
///
pub reduction_length: usize,
}
///
#[derive(Debug, Clone)]
pub struct SingleEquationAnalysis {
///
pub equation: String,
///
pub num_inputs: usize,
///
pub max_input_size: usize,
///
pub output_size: usize,
///
pub num_output_axes: usize,
///
pub output_indices: Vec<char>,
///
pub longest_challenge_vector: usize,
/// the length of dot product to compute all the reductions
pub reduction_length: usize,
}
///
pub fn analyze_einsum_usage(
equations: &HashMap<String, HashMap<char, usize>>,
) -> Result<EinsumAnalysis, CircuitError> {
let mut max_num_inputs = 0;
let mut max_input_size = 0;
let mut max_output_size = 0;
let mut max_num_output_axes = 0;
let mut longest_challenge_vector = 0;
let mut reduction_length = 0;
for (equation, input_axes_to_dim) in equations.iter() {
let analysis = analyze_single_equation(equation, input_axes_to_dim)?;
max_input_size = max_input_size.max(analysis.max_input_size);
longest_challenge_vector = longest_challenge_vector.max(analysis.longest_challenge_vector);
max_output_size = max_output_size.max(analysis.output_size);
max_num_inputs = max_num_inputs.max(analysis.num_inputs);
max_num_output_axes = max_num_output_axes.max(analysis.num_output_axes);
reduction_length += analysis.reduction_length;
}
Ok(EinsumAnalysis {
max_input_size,
longest_challenge_vector,
max_output_size,
max_num_inputs,
max_num_output_axes,
reduction_length,
})
}
///
pub fn analyze_single_equation(
equation: &str,
input_axes_to_dim: &HashMap<char, usize>,
) -> Result<SingleEquationAnalysis, CircuitError> {
// Sanitise equation to remove trivial axes
let equation = {
let (inputs_str, output_str) = equation.split_once("->").unwrap();
let input_equations: Vec<&str> = inputs_str.split(',').collect();
let inputs: Vec<String> = input_equations
.iter()
.map(|input| {
input
.chars()
.filter(|char| input_axes_to_dim.get(char).is_some())
.collect()
})
.collect();
let output = output_str
.chars()
.filter(|c| input_axes_to_dim.get(c).is_some())
.collect();
[inputs.join(","), output].join("->")
};
let (inputs_str, output_str) = equation.split_once("->").unwrap();
let input_equations: Vec<&str> = inputs_str.split(',').collect();
let max_input_size = input_equations
.iter()
.map(|eqn| {
eqn.chars()
.map(|c| input_axes_to_dim.get(&c).unwrap())
.product()
})
.max()
.unwrap();
let output_indices: Vec<char> = output_str.chars().collect();
let output_dims = output_indices
.iter()
.map(|c| input_axes_to_dim.get(&c).unwrap());
let output_size = output_dims.clone().product();
let longest_challenge_vector = *output_dims.clone().max().unwrap();
let output_reduction_length = {
let mut output_dims = output_dims.rev().cloned().collect_vec();
let mut total_length = 0;
for _ in 0..output_dims.len() {
let dot_product_len = output_dims.remove(0);
let num_dot_products: usize = output_dims.iter().product();
total_length += dot_product_len * num_dot_products;
}
total_length
};
let input_reductions_length = {
let input_reductions = reduction_planner::input_reductions(&equation)?;
input_reductions
.into_iter()
.map(|reduction| {
let (_, output_expr) = reduction.expression().split_once("->").unwrap();
let num_inputs = reduction.input_indices().len();
let dot_product_len = match reduction {
Reduction::RLC { axis, .. } => *input_axes_to_dim.get(&axis).unwrap(),
Reduction::Contraction { axis, .. } => *axis
.and_then(|axis| input_axes_to_dim.get(&axis))
.unwrap_or(&1),
};
let num_dot_products: usize = output_expr
.chars()
.map(|c| input_axes_to_dim.get(&c).unwrap())
.product();
// since `multi_dot` does pairwise mult between input pairs and final summation
if num_inputs <= 2 {
num_dot_products * dot_product_len
} else {
num_dot_products * (dot_product_len * num_inputs)
}
})
.sum::<usize>()
};
Ok(SingleEquationAnalysis {
output_size,
longest_challenge_vector,
max_input_size,
equation: equation.to_string(),
num_inputs: input_equations.len(),
num_output_axes: output_indices.len(),
output_indices,
reduction_length: output_reduction_length + input_reductions_length,
})
}

View File

@@ -0,0 +1,344 @@
use halo2_proofs::circuit::Value;
use halo2curves::ff::PrimeField;
use log::{error, trace};
use crate::{
circuit::{base::BaseOp, region::RegionCtx, CircuitError},
tensor::{
get_broadcasted_shape,
ops::{accumulated, add, mult, sub},
TensorError, TensorType, ValTensor, ValType,
},
};
use super::EinsumOpConfig;
/// Pairwise (elementwise) op layout
pub fn pairwise<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &EinsumOpConfig<F>,
region: &mut RegionCtx<F>,
values: &[&ValTensor<F>; 2],
op: BaseOp,
phases: &[usize; 2],
) -> Result<ValTensor<F>, CircuitError> {
let (mut lhs, mut rhs) = if phases[0] <= phases[1] {
(values[0].clone(), values[1].clone())
} else {
(values[1].clone(), values[0].clone())
};
let min_phase = std::cmp::min(phases[0], phases[1]);
let broadcasted_shape = get_broadcasted_shape(lhs.dims(), rhs.dims())?;
lhs.expand(&broadcasted_shape)?;
rhs.expand(&broadcasted_shape)?;
if lhs.len() != rhs.len() {
return Err(CircuitError::DimMismatch(format!(
"pairwise {} layout",
op.as_str()
)));
}
region.flush_einsum()?;
let inputs = [lhs, rhs]
.iter()
.zip(config.inputs.iter().skip(min_phase * 2))
.map(|(val, var)| {
let res = region.assign_einsum(var, val)?;
Ok(res.get_inner()?)
})
.collect::<Result<Vec<_>, CircuitError>>()?;
// Now we can assign the dot product
// time the calc
let op_result = match op {
BaseOp::Add => add(&inputs),
BaseOp::Sub => sub(&inputs),
BaseOp::Mult => mult(&inputs),
_ => return Err(CircuitError::UnsupportedOp),
}
.map_err(|e| {
error!("{}", e);
halo2_proofs::plonk::Error::Synthesis
})?;
let assigned_len = op_result.len();
let mut output = region.assign_einsum(&config.output, &op_result.into())?;
// Enable the selectors
if !region.is_dummy() {
(0..assigned_len)
.map(|i| {
let (x, y, z) = config.inputs[0].cartesian_coord(region.einsum_col_coord() + i);
let selector = config.selectors.get(&(min_phase, op.clone(), x, y));
region.enable(selector, z)?;
Ok(())
})
.collect::<Result<Vec<_>, CircuitError>>()?;
}
region.increment_einsum_col_coord(assigned_len);
output.reshape(&broadcasted_shape)?;
Ok(output)
}
pub fn sum<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &EinsumOpConfig<F>,
region: &mut RegionCtx<F>,
values: &[&ValTensor<F>; 1],
phase: usize,
) -> Result<ValTensor<F>, CircuitError> {
if values[0].len() == 1 {
return Ok(values[0].clone());
}
assert!(phase == 0 || phase == 1);
region.flush_einsum()?;
let mut input = values[0].clone();
let block_width = config.output.num_inner_cols();
let assigned_len: usize;
let input = {
// FIXME : should pad with constant zero but currently this incurs an error
// `NotEnoughColumnsForConstants` in halo2 because trying to assign constant
// value to advice column, how to workaround this issue?
input.pad_to_zero_rem(block_width, ValType::Value(Value::known(F::ZERO)))?;
let (res, len) = region
.assign_einsum_with_duplication_unconstrained(&config.inputs[phase * 2], &input)?;
assigned_len = len;
res.get_inner()?
};
// Now we can assign the dot product
let accumulated_sum = accumulated::sum(&input, block_width)?;
let (output, output_assigned_len) = region.assign_einsum_with_duplication_constrained(
&config.output,
&accumulated_sum.into(),
&crate::circuit::CheckMode::UNSAFE,
)?;
// enable the selectors
if !region.is_dummy() {
for i in 0..output_assigned_len {
let (x, _, z) = config
.output
.cartesian_coord(region.einsum_col_coord() + i * block_width);
// skip over duplicates at start of column
if z == 0 && i > 0 {
continue;
}
let selector = if i == 0 {
config.selectors.get(&(phase, BaseOp::SumInit, x, 0))
} else {
config.selectors.get(&(phase, BaseOp::Sum, x, 0))
};
region.enable(selector, z)?;
}
}
let last_elem = output.last()?;
region.increment_einsum_col_coord(assigned_len);
// last element is the result
Ok(last_elem)
}
pub fn prod<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &EinsumOpConfig<F>,
region: &mut RegionCtx<F>,
values: &[&ValTensor<F>; 1],
phase: usize,
) -> Result<ValTensor<F>, CircuitError> {
assert!(phase == 0 || phase == 1);
region.flush_einsum()?;
let block_width = config.output.num_inner_cols();
let assigned_len: usize;
let input = {
let mut input = values[0].clone();
// FIXME : should pad with constant one but currently this incurs an error
// `NotEnoughColumnsForConstants` in halo2 because trying to assign constant
// value to advice column, how to workaround this issue?
input.pad_to_zero_rem(block_width, ValType::Value(Value::known(F::ONE)))?;
let (res, len) = region
.assign_einsum_with_duplication_unconstrained(&config.inputs[phase * 2], &input)?;
assigned_len = len;
res.get_inner()?
};
// Now we can assign the dot product
let accumulated_prod = accumulated::prod(&input, block_width)?;
let (output, output_assigned_len) = region.assign_einsum_with_duplication_constrained(
&config.output,
&accumulated_prod.into(),
&crate::circuit::CheckMode::UNSAFE,
)?;
// enable the selectors
if !region.is_dummy() {
(0..output_assigned_len)
.map(|i| {
let (x, _, z) = config
.output
.cartesian_coord(region.einsum_col_coord() + i * block_width);
// skip over duplicates at start of column
if z == 0 && i > 0 {
return Ok(());
}
let selector = if i == 0 {
config.selectors.get(&(phase, BaseOp::CumProdInit, x, 0))
} else {
config.selectors.get(&(phase, BaseOp::CumProd, x, 0))
};
region.enable(selector, z)?;
Ok(())
})
.collect::<Result<Vec<_>, CircuitError>>()?;
}
let last_elem = output.last()?;
region.increment_einsum_col_coord(assigned_len);
// last element is the result
Ok(last_elem)
}
pub fn dot<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &EinsumOpConfig<F>,
region: &mut RegionCtx<F>,
values: &[&ValTensor<F>; 2],
phases: &[usize; 2],
) -> Result<ValTensor<F>, CircuitError> {
if values[0].len() != values[1].len() {
return Err(TensorError::DimMismatch("dot".to_string()).into());
}
region.flush_einsum()?;
// time this entire function run
let global_start = instant::Instant::now();
let mut values = if phases[0] <= phases[1] {
[values[0].clone(), values[1].clone()]
} else {
[values[1].clone(), values[0].clone()]
};
let min_phase = std::cmp::min(phases[0], phases[1]);
let mut inputs = vec![];
let block_width = config.output.num_inner_cols();
let mut assigned_len = 0;
for (val, var) in values
.iter_mut()
.zip(config.inputs.iter().skip(min_phase * 2))
{
// FIXME : should pad with constant zero but currently this incurs an error
// `NotEnoughColumnsForConstants` in halo2 because trying to assign constant
// value to advice column, how to workaround this issue?
val.pad_to_zero_rem(block_width, ValType::Value(Value::known(F::ZERO)))?;
let inp = {
let (res, len) = region.assign_einsum_with_duplication_unconstrained(var, &val)?;
assigned_len = len;
res.get_inner()?
};
inputs.push(inp);
}
// Now we can assign the dot product
// time this step
let accumulated_dot = accumulated::dot(&inputs[0], &inputs[1], block_width)?;
let (output, output_assigned_len) = region.assign_einsum_with_duplication_constrained(
&config.output,
&accumulated_dot.into(),
&crate::circuit::CheckMode::UNSAFE,
)?;
// enable the selectors
if !region.is_dummy() {
(0..output_assigned_len)
.map(|i| {
let (x, _, z) = config
.output
.cartesian_coord(region.einsum_col_coord() + i * block_width);
// hop over duplicates at start of column
if z == 0 && i > 0 {
return Ok(());
}
let selector = if i == 0 {
config.selectors.get(&(min_phase, BaseOp::DotInit, x, 0))
} else {
config.selectors.get(&(min_phase, BaseOp::Dot, x, 0))
};
region.enable(selector, z)?;
Ok(())
})
.collect::<Result<Vec<_>, CircuitError>>()?;
}
let last_elem = output.last()?;
region.increment_einsum_col_coord(assigned_len);
let elapsed = global_start.elapsed();
trace!("dot layout took: {:?}, row {}", elapsed, region.row());
trace!("----------------------------");
Ok(last_elem)
}
/// Dot product of more than two tensors
pub fn multi_dot<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &EinsumOpConfig<F>,
region: &mut RegionCtx<F>,
values: &[&ValTensor<F>],
phases: &[usize],
) -> Result<ValTensor<F>, CircuitError> {
assert!(phases.iter().all(|phase| *phase == 0 || *phase == 1));
if !values.iter().all(|value| value.len() == values[0].len()) {
return Err(TensorError::DimMismatch("dot".to_string()).into());
}
// time this entire function run
let global_start = instant::Instant::now();
let values: Vec<ValTensor<F>> = values.iter().copied().cloned().collect();
// do pairwise dot product between intermediate tensor and the next tensor
let (intermediate, _) = values
.into_iter()
.zip(phases.iter().cloned())
.reduce(|(intermediate, intermediate_phase), (input, phase)| {
(
pairwise(
config,
region,
&[&intermediate, &input],
BaseOp::Mult,
&[intermediate_phase, phase],
)
.unwrap(),
std::cmp::max(intermediate_phase, phase),
)
})
.unwrap();
// Sum the final tensor
// In current freivalds' algorithm, we ensure that there is no tensor contraction between phase 0 tensors,
// so the phase of the resulting tensor is set to 1
let accumulated_dot = sum(config, region, &[&intermediate], 1)?;
let last_elem = accumulated_dot.last()?;
let elapsed = global_start.elapsed();
trace!("multi_dot layout took: {:?}, row {}", elapsed, region.row());
trace!("----------------------------");
Ok(last_elem)
}

View File

@@ -0,0 +1,649 @@
use crate::circuit::base::BaseOp;
use crate::circuit::chip::einsum::analysis::{analyze_single_equation, EinsumAnalysis};
use crate::circuit::einsum::layouts::{pairwise, sum};
use crate::circuit::einsum::reduction_planner::Reduction;
use crate::circuit::region::RegionCtx;
use crate::circuit::CircuitError;
use crate::tensor::{Tensor, TensorError, TensorType, ValTensor, ValType, VarTensor};
use halo2_proofs::circuit::Value;
use halo2_proofs::plonk::{
Challenge, ConstraintSystem, Constraints, Expression, FirstPhase, Selector,
};
use halo2curves::ff::PrimeField;
use itertools::Itertools;
use layouts::{dot, multi_dot, prod};
use std::collections::{BTreeMap, HashMap};
use std::marker::PhantomData;
///
pub mod analysis;
mod layouts;
mod reduction_planner;
/// A struct representing reductions for the einsums
#[derive(Clone, Debug, Default)]
pub struct Einsums<F: PrimeField + TensorType + PartialOrd> {
/// custom gate to constrain tensor contractions
custom_gate: EinsumOpConfig<F>,
/// custom gate to constrain random linear combinations used by Freivalds' argument
rlc_gates: Vec<RLCConfig<F>>,
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Einsums<F> {
///
pub fn dummy(col_size: usize, num_inner_cols: usize) -> Self {
let dummy_var = VarTensor::dummy(col_size, num_inner_cols);
let dummy_custom_gate = EinsumOpConfig {
inputs: [
dummy_var.clone(),
dummy_var.clone(),
dummy_var.clone(),
dummy_var.clone(),
],
output: dummy_var.clone(),
selectors: BTreeMap::default(),
_marker: PhantomData,
};
Self {
custom_gate: dummy_custom_gate,
rlc_gates: vec![],
}
}
///
pub fn challenges(&self) -> Vec<Challenge> {
self.rlc_gates
.iter()
.map(|gate| gate.challenge)
.collect_vec()
}
/// Configure the columns based on universal Einsum analysis
pub fn configure_universal(
meta: &mut ConstraintSystem<F>,
analysis: &EinsumAnalysis,
num_inner_cols: usize,
logrows: usize,
) -> Self {
let capacity = analysis.reduction_length;
let inputs: [VarTensor; 4] = [
VarTensor::new_advice(meta, logrows, num_inner_cols, capacity),
VarTensor::new_advice(meta, logrows, num_inner_cols, capacity),
VarTensor::new_advice_in_second_phase(meta, logrows, num_inner_cols, capacity),
VarTensor::new_advice_in_second_phase(meta, logrows, num_inner_cols, capacity),
];
let output = VarTensor::new_advice_in_second_phase(meta, logrows, num_inner_cols, capacity);
let custom_gate = EinsumOpConfig::new(meta, &inputs, &output);
let mut rlc_gates = vec![];
for _ in 0..analysis.max_num_output_axes {
let rlc_gate = RLCConfig::new(meta, &[inputs[0].clone(), inputs[2].clone()], &output);
rlc_gates.push(rlc_gate);
}
Self {
custom_gate,
rlc_gates,
}
}
///
pub fn assign_einsum(
&self,
region: &mut RegionCtx<F>,
input_tensors: &[&ValTensor<F>],
output_tensor: &ValTensor<F>,
equation: &str,
) -> Result<(), CircuitError> {
region.set_num_einsum_inner_cols(self.custom_gate.output.num_inner_cols());
let (input_exprs, _) = equation.split_once("->").unwrap();
let input_exprs = input_exprs.split(",").collect_vec();
assert_eq!(input_exprs.len(), input_tensors.len());
let mut input_tensors = input_tensors.iter().copied().cloned().collect_vec();
let mut output_tensor = output_tensor.clone();
// Remove trivial axes from tensors
input_tensors
.iter_mut()
.map(|tensor| tensor.remove_trivial_axes())
.collect::<Result<Vec<_>, TensorError>>()?;
output_tensor.remove_trivial_axes()?;
let mut input_axes_to_dim: HashMap<char, usize> = HashMap::new();
input_exprs
.iter()
.zip(input_tensors.iter())
.for_each(|(indices, tensor)| {
let tensor_dim = tensor.dims();
indices
.chars()
.zip(tensor_dim.iter())
.for_each(|(index, dim)| {
if let std::collections::hash_map::Entry::Vacant(e) =
input_axes_to_dim.entry(index)
{
e.insert(*dim);
}
});
});
let equation_analysis = analyze_single_equation(&equation, &input_axes_to_dim)?;
let equation = equation_analysis.equation;
let output_shape = equation_analysis
.output_indices
.iter()
.map(|c| input_axes_to_dim.get(c).copied().unwrap())
.collect_vec();
let squashed_output = self.assign_output(region, &output_tensor, output_shape)?;
// reorder the reduction of input tensors and reduce
let reordered_input_reductions = reduction_planner::input_reductions(&equation).unwrap();
let mut tensors = input_tensors;
for reduction in reordered_input_reductions.iter() {
let (input_expr, output_expr) = reduction.expression().split_once("->").unwrap();
let input_exprs = input_expr.split(",").collect_vec();
let remaining_axes = output_expr.chars().collect_vec();
let mut remaining_axes_indices = remaining_axes
.iter()
.map(|c| 0..input_axes_to_dim[c])
.multi_cartesian_product()
.collect_vec();
// Dummy value to ensure the for loop runs at least once
if remaining_axes.is_empty() {
remaining_axes_indices.push(vec![]);
}
let input_tensors = reduction
.input_indices()
.iter()
.map(|idx| tensors[*idx].clone())
.collect_vec();
let mut flattened_input_tensors: Vec<Vec<ValTensor<F>>> =
vec![vec![]; input_tensors.len()];
for remaining_axes_indices in remaining_axes_indices {
// corresponds to 1 running sum of input tensors
for (i, (input_tensor, input_expr)) in
input_tensors.iter().zip(input_exprs.iter()).enumerate()
{
let mut sliced_dim = vec![];
input_expr.chars().for_each(|axis| {
if let Some(pos) = remaining_axes.iter().position(|c| *c == axis) {
sliced_dim
.push(remaining_axes_indices[pos]..remaining_axes_indices[pos] + 1);
} else {
// common axis
sliced_dim.push(0..input_axes_to_dim[&axis]);
}
});
let mut sliced_input_tensor = input_tensor.get_slice(&sliced_dim)?;
sliced_input_tensor.flatten();
flattened_input_tensors[i].push(sliced_input_tensor);
}
}
let flattened_input_tensors = flattened_input_tensors
.into_iter()
.map(|tensors| {
ValTensor::from(
tensors
.into_iter()
.flat_map(|t| t.get_inner_tensor().unwrap().clone().into_iter())
.collect_vec(),
)
})
.collect_vec();
let output_dims = output_expr
.chars()
.map(|c| input_axes_to_dim[&c])
.collect_vec();
let contracted_output = match reduction {
Reduction::RLC {
axis,
input_phase,
challenge_index,
..
} => {
assert_eq!(flattened_input_tensors.len(), 1);
let rlc_len = input_axes_to_dim[axis];
let mut result = self.rlc_gates[*challenge_index].assign_rlc(
region,
&flattened_input_tensors[0],
region.challenges()[*challenge_index],
rlc_len,
*input_phase,
)?;
result.reshape(&output_dims)?;
result
}
Reduction::Contraction {
axis, input_phases, ..
} => match axis {
Some(axis) => {
let dot_product_len = input_axes_to_dim[axis];
assign_input_contraction(
&self.custom_gate,
region,
flattened_input_tensors,
dot_product_len,
&output_dims,
input_phases,
)?
}
None => {
let mut result = assign_pairwise_mult(
&self.custom_gate,
region,
flattened_input_tensors,
input_phases,
)?;
result.reshape(&output_dims)?;
result
}
},
};
tensors.push(contracted_output);
}
tensors.retain(|tensor| tensor.is_singleton());
let scalars: ValTensor<F> = tensors
.into_iter()
.map(|t| t.get_inner_tensor().unwrap().get_scalar())
.collect_vec()
.into();
let squashed_input = prod(&self.custom_gate, region, &[&scalars], 1)?;
region.constrain_equal(&squashed_input, &squashed_output)
}
fn assign_output(
&self,
region: &mut RegionCtx<F>,
output: &ValTensor<F>,
mut output_shape: Vec<usize>,
) -> Result<ValTensor<F>, CircuitError> {
let mut intermediate_values = output.clone();
let challenges = region
.challenges()
.iter()
.take(output_shape.len())
.copied()
.collect_vec();
// Intermediate values output from the previous reduction
// Loop over the output axes
for (idx, (rlc_config, challenge)) in self
.rlc_gates
.iter()
.take(output_shape.len())
.zip(challenges)
.rev()
.enumerate()
{
let rlc_len = output_shape.last().copied().unwrap();
intermediate_values.flatten();
let phase = if idx > 0 { 1 } else { 0 };
intermediate_values =
rlc_config.assign_rlc(region, &intermediate_values, challenge, rlc_len, phase)?;
output_shape.pop();
}
Ok(intermediate_values)
}
}
fn assign_pairwise_mult<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &EinsumOpConfig<F>,
region: &mut RegionCtx<F>,
flattened_tensors: Vec<ValTensor<F>>,
input_phases: &[usize],
) -> Result<ValTensor<F>, CircuitError> {
assert_eq!(flattened_tensors.len(), input_phases.len());
let (result, _) = flattened_tensors
.into_iter()
.zip(input_phases.iter().cloned())
.reduce(|(acc, acc_phase), (input, phase)| {
(
pairwise(
config,
region,
&[&acc, &input],
BaseOp::Mult,
&[acc_phase, phase],
)
.unwrap(),
std::cmp::max(acc_phase, phase),
)
})
.unwrap();
Ok(result)
}
fn assign_input_contraction<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &EinsumOpConfig<F>,
region: &mut RegionCtx<F>,
flattened_tensors: Vec<ValTensor<F>>,
dot_product_len: usize,
output_shape: &[usize],
input_phases: &[usize],
) -> Result<ValTensor<F>, CircuitError> {
assert_eq!(flattened_tensors.len(), input_phases.len());
let num_dot_products = output_shape.iter().product();
let mut dot_product_results = vec![];
for chunk_idx in 0..num_dot_products {
let start = chunk_idx * dot_product_len;
let tensors: Vec<_> = flattened_tensors
.iter()
.map(|tensor| tensor.get_slice(&[start..(start + dot_product_len)]))
.collect::<Result<Vec<_>, TensorError>>()?;
let result = if tensors.len() == 1 {
sum(config, region, &[&tensors[0]], input_phases[0])?
} else if tensors.len() == 2 {
dot(
config,
region,
&[&tensors[0], &tensors[1]],
&[input_phases[0], input_phases[1]],
)?
} else {
multi_dot(
config,
region,
tensors.iter().collect_vec().as_slice(),
input_phases,
)?
};
dot_product_results.push(result.get_inner_tensor()?.get_scalar());
}
let mut tensor = ValTensor::from(dot_product_results);
tensor.reshape(output_shape)?;
Ok(tensor)
}
/// `EinsumOpConfig` is the custom gate used for einsum contraction operations
#[derive(Clone, Debug, Default)]
struct EinsumOpConfig<F: PrimeField + TensorType + PartialOrd> {
// [phase 0, phase 0, phase 1, phase 1]
inputs: [VarTensor; 4],
// phase 1
output: VarTensor,
// (phase, BaseOp, block index, inner column index) -> selector
selectors: BTreeMap<(usize, BaseOp, usize, usize), Selector>,
_marker: PhantomData<F>,
}
impl<F: PrimeField + TensorType + PartialOrd> EinsumOpConfig<F> {
fn new(meta: &mut ConstraintSystem<F>, inputs: &[VarTensor; 4], output: &VarTensor) -> Self {
let mut selectors = BTreeMap::new();
for phase in [0, 1] {
for i in 0..output.num_blocks() {
for j in 0..output.num_inner_cols() {
selectors.insert((phase, BaseOp::Mult, i, j), meta.selector());
}
}
}
for phase in [0, 1] {
for i in 0..output.num_blocks() {
selectors.insert((phase, BaseOp::DotInit, i, 0), meta.selector());
selectors.insert((phase, BaseOp::Dot, i, 0), meta.selector());
selectors.insert((phase, BaseOp::SumInit, i, 0), meta.selector());
selectors.insert((phase, BaseOp::Sum, i, 0), meta.selector());
}
}
selectors.insert(
(1, BaseOp::CumProdInit, output.num_blocks() - 1, 0),
meta.selector(),
);
selectors.insert(
(1, BaseOp::CumProd, output.num_blocks() - 1, 0),
meta.selector(),
);
for ((phase, base_op, block_idx, inner_col_idx), selector) in selectors.iter() {
match base_op {
BaseOp::Mult => {
meta.create_gate(base_op.as_str(), |meta| {
let selector = meta.query_selector(*selector);
let zero = Expression::<F>::Constant(F::ZERO);
let mut qis = vec![zero; 4];
for (i, q_i) in qis
.iter_mut()
.enumerate()
.skip(*phase * 2)
.take(base_op.num_inputs())
{
*q_i = inputs[i]
.query_rng(meta, *block_idx, *inner_col_idx, 0, 1)
.expect("einsum op config: input query failed")[0]
.clone()
}
// Get output expressions for each input channel
let (rotation_offset, rng) = base_op.query_offset_rng();
let constraints = {
let expected_output: Tensor<Expression<F>> = output
.query_rng(meta, *block_idx, *inner_col_idx, rotation_offset, rng)
.expect("einsum op config: output query failed");
let res = base_op
.nonaccum_f((qis[2 * *phase].clone(), qis[2 * *phase + 1].clone()));
vec![expected_output[base_op.constraint_idx()].clone() - res]
};
Constraints::with_selector(selector, constraints)
});
}
_ => {
meta.create_gate(base_op.as_str(), |meta| {
let selector = meta.query_selector(*selector);
let mut qis = vec![vec![]; 4];
for (i, q_i) in qis
.iter_mut()
.enumerate()
.skip(*phase * 2)
.take(base_op.num_inputs())
{
*q_i = inputs[i]
.query_whole_block(meta, *block_idx, 0, 1)
.expect("einsum op config: input query failed")
.into_iter()
.collect()
}
// Get output expressions for each input channel
let (rotation_offset, rng) = base_op.query_offset_rng();
let expected_output: Tensor<Expression<F>> = output
.query_rng(meta, *block_idx, 0, rotation_offset, rng)
.expect("einsum op config: output query failed");
let res = base_op.accum_f(
expected_output[0].clone(),
qis[2 * phase + 1].clone(),
qis[2 * *phase].clone(),
);
let constraints =
vec![expected_output[base_op.constraint_idx()].clone() - res];
Constraints::with_selector(selector, constraints)
});
}
}
}
Self {
inputs: inputs.clone(),
output: output.clone(),
selectors,
_marker: PhantomData,
}
}
}
/// `RLCConfig` is the custom gate used for random linear combination with the specific challenge
#[derive(Clone, Debug)]
struct RLCConfig<F: PrimeField + TensorType + PartialOrd> {
pub challenge: Challenge,
/// [phase 0, phase 1]
pub inputs: [VarTensor; 2],
pub output: VarTensor,
/// (phase of input, block index) -> (init selector, acc selector)
pub selectors: BTreeMap<(usize, usize), (Selector, Selector)>,
_marker: PhantomData<F>,
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RLCConfig<F> {
fn new(meta: &mut ConstraintSystem<F>, inputs: &[VarTensor; 2], output: &VarTensor) -> Self {
let challenge = meta.challenge_usable_after(FirstPhase);
let mut selectors = BTreeMap::new();
for (phase, input) in inputs.iter().enumerate() {
for block_idx in 0..input.num_blocks() {
let selector = (meta.selector(), meta.selector());
selectors.insert((phase, block_idx), selector);
}
}
let block_width = output.num_inner_cols();
let powers_of_challenge = (0..block_width)
.scan(Expression::Constant(F::ONE), |r_power, _| {
*r_power = r_power.clone() * challenge.expr();
Some(r_power.clone())
})
.collect_vec();
for ((phase, block_idx), (init_selector, acc_selector)) in selectors.iter() {
meta.create_gate("init", |meta| {
let selector = meta.query_selector(*init_selector);
let input_exprs = inputs[*phase]
.query_whole_block(meta, *block_idx, 0, 1)
.expect("rlc config: input query failed")
.into_iter()
.collect();
let constraints = {
let expected_output: Tensor<Expression<F>> = output
.query_rng(meta, *block_idx, 0, 0, 1)
.expect("rlc config: output query failed");
let res = BaseOp::Dot.accum_f(
Expression::Constant(F::ZERO),
powers_of_challenge.iter().cloned().rev().collect_vec(),
input_exprs,
);
vec![expected_output[0].clone() - res]
};
Constraints::with_selector(selector, constraints)
});
meta.create_gate("acc", |meta| {
let selector = meta.query_selector(*acc_selector);
let input_exprs = inputs[*phase]
.query_whole_block(meta, *block_idx, 0, 1)
.expect("rlc config: input query failed")
.into_iter()
.collect();
let constraints = {
let expected_output: Tensor<Expression<F>> = output
.query_rng(meta, *block_idx, 0, -1, 2)
.expect("rlc config: output query failed");
let res = BaseOp::Dot.accum_f(
expected_output[0].clone() * powers_of_challenge.last().cloned().unwrap(),
powers_of_challenge.iter().cloned().rev().collect_vec(),
input_exprs,
);
vec![expected_output[1].clone() - res]
};
Constraints::with_selector(selector, constraints)
});
}
Self {
inputs: inputs.clone(),
output: output.clone(),
selectors,
challenge,
_marker: PhantomData,
}
}
fn assign_rlc(
&self,
region: &mut RegionCtx<F>,
flattened_input: &ValTensor<F>,
challenge: Value<F>,
rlc_len: usize,
phase: usize,
) -> Result<ValTensor<F>, CircuitError> {
region.flush_einsum()?;
let block_width = self.output.num_inner_cols();
let powers_of_challenge = (0..block_width)
.scan(Value::known(F::ONE), |challenge_power, _| {
*challenge_power = challenge_power.clone() * challenge;
Some(challenge_power.clone())
})
.collect_vec();
let mut rlc_results: Vec<ValType<F>> = vec![];
for tensor in flattened_input.get_inner_tensor()?.chunks_exact(rlc_len) {
let running_sums = tensor
.iter()
.chunks(block_width)
.into_iter()
.scan(Value::known(F::ZERO), |state, val| {
let curr_sum: Value<F> = val
.into_iter()
.zip(powers_of_challenge.iter().rev())
.map(|(v, c_power)| {
c_power.and_then(|c_power| {
Value::known(c_power * v.get_felt_eval().unwrap())
})
})
.reduce(|acc, v| acc + v)
.unwrap();
*state = *state * powers_of_challenge.last().unwrap() + curr_sum;
Some(*state)
})
.collect_vec();
let assigned_len = {
let mut input: ValTensor<F> = tensor.iter().collect_vec().into();
input.pad_to_zero_rem(block_width, ValType::Value(Value::known(F::ZERO)))?;
let (_, len) = region
.assign_einsum_with_duplication_unconstrained(&self.inputs[phase], &input)?;
len
};
let (assigned_output, assigned_output_len) = {
let running_sums = running_sums.into_iter().map(ValType::from).collect_vec();
region.assign_einsum_with_duplication_constrained(
&self.output,
&running_sums.into(),
&crate::circuit::CheckMode::UNSAFE,
)?
};
(0..assigned_output_len)
.map(|i| {
let (block_idx, _, z) = self
.output
.cartesian_coord(region.einsum_col_coord() + i * block_width);
if z == 0 && i > 0 {
return Ok(());
}
let selector = if i == 0 {
self.selectors
.get(&(phase, block_idx))
.map(|(init, _)| init)
} else {
self.selectors.get(&(phase, block_idx)).map(|(_, acc)| acc)
};
region.enable(selector, z)?;
Ok(())
})
.collect::<Result<Vec<_>, CircuitError>>()?;
rlc_results.push(assigned_output.last()?.get_inner_tensor()?.get_scalar());
region.increment_einsum_col_coord(assigned_len);
}
Ok(rlc_results.into())
}
}

View File

@@ -0,0 +1,191 @@
use std::{collections::BTreeSet, ops::Index};
use halo2curves::ff::PrimeField;
use itertools::Itertools;
use crate::{
circuit::CircuitError,
tensor::{TensorType, ValTensor},
};
/// inj,jk->ik [inj,jk]
/// inj,i->nj => RLC [jk,nj]
/// jk,k->j => RLC [nj,j]
/// nj,j->n => Contraction [n]
/// n-> => Contraction []
///
/// bn,anm,bm->ba [bn,anm,bm]
/// bn,bm->bnm => Contraction [anm,bnm]
/// bnm,b->nm => RLC [anm,nm]
/// anm,a->nm => RLC [nm,nm]
/// nm,nm->m => Contraction [m]
/// m-> => Contraction []
#[derive(Debug)]
pub enum Reduction {
/// Random linear combination with powers of challenge along the axis
RLC {
expression: String,
axis: char,
/// Uniquely identifying index of input tensor to be reduced
input_index: TensorIndex,
/// phase of input tensor
input_phase: usize,
challenge_index: usize,
},
Contraction {
expression: String,
/// when axis is `None`, the contraction is pairwise multiplication
axis: Option<char>,
/// Uniquely identifying indices of input tensors to be contracted
input_indices: Vec<TensorIndex>,
/// phases of input tensors
input_phases: Vec<usize>,
},
}
#[derive(Clone, Copy, Debug)]
pub struct TensorIndex(usize);
impl<T: PrimeField + TensorType + PartialOrd> Index<TensorIndex> for Vec<ValTensor<T>> {
type Output = ValTensor<T>;
fn index(&self, index: TensorIndex) -> &Self::Output {
&self[index.0]
}
}
impl Reduction {
pub fn expression(&self) -> &str {
match self {
Reduction::Contraction { expression, .. } => expression,
Reduction::RLC { expression, .. } => &expression,
}
}
pub fn input_indices(&self) -> Vec<TensorIndex> {
match self {
Reduction::Contraction { input_indices, .. } => input_indices.clone(),
Reduction::RLC { input_index, .. } => vec![*input_index],
}
}
}
pub fn input_reductions(expression: &str) -> Result<Vec<Reduction>, CircuitError> {
let (input_exprs, output_expr) = expression.split_once("->").unwrap();
let input_exprs: Vec<_> = input_exprs.split(",").map(|eq| eq.to_string()).collect();
// (phase, expression)
let input_exprs: Vec<(usize, String)> =
input_exprs.into_iter().map(|expr| (0, expr)).collect_vec();
let mut input_tensor_counter = input_exprs.len();
let mut input_exprs: Vec<((usize, String), TensorIndex)> = input_exprs
.into_iter()
.zip((0..input_tensor_counter).map(TensorIndex))
.collect();
let mut reductions: Vec<Reduction> = vec![];
// Reduce input_exprs along given axis
let mut reduce = |input_exprs: Vec<((usize, String), TensorIndex)>,
axis: char|
-> (Reduction, Vec<((usize, String), TensorIndex)>) {
let inputs = input_exprs
.iter()
.filter(|((_, eq), _)| eq.chars().contains(&axis))
.cloned()
.collect_vec();
let (inputs_axes, input_indices): (Vec<(usize, String)>, Vec<TensorIndex>) =
inputs.iter().cloned().unzip();
let (input_phases, inputs_axes): (Vec<usize>, Vec<String>) =
inputs_axes.into_iter().unzip();
let is_output_axis = output_expr.chars().contains(&axis);
let output: String = if is_output_axis == true && inputs.len() > 1 {
let output: BTreeSet<char> =
inputs_axes.iter().flat_map(|input| input.chars()).collect();
output.iter().collect()
} else {
let output: BTreeSet<char> = inputs_axes
.iter()
.flat_map(|input| input.chars().filter(|&c| c != axis))
.collect();
output.iter().collect()
};
let mut output_phase = input_phases.iter().copied().max().unwrap();
let reduction = if is_output_axis == true && inputs.len() == 1 {
output_phase = 1;
let mut expression = inputs_axes.join(",");
expression.push_str(format!(",{axis}").as_str());
expression.push_str("->");
expression.push_str(&output);
Reduction::RLC {
expression,
axis,
input_index: input_indices[0],
input_phase: input_phases[0],
challenge_index: output_expr.chars().position(|c| c == axis).unwrap(),
}
} else if is_output_axis == true {
let mut expression = inputs_axes.join(",");
expression.push_str("->");
expression.push_str(&output);
Reduction::Contraction {
expression,
axis: None,
input_indices: input_indices,
input_phases,
}
} else {
let mut expression = inputs_axes.join(",");
expression.push_str("->");
expression.push_str(&output);
Reduction::Contraction {
expression,
axis: Some(axis),
input_indices: input_indices,
input_phases,
}
};
// Mutate input_exprs
let mut input_exprs = input_exprs.clone();
input_exprs.retain(|((_, input_eq), _)| !inputs_axes.contains(input_eq));
input_exprs.push((
(output_phase, output.clone()),
TensorIndex(input_tensor_counter),
));
input_tensor_counter += 1;
(reduction, input_exprs)
};
let mut output_axes = output_expr.chars().collect_vec();
while let Some(axis) = output_axes.first().cloned() {
let num_inputs = input_exprs
.iter()
.filter(|((_, eq), _)| eq.chars().contains(&axis))
.count();
if num_inputs == 0 {
output_axes.remove(0);
} else {
let (reduction, new_input_exprs) = reduce(input_exprs, axis);
reductions.push(reduction);
input_exprs = new_input_exprs;
}
}
// These are not output axes and were not contracted with random vectors
let remaining_axes: BTreeSet<_> = input_exprs
.iter()
.flat_map(|((_, eq), _)| eq.chars())
.collect();
for axis in remaining_axes.iter() {
let (reduction, new_input_exprs) = reduce(input_exprs, *axis);
reductions.push(reduction);
input_exprs = new_input_exprs;
}
Ok(reductions)
}

View File

@@ -64,6 +64,9 @@ pub enum CircuitError {
/// Missing product in einsum
#[error("missing product in einsum")]
MissingEinsumProduct,
/// ???
#[error("missing config in einsum")]
MissingEinsumConfig,
/// Mismatched lookup length
#[error("mismatched lookup lengths: {0} and {1}")]
MismatchedLookupLength(usize, usize),

View File

@@ -1,8 +1,4 @@
use std::{
collections::{HashMap, HashSet},
f64::consts::E,
ops::Range,
};
use std::{collections::HashMap, f64::consts::E, ops::Range};
use halo2_proofs::circuit::Value;
use halo2curves::ff::PrimeField;
@@ -829,215 +825,31 @@ pub fn dot<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
pub fn einsum<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
inputs: &[&ValTensor<F>],
input_tensors: &[&ValTensor<F>],
equation: &str,
) -> Result<ValTensor<F>, CircuitError> {
// Track the einsum equation
region.add_used_einsum_equation(equation.to_string())?;
let mut equation = equation.split("->");
let inputs_eq = equation.next().ok_or(CircuitError::InvalidEinsum)?;
let output_eq = equation.next().ok_or(CircuitError::InvalidEinsum)?;
let inputs_eq = inputs_eq.split(',').collect::<Vec<_>>();
// Check that the number of inputs matches the number of inputs in the equation
if inputs.len() != inputs_eq.len() {
return Err(TensorError::DimMismatch("einsum".to_string()).into());
}
let mut indices_to_size = HashMap::new();
for (i, input) in inputs.iter().enumerate() {
for j in 0..inputs_eq[i].len() {
let c = inputs_eq[i]
.chars()
.nth(j)
.ok_or(CircuitError::InvalidEinsum)?;
if let std::collections::hash_map::Entry::Vacant(e) = indices_to_size.entry(c) {
e.insert(input.dims()[j]);
} else if indices_to_size[&c] != input.dims()[j] {
return Err(TensorError::DimMismatch("einsum".to_string()).into());
}
}
}
// maps unrepresented indices in the output to a trivial 1
for c in output_eq.chars() {
indices_to_size.entry(c).or_insert(1);
}
// Compute the output tensor shape
let mut output_shape: Vec<usize> = output_eq
.chars()
.map(|c| {
indices_to_size
.get(&c)
.ok_or(CircuitError::InvalidEinsum)
.copied()
})
.collect::<Result<Vec<_>, _>>()?;
if output_shape.is_empty() {
output_shape.push(1);
}
// Create a new output tensor with the computed shape
let mut output: Tensor<ValType<F>> = Tensor::new(None, &output_shape)?;
let mut seen = HashSet::new();
let mut common_indices_to_inputs = vec![];
for input in inputs_eq.iter().take(inputs.len()) {
for c in input.chars() {
if !seen.contains(&c) {
seen.insert(c);
} else {
common_indices_to_inputs.push(c);
}
}
}
let non_common_indices = indices_to_size
.keys()
.filter(|&x| !common_indices_to_inputs.contains(x))
.collect::<Vec<_>>();
let non_common_coord_size = non_common_indices
let inputs = input_tensors
.iter()
.map(|d| {
// If the current index is in the output equation, then the slice should be the current coordinate
if output_eq.contains(**d) {
Ok(1)
// Otherwise, the slice should be the entire dimension of the input tensor
} else {
indices_to_size
.get(d)
.ok_or(CircuitError::InvalidEinsum)
.copied()
}
})
.collect::<Result<Vec<_>, _>>()?
.iter()
.product::<usize>();
.map(|t| t.get_inner())
.collect::<Result<Vec<_>, TensorError>>()?;
// Compute expected output using existing einsum logic
// need to add this to ops
let (output_tensor, _) =
crate::tensor::ops::accumulated::einsum(equation, &inputs.iter().collect_vec())?;
let cartesian_coord = output_shape
.iter()
.map(|d| 0..*d)
.multi_cartesian_product()
.collect::<Vec<_>>();
config.einsums.assign_einsum(
region,
input_tensors,
&output_tensor.clone().into(),
equation,
)?;
// Get the indices common across input tensors
let mut common_coord = common_indices_to_inputs
.iter()
.map(|d| {
// If the current index is in the output equation, then the slice should be the current coordinate
if output_eq.contains(*d) {
Ok(0..1)
// Otherwise, the slice should be the entire dimension of the input tensor
} else {
Ok(0..*indices_to_size.get(d).ok_or(CircuitError::InvalidEinsum)?)
}
})
.collect::<Result<Vec<Range<_>>, CircuitError>>()?
.into_iter()
.multi_cartesian_product()
.collect::<Vec<_>>();
region.increment_einsum_index(1);
// If there are no common indices, then we need to add an empty slice to force one iteration of the loop
if common_coord.is_empty() {
common_coord.push(vec![]);
}
let inner_loop_function = |i: usize, region: &mut RegionCtx<'_, F>| {
let coord = cartesian_coord[i].clone();
// Compute the slice of each input tensor given the current coordinate of the output tensor
let inputs = (0..inputs.len())
.map(|idx| {
let mut slice = vec![];
for (i, c) in inputs_eq[idx].chars().enumerate() {
// If the current index is in the output equation, then the slice should be the current coordinate
if let Some(idx) = output_eq.find(c) {
slice.push(coord[idx]..coord[idx] + 1);
// Otherwise, the slice should be the entire dimension of the input tensor
} else {
slice.push(0..inputs[idx].dims()[i]);
}
}
// Get the slice of the input tensor
inputs[idx].get_slice(&slice)
})
.collect::<Result<Vec<_>, _>>()?;
// in this case its just a dot product :)
if non_common_coord_size == 1 && inputs.len() == 2 {
Ok(dot(config, region, &[&inputs[0], &inputs[1]])?.get_inner_tensor()?[0].clone())
} else {
let mut prod_res = None;
// Compute the cartesian product of all common indices
for common_dim in &common_coord {
let inputs = (0..inputs.len())
.map(|idx| {
let mut slice = vec![];
// Iterate over all indices in the input equation
for (i, c) in inputs_eq[idx].chars().enumerate() {
// If the current index is common to multiple inputs, then the slice should be the current coordinate
if let Some(j) = common_indices_to_inputs.iter().position(|&r| r == c) {
slice.push(common_dim[j]..common_dim[j] + 1);
} else {
slice.push(0..inputs[idx].dims()[i]);
}
}
// Get the slice of the input tensor
inputs[idx].get_slice(&slice).map_err(|e| {
error!("{}", e);
halo2_proofs::plonk::Error::Synthesis
})
})
.collect::<Result<Vec<_>, _>>()?;
let mut input_pairs = vec![];
for input in &inputs {
input_pairs.push(input.get_inner_tensor()?.iter());
}
let input_pairs = input_pairs
.into_iter()
.multi_cartesian_product()
.collect::<Vec<_>>();
// Compute the product of all input tensors
for pair in input_pairs {
let product_across_pair = prod(config, region, &[&pair.into()])?;
if let Some(product) = prod_res {
prod_res = Some(
pairwise(
config,
region,
&[&product, &product_across_pair],
BaseOp::Add,
)
.map_err(|e| {
error!("{}", e);
halo2_proofs::plonk::Error::Synthesis
})?,
);
} else {
prod_res = Some(product_across_pair);
}
}
}
Ok(prod_res
.ok_or(CircuitError::MissingEinsumProduct)?
.get_inner_tensor()?[0]
.clone())
}
};
region.flush()?;
region.apply_in_loop(&mut output, inner_loop_function)?;
let output: ValTensor<F> = output.into();
let output: ValTensor<F> = output_tensor.into();
Ok(output)
}

View File

@@ -364,7 +364,15 @@ impl<
};
Ok(Some(if self.decomp {
log::debug!("constraining constant to be decomp");
super::layouts::decompose(config, region, &[&value], &region.base(), &region.legs(), false)?.1
super::layouts::decompose(
config,
region,
&[&value],
&region.base(),
&region.legs(),
false,
)?
.1
} else {
log::debug!("constraining constant to be identity");
super::layouts::identity(config, region, &[&value])?

View File

@@ -6,7 +6,7 @@ use crate::{
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use colored::Colorize;
use halo2_proofs::{
circuit::Region,
circuit::{Region, Value},
plonk::{Error, Selector},
};
use halo2curves::ff::PrimeField;
@@ -91,15 +91,17 @@ pub struct EinsumIndex {
index: usize,
col_coord: usize,
equations: HashSet<String>,
num_inner_cols: usize,
}
impl EinsumIndex {
/// Create a new einsum index
pub fn new(index: usize, col_coord: usize) -> EinsumIndex {
EinsumIndex {
index,
pub fn new(index: usize, col_coord: usize, num_inner_cols: usize) -> EinsumIndex {
EinsumIndex {
index,
col_coord,
equations: HashSet::new(),
num_inner_cols,
}
}
@@ -221,6 +223,7 @@ pub struct RegionCtx<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Ha
statistics: RegionStatistics,
settings: RegionSettings,
assigned_constants: ConstantsMap<F>,
challenges: Vec<Value<F>>,
max_dynamic_input_len: usize,
}
@@ -317,6 +320,11 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
&self.statistics
}
///
pub fn challenges(&self) -> &[Value<F>] {
&self.challenges
}
/// Create a new region context
pub fn new(
region: Region<'a, F>,
@@ -339,6 +347,7 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
statistics: RegionStatistics::default(),
settings: RegionSettings::all_true(decomp_base, decomp_legs),
assigned_constants: HashMap::new(),
challenges: vec![],
max_dynamic_input_len: 0,
}
}
@@ -357,6 +366,20 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
new_self
}
/// Create a new region context with challenges
pub fn new_with_challenges(
region: Region<'a, F>,
row: usize,
num_inner_cols: usize,
decomp_base: usize,
decomp_legs: usize,
challenges: Vec<Value<F>>,
) -> RegionCtx<'a, F> {
let mut new_self = Self::new(region, row, num_inner_cols, decomp_base, decomp_legs);
new_self.challenges = challenges;
new_self
}
/// Create a new region context
pub fn new_dummy(
row: usize,
@@ -377,6 +400,7 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
statistics: RegionStatistics::default(),
settings,
assigned_constants: HashMap::new(),
challenges: vec![],
max_dynamic_input_len: 0,
}
}
@@ -400,6 +424,7 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
statistics: RegionStatistics::default(),
settings,
assigned_constants: HashMap::new(),
challenges: vec![],
max_dynamic_input_len: 0,
}
}
@@ -635,6 +660,16 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
self.einsum_index.equations.clone()
}
/// set the number of inner columns used in einsum custom gate
pub fn set_num_einsum_inner_cols(&mut self, num_inner_cols: usize) {
self.einsum_index.num_inner_cols = num_inner_cols;
}
/// number of inner columns used in einsum custom gate
pub fn num_einsum_inner_cols(&self) -> usize {
self.einsum_index.num_inner_cols
}
/// get used lookups
pub fn used_lookups(&self) -> HashSet<LookupOp> {
self.statistics.used_lookups.clone()
@@ -724,6 +759,28 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
self.assign_dynamic_lookup(var, values)
}
/// Assign a valtensor to a vartensor in einsum area
pub fn assign_einsum(
&mut self,
var: &VarTensor,
values: &ValTensor<F>,
) -> Result<ValTensor<F>, CircuitError> {
if let Some(region) = &self.region {
Ok(var.assign(
&mut region.borrow_mut(),
self.einsum_col_coord(),
values,
&mut self.assigned_constants,
)?)
} else {
if !values.is_instance() {
let values_map = values.create_constants_map_iterator();
self.assigned_constants.par_extend(values_map);
}
Ok(values.clone())
}
}
/// Assign a valtensor to a vartensor with duplication
pub fn assign_with_duplication_unconstrained(
&mut self,
@@ -781,6 +838,63 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
}
}
/// Assign a valtensor to a vartensor with duplication
pub fn assign_einsum_with_duplication_unconstrained(
&mut self,
var: &VarTensor,
values: &ValTensor<F>,
) -> Result<(ValTensor<F>, usize), Error> {
if let Some(region) = &self.region {
// duplicates every nth element to adjust for column overflow
let (res, len) = var.assign_with_duplication_unconstrained(
&mut region.borrow_mut(),
self.einsum_col_coord(),
values,
&mut self.assigned_constants,
)?;
Ok((res, len))
} else {
let (_, len) = var.dummy_assign_with_duplication(
self.row,
self.einsum_col_coord(),
values,
false,
&mut self.assigned_constants,
)?;
Ok((values.clone(), len))
}
}
/// Assign a valtensor to a vartensor with duplication
pub fn assign_einsum_with_duplication_constrained(
&mut self,
var: &VarTensor,
values: &ValTensor<F>,
check_mode: &crate::circuit::CheckMode,
) -> Result<(ValTensor<F>, usize), Error> {
if let Some(region) = &self.region {
// duplicates every nth element to adjust for column overflow
let (res, len) = var.assign_with_duplication_constrained(
&mut region.borrow_mut(),
self.row,
self.einsum_col_coord(),
values,
check_mode,
&mut self.assigned_constants,
)?;
Ok((res, len))
} else {
let (_, len) = var.dummy_assign_with_duplication(
self.row,
self.einsum_col_coord(),
values,
true,
&mut self.assigned_constants,
)?;
Ok((values.clone(), len))
}
}
/// Enable a selector
pub fn enable(&mut self, selector: Option<&Selector>, offset: usize) -> Result<(), Error> {
match &self.region {
@@ -847,4 +961,19 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
}
Ok(())
}
/// flush row to the next row in einsum area
pub fn flush_einsum(&mut self) -> Result<(), CircuitError> {
// increment by the difference between the current linear coord and the next row
let num_einsum_inner_cols = self.num_einsum_inner_cols();
let remainder = self.einsum_col_coord() % num_einsum_inner_cols;
if remainder != 0 {
let diff = num_einsum_inner_cols - remainder;
self.increment_einsum_col_coord(diff);
}
if self.einsum_col_coord() % num_einsum_inner_cols != 0 {
return Err(CircuitError::FlushError);
}
Ok(())
}
}

View File

@@ -171,6 +171,7 @@ pub mod pfsys;
pub mod srs_sha;
/// An implementation of multi-dimensional tensors.
pub mod tensor;
#[cfg(feature = "ios-bindings")]
uniffi::setup_scaffolding!();
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]

View File

@@ -480,6 +480,13 @@ impl<T: Clone + TensorType> Tensor<T> {
self[index].clone()
}
/// Extracts a single value from the tensor
pub fn get_scalar(&self) -> T {
assert!(self.inner.len() == 1);
assert!(self.dims.iter().all(|dim| *dim == 1));
self.inner[0].clone()
}
/// Get a mutable array index from rows / columns indices.
///
/// ```
@@ -901,6 +908,22 @@ impl<T: Clone + TensorType> Tensor<T> {
Ok(())
}
/// remove axes that have dimensions 1
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// let mut a = Tensor::<IntegerRep>::new(Some(&[1, 2, 3, 4, 5, 6]), &[3, 1, 2]).unwrap();
/// let mut expected = Tensor::<IntegerRep>::new(Some(&[1, 2, 3, 4, 5, 6]), &[3, 2]).unwrap();
/// let b = a.remove_trivial_axes().unwrap();
/// assert_eq!(b, expected);
/// ```
pub fn remove_trivial_axes(&self) -> Result<Self, TensorError> {
let mut result = self.clone();
let new_dims: Vec<_> = self.dims.iter().copied().filter(|dim| *dim > 1).collect();
result.reshape(&new_dims)?;
Ok(result)
}
/// Move axis of the tensor
/// ```
/// use ezkl::tensor::Tensor;

View File

@@ -5,6 +5,7 @@ use crate::{
};
use itertools::Itertools;
use maybe_rayon::{iter::ParallelIterator, prelude::IntoParallelRefIterator};
use std::collections::{HashMap, HashSet};
pub use std::ops::{Add, Mul, Neg, Sub};
#[derive(Debug, Clone, PartialEq, thiserror::Error)]
@@ -2396,6 +2397,8 @@ pub mod nonlinearities {
/// Ops that return the transcript i.e intermediate calcs of an op
pub mod accumulated {
use maybe_rayon::iter::{IndexedParallelIterator, IntoParallelRefMutIterator};
use super::*;
/// Dot product of two tensors.
@@ -2523,4 +2526,320 @@ pub mod accumulated {
Ok(transcript)
}
#[inline]
fn row_major_strides(dims: &[usize]) -> Vec<usize> {
let mut s = vec![0; dims.len()];
let mut acc = 1;
for (i, &d) in dims.iter().enumerate().rev() {
s[i] = acc;
acc *= d;
}
s
}
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::accumulated::einsum;
///
/// // matmul case
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 1, 2, 1, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let k = Tensor::<IntegerRep>::new(
/// Some(&[2, 3, 2, 1, 1, 1]),
/// &[3, 2],
/// ).unwrap();
/// let (result, _) = einsum::<IntegerRep>("ij,jk->ik", &[&x, &k]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[8, 9, 5, 5]), &[2, 2]).unwrap();
/// assert_eq!(result, expected);
///
/// // element wise multiplication
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3, 2, 3, 4, 3, 4, 5]),
/// &[3, 3],
/// ).unwrap();
/// let k = Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3, 1, 2, 3, 1, 2, 3]),
/// &[3, 3],
/// ).unwrap();
/// let (result, _) = einsum::<IntegerRep>("ij,ij->ij", &[&x, &k]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[1, 4, 9, 2, 6, 12, 3, 8, 15]), &[3, 3]).unwrap();
/// assert_eq!(result, expected);
///
///
/// // dot product of A with the transpose of B.
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3, 2, 3, 4, 3, 4, 5]),
/// &[3, 3],
/// ).unwrap();
/// let k = Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3, 1, 2, 3, 1, 2, 3]),
/// &[3, 3],
/// ).unwrap();
/// let (result, _) = einsum::<IntegerRep>("ik,jk->ij", &[&x, &k]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[14, 14, 14, 20, 20, 20, 26, 26, 26]), &[3, 3]).unwrap();
/// assert_eq!(result, expected);
///
/// // dot product
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3, 2, 3, 4, 3, 4, 5]),
/// &[3, 3],
/// ).unwrap();
/// let k = Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3, 1, 2, 3, 1, 2, 3]),
/// &[3, 3],
/// ).unwrap();
/// let (result, _) = einsum::<IntegerRep>("ik,ik->i", &[&x, &k]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[14, 20, 26]), &[3]).unwrap();
/// assert_eq!(result, expected);
///
///
/// // dot product
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3]),
/// &[3],
/// ).unwrap();
/// let k = Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3]),
/// &[3],
/// ).unwrap();
/// let (result, _) = einsum::<IntegerRep>("i,i->", &[&x, &k]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[14]), &[1]).unwrap();
/// assert_eq!(result, expected);
///
///
/// // wut ?
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3, 2, 3, 4, 3, 4, 5, 1, 2, 3, 2, 3, 4, 3, 4, 5]),
/// &[3, 3, 2],
/// ).unwrap();
/// let k = Tensor::<IntegerRep>::new(
/// Some(&[4, 5, 7, 8]),
/// &[2, 2],
/// ).unwrap();
/// let (result, _) = einsum::<IntegerRep>("anm,bm->ba", &[&x, &k]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[68, 80, 95, 113, 134, 158]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
///
/// // wutttttt ?
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3, 2, 3, 4, 3, 4, 5, 1, 2, 3, 2, 3, 4, 3, 4, 5]),
/// &[3, 3, 2],
/// ).unwrap();
/// let k = Tensor::<IntegerRep>::new(
/// Some(&[4, 5, 7, 8]),
/// &[2, 2],
/// ).unwrap();
/// let z = Tensor::<IntegerRep>::new(
/// Some(&[4, 5, 7, 8, 9, 9]),
/// &[2, 3],
/// ).unwrap();
///
/// let (result, _) = einsum::<IntegerRep>("bn,anm,bm->ba", &[&z, &x, &k]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[390, 414, 534, 994, 1153, 1384]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
///
///
/// // contraction with a single common axis
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3, 2, 3, 4, 3, 4, 5, 1, 2, 3, 2, 3, 4, 3, 4, 5]),
/// &[3, 3, 2],
/// ).unwrap();
/// let k = Tensor::<IntegerRep>::new(
/// Some(&[4, 5, 7, 8]),
/// &[2, 2],
/// ).unwrap();
/// let (result, _) = einsum::<IntegerRep>("abc,cd->", &[&x, &k]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[648]), &[1]).unwrap();
/// assert_eq!(result, expected);
///
/// // contraction with no common axes (outer product)
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3, 2, 3, 4, 3, 4, 5, 1, 2, 3, 2, 3, 4, 3, 4, 5]),
/// &[3, 3, 2],
/// ).unwrap();
/// let k = Tensor::<IntegerRep>::new(
/// Some(&[4, 5, 7, 8]),
/// &[2, 2],
/// ).unwrap();
/// let (result, _) = einsum::<IntegerRep>("abc,ed->", &[&x, &k]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[1296]), &[1]).unwrap();
/// assert_eq!(result, expected);
///
/// // trivial axes mapping
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[4, 5, 7, 8]),
/// &[2, 2],
/// ).unwrap();
/// let k = Tensor::<IntegerRep>::new(
/// Some(&[4, 5]),
/// &[2],
/// ).unwrap();
///
/// let (result, _) = einsum::<IntegerRep>("mk,k->m", &[&x, &k]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[41, 68]), &[2]).unwrap();
/// assert_eq!(result, expected);
///
/// let (result, _) = einsum::<IntegerRep>("mk,k->mn", &[&x, &k]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[41, 68]), &[2, 1]).unwrap();
/// assert_eq!(result, expected);
///
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[0, 0, 0, 3]),
/// &[1, 4],
/// ).unwrap();
/// let k = Tensor::<IntegerRep>::new(
/// Some(&[213, 227, 74, 77]),
/// &[4],
/// ).unwrap();
///
/// let (result, _) = einsum::<IntegerRep>("mk,k->ma", &[&x, &k]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[231]), &[1, 1]).unwrap();
/// assert_eq!(result, expected);
/// // subtle difference
/// let (result, _) = einsum::<IntegerRep>("mk,n->ma", &[&x, &k]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[1773]), &[1, 1]).unwrap();
/// assert_eq!(result, expected);
///
/// ```
///
pub fn einsum<T>(
equation: &str,
input_tensors: &[&Tensor<T>],
) -> Result<(Tensor<T>, HashMap<char, usize>), TensorError>
where
T: Clone + TensorType + Mul<Output = T> + Add<Output = T> + Send + Sync,
{
let (input_exprs, output_expr) = equation.split_once("->").unwrap();
let input_exprs: Vec<&str> = input_exprs.split(',').collect();
assert_eq!(input_exprs.len(), input_tensors.len());
let mut dim_of: HashMap<char, usize> = HashMap::new();
for (input_expr, t) in input_exprs.iter().zip(input_tensors.iter()) {
for (c, &d) in input_expr.chars().zip(t.dims().iter()) {
let e = dim_of.entry(c).or_insert(d);
debug_assert!((*e == d) || (*e == 1) || (d == 1));
*e = (*e).max(d);
}
}
// Output dims
let out_idx: Vec<char> = output_expr.chars().collect();
let out_dims: Vec<usize> = out_idx.iter().map(|c| *dim_of.get(c).unwrap_or(&1)).collect();
// Reduction indices
let all_idx: HashSet<char> = dim_of.keys().copied().collect();
let out_set: HashSet<char> = out_idx.iter().copied().collect();
let red_idx: Vec<char> = all_idx.difference(&out_set).copied().collect();
let red_dims: Vec<usize> = red_idx.iter().map(|c| dim_of[c]).collect();
// Fast index->pos
let out_pos: HashMap<char, usize> = out_idx.iter().enumerate().map(|(i, &c)| (c, i)).collect();
let red_pos: HashMap<char, usize> = red_idx.iter().enumerate().map(|(i, &c)| (c, i)).collect();
// Precompute strides per input and contributions
struct Contrib {
out_stride: Vec<usize>,
red_stride: Vec<usize>,
}
let contribs: Vec<Contrib> = input_exprs
.iter()
.zip(input_tensors.iter())
.map(|(expr, t)| {
let dims = t.dims().to_vec();
let strides = row_major_strides(&dims);
let mut out_stride = vec![0; out_idx.len()];
let mut red_stride = vec![0; red_idx.len()];
for (ax, (c, &d)) in expr.chars().zip(dims.iter()).enumerate() {
let s = if d == 1 { 0 } else { strides[ax] };
if let Some(&p) = out_pos.get(&c) {
out_stride[p] = s;
} else if let Some(&q) = red_pos.get(&c) {
red_stride[q] = s;
}
}
Contrib { out_stride, red_stride }
})
.collect();
// Prepare output buffer
let mut out = if out_dims.is_empty() {
Tensor::<T>::new(None, &[1])?
} else {
Tensor::<T>::new(None, &out_dims)?
};
let out_rank = out_dims.len();
let red_rank = red_dims.len();
// Materialize output elements one by one
out
.par_iter_mut()
.enumerate()
.for_each(|(out_linear_coord, out)| {
let mut out_index = vec![0usize; out_rank];
{
let mut x = out_linear_coord;
for i in (0..out_rank).rev() {
let d = out_dims[i];
out_index[i] = x % d;
x /= d;
}
}
// Base offset per input from output coordinates
let mut base_off = vec![0usize; input_tensors.len()];
for (i, c) in contribs.iter().enumerate() {
let mut off = 0usize;
for p in 0..out_rank {
off += out_index[p] * c.out_stride[p];
}
base_off[i] = off;
}
let mut acc = T::zero().unwrap();
if red_rank == 0 {
// No reduction -> just multiply corresponding elements
let mut prod = T::one().unwrap();
for (i, t) in input_tensors.iter().enumerate() {
let val = t.get_flat_index(base_off[i]);
prod = prod * val;
}
acc = acc + prod;
} else {
// Iterate over all reduction coords
let red_size = red_dims.iter().product::<usize>();
let mut red_index = vec![0usize; red_rank];
for red_linear_coord in 0..red_size {
{
let mut x = red_linear_coord;
for q in (0..red_rank).rev() {
let d = red_dims[q];
red_index[q] = x % d;
x /= d;
}
}
let mut prod = T::one().unwrap();
for (i, (t, c)) in input_tensors.iter().zip(contribs.iter()).enumerate() {
let mut off = base_off[i];
for q in 0..red_rank {
off += red_index[q] * c.red_stride[q];
}
let val = t.get_flat_index(off);
prod = prod * val;
}
acc = acc + prod;
}
}
// write result
*out = acc;
});
Ok((out, dim_of))
}
}

View File

@@ -940,6 +940,22 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ValTensor<F> {
Ok(())
}
/// remove axes that have dimensions 1
pub fn remove_trivial_axes(&mut self) -> Result<(), TensorError> {
match self {
ValTensor::Value {
inner: v, dims: d, ..
} => {
*v = v.remove_trivial_axes()?;
*d = v.dims().to_vec();
}
ValTensor::Instance { .. } => {
return Err(TensorError::WrongMethod);
}
};
Ok(())
}
/// Takes a slice of the tensor along a given axis
///
/// # Arguments

View File

@@ -1,3 +1,4 @@
use halo2_proofs::plonk::SecondPhase;
use log::{debug, error, warn};
use crate::circuit::{region::ConstantsMap, CheckMode};
@@ -152,6 +153,52 @@ impl VarTensor {
}
}
/// Creates a new VarTensor::Advice with standard (blinded) columns, used when
/// the values need to be hidden in the proof.
///
/// # Arguments
/// * `cs` - The constraint system to create columns in
/// * `logrows` - Log base 2 of the total number of rows
/// * `num_inner_cols` - Number of columns in each inner block
/// * `capacity` - Total number of advice cells to allocate
///
/// # Returns
/// A new VarTensor::Advice in SecondPhase with blinded columns enabled for equality constraints
pub fn new_advice_in_second_phase<F: PrimeField>(
cs: &mut ConstraintSystem<F>,
logrows: usize,
num_inner_cols: usize,
capacity: usize,
) -> Self {
let max_rows = Self::max_rows(cs, logrows);
let max_assignments = Self::max_rows(cs, logrows) * num_inner_cols;
let mut modulo = (capacity / max_assignments) + 1;
// we add a buffer for duplicated rows (we get at most 1 duplicated row per column)
modulo = ((capacity + modulo) / max_assignments) + 1;
let mut advices = vec![];
if modulo > 1 {
debug!("using column duplication for {} advice blocks", modulo - 1);
}
for _ in 0..modulo {
let mut inner = vec![];
for _ in 0..num_inner_cols {
let col = cs.advice_column_in(SecondPhase);
cs.enable_equality(col);
inner.push(col);
}
advices.push(inner);
}
VarTensor::Advice {
inner: advices,
num_inner_cols,
col_size: max_rows,
}
}
/// Initializes fixed columns in the constraint system to support the VarTensor::Advice
/// Fixed columns are used for constant values that are known at circuit creation time.
///
@@ -651,7 +698,7 @@ impl VarTensor {
>(
&self,
region: &mut Region<F>,
row: usize,
_row: usize,
offset: usize,
values: &ValTensor<F>,
check_mode: &CheckMode,
@@ -669,7 +716,7 @@ impl VarTensor {
ValTensor::Value { inner: v, dims, .. } => {
let duplication_freq = self.col_size();
let num_repeats = 1;
let duplication_offset = row;
let (_, _, duplication_offset) = self.cartesian_coord(offset);
// duplicates every nth element to adjust for column overflow
let v = v