Compare commits

..

44 Commits

Author SHA1 Message Date
github-actions[bot]
2a1645cfff ci: update version string in docs 2025-03-01 04:56:38 +00:00
dante
fcbb27677f fix: empty dim len can be 1 (#949) 2025-02-28 23:56:19 -05:00
dante
bc26691bd5 chore: smaller cat dog example (#947) 2025-02-28 10:37:08 -05:00
dante
73c813a81d feat: pass data directly in cli (#939) 2025-02-13 12:35:13 -05:00
dante
ae076aef09 refactor: rm tolerance parameter (#937) 2025-02-11 12:57:18 -05:00
dante
a7544f4060 feat: generalize conv mem layout and ND (#935) 2025-02-10 09:11:58 -05:00
dante
c19fa5218a refactor: enforce max decomp base/legs in args (#936) 2025-02-09 16:15:40 -05:00
rebustron
eb205d0c73 chore: fix typos in comments and docs (#934) 2025-02-08 19:13:17 -05:00
dante
db498f8d7c docs: cat-dog example (#929) 2025-02-08 17:30:13 -05:00
Cypher Pepe
a363c91160 fix: broken links in polycommit.rs and poseidon.rs (#932) 2025-02-08 12:40:53 -05:00
dante
f7f04415fa chore!: add model input/output types to settings (#933)
BREAKING CHANGE: compiled model serialization is not backwards compatible
2025-02-07 16:05:59 -05:00
Jseam
de8d419e5d ci: change to sha hashes (#922) 2025-02-07 12:27:35 -05:00
dante
a38d318923 fix: pypi publication pipeline (#931) 2025-02-05 23:03:21 -05:00
dante
864990fe2d fix: publishing path 2025-02-05 19:57:13 -05:00
dante
29c3e4f977 fix: bump download artifact to v4 2025-02-05 19:05:29 -05:00
dante
0689115828 fix: ezkl-gpu name (#930) 2025-02-05 18:29:28 -05:00
dante
99f741304a Revert "fix: ezkl-gpu install"
This reverts commit 20ac99fdbf.
2025-02-05 18:03:46 -05:00
dante
20ac99fdbf fix: ezkl-gpu install 2025-02-05 18:01:26 -05:00
dante
532fa65e93 fix: patch python release pipeline for v4 2025-02-05 17:59:35 -05:00
dante
cfe5db545c fix: npm and pypi releases 2025-02-05 17:26:36 -05:00
dante
21ad56aea1 refactor: serial lookup commits for metal (#928) 2025-02-05 16:54:12 -05:00
dante
4ed7e0fd29 fix: use variable len domain for poseidon (#927) 2025-02-05 16:52:28 -05:00
dante
05d1f10615 docs: advanced security notices (#926)
---------

Co-authored-by: jason <jason.morton@gmail.com>
2025-02-05 15:14:29 +00:00
dante
9a8c754e45 fix: use onnx convention when integer dividing (#925) 2025-02-05 09:32:44 +00:00
dante
d82766d413 fix: force prover det on argmax/min for collisions (#923) 2025-02-04 12:08:34 +00:00
dante
820a80122b fix: range-check graph input and outputs (#921) 2025-02-04 02:33:27 +00:00
dante
9c64e42bd3 docs: improve quality + code quality fixes (#920) 2025-01-31 10:48:25 +00:00
dante
27b5e5dde3 fix: make flushing err more informative (#919) 2025-01-28 14:53:05 -05:00
dante
83c4afce3b fix: version interpolation in npm publishing (#917) 2025-01-27 23:20:58 -05:00
dante
50740a22df fix: patch pypi whl version labels (#916) 2025-01-27 20:25:03 -05:00
dante
a2624f6303 fix: strict cvx opt bounds to stop prover non-det (#914) 2025-01-24 08:48:50 -05:00
dante
fc5be4f949 fix: syn-sel should be range-checked when overflow (#913) 2025-01-23 12:26:31 -05:00
dante
d0ba505baa fix: node parsing should not panic (#912) 2025-01-22 08:02:29 -05:00
dante
f35688917d fix: rm macos metal bindings from python (#911) 2025-01-21 00:36:57 -05:00
Artem
7ae541ed35 feat: metal acceleration for MSM solving (#909)
---------

Co-authored-by: dante <45801863+alexander-camuto@users.noreply.github.com>
2025-01-20 22:17:24 -05:00
dante
675628cd08 fix!: shuffle argument should include an incrementing index (#904)
BREAKING CHANGE: pk and vk will not be backwards compatible
2025-01-17 09:19:10 -05:00
Artem
4fe7290240 fix: rust ci issue with updating swift pm testing files (#908) 2025-01-14 12:00:55 -05:00
dante
3e027db9b6 fix: apply zizmor suggestions to CI (#906)
---------

Co-authored-by: Jseam <hello.jseam@gmail.com>
2025-01-14 12:00:31 -05:00
Artem
e566acc22a fix: swift pm ci issue with updating testing files (#905) 2025-01-13 18:08:04 -05:00
dante
75ea99e81d fix: eager exec of ok_or error prints (#903) 2025-01-11 13:50:57 -05:00
dante
c5354c382d refactor: range check sanity toggled by CHECKMODE (#902) 2025-01-10 22:58:52 +00:00
dante
bdcba5ca61 feat: add gen-random-data helpers func (#901) 2025-01-09 00:14:27 +00:00
dante
6752a05f19 refactor: pregen mv-lookup blinds (#900) 2025-01-08 17:18:46 +00:00
dante
03aefb85eb chore: version mismatch warnings for artifacts (#899) 2025-01-06 16:01:34 +00:00
86 changed files with 6746 additions and 3544 deletions

View File

@@ -6,23 +6,16 @@ on:
description: "Test scenario tags"
jobs:
bench_elgamal:
runs-on: self-hosted
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-06-27
override: true
components: rustfmt, clippy
- name: Bench elgamal
run: cargo bench --verbose --bench elgamal
bench_poseidon:
permissions:
contents: read
runs-on: self-hosted
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -31,11 +24,15 @@ jobs:
run: cargo bench --verbose --bench poseidon
bench_einsum_accum_matmul:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -44,11 +41,15 @@ jobs:
run: cargo bench --verbose --bench accum_einsum_matmul
bench_accum_matmul_relu:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -57,11 +58,15 @@ jobs:
run: cargo bench --verbose --bench accum_matmul_relu
bench_accum_matmul_relu_overflow:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -70,11 +75,15 @@ jobs:
run: cargo bench --verbose --bench accum_matmul_relu_overflow
bench_relu:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -83,11 +92,15 @@ jobs:
run: cargo bench --verbose --bench relu
bench_accum_dot:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -96,11 +109,15 @@ jobs:
run: cargo bench --verbose --bench accum_dot
bench_accum_conv:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -109,11 +126,15 @@ jobs:
run: cargo bench --verbose --bench accum_conv
bench_accum_sumpool:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -122,11 +143,15 @@ jobs:
run: cargo bench --verbose --bench accum_sumpool
bench_pairwise_add:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -135,11 +160,15 @@ jobs:
run: cargo bench --verbose --bench pairwise_add
bench_accum_sum:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -148,11 +177,15 @@ jobs:
run: cargo bench --verbose --bench accum_sum
bench_pairwise_pow:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true

View File

@@ -15,17 +15,24 @@ defaults:
working-directory: .
jobs:
publish-wasm-bindings:
permissions:
contents: read
packages: write
name: publish-wasm-bindings
env:
RELEASE_TAG: ${{ github.ref_name }}
runs-on: ubuntu-latest
if: startsWith(github.ref, 'refs/tags/')
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
toolchain: nightly-2024-07-18
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2025-02-17
override: true
components: rustfmt, clippy
- uses: jetli/wasm-pack-action@v0.4.0
- uses: jetli/wasm-pack-action@0d096b08b4e5a7de8c28de67e11e945404e9eefa #v0.4.0
with:
# Pin to version 0.12.1
version: 'v0.12.1'
@@ -33,7 +40,7 @@ jobs:
run: rustup target add wasm32-unknown-unknown
- name: Add rust-src
run: rustup component add rust-src --toolchain nightly-2024-07-18-x86_64-unknown-linux-gnu
run: rustup component add rust-src --toolchain nightly-2025-02-17-x86_64-unknown-linux-gnu
- name: Install binaryen
run: |
set -e
@@ -42,41 +49,41 @@ jobs:
wasm-opt --version
- name: Build wasm files for both web and nodejs compilation targets
run: |
wasm-pack build --release --target nodejs --out-dir ./pkg/nodejs . -- -Z build-std="panic_abort,std"
wasm-pack build --release --target web --out-dir ./pkg/web . -- -Z build-std="panic_abort,std" --features web
wasm-pack build --release --target nodejs --out-dir ./pkg/nodejs . -- -Z build-std="panic_abort,std"
wasm-pack build --release --target web --out-dir ./pkg/web . -- -Z build-std="panic_abort,std" --features web
- name: Create package.json in pkg folder
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
run: |
echo '{
"name": "@ezkljs/engine",
"version": "${{ github.ref_name }}",
"dependencies": {
"@types/json-bigint": "^1.0.1",
"json-bigint": "^1.0.0"
},
"files": [
"nodejs/ezkl_bg.wasm",
"nodejs/ezkl.js",
"nodejs/ezkl.d.ts",
"nodejs/package.json",
"nodejs/utils.js",
"web/ezkl_bg.wasm",
"web/ezkl.js",
"web/ezkl.d.ts",
"web/snippets/**/*",
"web/package.json",
"web/utils.js",
"ezkl.d.ts"
],
"main": "nodejs/ezkl.js",
"module": "web/ezkl.js",
"types": "nodejs/ezkl.d.ts",
"sideEffects": [
"web/snippets/*"
]
}' > pkg/package.json
cat > pkg/package.json << EOF
{
"name": "@ezkljs/engine",
"version": "$RELEASE_TAG",
"dependencies": {
"@types/json-bigint": "^1.0.1",
"json-bigint": "^1.0.0"
},
"files": [
"nodejs/ezkl_bg.wasm",
"nodejs/ezkl.js",
"nodejs/ezkl.d.ts",
"nodejs/package.json",
"nodejs/utils.js",
"web/ezkl_bg.wasm",
"web/ezkl.js",
"web/ezkl.d.ts",
"web/snippets/**/*",
"web/package.json",
"web/utils.js",
"ezkl.d.ts"
],
"main": "nodejs/ezkl.js",
"module": "web/ezkl.js",
"types": "nodejs/ezkl.d.ts",
"sideEffects": [
"web/snippets/*"
]
}
EOF
- name: Replace memory definition in nodejs
run: |
@@ -169,7 +176,7 @@ jobs:
curl -s "https://raw.githubusercontent.com/zkonduit/ezkljs-engine/main/README.md" > ./pkg/README.md
- name: Set up Node.js
uses: actions/setup-node@v3
uses: actions/setup-node@1a4442cacd436585916779262731d5b162bc6ec7 #v3.8.2
with:
node-version: "18.12.1"
registry-url: "https://registry.npmjs.org"
@@ -184,21 +191,26 @@ jobs:
in-browser-evm-ver-publish:
permissions:
contents: read
packages: write
name: publish-in-browser-evm-verifier-package
needs: [publish-wasm-bindings]
runs-on: ubuntu-latest
env:
RELEASE_TAG: ${{ github.ref_name }}
if: startsWith(github.ref, 'refs/tags/')
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- name: Update version in package.json
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
run: |
sed -i "s|\"version\": \".*\"|\"version\": \"${{ github.ref_name }}\"|" in-browser-evm-verifier/package.json
sed -i "s|\"version\": \".*\"|\"version\": \"$RELEASE_TAG\"|" in-browser-evm-verifier/package.json
- name: Prepare tag and fetch package integrity
run: |
CLEANED_TAG=${{ github.ref_name }} # Get the tag from ref_name
CLEANED_TAG=${RELEASE_TAG} # Get the tag from ref_name
CLEANED_TAG="${CLEANED_TAG#v}" # Remove leading 'v'
echo "CLEANED_TAG=${CLEANED_TAG}" >> $GITHUB_ENV # Set it as an environment variable for later steps
ENGINE_INTEGRITY=$(npm view @ezkljs/engine@$CLEANED_TAG dist.integrity)
@@ -218,13 +230,13 @@ jobs:
NR==30{$0=" specifier: \"" tag "\""}
NR==31{$0=" version: \"" tag "\""}
NR==400{$0=" /@ezkljs/engine@" tag ":"}
NR==401{$0=" resolution: {integrity: \"" integrity "\"}"} 1' in-browser-evm-verifier/pnpm-lock.yaml > temp.yaml && mv temp.yaml in-browser-evm-verifier/pnpm-lock.yaml
NR==401{$0=" resolution: {integrity: \"" integrity "\"}"} 1' in-browser-evm-verifier/pnpm-lock.yaml > temp.yaml && mv temp.yaml in-browser-evm-verifier/pnpm-lock.yaml
- name: Use pnpm 8
uses: pnpm/action-setup@v2
uses: pnpm/action-setup@eae0cfeb286e66ffb5155f1a79b90583a127a68b #v2.4.1
with:
version: 8
- name: Set up Node.js
uses: actions/setup-node@v3
uses: actions/setup-node@1a4442cacd436585916779262731d5b162bc6ec7 #v3.8.2
with:
node-version: "18.12.1"
registry-url: "https://registry.npmjs.org"
@@ -235,4 +247,4 @@ jobs:
pnpm run build
pnpm publish --no-git-checks
env:
NODE_AUTH_TOKEN: ${{ secrets.NPM_TOKEN }}
NODE_AUTH_TOKEN: ${{ secrets.NPM_TOKEN }}

View File

@@ -6,12 +6,16 @@ on:
description: "Test scenario tags"
jobs:
large-tests:
permissions:
contents: read
runs-on: kaiju
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
toolchain: nightly-2024-07-18
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2025-02-17
override: true
components: rustfmt, clippy
- name: nanoGPT Mock

View File

@@ -18,39 +18,46 @@ defaults:
jobs:
linux:
permissions:
contents: read
packages: write
runs-on: GPU
strategy:
matrix:
target: [x86_64]
env:
RELEASE_TAG: ${{ github.ref_name }}
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions/setup-python@b64ffcaf5b410884ad320a9cfac8866006a109aa #v4.8.0
with:
python-version: 3.12
architecture: x64
- name: Set pyproject.toml version to match github tag
- name: Set pyproject.toml version to match github tag and rename ezkl to ezkl-gpu
shell: bash
run: |
mv pyproject.toml pyproject.toml.orig
sed "s/ezkl/ezkl-gpu/" pyproject.toml.orig >pyproject.toml
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" pyproject.toml.orig >pyproject.toml
sed "s/ezkl/ezkl-gpu/" pyproject.toml.orig > pyproject.toml.tmp
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" pyproject.toml.tmp > pyproject.toml
- uses: actions-rs/toolchain@v1
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
components: rustfmt, clippy
- name: Set Cargo.toml version to match github tag
- name: Set Cargo.toml version to match github tag and rename ezkl to ezkl-gpu
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
# the ezkl substitution here looks for the first instance of name = "ezkl" and changes it to "ezkl-gpu"
run: |
mv Cargo.toml Cargo.toml.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.toml.orig >Cargo.toml
sed "0,/name = \"ezkl\"/s/name = \"ezkl\"/name = \"ezkl-gpu\"/" Cargo.toml.orig > Cargo.toml.tmp
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.toml.tmp > Cargo.toml
mv Cargo.lock Cargo.lock.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.lock.orig >Cargo.lock
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.lock.orig > Cargo.lock
- name: Install required libraries
shell: bash
@@ -58,7 +65,7 @@ jobs:
sudo apt-get update && sudo apt-get install -y openssl pkg-config libssl-dev
- name: Build wheels
uses: PyO3/maturin-action@v1
uses: PyO3/maturin-action@5f8a1b3b0aad13193f46c9131f9b9e663def8ce5 #v1.46.0
with:
target: ${{ matrix.target }}
manylinux: auto
@@ -71,7 +78,7 @@ jobs:
pip install ezkl-gpu --no-index --find-links dist --force-reinstall
- name: Upload wheels
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@65c4c4a1ddee5b72f698fdd19549f0f0fb45cf08 #v4.6.0
with:
name: wheels
path: dist
@@ -87,7 +94,7 @@ jobs:
# needs: [ macos, windows, linux, linux-cross, musllinux, musllinux-cross ]
needs: [linux]
steps:
- uses: actions/download-artifact@v3
- uses: actions/download-artifact@fa0a91b85d4f404e444e00e005971372dc801d16 #v4.1.8
with:
name: wheels
- name: List Files
@@ -99,14 +106,14 @@ jobs:
# publishes to PyPI
- name: Publish package distributions to PyPI
continue-on-error: true
uses: pypa/gh-action-pypi-publish@unstable/v1
uses: pypa/gh-action-pypi-publish@76f52bc884231f62b9a034ebfe128415bbaabdfc #v1.12.4
with:
packages-dir: ./
packages-dir: ./wheels
# publishes to TestPyPI
- name: Publish package distribution to TestPyPI
continue-on-error: true
uses: pypa/gh-action-pypi-publish@unstable/v1
uses: pypa/gh-action-pypi-publish@76f52bc884231f62b9a034ebfe128415bbaabdfc #v1.12.4
with:
repository-url: https://test.pypi.org/legacy/
packages-dir: ./
packages-dir: ./wheels

View File

@@ -16,36 +16,53 @@ defaults:
jobs:
macos:
permissions:
contents: read
runs-on: macos-latest
if: startsWith(github.ref, 'refs/tags/')
strategy:
matrix:
target: [x86_64, universal2-apple-darwin]
env:
RELEASE_TAG: ${{ github.ref_name }}
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions/setup-python@b64ffcaf5b410884ad320a9cfac8866006a109aa #v4.8.0
with:
python-version: 3.12
architecture: x64
- name: Set pyproject.toml version to match github tag
shell: bash
run: |
mv pyproject.toml pyproject.toml.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" pyproject.toml.orig >pyproject.toml
- name: Set Cargo.toml version to match github tag
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
run: |
mv Cargo.toml Cargo.toml.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.toml.orig >Cargo.toml
mv Cargo.lock Cargo.lock.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.lock.orig >Cargo.lock
- uses: actions-rs/toolchain@v1
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2024-07-18
toolchain: nightly-2025-02-17
override: true
components: rustfmt, clippy
- name: Build wheels
uses: PyO3/maturin-action@v1
if: matrix.target == 'universal2-apple-darwin'
uses: PyO3/maturin-action@5f8a1b3b0aad13193f46c9131f9b9e663def8ce5 #v1.46.0
with:
target: ${{ matrix.target }}
args: --release --out dist --features python-bindings
- name: Build wheels
if: matrix.target == 'x86_64'
uses: PyO3/maturin-action@5f8a1b3b0aad13193f46c9131f9b9e663def8ce5 #v1.46.0
with:
target: ${{ matrix.target }}
args: --release --out dist --features python-bindings
@@ -56,24 +73,36 @@ jobs:
python -c "import ezkl"
- name: Upload wheels
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@65c4c4a1ddee5b72f698fdd19549f0f0fb45cf08 #v4.6.0
with:
name: wheels
name: dist-macos-${{ matrix.target }}
path: dist
windows:
permissions:
contents: read
runs-on: windows-latest
if: startsWith(github.ref, 'refs/tags/')
strategy:
matrix:
target: [x64, x86]
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions/setup-python@b64ffcaf5b410884ad320a9cfac8866006a109aa #v4.8.0
with:
python-version: 3.12
architecture: ${{ matrix.target }}
- name: Set pyproject.toml version to match github tag
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
run: |
mv pyproject.toml pyproject.toml.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" pyproject.toml.orig >pyproject.toml
- name: Set Cargo.toml version to match github tag
shell: bash
env:
@@ -84,14 +113,14 @@ jobs:
mv Cargo.lock Cargo.lock.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.lock.orig >Cargo.lock
- uses: actions-rs/toolchain@v1
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2024-07-18
toolchain: nightly-2025-02-17
override: true
components: rustfmt, clippy
- name: Build wheels
uses: PyO3/maturin-action@v1
uses: PyO3/maturin-action@5f8a1b3b0aad13193f46c9131f9b9e663def8ce5 #v1.46.0
with:
target: ${{ matrix.target }}
args: --release --out dist --features python-bindings
@@ -101,24 +130,36 @@ jobs:
python -c "import ezkl"
- name: Upload wheels
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@65c4c4a1ddee5b72f698fdd19549f0f0fb45cf08 #v4.6.0 #v4.6.0
with:
name: wheels
name: dist-windows-${{ matrix.target }}
path: dist
linux:
permissions:
contents: read
runs-on: ubuntu-latest
if: startsWith(github.ref, 'refs/tags/')
strategy:
matrix:
target: [x86_64]
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions/setup-python@b64ffcaf5b410884ad320a9cfac8866006a109aa #v4.8.0
with:
python-version: 3.12
architecture: x64
- name: Set pyproject.toml version to match github tag
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
run: |
mv pyproject.toml pyproject.toml.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" pyproject.toml.orig >pyproject.toml
- name: Set Cargo.toml version to match github tag
shell: bash
env:
@@ -129,14 +170,13 @@ jobs:
mv Cargo.lock Cargo.lock.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.lock.orig >Cargo.lock
- name: Install required libraries
shell: bash
run: |
sudo apt-get update && sudo apt-get install -y openssl pkg-config libssl-dev
- name: Build wheels
uses: PyO3/maturin-action@v1
uses: PyO3/maturin-action@5f8a1b3b0aad13193f46c9131f9b9e663def8ce5 #v1.46.0
with:
target: ${{ matrix.target }}
manylinux: auto
@@ -163,63 +203,14 @@ jobs:
python -c "import ezkl"
- name: Upload wheels
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@65c4c4a1ddee5b72f698fdd19549f0f0fb45cf08 #v4.6.0
with:
name: wheels
name: dist-linux-${{ matrix.target }}
path: dist
# There's a problem with the maturin-action toolchain for arm arch leading to failed builds
# linux-cross:
# runs-on: ubuntu-latest
# strategy:
# matrix:
# target: [aarch64, armv7]
# steps:
# - uses: actions/checkout@v4
# - uses: actions/setup-python@v4
# with:
# python-version: 3.12
# - name: Install cross-compilation tools for aarch64
# if: matrix.target == 'aarch64'
# run: |
# sudo apt-get update
# sudo apt-get install -y gcc make gcc-aarch64-linux-gnu binutils-aarch64-linux-gnu libc6-dev-arm64-cross libusb-1.0-0-dev libatomic1-arm64-cross
# - name: Install cross-compilation tools for armv7
# if: matrix.target == 'armv7'
# run: |
# sudo apt-get update
# sudo apt-get install -y gcc make gcc-arm-linux-gnueabihf binutils-arm-linux-gnueabihf libc6-dev-armhf-cross libusb-1.0-0-dev libatomic1-armhf-cross
# - name: Build wheels
# uses: PyO3/maturin-action@v1
# with:
# target: ${{ matrix.target }}
# manylinux: auto
# args: --release --out dist --features python-bindings
# - uses: uraimo/run-on-arch-action@v2.5.0
# name: Install built wheel
# with:
# arch: ${{ matrix.target }}
# distro: ubuntu20.04
# githubToken: ${{ github.token }}
# install: |
# apt-get update
# apt-get install -y --no-install-recommends python3 python3-pip
# pip3 install -U pip
# run: |
# pip3 install ezkl --no-index --find-links dist/ --force-reinstall
# python3 -c "import ezkl"
# - name: Upload wheels
# uses: actions/upload-artifact@v3
# with:
# name: wheels
# path: dist
musllinux:
permissions:
contents: read
runs-on: ubuntu-latest
if: startsWith(github.ref, 'refs/tags/')
strategy:
@@ -227,8 +218,10 @@ jobs:
target:
- x86_64-unknown-linux-musl
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions/setup-python@b64ffcaf5b410884ad320a9cfac8866006a109aa #v4.8.0
with:
python-version: 3.12
architecture: x64
@@ -250,13 +243,14 @@ jobs:
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.toml.orig >Cargo.toml
mv Cargo.lock Cargo.lock.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.lock.orig >Cargo.lock
- name: Install required libraries
shell: bash
run: |
sudo apt-get update && sudo apt-get install -y pkg-config libssl-dev
- name: Build wheels
uses: PyO3/maturin-action@v1
uses: PyO3/maturin-action@5f8a1b3b0aad13193f46c9131f9b9e663def8ce5 #v1.46.0
with:
target: ${{ matrix.target }}
manylinux: musllinux_1_2
@@ -277,12 +271,14 @@ jobs:
python3 -c "import ezkl"
- name: Upload wheels
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@65c4c4a1ddee5b72f698fdd19549f0f0fb45cf08 #v4.6.0
with:
name: wheels
name: dist-musllinux-${{ matrix.target }}
path: dist
musllinux-cross:
permissions:
contents: read
runs-on: ubuntu-latest
if: startsWith(github.ref, 'refs/tags/')
strategy:
@@ -291,11 +287,21 @@ jobs:
- target: aarch64-unknown-linux-musl
arch: aarch64
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions/setup-python@b64ffcaf5b410884ad320a9cfac8866006a109aa #v4.8.0
with:
python-version: 3.12
- name: Set pyproject.toml version to match github tag
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
run: |
mv pyproject.toml pyproject.toml.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" pyproject.toml.orig >pyproject.toml
- name: Set Cargo.toml version to match github tag
shell: bash
env:
@@ -307,13 +313,13 @@ jobs:
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.lock.orig >Cargo.lock
- name: Build wheels
uses: PyO3/maturin-action@v1
uses: PyO3/maturin-action@5f8a1b3b0aad13193f46c9131f9b9e663def8ce5 #v1.46.0
with:
target: ${{ matrix.platform.target }}
manylinux: musllinux_1_2
args: --release --out dist --features python-bindings
- uses: uraimo/run-on-arch-action@v2.8.1
- uses: uraimo/run-on-arch-action@5397f9e30a9b62422f302092631c99ae1effcd9e #v2.8.1
name: Install built wheel
with:
arch: ${{ matrix.platform.arch }}
@@ -328,9 +334,9 @@ jobs:
python3 -c "import ezkl"
- name: Upload wheels
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@65c4c4a1ddee5b72f698fdd19549f0f0fb45cf08 #v4.6.0
with:
name: wheels
name: dist-musllinux-${{ matrix.platform.target }}
path: dist
pypi-publish:
@@ -339,44 +345,43 @@ jobs:
permissions:
id-token: write
if: "startsWith(github.ref, 'refs/tags/')"
# TODO: Uncomment if linux-cross is working
# needs: [ macos, windows, linux, linux-cross, musllinux, musllinux-cross ]
needs: [macos, windows, linux, musllinux, musllinux-cross]
steps:
- uses: actions/download-artifact@v3
- uses: actions/download-artifact@fa0a91b85d4f404e444e00e005971372dc801d16 #v4.1.8
with:
name: wheels
pattern: dist-*
merge-multiple: true
path: wheels
- name: List Files
run: ls -R
# Both publish steps will fail if there is no trusted publisher setup
# On failure the publish step will then simply continue to the next one
# # publishes to TestPyPI
# - name: Publish package distribution to TestPyPI
# uses: pypa/gh-action-pypi-publish@76f52bc884231f62b9a034ebfe128415bbaabdfc #v1.12.4
# with:
# repository-url: https://test.pypi.org/legacy/
# packages-dir: ./
# publishes to PyPI
- name: Publish package distributions to PyPI
continue-on-error: true
uses: pypa/gh-action-pypi-publish@unstable/v1
uses: pypa/gh-action-pypi-publish@76f52bc884231f62b9a034ebfe128415bbaabdfc #v1.12.4
with:
packages-dir: ./
packages-dir: ./wheels
# publishes to TestPyPI
- name: Publish package distribution to TestPyPI
continue-on-error: true
uses: pypa/gh-action-pypi-publish@unstable/v1
with:
repository-url: https://test.pypi.org/legacy/
packages-dir: ./
doc-publish:
permissions:
contents: read
name: Trigger ReadTheDocs Build
runs-on: ubuntu-latest
needs: pypi-publish
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- name: Trigger RTDs build
uses: dfm/rtds-action@v1
with:
webhook_url: ${{ secrets.RTDS_WEBHOOK_URL }}
webhook_token: ${{ secrets.RTDS_WEBHOOK_TOKEN }}
commit_ref: ${{ github.ref_name }}
commit_ref: ${{ github.ref_name }}

View File

@@ -10,6 +10,9 @@ on:
- "*"
jobs:
create-release:
permissions:
contents: read
packages: write
name: create-release
runs-on: ubuntu-22.04
if: startsWith(github.ref, 'refs/tags/')
@@ -27,12 +30,15 @@ jobs:
- name: Create Github Release
id: create-release
uses: softprops/action-gh-release@v1
uses: softprops/action-gh-release@c95fe1489396fe8a9eb87c0abf8aa5b2ef267fda #v2.2.1
with:
token: ${{ secrets.RELEASE_TOKEN }}
tag_name: ${{ env.EZKL_VERSION }}
build-release-gpu:
permissions:
contents: read
packages: write
name: build-release-gpu
needs: ["create-release"]
runs-on: GPU
@@ -43,13 +49,16 @@ jobs:
RUST_BACKTRACE: 1
PCRE2_SYS_STATIC: 1
steps:
- uses: actions-rs/toolchain@v1
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2024-07-18
toolchain: nightly-2025-02-17
override: true
components: rustfmt, clippy
- name: Checkout repo
uses: actions/checkout@v4
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- name: Get release version from tag
shell: bash
@@ -81,7 +90,7 @@ jobs:
echo "ASSET=build-artifacts/ezkl-linux-gpu.tar.gz" >> $GITHUB_ENV
- name: Upload release archive
uses: actions/upload-release-asset@v1.0.2
uses: actions/upload-release-asset@e8f9f06c4b078e705bd2ea027f0926603fc9b4d5 #v1.0.2
env:
GITHUB_TOKEN: ${{ secrets.RELEASE_TOKEN }}
with:
@@ -91,6 +100,10 @@ jobs:
asset_content_type: application/octet-stream
build-release:
permissions:
contents: read
packages: write
issues: write
name: build-release
needs: ["create-release"]
runs-on: ${{ matrix.os }}
@@ -106,32 +119,34 @@ jobs:
include:
- build: windows-msvc
os: windows-latest
rust: nightly-2024-07-18
rust: nightly-2025-02-17
target: x86_64-pc-windows-msvc
- build: macos
os: macos-13
rust: nightly-2024-07-18
rust: nightly-2025-02-17
target: x86_64-apple-darwin
- build: macos-aarch64
os: macos-13
rust: nightly-2024-07-18
rust: nightly-2025-02-17
target: aarch64-apple-darwin
- build: linux-musl
os: ubuntu-22.04
rust: nightly-2024-07-18
rust: nightly-2025-02-17
target: x86_64-unknown-linux-musl
- build: linux-gnu
os: ubuntu-22.04
rust: nightly-2024-07-18
rust: nightly-2025-02-17
target: x86_64-unknown-linux-gnu
- build: linux-aarch64
os: ubuntu-22.04
rust: nightly-2024-07-18
rust: nightly-2025-02-17
target: aarch64-unknown-linux-gnu
steps:
- name: Checkout repo
uses: actions/checkout@v4
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- name: Get release version from tag
shell: bash
@@ -155,7 +170,7 @@ jobs:
fi
- name: Install Rust
uses: dtolnay/rust-toolchain@nightly
uses: dtolnay/rust-toolchain@4f94fbe7e03939b0e674bcc9ca609a16088f63ff #nightly branch, TODO: update when required
with:
target: ${{ matrix.target }}
@@ -181,14 +196,18 @@ jobs:
echo "target flag is: ${{ env.TARGET_FLAGS }}"
echo "target dir is: ${{ env.TARGET_DIR }}"
- name: Build release binary (no asm)
if: matrix.build != 'linux-gnu'
- name: Build release binary (no asm or metal)
if: matrix.build != 'linux-gnu' && matrix.build != 'macos-aarch64'
run: ${{ env.CARGO }} build --release ${{ env.TARGET_FLAGS }} -Z sparse-registry
- name: Build release binary (asm)
if: matrix.build == 'linux-gnu'
run: ${{ env.CARGO }} build --release ${{ env.TARGET_FLAGS }} -Z sparse-registry --features asm
- name: Build release binary (metal)
if: matrix.build == 'macos-aarch64'
run: ${{ env.CARGO }} build --release ${{ env.TARGET_FLAGS }} -Z sparse-registry --features macos-metal
- name: Strip release binary
if: matrix.build != 'windows-msvc' && matrix.build != 'linux-aarch64'
run: strip "target/${{ matrix.target }}/release/ezkl"
@@ -214,7 +233,7 @@ jobs:
echo "ASSET=build-artifacts/ezkl-win.zip" >> $GITHUB_ENV
- name: Upload release archive
uses: actions/upload-release-asset@v1.0.2
uses: actions/upload-release-asset@e8f9f06c4b078e705bd2ea027f0926603fc9b4d5 #v1.0.2
env:
GITHUB_TOKEN: ${{ secrets.RELEASE_TOKEN }}
with:

File diff suppressed because it is too large Load Diff

32
.github/workflows/static-analysis.yml vendored Normal file
View File

@@ -0,0 +1,32 @@
name: Static Analysis
on:
push:
branches: [ main ]
pull_request:
branches: [ main ]
jobs:
analyze:
permissions:
contents: read
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly-2025-02-17
override: true
components: rustfmt, clippy
# Run Zizmor static analysis
- name: Install Zizmor
run: cargo install --locked zizmor
- name: Run Zizmor Analysis
run: zizmor .

View File

@@ -9,18 +9,24 @@ on:
jobs:
build-and-update:
permissions:
contents: read
packages: write
runs-on: macos-latest
env:
EZKL_SWIFT_PACKAGE_REPO: github.com/zkonduit/ezkl-swift-package.git
RELEASE_TAG: ${{ github.ref_name }}
steps:
- name: Checkout EZKL
uses: actions/checkout@v3
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- name: Extract TAG from github.ref_name
run: |
# github.ref_name is provided by GitHub Actions and contains the tag name directly.
TAG="${{ github.ref_name }}"
TAG="${RELEASE_TAG}"
echo "Original TAG: $TAG"
# Remove leading 'v' if present to match the Swift Package Manager version format.
NEW_TAG=${TAG#v}
@@ -28,7 +34,7 @@ jobs:
echo "TAG=$NEW_TAG" >> $GITHUB_ENV
- name: Install Rust (nightly)
uses: actions-rs/toolchain@v1
uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly
override: true
@@ -47,7 +53,8 @@ jobs:
- name: Copy Test Files
run: |
rm -rf ezkl-swift-package/Tests/EzklAssets/*
rm -rf ezkl-swift-package/Tests/EzklAssets/
mkdir -p ezkl-swift-package/Tests/EzklAssets/
cp tests/assets/kzg ezkl-swift-package/Tests/EzklAssets/kzg.srs
cp tests/assets/input.json ezkl-swift-package/Tests/EzklAssets/input.json
cp tests/assets/model.compiled ezkl-swift-package/Tests/EzklAssets/network.ezkl
@@ -105,7 +112,6 @@ jobs:
cd ezkl-swift-package
git add Sources/EzklCoreBindings Tests/EzklAssets
git commit -m "Automatically updated EzklCoreBindings for EZKL"
if ! git push origin; then
echo "::error::Failed to push changes to ${{ env.EZKL_SWIFT_PACKAGE_REPO }}. Please ensure that EZKL_PORTER_TOKEN has the correct permissions."
exit 1
@@ -115,7 +121,6 @@ jobs:
run: |
cd ezkl-swift-package
source $GITHUB_ENV
# Tag the latest commit on the current branch
if git rev-parse "$TAG" >/dev/null 2>&1; then
echo "Tag $TAG already exists locally. Skipping tag creation."

View File

@@ -11,10 +11,12 @@ jobs:
contents: write
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- name: Bump version and push tag
id: tag_version
uses: mathieudutour/github-tag-action@v6.2
uses: mathieudutour/github-tag-action@a22cf08638b34d5badda920f9daf6e72c477b07b #v6.2
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
@@ -44,7 +46,7 @@ jobs:
git tag $RELEASE_TAG
- name: Push changes
uses: ad-m/github-push-action@master
uses: ad-m/github-push-action@77c5b412c50b723d2a4fbc6d71fb5723bcd439aa #master
env:
RELEASE_TAG: ${{ steps.tag_version.outputs.new_tag }}
with:

130
Cargo.lock generated
View File

@@ -1,6 +1,6 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
version = 3
version = 4
[[package]]
name = "addr2line"
@@ -944,7 +944,7 @@ dependencies = [
"bitflags 2.5.0",
"cexpr",
"clang-sys",
"itertools 0.12.1",
"itertools 0.11.0",
"lazy_static",
"lazycell",
"log",
@@ -1760,7 +1760,7 @@ checksum = "a650a461c6a8ff1ef205ed9a2ad56579309853fecefc2423f73dced342f92258"
[[package]]
name = "ecc"
version = "0.1.0"
source = "git+https://github.com/zkonduit/halo2wrong?branch=ac/chunked-mv-lookup#b43ebe30e84825d0d004fa27803d99c4187d419f"
source = "git+https://github.com/zkonduit/halo2wrong?branch=ac%2Fchunked-mv-lookup#b43ebe30e84825d0d004fa27803d99c4187d419f"
dependencies = [
"integer",
"num-bigint",
@@ -1835,6 +1835,16 @@ dependencies = [
"syn 2.0.90",
]
[[package]]
name = "env_filter"
version = "0.1.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "186e05a59d4c50738528153b83b0b0194d3a29507dfec16eccd4b342903397d0"
dependencies = [
"log",
"regex",
]
[[package]]
name = "env_logger"
version = "0.10.2"
@@ -1848,6 +1858,19 @@ dependencies = [
"termcolor",
]
[[package]]
name = "env_logger"
version = "0.11.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "dcaee3d8e3cfc3fd92428d477bc97fc29ec8716d180c0d74c643bb26166660e0"
dependencies = [
"anstream",
"anstyle",
"env_filter",
"humantime",
"log",
]
[[package]]
name = "equivalent"
version = "1.0.1"
@@ -1923,7 +1946,7 @@ dependencies = [
"console_error_panic_hook",
"criterion 0.5.1",
"ecc",
"env_logger",
"env_logger 0.10.2",
"ethabi",
"foundry-compilers",
"gag",
@@ -1931,7 +1954,7 @@ dependencies = [
"halo2_gadgets",
"halo2_proofs",
"halo2_solidity_verifier",
"halo2curves 0.7.0",
"halo2curves 0.7.0 (git+https://github.com/privacy-scaling-explorations/halo2curves?rev=b753a832e92d5c86c5c997327a9cf9de86a18851)",
"hex",
"indicatif",
"instant",
@@ -1939,20 +1962,17 @@ dependencies = [
"lazy_static",
"log",
"maybe-rayon",
"metal",
"mimalloc",
"mnist",
"num",
"objc",
"openssl",
"pg_bigdecimal",
"portable-atomic",
"pyo3",
"pyo3-async-runtimes",
"pyo3-log",
"pyo3-stub-gen",
"rand 0.8.5",
"regex",
"reqwest",
"semver 1.0.22",
"seq-macro",
@@ -2377,7 +2397,7 @@ dependencies = [
[[package]]
name = "halo2_gadgets"
version = "0.2.0"
source = "git+https://github.com/zkonduit/halo2#6d72498928cdb69ce0de9f2230d2873ca2cf5324"
source = "git+https://github.com/zkonduit/halo2#f441c920be45f8f05d2c06a173d82e8885a5ed4d"
dependencies = [
"arrayvec 0.7.4",
"bitvec",
@@ -2394,14 +2414,14 @@ dependencies = [
[[package]]
name = "halo2_proofs"
version = "0.3.0"
source = "git+https://github.com/zkonduit/halo2#6d72498928cdb69ce0de9f2230d2873ca2cf5324#6d72498928cdb69ce0de9f2230d2873ca2cf5324"
source = "git+https://github.com/zkonduit/halo2#f441c920be45f8f05d2c06a173d82e8885a5ed4d#f441c920be45f8f05d2c06a173d82e8885a5ed4d"
dependencies = [
"bincode",
"blake2b_simd",
"env_logger",
"env_logger 0.10.2",
"ff",
"group",
"halo2curves 0.7.0",
"halo2curves 0.7.0 (git+https://github.com/privacy-scaling-explorations/halo2curves?rev=b753a832e92d5c86c5c997327a9cf9de86a18851)",
"icicle-bn254",
"icicle-core",
"icicle-cuda-runtime",
@@ -2409,6 +2429,7 @@ dependencies = [
"lazy_static",
"log",
"maybe-rayon",
"mopro-msm",
"rand_chacha",
"rand_core 0.6.4",
"rustc-hash 2.0.0",
@@ -2494,6 +2515,36 @@ dependencies = [
"subtle",
]
[[package]]
name = "halo2curves"
version = "0.7.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d380afeef3f1d4d3245b76895172018cfb087d9976a7cabcd5597775b2933e07"
dependencies = [
"blake2",
"digest 0.10.7",
"ff",
"group",
"halo2derive 0.1.0 (registry+https://github.com/rust-lang/crates.io-index)",
"hex",
"lazy_static",
"num-bigint",
"num-integer",
"num-traits",
"pairing",
"pasta_curves",
"paste",
"rand 0.8.5",
"rand_core 0.6.4",
"rayon",
"serde",
"serde_arrays",
"sha2",
"static_assertions",
"subtle",
"unroll",
]
[[package]]
name = "halo2curves"
version = "0.7.0"
@@ -2503,7 +2554,7 @@ dependencies = [
"digest 0.10.7",
"ff",
"group",
"halo2derive",
"halo2derive 0.1.0 (git+https://github.com/privacy-scaling-explorations/halo2curves?rev=b753a832e92d5c86c5c997327a9cf9de86a18851)",
"hex",
"lazy_static",
"num-bigint",
@@ -2523,6 +2574,20 @@ dependencies = [
"unroll",
]
[[package]]
name = "halo2derive"
version = "0.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bdb99e7492b4f5ff469d238db464131b86c2eaac814a78715acba369f64d2c76"
dependencies = [
"num-bigint",
"num-integer",
"num-traits",
"proc-macro2",
"quote",
"syn 1.0.109",
]
[[package]]
name = "halo2derive"
version = "0.1.0"
@@ -2539,7 +2604,7 @@ dependencies = [
[[package]]
name = "halo2wrong"
version = "0.1.0"
source = "git+https://github.com/zkonduit/halo2wrong?branch=ac/chunked-mv-lookup#b43ebe30e84825d0d004fa27803d99c4187d419f"
source = "git+https://github.com/zkonduit/halo2wrong?branch=ac%2Fchunked-mv-lookup#b43ebe30e84825d0d004fa27803d99c4187d419f"
dependencies = [
"halo2_proofs",
"num-bigint",
@@ -2890,7 +2955,7 @@ dependencies = [
[[package]]
name = "integer"
version = "0.1.0"
source = "git+https://github.com/zkonduit/halo2wrong?branch=ac/chunked-mv-lookup#b43ebe30e84825d0d004fa27803d99c4187d419f"
source = "git+https://github.com/zkonduit/halo2wrong?branch=ac%2Fchunked-mv-lookup#b43ebe30e84825d0d004fa27803d99c4187d419f"
dependencies = [
"maingate",
"num-bigint",
@@ -3201,7 +3266,7 @@ dependencies = [
[[package]]
name = "maingate"
version = "0.1.0"
source = "git+https://github.com/zkonduit/halo2wrong?branch=ac/chunked-mv-lookup#b43ebe30e84825d0d004fa27803d99c4187d419f"
source = "git+https://github.com/zkonduit/halo2wrong?branch=ac%2Fchunked-mv-lookup#b43ebe30e84825d0d004fa27803d99c4187d419f"
dependencies = [
"halo2wrong",
"num-bigint",
@@ -3283,7 +3348,8 @@ dependencies = [
[[package]]
name = "metal"
version = "0.29.0"
source = "git+https://github.com/gfx-rs/metal-rs#0e1918b34689c4b8cd13a43372f9898680547ee9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7ecfd3296f8c56b7c1f6fbac3c71cefa9d78ce009850c45000015f206dc7fa21"
dependencies = [
"bitflags 2.5.0",
"block",
@@ -3354,6 +3420,28 @@ dependencies = [
"byteorder",
]
[[package]]
name = "mopro-msm"
version = "0.1.0"
source = "git+https://github.com/zkonduit/metal-msm-gpu-acceleration.git#be5f647b1a6c1a6ea9024390744a2b4d87f5d002"
dependencies = [
"bincode",
"env_logger 0.11.6",
"halo2curves 0.7.0 (registry+https://github.com/rust-lang/crates.io-index)",
"instant",
"itertools 0.13.0",
"lazy_static",
"log",
"metal",
"objc",
"once_cell",
"rand 0.8.5",
"rayon",
"serde",
"thiserror",
"walkdir",
]
[[package]]
name = "native-tls"
version = "0.2.11"
@@ -3587,9 +3675,9 @@ checksum = "ff011a302c396a5197692431fc1948019154afc178baf7d8e37367442a4601cf"
[[package]]
name = "openssl-src"
version = "300.2.3+3.2.1"
version = "300.4.1+3.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5cff92b6f71555b61bb9315f7c64da3ca43d87531622120fea0195fc761b4843"
checksum = "faa4eac4138c62414b5622d1b31c5c304f34b406b013c079c2bbc652fdd6678c"
dependencies = [
"cc",
]
@@ -5142,7 +5230,7 @@ checksum = "b7c388c1b5e93756d0c740965c41e8822f866621d41acbdf6336a6a168f8840c"
[[package]]
name = "snark-verifier"
version = "0.1.1"
source = "git+https://github.com/zkonduit/snark-verifier?branch=ac/chunked-mv-lookup#8762701ab8fa04e7d243a346030afd85633ec970"
source = "git+https://github.com/zkonduit/snark-verifier?branch=ac%2Fchunked-mv-lookup#8762701ab8fa04e7d243a346030afd85633ec970"
dependencies = [
"ecc",
"halo2_proofs",
@@ -6146,7 +6234,7 @@ dependencies = [
[[package]]
name = "uniffi_testing"
version = "0.28.0"
source = "git+https://github.com/ElusAegis/uniffi-rs?branch=feat/testing-feature-build-fix#4684b9e7da2d9c964c2b3a73883947aab7370a06"
source = "git+https://github.com/ElusAegis/uniffi-rs?branch=feat%2Ftesting-feature-build-fix#4684b9e7da2d9c964c2b3a73883947aab7370a06"
dependencies = [
"anyhow",
"camino",

View File

@@ -3,7 +3,7 @@ cargo-features = ["profile-rustflags"]
[package]
name = "ezkl"
version = "0.0.0"
edition = "2021"
edition = "2024"
default-run = "ezkl"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
@@ -40,7 +40,6 @@ maybe-rayon = { version = "0.1.1", default-features = false }
bincode = { version = "1.3.3", default-features = false }
unzip-n = "0.1.2"
num = "0.4.1"
portable-atomic = { version = "1.6.0", optional = true }
tosubcommand = { git = "https://github.com/zkonduit/enum_to_subcommand", package = "tosubcommand", optional = true }
semver = { version = "1.0.22", optional = true }
@@ -74,7 +73,6 @@ tokio-postgres = { version = "0.7.10", optional = true }
pg_bigdecimal = { version = "0.1.5", optional = true }
lazy_static = { version = "1.4.0", optional = true }
colored_json = { version = "3.0.1", default-features = false, optional = true }
regex = { version = "1", default-features = false, optional = true }
tokio = { version = "1.35.0", default-features = false, features = [
"macros",
"rt-multi-thread",
@@ -91,7 +89,6 @@ pyo3-async-runtimes = { git = "https://github.com/PyO3/pyo3-async-runtimes", ver
pyo3-log = { version = "0.12.0", default-features = false, optional = true }
tract-onnx = { git = "https://github.com/sonos/tract/", rev = "37132e0397d0a73e5bd3a8615d932dabe44f6736", default-features = false, optional = true }
tabled = { version = "0.12.0", optional = true }
metal = { git = "https://github.com/gfx-rs/metal-rs", optional = true }
objc = { version = "0.2.4", optional = true }
mimalloc = { version = "0.1", optional = true }
pyo3-stub-gen = { version = "0.6.0", optional = true }
@@ -245,16 +242,14 @@ ezkl = [
"dep:indicatif",
"dep:gag",
"dep:reqwest",
"dep:openssl",
"dep:tokio-postgres",
"dep:pg_bigdecimal",
"dep:lazy_static",
"dep:regex",
"dep:tokio",
"dep:openssl",
"dep:mimalloc",
"dep:chrono",
"dep:sha256",
"dep:portable-atomic",
"dep:clap_complete",
"dep:halo2_solidity_verifier",
"dep:semver",
@@ -277,13 +272,15 @@ icicle = ["halo2_proofs/icicle_gpu"]
empty-cmd = []
no-banner = []
no-update = []
macos-metal = ["halo2_proofs/macos"]
ios-metal = ["halo2_proofs/ios"]
[patch.'https://github.com/zkonduit/halo2']
halo2_proofs = { git = "https://github.com/zkonduit/halo2#6d72498928cdb69ce0de9f2230d2873ca2cf5324", package = "halo2_proofs" }
halo2_proofs = { git = "https://github.com/zkonduit/halo2#f441c920be45f8f05d2c06a173d82e8885a5ed4d", package = "halo2_proofs" }
[patch.'https://github.com/zkonduit/halo2#0654e92bdf725fd44d849bfef3643870a8c7d50b']
halo2_proofs = { git = "https://github.com/zkonduit/halo2#6d72498928cdb69ce0de9f2230d2873ca2cf5324", package = "halo2_proofs" }
halo2_proofs = { git = "https://github.com/zkonduit/halo2#f441c920be45f8f05d2c06a173d82e8885a5ed4d", package = "halo2_proofs" }
[patch.crates-io]
uniffi_testing = { git = "https://github.com/ElusAegis/uniffi-rs", branch = "feat/testing-feature-build-fix" }
@@ -292,9 +289,13 @@ uniffi_testing = { git = "https://github.com/ElusAegis/uniffi-rs", branch = "fea
rustflags = ["-C", "relocation-model=pic"]
lto = "fat"
codegen-units = 1
# panic = "abort"
#panic = "abort"
[profile.test-runs]
inherits = "dev"
opt-level = 3
[package.metadata.wasm-pack.profile.release]
wasm-opt = [
"-O4",

View File

@@ -150,6 +150,13 @@ Ezkl is unaudited, beta software undergoing rapid development. There may be bugs
> NOTE: Because operations are quantized when they are converted from an onnx file to a zk-circuit, outputs in python and ezkl may differ slightly.
### Advanced security topics
Check out `docs/advanced_security` for more advanced information on potential threat vectors.
### no warranty
Copyright (c) 2024 Zkonduit Inc. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

View File

@@ -73,6 +73,8 @@ impl Circuit<Fr> for MyCircuit {
padding: vec![(0, 0)],
stride: vec![1; 2],
group: 1,
data_format: DataFormat::NCHW,
kernel_format: KernelFormat::OIHW,
}),
)
.unwrap();

View File

@@ -69,6 +69,7 @@ impl Circuit<Fr> for MyCircuit {
stride: vec![1, 1],
kernel_shape: vec![2, 2],
normalized: false,
data_format: DataFormat::NCHW,
}),
)
.unwrap();

View File

@@ -23,8 +23,6 @@ use halo2curves::bn256::{Bn256, Fr};
use rand::rngs::OsRng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
const L: usize = 10;
#[derive(Clone, Debug)]
struct MyCircuit {
image: ValTensor<Fr>,
@@ -40,7 +38,7 @@ impl Circuit<Fr> for MyCircuit {
}
fn configure(cs: &mut ConstraintSystem<Fr>) -> Self::Config {
PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, 10>::configure(cs, ())
PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE>::configure(cs, ())
}
fn synthesize(
@@ -48,7 +46,7 @@ impl Circuit<Fr> for MyCircuit {
config: Self::Config,
mut layouter: impl Layouter<Fr>,
) -> Result<(), Error> {
let chip: PoseidonChip<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, L> =
let chip: PoseidonChip<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE> =
PoseidonChip::new(config);
chip.layout(&mut layouter, &[self.image.clone()], 0, &mut HashMap::new())?;
Ok(())
@@ -59,7 +57,7 @@ fn runposeidon(c: &mut Criterion) {
let mut group = c.benchmark_group("poseidon");
for size in [64, 784, 2352, 12288].iter() {
let k = (PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, L>::num_rows(*size)
let k = (PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE>::num_rows(*size)
as f32)
.log2()
.ceil() as u32;
@@ -67,7 +65,7 @@ fn runposeidon(c: &mut Criterion) {
let message = (0..*size).map(|_| Fr::random(OsRng)).collect::<Vec<_>>();
let _output =
PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, L>::run(message.to_vec())
PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE>::run(message.to_vec())
.unwrap();
let mut image = Tensor::from(message.into_iter().map(Value::known));

View File

@@ -10,6 +10,7 @@ use rand::Rng;
// Assuming these are your types
#[derive(Clone)]
#[allow(dead_code)]
enum ValType {
Constant(F),
AssignedConstant(usize, F),
@@ -21,7 +22,7 @@ fn generate_test_data(size: usize, zero_probability: f64) -> Vec<ValType> {
let mut rng = rand::thread_rng();
(0..size)
.map(|_i| {
if rng.gen::<f64>() < zero_probability {
if rng.r#gen::<f64>() < zero_probability {
ValType::Constant(F::ZERO)
} else {
ValType::Constant(F::ONE) // Or some other non-zero value

View File

@@ -0,0 +1,41 @@
## EZKL Security Note: Public Commitments and Low-Entropy Data
> **Disclaimer:** this a more technical post that requires some prior knowledge of how ZK proving systems like Halo2 operate, and in particular in how these APIs are constructed. For background reading we highly recommend the [Halo2 book](https://zcash.github.io/halo2/) and [Halo2 Club](https://halo2.club/).
## Overview of commitments in EZKL
A common design pattern in a zero knowledge (zk) application is thus:
- A prover has some data which is used within a circuit.
- This data, as it may be high-dimensional or somewhat private, is pre-committed to using some hash function.
- The zk-circuit which forms the core of the application then proves (para-phrasing) a statement of the form:
>"I know some data D which when hashed corresponds to the pre-committed to value H + whatever else the circuit is proving over D".
From our own experience, we've implemented such patterns using snark-friendly hash functions like [Poseidon](https://www.poseidon-hash.info/), for which there is a relatively well vetted [implementation](https://docs.rs/halo2_gadgets/latest/halo2_gadgets/poseidon/index.html) in Halo2. Even then these hash functions can introduce lots of overhead and can be very expensive to generate proofs for if the dimensionality of the data D is large.
You can also implement such a pattern using Halo2's `Fixed` columns _if the privacy preservation of the pre-image is not necessary_. These are Halo2 columns (i.e in reality just polynomials) that are left unblinded (unlike the blinded `Advice` columns), and whose commitments are shared with the verifier by way of the verifying key for the application's zk-circuit. These commitments are much lower cost to generate than implementing a hashing function, such as Poseidon, within a circuit.
> **Note:** Blinding is the process whereby a certain set of the final elements (i.e rows) of a Halo2 column are set to random field elements. This is the mechanism by which Halo2 achieves its zero knowledge properties for `Advice` columns. By contrast `Fixed` columns aren't zero-knowledge in that they are vulnerable to dictionary attacks in the same manner a hash function is. Given some set of known or popular data D an attacker can attempt to recover the pre-image of a hash by running D through the hash function to see if the outputs match a public commitment. These attacks aren't "possible" on blinded `Advice` columns.
> **Further Note:** Note that without blinding, with access to `M` proofs, each of which contains an evaluation of the polynomial at a different point, an attacker can more easily recover a non blinded column's pre-image. This is because each proof generates a new query and evaluation of the polynomial represented by the column and as such with repetition a clearer picture can emerge of the column's pre-image. Thus unblinded columns should only be used for privacy preservation, in the manner of a hash, if the number of proofs generated against a fixed set of values is limited. More formally if M independent and _unique_ queries are generated; if M is equal to the degree + 1 of the polynomial represented by the column (i.e the unique lagrange interpolation of the values in the columns), then the column's pre-image can be recovered. As such as the logrows K increases, the more queries are required to recover the pre-image (as 2^K unique queries are required). This assumes that the entries in the column are not structured, as if they are then the number of queries required to recover the pre-image is reduced (eg. if all rows above a certain point are known to be nil).
The annoyance in using `Fixed` columns comes from the fact that they require generating a new verifying key every time a new set of commitments is generated.
> **Example:** Say for instance an application leverages a zero-knowledge circuit to prove the correct execution of a neural network. Every week the neural network is finetuned or retrained on new data. If the architecture remains the same then commiting to the new network parameters, along with a new proof of performance on a test set, would be an ideal setup. If we leverage `Fixed` columns to commit to the model parameters, each new commitment will require re-generating a verifying key and sharing the new key with the verifier(s). This is not-ideal UX and can become expensive if the verifier is deployed on-chain.
An ideal commitment would thus have the low cost of a `Fixed` column but wouldn't require regenerating a new verifying key for each new commitment.
### Unblinded Advice Columns
A first step in designing such a commitment is to allow for optionally unblinded `Advice` columns within the Halo2 API. These won't be included in the verifying key, AND are blinded with a constant factor `1` -- such that if someone knows the pre-image to the commitment, they can recover it by running it through the corresponding polynomial commitment scheme (in ezkl's case [KZG commitments](https://dankradfeist.de/ethereum/2020/06/16/kate-polynomial-commitments.html)).
This is implemented using the `polycommit` visibility parameter in the ezkl API.
## The Vulnerability of Public Commitments
Public commitments in EZKL (both Poseidon-hashed inputs and KZG commitments) can be vulnerable to brute-force attacks when input data has low entropy. A malicious actor could reveal committed data by searching through possible input values, compromising privacy in applications like anonymous credentials. This is particularly relevant when input data comes from known finite sets (e.g., names, dates).
Example Risk: In an anonymous credential system using EZKL for ID verification, an attacker could match hashed outputs against a database of common identifying information to deanonymize users.

View File

@@ -0,0 +1,22 @@
# EZKL Security Note: Quantization-Induced Model Backdoors
> Note: this only affects a situation where a party separate to an application's developer has access to the model's weights and can modify them. This is a common scenario in adversarial machine learning research, but can be less common in real-world applications. If you're building your models in house and deploying them yourself, this is less of a concern. If you're building a permisionless system where anyone can submit models, this is more of a concern.
Models processed through EZKL's quantization step can harbor backdoors that are dormant in the original full-precision model but activate during quantization. These backdoors force specific outputs when triggered, with impact varying by application.
Key Factors:
- Larger models increase attack feasibility through more parameter capacity
- Smaller quantization scales facilitate attacks by allowing greater weight modifications
- Rebase ratio of 1 enables exploitation of convolutional layer consistency
Limitations:
- Attack effectiveness depends on calibration settings and internal rescaling operations.
- Further research needed on backdoor persistence through witness/proof stages.
- Can be mitigated by evaluating the quantized model (using `ezkl gen-witness`), rather than relying on the evaluation of the original model.
References:
1. [Quantization Backdoors to Deep Learning Commercial Frameworks (Ma et al., 2021)](https://arxiv.org/abs/2108.09187)
2. [Planting Undetectable Backdoors in Machine Learning Models (Goldwasser et al., 2022)](https://arxiv.org/abs/2204.06974)

View File

@@ -1,7 +1,7 @@
import ezkl
project = 'ezkl'
release = '0.0.0'
release = '20.2.2'
version = release

View File

@@ -32,6 +32,7 @@ use mnist::*;
use rand::rngs::OsRng;
use std::marker::PhantomData;
mod params;
const K: usize = 20;
@@ -208,6 +209,8 @@ where
padding: vec![(PADDING, PADDING); 2],
stride: vec![STRIDE; 2],
group: 1,
data_format: DataFormat::NCHW,
kernel_format: KernelFormat::OIHW,
};
let x = config
.layer_config

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,13 @@
# download tess data
# check if first argument has been set
if [ ! -z "$1" ]; then
DATA_DIR=$1
else
DATA_DIR=data
fi
echo "Downloading data to $DATA_DIR"
if [ ! -d "$DATA_DIR/CATDOG" ]; then
kaggle datasets download tongpython/cat-and-dog -p $DATA_DIR/CATDOG --unzip
fi

View File

@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"metadata": {},
"outputs": [
{
@@ -54,7 +54,7 @@
" gip_run_args.param_scale = 19\n",
" gip_run_args.logrows = 8\n",
" run_args = ezkl.gen_settings(py_run_args=gip_run_args)\n",
" ezkl.get_srs(commitment=ezkl.PyCommitments.KZG)\n",
" await ezkl.get_srs(commitment=ezkl.PyCommitments.KZG)\n",
" ezkl.compile_circuit()\n",
" res = await ezkl.gen_witness()\n",
" print(res)\n",

View File

@@ -77,6 +77,7 @@
"outputs": [],
"source": [
"gip_run_args = ezkl.PyRunArgs()\n",
"gip_run_args.ignore_range_check_inputs_outputs = True\n",
"gip_run_args.input_visibility = \"polycommit\" # matrix and generalized inverse commitments\n",
"gip_run_args.output_visibility = \"fixed\" # no parameters used\n",
"gip_run_args.param_visibility = \"fixed\" # should be Tensor(True)"
@@ -335,9 +336,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
}

View File

@@ -1,279 +1,284 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "cf69bb3f-94e6-4dba-92cd-ce08df117d67",
"metadata": {},
"source": [
"## Linear Regression\n",
"\n",
"\n",
"Sklearn based models are slightly finicky to get into a suitable onnx format. \n",
"This notebook showcases how to do so using the `hummingbird-ml` python package ! "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "95613ee9",
"metadata": {},
"outputs": [],
"source": [
"# check if notebook is in colab\n",
"try:\n",
" # install ezkl\n",
" import google.colab\n",
" import subprocess\n",
" import sys\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"hummingbird-ml\"])\n",
"\n",
"# rely on local installation of ezkl if the notebook is not in colab\n",
"except:\n",
" pass\n",
"\n",
"import os\n",
"import torch\n",
"import ezkl\n",
"import json\n",
"from hummingbird.ml import convert\n",
"\n",
"\n",
"# here we create and (potentially train a model)\n",
"\n",
"# make sure you have the dependencies required here already installed\n",
"import numpy as np\n",
"from sklearn.linear_model import LinearRegression\n",
"X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])\n",
"# y = 1 * x_0 + 2 * x_1 + 3\n",
"y = np.dot(X, np.array([1, 2])) + 3\n",
"reg = LinearRegression().fit(X, y)\n",
"reg.score(X, y)\n",
"\n",
"circuit = convert(reg, \"torch\", X[:1]).model\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b37637c4",
"metadata": {},
"outputs": [],
"source": [
"model_path = os.path.join('network.onnx')\n",
"compiled_model_path = os.path.join('network.compiled')\n",
"pk_path = os.path.join('test.pk')\n",
"vk_path = os.path.join('test.vk')\n",
"settings_path = os.path.join('settings.json')\n",
"\n",
"witness_path = os.path.join('witness.json')\n",
"data_path = os.path.join('input.json')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "82db373a",
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"# export to onnx format\n",
"# !!!!!!!!!!!!!!!!! This will flash a warning but it is fine !!!!!!!!!!!!!!!!!!!!!\n",
"\n",
"# Input to the model\n",
"shape = X.shape[1:]\n",
"x = torch.rand(1, *shape, requires_grad=True)\n",
"torch_out = circuit(x)\n",
"# Export the model\n",
"torch.onnx.export(circuit, # model being run\n",
" # model input (or a tuple for multiple inputs)\n",
" x,\n",
" # where to save the model (can be a file or file-like object)\n",
" \"network.onnx\",\n",
" export_params=True, # store the trained parameter weights inside the model file\n",
" opset_version=10, # the ONNX version to export the model to\n",
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
" input_names=['input'], # the model's input names\n",
" output_names=['output'], # the model's output names\n",
" dynamic_axes={'input': {0: 'batch_size'}, # variable length axes\n",
" 'output': {0: 'batch_size'}})\n",
"\n",
"d = ((x).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data = dict(input_shapes=[shape],\n",
" input_data=[d],\n",
" output_data=[((o).detach().numpy()).reshape([-1]).tolist() for o in torch_out])\n",
"\n",
"# Serialize data into file:\n",
"json.dump(data, open(\"input.json\", 'w'))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d5e374a2",
"metadata": {},
"outputs": [],
"source": [
"!RUST_LOG=trace\n",
"# TODO: Dictionary outputs\n",
"res = ezkl.gen_settings(model_path, settings_path)\n",
"assert res == True\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cal_path = os.path.join(\"calibration.json\")\n",
"\n",
"data_array = (torch.randn(20, *shape).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data = dict(input_data = [data_array])\n",
"\n",
"# Serialize data into file:\n",
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"res = await ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"assert res == True\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3aa4f090",
"metadata": {},
"outputs": [],
"source": [
"res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8b74dcee",
"metadata": {},
"outputs": [],
"source": [
"# srs path\n",
"res = await ezkl.get_srs( settings_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "18c8b7c7",
"metadata": {},
"outputs": [],
"source": [
"# now generate the witness file \n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b1c561a8",
"metadata": {},
"outputs": [],
"source": [
"\n",
"# HERE WE SETUP THE CIRCUIT PARAMS\n",
"# WE GOT KEYS\n",
"# WE GOT CIRCUIT PARAMETERS\n",
"# EVERYTHING ANYONE HAS EVER NEEDED FOR ZK\n",
"\n",
"\n",
"\n",
"res = ezkl.setup(\n",
" compiled_model_path,\n",
" vk_path,\n",
" pk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
"assert os.path.isfile(vk_path)\n",
"assert os.path.isfile(pk_path)\n",
"assert os.path.isfile(settings_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c384cbc8",
"metadata": {},
"outputs": [],
"source": [
"# GENERATE A PROOF\n",
"\n",
"\n",
"proof_path = os.path.join('test.pf')\n",
"\n",
"res = ezkl.prove(\n",
" witness_path,\n",
" compiled_model_path,\n",
" pk_path,\n",
" proof_path,\n",
" \n",
" \"single\",\n",
" )\n",
"\n",
"print(res)\n",
"assert os.path.isfile(proof_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "76f00d41",
"metadata": {},
"outputs": [],
"source": [
"# VERIFY IT\n",
"\n",
"res = ezkl.verify(\n",
" proof_path,\n",
" settings_path,\n",
" vk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
"print(\"verified\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
"cells": [
{
"cell_type": "markdown",
"id": "cf69bb3f-94e6-4dba-92cd-ce08df117d67",
"metadata": {},
"source": [
"## Linear Regression\n",
"\n",
"\n",
"Sklearn based models are slightly finicky to get into a suitable onnx format. \n",
"This notebook showcases how to do so using the `hummingbird-ml` python package ! "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "95613ee9",
"metadata": {},
"outputs": [],
"source": [
"# check if notebook is in colab\n",
"try:\n",
" # install ezkl\n",
" import google.colab\n",
" import subprocess\n",
" import sys\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"hummingbird-ml\"])\n",
"\n",
"# rely on local installation of ezkl if the notebook is not in colab\n",
"except:\n",
" pass\n",
"\n",
"import os\n",
"import torch\n",
"import ezkl\n",
"import json\n",
"from hummingbird.ml import convert\n",
"\n",
"\n",
"# here we create and (potentially train a model)\n",
"\n",
"# make sure you have the dependencies required here already installed\n",
"import numpy as np\n",
"from sklearn.linear_model import LinearRegression\n",
"X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])\n",
"# y = 1 * x_0 + 2 * x_1 + 3\n",
"y = np.dot(X, np.array([1, 2])) + 3\n",
"reg = LinearRegression().fit(X, y)\n",
"reg.score(X, y)\n",
"\n",
"circuit = convert(reg, \"torch\", X[:1]).model\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b37637c4",
"metadata": {},
"outputs": [],
"source": [
"model_path = os.path.join('network.onnx')\n",
"compiled_model_path = os.path.join('network.compiled')\n",
"pk_path = os.path.join('test.pk')\n",
"vk_path = os.path.join('test.vk')\n",
"settings_path = os.path.join('settings.json')\n",
"\n",
"witness_path = os.path.join('witness.json')\n",
"data_path = os.path.join('input.json')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "82db373a",
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"# export to onnx format\n",
"# !!!!!!!!!!!!!!!!! This will flash a warning but it is fine !!!!!!!!!!!!!!!!!!!!!\n",
"\n",
"# Input to the model\n",
"shape = X.shape[1:]\n",
"x = torch.rand(1, *shape, requires_grad=True)\n",
"torch_out = circuit(x)\n",
"# Export the model\n",
"torch.onnx.export(circuit, # model being run\n",
" # model input (or a tuple for multiple inputs)\n",
" x,\n",
" # where to save the model (can be a file or file-like object)\n",
" \"network.onnx\",\n",
" export_params=True, # store the trained parameter weights inside the model file\n",
" opset_version=10, # the ONNX version to export the model to\n",
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
" input_names=['input'], # the model's input names\n",
" output_names=['output'], # the model's output names\n",
" dynamic_axes={'input': {0: 'batch_size'}, # variable length axes\n",
" 'output': {0: 'batch_size'}})\n",
"\n",
"d = ((x).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data = dict(input_shapes=[shape],\n",
" input_data=[d],\n",
" output_data=[((o).detach().numpy()).reshape([-1]).tolist() for o in torch_out])\n",
"\n",
"# Serialize data into file:\n",
"json.dump(data, open(\"input.json\", 'w'))\n",
"\n",
"\n",
"# note that you can also call the following function to generate random data for the model\n",
"# it is functionally equivalent to the code above\n",
"ezkl.gen_random_data()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d5e374a2",
"metadata": {},
"outputs": [],
"source": [
"!RUST_LOG=trace\n",
"# TODO: Dictionary outputs\n",
"res = ezkl.gen_settings(model_path, settings_path)\n",
"assert res == True\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cal_path = os.path.join(\"calibration.json\")\n",
"\n",
"data_array = (torch.randn(20, *shape).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data = dict(input_data = [data_array])\n",
"\n",
"# Serialize data into file:\n",
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"res = await ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"assert res == True\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3aa4f090",
"metadata": {},
"outputs": [],
"source": [
"res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8b74dcee",
"metadata": {},
"outputs": [],
"source": [
"# srs path\n",
"res = await ezkl.get_srs( settings_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "18c8b7c7",
"metadata": {},
"outputs": [],
"source": [
"# now generate the witness file \n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b1c561a8",
"metadata": {},
"outputs": [],
"source": [
"\n",
"# HERE WE SETUP THE CIRCUIT PARAMS\n",
"# WE GOT KEYS\n",
"# WE GOT CIRCUIT PARAMETERS\n",
"# EVERYTHING ANYONE HAS EVER NEEDED FOR ZK\n",
"\n",
"\n",
"\n",
"res = ezkl.setup(\n",
" compiled_model_path,\n",
" vk_path,\n",
" pk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
"assert os.path.isfile(vk_path)\n",
"assert os.path.isfile(pk_path)\n",
"assert os.path.isfile(settings_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c384cbc8",
"metadata": {},
"outputs": [],
"source": [
"# GENERATE A PROOF\n",
"\n",
"\n",
"proof_path = os.path.join('test.pf')\n",
"\n",
"res = ezkl.prove(\n",
" witness_path,\n",
" compiled_model_path,\n",
" pk_path,\n",
" proof_path,\n",
" \n",
" \"single\",\n",
" )\n",
"\n",
"print(res)\n",
"assert os.path.isfile(proof_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "76f00d41",
"metadata": {},
"outputs": [],
"source": [
"# VERIFY IT\n",
"\n",
"res = ezkl.verify(\n",
" proof_path,\n",
" settings_path,\n",
" vk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
"print(\"verified\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,456 +1,462 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Mean of ERC20 transfer amounts\n",
"\n",
"This notebook shows how to calculate the mean of ERC20 transfer amounts, pulling data in from a Postgres database. First we install and get the necessary libraries running. \n",
"The first of which is [shovel](https://indexsupply.com/shovel/docs/#getting-started), which is a library that allows us to pull data from the Ethereum blockchain into a Postgres database.\n",
"\n",
"Make sure you install postgres if needed https://indexsupply.com/shovel/docs/#getting-started. \n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import getpass\n",
"import json\n",
"import time\n",
"import subprocess\n",
"\n",
"# swap out for the relevant linux/amd64, darwin/arm64, darwin/amd64, windows/amd64\n",
"os.system(\"curl -LO https://indexsupply.net/bin/1.0/linux/amd64/shovel\")\n",
"os.system(\"chmod +x shovel\")\n",
"\n",
"\n",
"os.environ[\"PG_URL\"] = \"postgres://\" + getpass.getuser() + \":@localhost:5432/shovel\"\n",
"\n",
"# create a config.json file with the following contents\n",
"config = {\n",
" \"pg_url\": \"$PG_URL\",\n",
" \"eth_sources\": [\n",
" {\"name\": \"mainnet\", \"chain_id\": 1, \"url\": \"https://ethereum-rpc.publicnode.com\"},\n",
" {\"name\": \"base\", \"chain_id\": 8453, \"url\": \"https://base-rpc.publicnode.com\"}\n",
" ],\n",
" \"integrations\": [{\n",
" \"name\": \"usdc_transfer\",\n",
" \"enabled\": True,\n",
" \"sources\": [{\"name\": \"mainnet\"}, {\"name\": \"base\"}],\n",
" \"table\": {\n",
" \"name\": \"usdc\",\n",
" \"columns\": [\n",
" {\"name\": \"log_addr\", \"type\": \"bytea\"},\n",
" {\"name\": \"block_num\", \"type\": \"numeric\"},\n",
" {\"name\": \"f\", \"type\": \"bytea\"},\n",
" {\"name\": \"t\", \"type\": \"bytea\"},\n",
" {\"name\": \"v\", \"type\": \"numeric\"}\n",
" ]\n",
" },\n",
" \"block\": [\n",
" {\"name\": \"block_num\", \"column\": \"block_num\"},\n",
" {\n",
" \"name\": \"log_addr\",\n",
" \"column\": \"log_addr\",\n",
" \"filter_op\": \"contains\",\n",
" \"filter_arg\": [\n",
" \"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48\",\n",
" \"833589fCD6eDb6E08f4c7C32D4f71b54bdA02913\"\n",
" ]\n",
" }\n",
" ],\n",
" \"event\": {\n",
" \"name\": \"Transfer\",\n",
" \"type\": \"event\",\n",
" \"anonymous\": False,\n",
" \"inputs\": [\n",
" {\"indexed\": True, \"name\": \"from\", \"type\": \"address\", \"column\": \"f\"},\n",
" {\"indexed\": True, \"name\": \"to\", \"type\": \"address\", \"column\": \"t\"},\n",
" {\"indexed\": False, \"name\": \"value\", \"type\": \"uint256\", \"column\": \"v\"}\n",
" ]\n",
" }\n",
" }]\n",
"}\n",
"\n",
"# write the config to a file\n",
"with open(\"config.json\", \"w\") as f:\n",
" f.write(json.dumps(config))\n",
"\n",
"\n",
"# print the two env variables\n",
"os.system(\"echo $PG_URL\")\n",
"\n",
"os.system(\"createdb -h localhost -p 5432 shovel\")\n",
"\n",
"os.system(\"echo shovel is now installed. starting:\")\n",
"\n",
"command = [\"./shovel\", \"-config\", \"config.json\"]\n",
"proc = subprocess.Popen(command)\n",
"\n",
"os.system(\"echo shovel started.\")\n",
"\n",
"time.sleep(10)\n",
"\n",
"# after we've fetched some data -- kill the process\n",
"proc.terminate()\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "2wIAHwqH2_mo"
},
"source": [
"**Import Dependencies**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "9Byiv2Nc2MsK"
},
"outputs": [],
"source": [
"# check if notebook is in colab\n",
"try:\n",
" # install ezkl\n",
" import google.colab\n",
" import subprocess\n",
" import sys\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n",
"\n",
"# rely on local installation of ezkl if the notebook is not in colab\n",
"except:\n",
" pass\n",
"\n",
"import ezkl\n",
"import torch\n",
"import datetime\n",
"import pandas as pd\n",
"import requests\n",
"import json\n",
"import os\n",
"\n",
"import logging\n",
"# # uncomment for more descriptive logging \n",
"FORMAT = '%(levelname)s %(name)s %(asctime)-15s %(filename)s:%(lineno)d %(message)s'\n",
"logging.basicConfig(format=FORMAT)\n",
"logging.getLogger().setLevel(logging.DEBUG)\n",
"\n",
"print(\"ezkl version: \", ezkl.__version__)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "osjj-0Ta3E8O"
},
"source": [
"**Create Computational Graph**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "x1vl9ZXF3EEW",
"outputId": "bda21d02-fe5f-4fb2-8106-f51a8e2e67aa"
},
"outputs": [],
"source": [
"from torch import nn\n",
"import torch\n",
"\n",
"\n",
"class Model(nn.Module):\n",
" def __init__(self):\n",
" super(Model, self).__init__()\n",
"\n",
" # x is a time series \n",
" def forward(self, x):\n",
" return [torch.mean(x)]\n",
"\n",
"\n",
"\n",
"\n",
"circuit = Model()\n",
"\n",
"\n",
"\n",
"\n",
"x = 0.1*torch.rand(1,*[1,5], requires_grad=True)\n",
"\n",
"# # print(torch.__version__)\n",
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
"\n",
"print(device)\n",
"\n",
"circuit.to(device)\n",
"\n",
"# Flips the neural net into inference mode\n",
"circuit.eval()\n",
"\n",
"# Export the model\n",
"torch.onnx.export(circuit, # model being run\n",
" x, # model input (or a tuple for multiple inputs)\n",
" \"lol.onnx\", # where to save the model (can be a file or file-like object)\n",
" export_params=True, # store the trained parameter weights inside the model file\n",
" opset_version=11, # the ONNX version to export the model to\n",
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
" input_names = ['input'], # the model's input names\n",
" output_names = ['output'], # the model's output names\n",
" dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes\n",
" 'output' : {0 : 'batch_size'}})\n",
"\n",
"# export(circuit, input_shape=[1, 20])\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "E3qCeX-X5xqd"
},
"source": [
"**Set Data Source and Get Data**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "6RAMplxk5xPk",
"outputId": "bd2158fe-0c00-44fd-e632-6a3f70cdb7c9"
},
"outputs": [],
"source": [
"import getpass\n",
"# make an input.json file from the df above\n",
"input_filename = os.path.join('input.json')\n",
"\n",
"pg_input_file = dict(input_data = {\n",
" \"host\": \"localhost\",\n",
" # make sure you replace this with your own username\n",
" \"user\": getpass.getuser(),\n",
" \"dbname\": \"shovel\",\n",
" \"password\": \"\",\n",
" \"query\": \"SELECT v FROM usdc ORDER BY block_num DESC LIMIT 5\",\n",
" \"port\": \"5432\",\n",
"})\n",
"\n",
"json_formatted_str = json.dumps(pg_input_file, indent=2)\n",
"print(json_formatted_str)\n",
"\n",
"\n",
" # Serialize data into file:\n",
"json.dump(pg_input_file, open(input_filename, 'w' ))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# this corresponds to 4 batches\n",
"calibration_filename = os.path.join('calibration.json')\n",
"\n",
"pg_cal_file = dict(input_data = {\n",
" \"host\": \"localhost\",\n",
" # make sure you replace this with your own username\n",
" \"user\": getpass.getuser(),\n",
" \"dbname\": \"shovel\",\n",
" \"password\": \"\",\n",
" \"query\": \"SELECT v FROM usdc ORDER BY block_num DESC LIMIT 20\",\n",
" \"port\": \"5432\",\n",
"})\n",
"\n",
" # Serialize data into file:\n",
"json.dump( pg_cal_file, open(calibration_filename, 'w' ))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eLJ7oirQ_HQR"
},
"source": [
"**EZKL Workflow**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "rNw0C9QL6W88"
},
"outputs": [],
"source": [
"import subprocess\n",
"import os\n",
"\n",
"onnx_filename = os.path.join('lol.onnx')\n",
"compiled_filename = os.path.join('lol.compiled')\n",
"settings_filename = os.path.join('settings.json')\n",
"\n",
"# Generate settings using ezkl\n",
"res = ezkl.gen_settings(onnx_filename, settings_filename)\n",
"\n",
"assert res == True\n",
"\n",
"res = await ezkl.calibrate_settings(input_filename, onnx_filename, settings_filename, \"resources\")\n",
"\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"ezkl.compile_circuit(onnx_filename, compiled_filename, settings_filename)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "4MmE9SX66_Il",
"outputId": "16403639-66a4-4280-ac7f-6966b75de5a3"
},
"outputs": [],
"source": [
"# generate settings\n",
"\n",
"\n",
"# show the settings.json\n",
"with open(\"settings.json\") as f:\n",
" data = json.load(f)\n",
" json_formatted_str = json.dumps(data, indent=2)\n",
"\n",
" print(json_formatted_str)\n",
"\n",
"assert os.path.exists(\"settings.json\")\n",
"assert os.path.exists(\"input.json\")\n",
"assert os.path.exists(\"lol.onnx\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "fULvvnK7_CMb"
},
"outputs": [],
"source": [
"pk_path = os.path.join('test.pk')\n",
"vk_path = os.path.join('test.vk')\n",
"\n",
"\n",
"# setup the proof\n",
"res = ezkl.setup(\n",
" compiled_filename,\n",
" vk_path,\n",
" pk_path\n",
" )\n",
"\n",
"assert res == True\n",
"assert os.path.isfile(vk_path)\n",
"assert os.path.isfile(pk_path)\n",
"assert os.path.isfile(settings_filename)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"witness_path = \"witness.json\"\n",
"\n",
"# generate the witness\n",
"res = await ezkl.gen_witness(\n",
" input_filename,\n",
" compiled_filename,\n",
" witness_path\n",
" )\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Oog3j6Kd-Wed",
"outputId": "5839d0c1-5b43-476e-c2f8-6707de562260"
},
"outputs": [],
"source": [
"# prove the zk circuit\n",
"# GENERATE A PROOF\n",
"proof_path = os.path.join('test.pf')\n",
"\n",
"\n",
"proof = ezkl.prove(\n",
" witness_path,\n",
" compiled_filename,\n",
" pk_path,\n",
" proof_path,\n",
" \"single\"\n",
" )\n",
"\n",
"\n",
"print(\"proved\")\n",
"\n",
"assert os.path.isfile(proof_path)\n",
"\n"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Mean of ERC20 transfer amounts\n",
"\n",
"This notebook shows how to calculate the mean of ERC20 transfer amounts, pulling data in from a Postgres database. First we install and get the necessary libraries running. \n",
"The first of which is [shovel](https://indexsupply.com/shovel/docs/#getting-started), which is a library that allows us to pull data from the Ethereum blockchain into a Postgres database.\n",
"\n",
"Make sure you install postgres if needed https://indexsupply.com/shovel/docs/#getting-started. \n",
"\n"
]
},
"nbformat": 4,
"nbformat_minor": 0
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import getpass\n",
"import json\n",
"import time\n",
"import subprocess\n",
"\n",
"# swap out for the relevant linux/amd64, darwin/arm64, darwin/amd64, windows/amd64\n",
"os.system(\"curl -LO https://indexsupply.net/bin/1.0/linux/amd64/shovel\")\n",
"os.system(\"chmod +x shovel\")\n",
"\n",
"\n",
"os.environ[\"PG_URL\"] = \"postgres://\" + getpass.getuser() + \":@localhost:5432/shovel\"\n",
"\n",
"# create a config.json file with the following contents\n",
"config = {\n",
" \"pg_url\": \"$PG_URL\",\n",
" \"eth_sources\": [\n",
" {\"name\": \"mainnet\", \"chain_id\": 1, \"url\": \"https://ethereum-rpc.publicnode.com\"},\n",
" {\"name\": \"base\", \"chain_id\": 8453, \"url\": \"https://base-rpc.publicnode.com\"}\n",
" ],\n",
" \"integrations\": [{\n",
" \"name\": \"usdc_transfer\",\n",
" \"enabled\": True,\n",
" \"sources\": [{\"name\": \"mainnet\"}, {\"name\": \"base\"}],\n",
" \"table\": {\n",
" \"name\": \"usdc\",\n",
" \"columns\": [\n",
" {\"name\": \"log_addr\", \"type\": \"bytea\"},\n",
" {\"name\": \"block_num\", \"type\": \"numeric\"},\n",
" {\"name\": \"f\", \"type\": \"bytea\"},\n",
" {\"name\": \"t\", \"type\": \"bytea\"},\n",
" {\"name\": \"v\", \"type\": \"numeric\"}\n",
" ]\n",
" },\n",
" \"block\": [\n",
" {\"name\": \"block_num\", \"column\": \"block_num\"},\n",
" {\n",
" \"name\": \"log_addr\",\n",
" \"column\": \"log_addr\",\n",
" \"filter_op\": \"contains\",\n",
" \"filter_arg\": [\n",
" \"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48\",\n",
" \"833589fCD6eDb6E08f4c7C32D4f71b54bdA02913\"\n",
" ]\n",
" }\n",
" ],\n",
" \"event\": {\n",
" \"name\": \"Transfer\",\n",
" \"type\": \"event\",\n",
" \"anonymous\": False,\n",
" \"inputs\": [\n",
" {\"indexed\": True, \"name\": \"from\", \"type\": \"address\", \"column\": \"f\"},\n",
" {\"indexed\": True, \"name\": \"to\", \"type\": \"address\", \"column\": \"t\"},\n",
" {\"indexed\": False, \"name\": \"value\", \"type\": \"uint256\", \"column\": \"v\"}\n",
" ]\n",
" }\n",
" }]\n",
"}\n",
"\n",
"# write the config to a file\n",
"with open(\"config.json\", \"w\") as f:\n",
" f.write(json.dumps(config))\n",
"\n",
"\n",
"# print the two env variables\n",
"os.system(\"echo $PG_URL\")\n",
"\n",
"os.system(\"createdb -h localhost -p 5432 shovel\")\n",
"\n",
"os.system(\"echo shovel is now installed. starting:\")\n",
"\n",
"command = [\"./shovel\", \"-config\", \"config.json\"]\n",
"proc = subprocess.Popen(command)\n",
"\n",
"os.system(\"echo shovel started.\")\n",
"\n",
"time.sleep(10)\n",
"\n",
"# after we've fetched some data -- kill the process\n",
"proc.terminate()\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "2wIAHwqH2_mo"
},
"source": [
"**Import Dependencies**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "9Byiv2Nc2MsK"
},
"outputs": [],
"source": [
"# check if notebook is in colab\n",
"try:\n",
" # install ezkl\n",
" import google.colab\n",
" import subprocess\n",
" import sys\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n",
"\n",
"# rely on local installation of ezkl if the notebook is not in colab\n",
"except:\n",
" pass\n",
"\n",
"import ezkl\n",
"import torch\n",
"import datetime\n",
"import pandas as pd\n",
"import requests\n",
"import json\n",
"import os\n",
"\n",
"import logging\n",
"# # uncomment for more descriptive logging \n",
"FORMAT = '%(levelname)s %(name)s %(asctime)-15s %(filename)s:%(lineno)d %(message)s'\n",
"logging.basicConfig(format=FORMAT)\n",
"logging.getLogger().setLevel(logging.DEBUG)\n",
"\n",
"print(\"ezkl version: \", ezkl.__version__)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "osjj-0Ta3E8O"
},
"source": [
"**Create Computational Graph**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "x1vl9ZXF3EEW",
"outputId": "bda21d02-fe5f-4fb2-8106-f51a8e2e67aa"
},
"outputs": [],
"source": [
"from torch import nn\n",
"import torch\n",
"\n",
"\n",
"class Model(nn.Module):\n",
" def __init__(self):\n",
" super(Model, self).__init__()\n",
"\n",
" # x is a time series \n",
" def forward(self, x):\n",
" return [torch.mean(x)]\n",
"\n",
"\n",
"\n",
"\n",
"circuit = Model()\n",
"\n",
"\n",
"\n",
"\n",
"x = 0.1*torch.rand(1,*[1,5], requires_grad=True)\n",
"\n",
"# # print(torch.__version__)\n",
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
"\n",
"print(device)\n",
"\n",
"circuit.to(device)\n",
"\n",
"# Flips the neural net into inference mode\n",
"circuit.eval()\n",
"\n",
"# Export the model\n",
"torch.onnx.export(circuit, # model being run\n",
" x, # model input (or a tuple for multiple inputs)\n",
" \"lol.onnx\", # where to save the model (can be a file or file-like object)\n",
" export_params=True, # store the trained parameter weights inside the model file\n",
" opset_version=11, # the ONNX version to export the model to\n",
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
" input_names = ['input'], # the model's input names\n",
" output_names = ['output'], # the model's output names\n",
" dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes\n",
" 'output' : {0 : 'batch_size'}})\n",
"\n",
"# export(circuit, input_shape=[1, 20])\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "E3qCeX-X5xqd"
},
"source": [
"**Set Data Source and Get Data**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "6RAMplxk5xPk",
"outputId": "bd2158fe-0c00-44fd-e632-6a3f70cdb7c9"
},
"outputs": [],
"source": [
"import getpass\n",
"# make an input.json file from the df above\n",
"input_filename = os.path.join('input.json')\n",
"\n",
"pg_input_file = dict(input_data = {\n",
" \"host\": \"localhost\",\n",
" # make sure you replace this with your own username\n",
" \"user\": getpass.getuser(),\n",
" \"dbname\": \"shovel\",\n",
" \"password\": \"\",\n",
" \"query\": \"SELECT v FROM usdc ORDER BY block_num DESC LIMIT 5\",\n",
" \"port\": \"5432\",\n",
"})\n",
"\n",
"json_formatted_str = json.dumps(pg_input_file, indent=2)\n",
"print(json_formatted_str)\n",
"\n",
"\n",
" # Serialize data into file:\n",
"json.dump(pg_input_file, open(input_filename, 'w' ))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# this corresponds to 4 batches\n",
"calibration_filename = os.path.join('calibration.json')\n",
"\n",
"pg_cal_file = dict(input_data = {\n",
" \"host\": \"localhost\",\n",
" # make sure you replace this with your own username\n",
" \"user\": getpass.getuser(),\n",
" \"dbname\": \"shovel\",\n",
" \"password\": \"\",\n",
" \"query\": \"SELECT v FROM usdc ORDER BY block_num DESC LIMIT 20\",\n",
" \"port\": \"5432\",\n",
"})\n",
"\n",
" # Serialize data into file:\n",
"json.dump( pg_cal_file, open(calibration_filename, 'w' ))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eLJ7oirQ_HQR"
},
"source": [
"**EZKL Workflow**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "rNw0C9QL6W88"
},
"outputs": [],
"source": [
"import subprocess\n",
"import os\n",
"\n",
"onnx_filename = os.path.join('lol.onnx')\n",
"compiled_filename = os.path.join('lol.compiled')\n",
"settings_filename = os.path.join('settings.json')\n",
"\n",
"run_args = ezkl.PyRunArgs()\n",
"run_args.decomp_legs = 4\n",
"\n",
"# Generate settings using ezkl\n",
"res = ezkl.gen_settings(onnx_filename, settings_filename, py_run_args=run_args)\n",
"\n",
"assert res == True\n",
"\n",
"res = await ezkl.calibrate_settings(input_filename, onnx_filename, settings_filename, \"resources\")\n",
"\n",
"assert res == True\n",
"\n",
"await ezkl.get_srs(settings_filename)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"ezkl.compile_circuit(onnx_filename, compiled_filename, settings_filename)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "4MmE9SX66_Il",
"outputId": "16403639-66a4-4280-ac7f-6966b75de5a3"
},
"outputs": [],
"source": [
"# generate settings\n",
"\n",
"\n",
"# show the settings.json\n",
"with open(\"settings.json\") as f:\n",
" data = json.load(f)\n",
" json_formatted_str = json.dumps(data, indent=2)\n",
"\n",
" print(json_formatted_str)\n",
"\n",
"assert os.path.exists(\"settings.json\")\n",
"assert os.path.exists(\"input.json\")\n",
"assert os.path.exists(\"lol.onnx\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "fULvvnK7_CMb"
},
"outputs": [],
"source": [
"pk_path = os.path.join('test.pk')\n",
"vk_path = os.path.join('test.vk')\n",
"\n",
"\n",
"# setup the proof\n",
"res = ezkl.setup(\n",
" compiled_filename,\n",
" vk_path,\n",
" pk_path\n",
" )\n",
"\n",
"assert res == True\n",
"assert os.path.isfile(vk_path)\n",
"assert os.path.isfile(pk_path)\n",
"assert os.path.isfile(settings_filename)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"witness_path = \"witness.json\"\n",
"\n",
"# generate the witness\n",
"res = await ezkl.gen_witness(\n",
" input_filename,\n",
" compiled_filename,\n",
" witness_path\n",
" )\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Oog3j6Kd-Wed",
"outputId": "5839d0c1-5b43-476e-c2f8-6707de562260"
},
"outputs": [],
"source": [
"# prove the zk circuit\n",
"# GENERATE A PROOF\n",
"proof_path = os.path.join('test.pf')\n",
"\n",
"\n",
"proof = ezkl.prove(\n",
" witness_path,\n",
" compiled_filename,\n",
" pk_path,\n",
" proof_path,\n",
" \"single\"\n",
" )\n",
"\n",
"\n",
"print(\"proved\")\n",
"\n",
"assert os.path.isfile(proof_path)\n",
"\n"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": ".env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -453,18 +453,18 @@
"outputs": [],
"source": [
"# now mock aggregate the proofs\n",
"proofs = []\n",
"for i in range(3):\n",
" proof_path = os.path.join('proof_split_'+str(i)+'.json')\n",
" proofs.append(proof_path)\n",
"# proofs = []\n",
"# for i in range(3):\n",
"# proof_path = os.path.join('proof_split_'+str(i)+'.json')\n",
"# proofs.append(proof_path)\n",
"\n",
"ezkl.mock_aggregate(proofs, logrows=23, split_proofs = True)"
"# ezkl.mock_aggregate(proofs, logrows=26, split_proofs = True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "ezkl",
"display_name": ".env",
"language": "python",
"name": "python3"
},
@@ -478,7 +478,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.5"
"version": "3.12.7"
},
"orig_nbformat": 4
},

View File

@@ -152,9 +152,11 @@
"metadata": {},
"outputs": [],
"source": [
"!RUST_LOG=trace\n",
"# TODO: Dictionary outputs\n",
"res = ezkl.gen_settings(model_path, settings_path)\n",
"run_args = ezkl.PyRunArgs()\n",
"# logrows\n",
"run_args.logrows = 20\n",
"\n",
"res = ezkl.gen_settings(model_path, settings_path, py_run_args=run_args)\n",
"assert res == True\n"
]
},
@@ -302,7 +304,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
"version": "3.9.13"
}
},
"nbformat": 4,

View File

@@ -167,6 +167,8 @@
"run_args = ezkl.PyRunArgs()\n",
"# \"hashed/private\" means that the output of the hashing is not visible to the verifier and is instead fed into the computational graph\n",
"run_args.input_visibility = \"hashed/private/0\"\n",
"# as the inputs are felts we turn off input range checks\n",
"run_args.ignore_range_check_inputs_outputs = True\n",
"# we set it to fix the set we want to check membership for\n",
"run_args.param_visibility = \"fixed\"\n",
"# the output is public -- set membership fails if it is not = 0\n",
@@ -519,4 +521,4 @@
},
"nbformat": 4,
"nbformat_minor": 5
}
}

View File

@@ -204,6 +204,7 @@
"run_args = ezkl.PyRunArgs()\n",
"# \"polycommit\" means that the output of the hashing is not visible to the verifier and is instead fed into the computational graph\n",
"run_args.input_visibility = \"polycommit\"\n",
"run_args.ignore_range_check_inputs_outputs = True\n",
"# the parameters are public\n",
"run_args.param_visibility = \"fixed\"\n",
"# the output is public (this is the inequality test)\n",
@@ -514,4 +515,4 @@
},
"nbformat": 4,
"nbformat_minor": 5
}
}

View File

@@ -20,7 +20,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -60,7 +60,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -94,7 +94,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -134,7 +134,7 @@
},
{
"cell_type": "code",
"execution_count": 44,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -183,7 +183,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -201,6 +201,7 @@
"run_args.input_visibility = \"public\"\n",
"run_args.param_visibility = \"private\"\n",
"run_args.output_visibility = \"public\"\n",
"run_args.decomp_legs=6\n",
"run_args.num_inner_cols = 1\n",
"run_args.variables = [(\"batch_size\", 1)]"
]

View File

@@ -0,0 +1,106 @@
{
"input_data": [
[
8761,
7654,
8501,
2404,
6929,
8858,
5946,
3673,
4131,
3854,
8137,
8239,
9038,
6299,
1118,
9737,
208,
7954,
3691,
610,
3468,
3314,
8658,
8366,
2850,
477,
6114,
232,
4601,
7420,
5713,
2936,
6061,
2870,
8421,
177,
7107,
7382,
6115,
5487,
8502,
2559,
1875,
129,
8533,
8201,
8414,
4775,
9817,
3127,
8761,
7654,
8501,
2404,
6929,
8858,
5946,
3673,
4131,
3854,
8137,
8239,
9038,
6299,
1118,
9737,
208,
7954,
3691,
610,
3468,
3314,
8658,
8366,
2850,
477,
6114,
232,
4601,
7420,
5713,
2936,
6061,
2870,
8421,
177,
7107,
7382,
6115,
5487,
8502,
2559,
1875,
129,
8533,
8201,
8414,
4775,
9817,
3127
]
]
}

Binary file not shown.

View File

@@ -0,0 +1 @@
{"run_args":{"input_scale":7,"param_scale":7,"scale_rebase_multiplier":1,"lookup_range":[-32768,32768],"logrows":17,"num_inner_cols":2,"variables":[["batch_size",1]],"input_visibility":"Private","output_visibility":"Public","param_visibility":"Private","rebase_frac_zero_constants":false,"check_mode":"UNSAFE","commitment":"KZG","decomp_base":16384,"decomp_legs":2,"bounded_log_lookup":false,"ignore_range_check_inputs_outputs":false},"num_rows":54,"total_assignments":109,"total_const_size":4,"total_dynamic_col_size":0,"max_dynamic_input_len":0,"num_dynamic_lookups":0,"num_shuffles":0,"total_shuffle_col_size":0,"model_instance_shapes":[[1,1]],"model_output_scales":[7],"model_input_scales":[7],"module_sizes":{"polycommit":[],"poseidon":[0,[0]]},"required_lookups":[],"required_range_checks":[[-1,1],[0,16383]],"check_mode":"UNSAFE","version":"0.0.0","num_blinding_factors":null,"timestamp":1739396322131,"input_types":["F32"],"output_types":["F32"]}

File diff suppressed because one or more lines are too long

Binary file not shown.

File diff suppressed because one or more lines are too long

Binary file not shown.

View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
return x // 3
circuit = MyModel()
x = torch.randint(0, 10, (1, 2, 2, 8))
out = circuit(x)
print(x)
print(out)
print(x/3)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[3, 4, 0, 9, 2, 6, 2, 5, 1, 5, 3, 5, 5, 7, 0, 2, 6, 1, 4, 4, 1, 9, 7, 7, 5, 8, 2, 0, 1, 5, 9, 8]]}

Binary file not shown.

View File

@@ -1,3 +1,3 @@
[toolchain]
channel = "nightly-2024-07-18"
channel = "nightly-2025-02-17"
components = ["rustfmt", "clippy"]

View File

@@ -1,7 +1,11 @@
// ignore file if compiling for wasm
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use mimalloc::MiMalloc;
#[global_allocator]
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
static GLOBAL: mimalloc::MiMalloc = mimalloc::MiMalloc;
static GLOBAL: MiMalloc = MiMalloc;
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use clap::{CommandFactory, Parser};
@@ -24,6 +28,8 @@ use std::env;
#[tokio::main(flavor = "current_thread")]
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
pub async fn main() {
use log::debug;
let args = Cli::parse();
if let Some(generator) = args.generator {
@@ -38,7 +44,7 @@ pub async fn main() {
} else {
info!("Running with CPU");
}
info!(
debug!(
"command: \n {}",
&command.as_json().to_colored_json_auto().unwrap()
);

View File

@@ -4,11 +4,10 @@ use crate::circuit::modules::poseidon::{
PoseidonChip,
};
use crate::circuit::modules::Module;
use crate::circuit::CheckMode;
use crate::circuit::InputType;
use crate::circuit::{CheckMode, Tolerance};
use crate::commands::*;
use crate::fieldutils::{felt_to_integer_rep, integer_rep_to_felt, IntegerRep};
use crate::graph::modules::POSEIDON_LEN_GRAPH;
use crate::graph::TestDataSource;
use crate::graph::{
quantize_float, scale_to_multiplier, GraphCircuit, GraphSettings, Model, Visibility,
@@ -156,9 +155,6 @@ impl pyo3::ToPyObject for PyG1Affine {
#[derive(Clone)]
#[gen_stub_pyclass]
struct PyRunArgs {
#[pyo3(get, set)]
/// float: The tolerance for error on model outputs
pub tolerance: f32,
#[pyo3(get, set)]
/// int: The denominator in the fixed point representation used when quantizing inputs
pub input_scale: crate::Scale,
@@ -207,6 +203,9 @@ struct PyRunArgs {
/// bool: Should the circuit use unbounded lookups for log
#[pyo3(get, set)]
pub bounded_log_lookup: bool,
/// bool: Should the circuit use range checks for inputs and outputs (set to false if the input is a felt)
#[pyo3(get, set)]
pub ignore_range_check_inputs_outputs: bool,
}
/// default instantiation of PyRunArgs
@@ -223,7 +222,6 @@ impl From<PyRunArgs> for RunArgs {
fn from(py_run_args: PyRunArgs) -> Self {
RunArgs {
bounded_log_lookup: py_run_args.bounded_log_lookup,
tolerance: Tolerance::from(py_run_args.tolerance),
input_scale: py_run_args.input_scale,
param_scale: py_run_args.param_scale,
num_inner_cols: py_run_args.num_inner_cols,
@@ -239,6 +237,7 @@ impl From<PyRunArgs> for RunArgs {
commitment: Some(py_run_args.commitment.into()),
decomp_base: py_run_args.decomp_base,
decomp_legs: py_run_args.decomp_legs,
ignore_range_check_inputs_outputs: py_run_args.ignore_range_check_inputs_outputs,
}
}
}
@@ -247,7 +246,6 @@ impl Into<PyRunArgs> for RunArgs {
fn into(self) -> PyRunArgs {
PyRunArgs {
bounded_log_lookup: self.bounded_log_lookup,
tolerance: self.tolerance.val,
input_scale: self.input_scale,
param_scale: self.param_scale,
num_inner_cols: self.num_inner_cols,
@@ -263,6 +261,7 @@ impl Into<PyRunArgs> for RunArgs {
commitment: self.commitment.into(),
decomp_base: self.decomp_base,
decomp_legs: self.decomp_legs,
ignore_range_check_inputs_outputs: self.ignore_range_check_inputs_outputs,
}
}
}
@@ -333,6 +332,8 @@ enum PyInputType {
Int,
///
TDim,
///
Unknown,
}
impl From<InputType> for PyInputType {
@@ -344,6 +345,7 @@ impl From<InputType> for PyInputType {
InputType::F64 => PyInputType::F64,
InputType::Int => PyInputType::Int,
InputType::TDim => PyInputType::TDim,
InputType::Unknown => PyInputType::Unknown,
}
}
}
@@ -357,6 +359,7 @@ impl From<PyInputType> for InputType {
PyInputType::F64 => InputType::F64,
PyInputType::Int => InputType::Int,
PyInputType::TDim => InputType::TDim,
PyInputType::Unknown => InputType::Unknown,
}
}
}
@@ -371,6 +374,7 @@ impl FromStr for PyInputType {
"f64" => Ok(PyInputType::F64),
"int" => Ok(PyInputType::Int),
"tdim" => Ok(PyInputType::TDim),
"unknown" => Ok(PyInputType::Unknown),
_ => Err("Invalid value for InputType".to_string()),
}
}
@@ -573,10 +577,7 @@ fn poseidon_hash(message: Vec<PyFelt>) -> PyResult<Vec<PyFelt>> {
.map(crate::pfsys::string_to_field::<Fr>)
.collect::<Vec<_>>();
let output =
PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, POSEIDON_LEN_GRAPH>::run(
message.clone(),
)
let output = PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE>::run(message.clone())
.map_err(|_| PyIOError::new_err("Failed to run poseidon"))?;
let hash = output[0]
@@ -591,7 +592,7 @@ fn poseidon_hash(message: Vec<PyFelt>) -> PyResult<Vec<PyFelt>> {
/// Arguments
/// -------
/// message: list[str]
/// List of field elements represnted as strings
/// List of field elements represented as strings
///
/// vk_path: str
/// Path to the verification key
@@ -650,7 +651,7 @@ fn kzg_commit(
/// Arguments
/// -------
/// message: list[str]
/// List of field elements represnted as strings
/// List of field elements represented as strings
///
/// vk_path: str
/// Path to the verification key
@@ -938,6 +939,45 @@ fn gen_settings(
Ok(true)
}
/// Generates random data for the model
///
/// Arguments
/// ---------
/// model: str
/// Path to the onnx file
///
/// output: str
/// Path to create the data file
///
/// seed: int
/// Random seed to use for generated data
///
/// variables
/// Returns
/// -------
/// bool
///
#[pyfunction(signature = (
model=PathBuf::from(DEFAULT_MODEL),
output=PathBuf::from(DEFAULT_SETTINGS),
variables=Vec::from([("batch_size".to_string(), 1)]),
seed=DEFAULT_SEED.parse().unwrap(),
))]
#[gen_stub_pyfunction]
fn gen_random_data(
model: PathBuf,
output: PathBuf,
variables: Vec<(String, usize)>,
seed: u64,
) -> Result<bool, PyErr> {
crate::execute::gen_random_data(model, output, variables, seed).map_err(|e| {
let err_str = format!("Failed to generate settings: {}", e);
PyRuntimeError::new_err(err_str)
})?;
Ok(true)
}
/// Calibrates the circuit settings
///
/// Arguments
@@ -969,7 +1009,7 @@ fn gen_settings(
/// bool
///
#[pyfunction(signature = (
data = PathBuf::from(DEFAULT_CALIBRATION_FILE),
data = String::from(DEFAULT_CALIBRATION_FILE),
model = PathBuf::from(DEFAULT_MODEL),
settings = PathBuf::from(DEFAULT_SETTINGS),
target = CalibrationTarget::default(), // default is "resources
@@ -981,7 +1021,7 @@ fn gen_settings(
#[gen_stub_pyfunction]
fn calibrate_settings(
py: Python,
data: PathBuf,
data: String,
model: PathBuf,
settings: PathBuf,
target: CalibrationTarget,
@@ -1036,7 +1076,7 @@ fn calibrate_settings(
/// Python object containing the witness values
///
#[pyfunction(signature = (
data=PathBuf::from(DEFAULT_DATA),
data=String::from(DEFAULT_DATA),
model=PathBuf::from(DEFAULT_COMPILED_CIRCUIT),
output=PathBuf::from(DEFAULT_WITNESS),
vk_path=None,
@@ -1045,7 +1085,7 @@ fn calibrate_settings(
#[gen_stub_pyfunction]
fn gen_witness(
py: Python,
data: PathBuf,
data: String,
model: PathBuf,
output: Option<PathBuf>,
vk_path: Option<PathBuf>,
@@ -1714,7 +1754,7 @@ fn create_evm_vka(
/// bool
///
#[pyfunction(signature = (
input_data=PathBuf::from(DEFAULT_DATA),
input_data=String::from(DEFAULT_DATA),
settings_path=PathBuf::from(DEFAULT_SETTINGS),
sol_code_path=PathBuf::from(DEFAULT_SOL_CODE_DA),
abi_path=PathBuf::from(DEFAULT_VERIFIER_DA_ABI),
@@ -1723,7 +1763,7 @@ fn create_evm_vka(
#[gen_stub_pyfunction]
fn create_evm_data_attestation(
py: Python,
input_data: PathBuf,
input_data: String,
settings_path: PathBuf,
sol_code_path: PathBuf,
abi_path: PathBuf,
@@ -1784,7 +1824,7 @@ fn create_evm_data_attestation(
#[gen_stub_pyfunction]
fn setup_test_evm_witness(
py: Python,
data_path: PathBuf,
data_path: String,
compiled_circuit_path: PathBuf,
test_data: PathBuf,
input_source: PyTestDataSource,
@@ -1862,7 +1902,7 @@ fn deploy_evm(
fn deploy_da_evm(
py: Python,
addr_path: PathBuf,
input_data: PathBuf,
input_data: String,
settings_path: PathBuf,
sol_code_path: PathBuf,
rpc_url: Option<String>,
@@ -1905,7 +1945,7 @@ fn deploy_da_evm(
/// does the verifier use data attestation ?
///
/// addr_vk: str
/// The addess of the separate VK contract (if the verifier key is rendered as a separate contract)
/// The address of the separate VK contract (if the verifier key is rendered as a separate contract)
/// Returns
/// -------
/// bool
@@ -2055,6 +2095,7 @@ fn ezkl(m: &Bound<'_, PyModule>) -> PyResult<()> {
m.add_function(wrap_pyfunction!(get_srs, m)?)?;
m.add_function(wrap_pyfunction!(gen_witness, m)?)?;
m.add_function(wrap_pyfunction!(gen_settings, m)?)?;
m.add_function(wrap_pyfunction!(gen_random_data, m)?)?;
m.add_function(wrap_pyfunction!(calibrate_settings, m)?)?;
m.add_function(wrap_pyfunction!(aggregate, m)?)?;
m.add_function(wrap_pyfunction!(mock_aggregate, m)?)?;

View File

@@ -8,10 +8,7 @@ use crate::{
Module,
},
fieldutils::{felt_to_integer_rep, integer_rep_to_felt},
graph::{
modules::POSEIDON_LEN_GRAPH, quantize_float, scale_to_multiplier, GraphCircuit,
GraphSettings,
},
graph::{quantize_float, scale_to_multiplier, GraphCircuit, GraphSettings},
};
use console_error_panic_hook;
use halo2_proofs::{
@@ -231,10 +228,7 @@ pub fn poseidonHash(
let message: Vec<Fr> = serde_json::from_slice(&message[..])
.map_err(|e| JsError::new(&format!("Failed to deserialize message: {}", e)))?;
let output =
PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, POSEIDON_LEN_GRAPH>::run(
message.clone(),
)
let output = PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE>::run(message.clone())
.map_err(|e| JsError::new(&format!("{}", e)))?;
Ok(wasm_bindgen::Clamped(serde_json::to_vec(&output).map_err(

View File

@@ -1,7 +1,7 @@
/*
An easy-to-use implementation of the Poseidon Hash in the form of a Halo2 Chip. While the Poseidon Hash function
is already implemented in halo2_gadgets, there is no wrapper chip that makes it easy to use in other circuits.
Thanks to https://github.com/summa-dev/summa-solvency/blob/master/src/chips/poseidon/hash.rs for the inspiration (and also helping us understand how to use this).
Thanks to https://github.com/summa-dev/summa-solvency/blob/master/zk_prover/src/chips/poseidon/hash.rs for the inspiration (and also helping us understand how to use this).
*/
use std::collections::HashMap;

View File

@@ -1,20 +1,18 @@
/*
An easy-to-use implementation of the Poseidon Hash in the form of a Halo2 Chip. While the Poseidon Hash function
is already implemented in halo2_gadgets, there is no wrapper chip that makes it easy to use in other circuits.
Thanks to https://github.com/summa-dev/summa-solvency/blob/master/src/chips/poseidon/hash.rs for the inspiration (and also helping us understand how to use this).
Thanks to https://github.com/summa-dev/summa-solvency/blob/master/zk_prover/src/chips/poseidon/hash.rs for the inspiration (and also helping us understand how to use this).
*/
pub mod poseidon_params;
pub mod spec;
// This chip adds a set of advice columns to the gadget Chip to store the inputs of the hash
use halo2_gadgets::poseidon::{primitives::*, Hash, Pow5Chip, Pow5Config};
use halo2_proofs::arithmetic::Field;
use halo2_gadgets::poseidon::{
primitives::VariableLength, primitives::*, Hash, Pow5Chip, Pow5Config,
};
use halo2_proofs::halo2curves::bn256::Fr as Fp;
use halo2_proofs::{circuit::*, plonk::*};
// use maybe_rayon::prelude::{IndexedParallelIterator, IntoParallelRefIterator};
use maybe_rayon::prelude::ParallelIterator;
use maybe_rayon::slice::ParallelSlice;
use std::marker::PhantomData;
@@ -40,22 +38,17 @@ pub struct PoseidonConfig<const WIDTH: usize, const RATE: usize> {
pub pow5_config: Pow5Config<Fp, WIDTH, RATE>,
}
type InputAssignments = (Vec<AssignedCell<Fp, Fp>>, AssignedCell<Fp, Fp>);
type InputAssignments = Vec<AssignedCell<Fp, Fp>>;
/// PoseidonChip is a wrapper around the Pow5Chip that adds a set of advice columns to the gadget Chip to store the inputs of the hash
#[derive(Debug, Clone)]
pub struct PoseidonChip<
S: Spec<Fp, WIDTH, RATE> + Sync,
const WIDTH: usize,
const RATE: usize,
const L: usize,
> {
pub struct PoseidonChip<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize> {
config: PoseidonConfig<WIDTH, RATE>,
_marker: PhantomData<S>,
}
impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, const L: usize>
PoseidonChip<S, WIDTH, RATE, L>
impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize>
PoseidonChip<S, WIDTH, RATE>
{
/// Creates a new PoseidonChip
pub fn configure_with_cols(
@@ -82,8 +75,8 @@ impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, con
}
}
impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, const L: usize>
PoseidonChip<S, WIDTH, RATE, L>
impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize>
PoseidonChip<S, WIDTH, RATE>
{
/// Configuration of the PoseidonChip
pub fn configure_with_optional_instance(
@@ -100,9 +93,6 @@ impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, con
let rc_a = (0..WIDTH).map(|_| meta.fixed_column()).collect::<Vec<_>>();
let rc_b = (0..WIDTH).map(|_| meta.fixed_column()).collect::<Vec<_>>();
for input in hash_inputs.iter().take(WIDTH) {
meta.enable_equality(*input);
}
meta.enable_constant(rc_b[0]);
Self::configure_with_cols(
@@ -116,8 +106,8 @@ impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, con
}
}
impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, const L: usize>
Module<Fp> for PoseidonChip<S, WIDTH, RATE, L>
impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize> Module<Fp>
for PoseidonChip<S, WIDTH, RATE>
{
type Config = PoseidonConfig<WIDTH, RATE>;
type InputAssignments = InputAssignments;
@@ -152,9 +142,6 @@ impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, con
let rc_a = (0..WIDTH).map(|_| meta.fixed_column()).collect::<Vec<_>>();
let rc_b = (0..WIDTH).map(|_| meta.fixed_column()).collect::<Vec<_>>();
for input in hash_inputs.iter().take(WIDTH) {
meta.enable_equality(*input);
}
meta.enable_constant(rc_b[0]);
let instance = meta.instance_column();
@@ -176,7 +163,10 @@ impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, con
message: &[ValTensor<Fp>],
constants: &mut ConstantsMap<Fp>,
) -> Result<Self::InputAssignments, ModuleError> {
assert_eq!(message.len(), 1);
if message.len() != 1 {
return Err(ModuleError::InputWrongLength(message.len()));
}
let message = message[0].clone();
let start_time = instant::Instant::now();
@@ -186,95 +176,81 @@ impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, con
let res = layouter.assign_region(
|| "load message",
|mut region| {
let assigned_message: Result<Vec<AssignedCell<Fp, Fp>>, ModuleError> =
match &message {
ValTensor::Value { inner: v, .. } => {
v.iter()
.enumerate()
.map(|(i, value)| {
let x = i % WIDTH;
let y = i / WIDTH;
let assigned_message: Result<Vec<AssignedCell<Fp, Fp>>, _> = match &message {
ValTensor::Value { inner: v, .. } => v
.iter()
.enumerate()
.map(|(i, value)| {
let x = i % WIDTH;
let y = i / WIDTH;
match value {
ValType::Value(v) => region
.assign_advice(
|| format!("load message_{}", i),
self.config.hash_inputs[x],
y,
|| *v,
)
.map_err(|e| e.into()),
ValType::PrevAssigned(v)
| ValType::AssignedConstant(v, ..) => Ok(v.clone()),
ValType::Constant(f) => {
if local_constants.contains_key(f) {
Ok(constants
.get(f)
.unwrap()
.assigned_cell()
.ok_or(ModuleError::ConstantNotAssigned)?)
} else {
let res = region.assign_advice_from_constant(
|| format!("load message_{}", i),
self.config.hash_inputs[x],
y,
*f,
)?;
constants.insert(
*f,
ValType::AssignedConstant(res.clone(), *f),
);
Ok(res)
}
}
e => Err(ModuleError::WrongInputType(
format!("{:?}", e),
"PrevAssigned".to_string(),
)),
}
})
.collect()
}
ValTensor::Instance {
dims,
inner: col,
idx,
initial_offset,
..
} => {
// this should never ever fail
let num_elems = dims[*idx].iter().product::<usize>();
(0..num_elems)
.map(|i| {
let x = i % WIDTH;
let y = i / WIDTH;
region.assign_advice_from_instance(
|| "pub input anchor",
*col,
initial_offset + i,
match value {
ValType::Value(v) => region
.assign_advice(
|| format!("load message_{}", i),
self.config.hash_inputs[x],
y,
|| *v,
)
})
.collect::<Result<Vec<_>, _>>()
.map_err(|e| e.into())
}
};
.map_err(|e| e.into()),
ValType::PrevAssigned(v) | ValType::AssignedConstant(v, ..) => {
Ok(v.clone())
}
ValType::Constant(f) => {
if local_constants.contains_key(f) {
Ok(constants
.get(f)
.unwrap()
.assigned_cell()
.ok_or(ModuleError::ConstantNotAssigned)?)
} else {
let res = region.assign_advice_from_constant(
|| format!("load message_{}", i),
self.config.hash_inputs[x],
y,
*f,
)?;
let offset = message.len() / WIDTH + 1;
constants
.insert(*f, ValType::AssignedConstant(res.clone(), *f));
let zero_val = region
.assign_advice_from_constant(
|| "",
self.config.hash_inputs[0],
offset,
Fp::ZERO,
)
.unwrap();
Ok(res)
}
}
e => Err(ModuleError::WrongInputType(
format!("{:?}", e),
"AssignedValue".to_string(),
)),
}
})
.collect(),
ValTensor::Instance {
dims,
inner: col,
idx,
initial_offset,
..
} => {
// this should never ever fail
let num_elems = dims[*idx].iter().product::<usize>();
(0..num_elems)
.map(|i| {
let x = i % WIDTH;
let y = i / WIDTH;
region.assign_advice_from_instance(
|| "pub input anchor",
*col,
initial_offset + i,
self.config.hash_inputs[x],
y,
)
})
.collect::<Result<Vec<_>, _>>()
.map_err(|e| e.into())
}
};
Ok((assigned_message?, zero_val))
Ok(assigned_message?)
},
);
log::trace!(
@@ -295,7 +271,13 @@ impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, con
row_offset: usize,
constants: &mut ConstantsMap<Fp>,
) -> Result<ValTensor<Fp>, ModuleError> {
let (mut input_cells, zero_val) = self.layout_inputs(layouter, input, constants)?;
let input_cells = self.layout_inputs(layouter, input, constants)?;
// empty hash case
if input_cells.is_empty() {
return Ok(input[0].clone());
}
// extract the values from the input cells
let mut assigned_input: Tensor<ValType<Fp>> =
input_cells.iter().map(|e| ValType::from(e.clone())).into();
@@ -303,52 +285,25 @@ impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, con
let start_time = instant::Instant::now();
let mut one_iter = false;
// do the Tree dance baby
while input_cells.len() > 1 || !one_iter {
let hashes: Result<Vec<AssignedCell<Fp, Fp>>, ModuleError> = input_cells
.chunks(L)
.enumerate()
.map(|(i, block)| {
let _start_time = instant::Instant::now();
let pow5_chip = Pow5Chip::construct(self.config.pow5_config.clone());
// initialize the hasher
let hasher = Hash::<_, _, S, VariableLength, WIDTH, RATE>::init(
pow5_chip,
layouter.namespace(|| "block_hasher"),
)?;
let mut block = block.to_vec();
let remainder = block.len() % L;
if remainder != 0 {
block.extend(vec![zero_val.clone(); L - remainder]);
}
let pow5_chip = Pow5Chip::construct(self.config.pow5_config.clone());
// initialize the hasher
let hasher = Hash::<_, _, S, ConstantLength<L>, WIDTH, RATE>::init(
pow5_chip,
layouter.namespace(|| "block_hasher"),
)?;
let hash = hasher.hash(
layouter.namespace(|| "hash"),
block.to_vec().try_into().map_err(|_| Error::Synthesis)?,
);
if i == 0 {
log::trace!("block (L={:?}) took: {:?}", L, _start_time.elapsed());
}
hash
})
.collect::<Result<Vec<_>, _>>()
.map_err(|e| e.into());
log::trace!("hashes (N={:?}) took: {:?}", len, start_time.elapsed());
one_iter = true;
input_cells = hashes?;
}
let hash: AssignedCell<Fp, Fp> = hasher.hash(
layouter.namespace(|| "hash"),
input_cells
.to_vec()
.try_into()
.map_err(|_| Error::Synthesis)?,
)?;
let duration = start_time.elapsed();
log::trace!("layout (N={:?}) took: {:?}", len, duration);
let result = Tensor::from(input_cells.iter().map(|e| ValType::from(e.clone())));
let result = Tensor::from(vec![ValType::from(hash.clone())].into_iter());
let output = match result[0].clone() {
ValType::PrevAssigned(v) => v,
@@ -387,69 +342,59 @@ impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, con
///
fn run(message: Vec<Fp>) -> Result<Vec<Vec<Fp>>, ModuleError> {
let mut hash_inputs = message;
let len = hash_inputs.len();
let len = message.len();
if len == 0 {
return Ok(vec![vec![]]);
}
let start_time = instant::Instant::now();
let mut one_iter = false;
// do the Tree dance baby
while hash_inputs.len() > 1 || !one_iter {
let hashes: Vec<Fp> = hash_inputs
.par_chunks(L)
.map(|block| {
let mut block = block.to_vec();
let remainder = block.len() % L;
if remainder != 0 {
block.extend(vec![Fp::ZERO; L - remainder].iter());
}
let block_len = block.len();
let message = block
.try_into()
.map_err(|_| ModuleError::InputWrongLength(block_len))?;
Ok(halo2_gadgets::poseidon::primitives::Hash::<
_,
S,
ConstantLength<L>,
{ WIDTH },
{ RATE },
>::init()
.hash(message))
})
.collect::<Result<Vec<_>, ModuleError>>()?;
one_iter = true;
hash_inputs = hashes;
}
let hash = halo2_gadgets::poseidon::primitives::Hash::<
_,
S,
VariableLength,
{ WIDTH },
{ RATE },
>::init()
.hash(message);
let duration = start_time.elapsed();
log::trace!("run (N={:?}) took: {:?}", len, duration);
Ok(vec![hash_inputs])
Ok(vec![vec![hash]])
}
fn num_rows(mut input_len: usize) -> usize {
fn num_rows(input_len: usize) -> usize {
// this was determined by running the circuit and looking at the number of constraints
// in the test called hash_for_a_range_of_input_sizes, then regressing in python to find the slope
let fixed_cost: usize = 41 * L;
// import numpy as np
// from scipy import stats
let mut num_rows = 0;
// x = np.array([32, 64, 96, 128, 160, 192])
// y = np.array([1298, 2594, 3890, 5186, 6482, 7778])
loop {
// the number of times the input_len is divisible by L
let num_chunks = input_len / L + 1;
num_rows += num_chunks * fixed_cost;
if num_chunks == 1 {
break;
}
input_len = num_chunks;
}
// slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)
num_rows
// print(f"slope: {slope}")
// print(f"intercept: {intercept}")
// print(f"R^2: {r_value**2}")
// # Predict for any x
// def predict(x):
// return slope * x + intercept
// # Test prediction
// test_x = 256
// print(f"Predicted value for x={test_x}: {predict(test_x)}")
// our output:
// slope: 40.5
// intercept: 2.0
// R^2: 1.0
// Predicted value for x=256: 10370.0
let fixed_cost: usize = 41 * input_len;
// the cost of the hash function is linear with the number of inputs
fixed_cost + 2
}
}
@@ -476,12 +421,12 @@ mod tests {
const RATE: usize = POSEIDON_RATE;
const R: usize = 240;
struct HashCircuit<S: Spec<Fp, WIDTH, RATE>, const L: usize> {
struct HashCircuit<S: Spec<Fp, WIDTH, RATE>> {
message: ValTensor<Fp>,
_spec: PhantomData<S>,
}
impl<S: Spec<Fp, WIDTH, RATE>, const L: usize> Circuit<Fp> for HashCircuit<S, L> {
impl<S: Spec<Fp, WIDTH, RATE>> Circuit<Fp> for HashCircuit<S> {
type Config = PoseidonConfig<WIDTH, RATE>;
type FloorPlanner = ModulePlanner;
type Params = ();
@@ -497,7 +442,7 @@ mod tests {
}
fn configure(meta: &mut ConstraintSystem<Fp>) -> PoseidonConfig<WIDTH, RATE> {
PoseidonChip::<PoseidonSpec, WIDTH, RATE, L>::configure(meta, ())
PoseidonChip::<PoseidonSpec, WIDTH, RATE>::configure(meta, ())
}
fn synthesize(
@@ -505,7 +450,7 @@ mod tests {
config: PoseidonConfig<WIDTH, RATE>,
mut layouter: impl Layouter<Fp>,
) -> Result<(), Error> {
let chip: PoseidonChip<PoseidonSpec, WIDTH, RATE, L> = PoseidonChip::new(config);
let chip: PoseidonChip<PoseidonSpec, WIDTH, RATE> = PoseidonChip::new(config);
chip.layout(
&mut layouter,
&[self.message.clone()],
@@ -517,18 +462,33 @@ mod tests {
}
}
#[test]
fn poseidon_hash_empty() {
let message = [];
let output = PoseidonChip::<PoseidonSpec, WIDTH, RATE>::run(message.to_vec()).unwrap();
let mut message: Tensor<ValType<Fp>> =
message.into_iter().map(|m| Value::known(m).into()).into();
let k = 9;
let circuit = HashCircuit::<PoseidonSpec> {
message: message.into(),
_spec: PhantomData,
};
let prover = halo2_proofs::dev::MockProver::run(k, &circuit, vec![vec![]]).unwrap();
assert_eq!(prover.verify(), Ok(()))
}
#[test]
fn poseidon_hash() {
let rng = rand::rngs::OsRng;
let message = [Fp::random(rng), Fp::random(rng)];
let output = PoseidonChip::<PoseidonSpec, WIDTH, RATE, 2>::run(message.to_vec()).unwrap();
let output = PoseidonChip::<PoseidonSpec, WIDTH, RATE>::run(message.to_vec()).unwrap();
let mut message: Tensor<ValType<Fp>> =
message.into_iter().map(|m| Value::known(m).into()).into();
let k = 9;
let circuit = HashCircuit::<PoseidonSpec, 2> {
let circuit = HashCircuit::<PoseidonSpec> {
message: message.into(),
_spec: PhantomData,
};
@@ -541,13 +501,13 @@ mod tests {
let rng = rand::rngs::OsRng;
let message = [Fp::random(rng), Fp::random(rng), Fp::random(rng)];
let output = PoseidonChip::<PoseidonSpec, WIDTH, RATE, 3>::run(message.to_vec()).unwrap();
let output = PoseidonChip::<PoseidonSpec, WIDTH, RATE>::run(message.to_vec()).unwrap();
let mut message: Tensor<ValType<Fp>> =
message.into_iter().map(|m| Value::known(m).into()).into();
let k = 9;
let circuit = HashCircuit::<PoseidonSpec, 3> {
let circuit = HashCircuit::<PoseidonSpec> {
message: message.into(),
_spec: PhantomData,
};
@@ -563,23 +523,21 @@ mod tests {
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
env_logger::init();
{
let i = 32;
for i in (32..128).step_by(32) {
// print a bunch of new lines
println!(
log::info!(
"i is {} -------------------------------------------------",
i
);
let message: Vec<Fp> = (0..i).map(|_| Fp::random(rng)).collect::<Vec<_>>();
let output =
PoseidonChip::<PoseidonSpec, WIDTH, RATE, 32>::run(message.clone()).unwrap();
let output = PoseidonChip::<PoseidonSpec, WIDTH, RATE>::run(message.clone()).unwrap();
let mut message: Tensor<ValType<Fp>> =
message.into_iter().map(|m| Value::known(m).into()).into();
let k = 17;
let circuit = HashCircuit::<PoseidonSpec, 32> {
let circuit = HashCircuit::<PoseidonSpec> {
message: message.into(),
_spec: PhantomData,
};
@@ -596,13 +554,13 @@ mod tests {
let mut message: Vec<Fp> = (0..2048).map(|_| Fp::random(rng)).collect::<Vec<_>>();
let output = PoseidonChip::<PoseidonSpec, WIDTH, RATE, 25>::run(message.clone()).unwrap();
let output = PoseidonChip::<PoseidonSpec, WIDTH, RATE>::run(message.clone()).unwrap();
let mut message: Tensor<ValType<Fp>> =
message.into_iter().map(|m| Value::known(m).into()).into();
let k = 17;
let circuit = HashCircuit::<PoseidonSpec, 25> {
let circuit = HashCircuit::<PoseidonSpec> {
message: message.into(),
_spec: PhantomData,
};

View File

@@ -17,7 +17,6 @@ pub enum BaseOp {
Sub,
SumInit,
Sum,
IsBoolean,
}
/// Matches a [BaseOp] to an operation over inputs
@@ -34,7 +33,6 @@ impl BaseOp {
BaseOp::Add => a + b,
BaseOp::Sub => a - b,
BaseOp::Mult => a * b,
BaseOp::IsBoolean => b,
_ => panic!("nonaccum_f called on accumulating operation"),
}
}
@@ -74,7 +72,6 @@ impl BaseOp {
BaseOp::Mult => "MULT",
BaseOp::Sum => "SUM",
BaseOp::SumInit => "SUMINIT",
BaseOp::IsBoolean => "ISBOOLEAN",
}
}
@@ -90,7 +87,6 @@ impl BaseOp {
BaseOp::Mult => (0, 1),
BaseOp::Sum => (-1, 2),
BaseOp::SumInit => (0, 1),
BaseOp::IsBoolean => (0, 1),
}
}
@@ -106,7 +102,6 @@ impl BaseOp {
BaseOp::Mult => 2,
BaseOp::Sum => 1,
BaseOp::SumInit => 1,
BaseOp::IsBoolean => 0,
}
}
@@ -122,7 +117,6 @@ impl BaseOp {
BaseOp::SumInit => 0,
BaseOp::CumProd => 1,
BaseOp::CumProdInit => 0,
BaseOp::IsBoolean => 0,
}
}
}

View File

@@ -2,7 +2,7 @@ use std::str::FromStr;
use halo2_proofs::{
circuit::Layouter,
plonk::{ConstraintSystem, Constraints, Expression, Selector},
plonk::{ConstraintSystem, Constraints, Expression, Selector, TableColumn},
poly::Rotation,
};
use log::debug;
@@ -20,7 +20,6 @@ use crate::{
circuit::{
ops::base::BaseOp,
table::{Range, RangeCheck, Table},
utils,
},
tensor::{Tensor, TensorType, ValTensor, VarTensor},
};
@@ -75,51 +74,12 @@ impl FromStr for CheckMode {
}
}
#[allow(missing_docs)]
/// An enum representing the tolerance we can accept for the accumulated arguments, either absolute or percentage
#[derive(Clone, Default, Debug, PartialEq, PartialOrd, Serialize, Deserialize, Copy)]
pub struct Tolerance {
pub val: f32,
pub scale: utils::F32,
}
impl std::fmt::Display for Tolerance {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{:.2}", self.val)
}
}
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
impl ToFlags for Tolerance {
/// Convert the struct to a subcommand string
fn to_flags(&self) -> Vec<String> {
vec![format!("{}", self)]
}
}
impl FromStr for Tolerance {
type Err = String;
fn from_str(s: &str) -> Result<Self, Self::Err> {
if let Ok(val) = s.parse::<f32>() {
Ok(Tolerance {
val,
scale: utils::F32(1.0),
})
} else {
Err(
"Invalid tolerance value provided. It should expressed as a percentage (f32)."
.to_string(),
)
}
}
}
impl From<f32> for Tolerance {
fn from(value: f32) -> Self {
Tolerance {
val: value,
scale: utils::F32(1.0),
impl CheckMode {
/// Returns the value of the check mode
pub fn is_safe(&self) -> bool {
match self {
CheckMode::SAFE => true,
CheckMode::UNSAFE => false,
}
}
}
@@ -148,29 +108,6 @@ impl<'source> FromPyObject<'source> for CheckMode {
}
}
#[cfg(feature = "python-bindings")]
/// Converts Tolerance into a PyObject (Required for Tolerance to be compatible with Python)
impl IntoPy<PyObject> for Tolerance {
fn into_py(self, py: Python) -> PyObject {
(self.val, self.scale.0).to_object(py)
}
}
#[cfg(feature = "python-bindings")]
/// Obtains Tolerance from PyObject (Required for Tolerance to be compatible with Python)
impl<'source> FromPyObject<'source> for Tolerance {
fn extract_bound(ob: &pyo3::Bound<'source, pyo3::PyAny>) -> PyResult<Self> {
if let Ok((val, scale)) = <(f32, f32)>::extract_bound(ob) {
Ok(Tolerance {
val,
scale: utils::F32(scale),
})
} else {
Err(PyValueError::new_err("Invalid tolerance value provided. "))
}
}
}
/// A struct representing the selectors for the dynamic lookup tables
#[derive(Clone, Debug, Default)]
pub struct DynamicLookups {
@@ -205,15 +142,16 @@ impl DynamicLookups {
/// A struct representing the selectors for the dynamic lookup tables
#[derive(Clone, Debug, Default)]
pub struct Shuffles {
/// [Selector]s generated when configuring the layer. We use a [BTreeMap] as we expect to configure many dynamic lookup ops.
pub input_selectors: BTreeMap<(usize, (usize, usize)), Selector>,
/// Selectors for the dynamic lookup tables
pub reference_selectors: Vec<Selector>,
pub output_selectors: Vec<Selector>,
/// Inputs:
pub inputs: Vec<VarTensor>,
/// tables
pub references: Vec<VarTensor>,
pub outputs: Vec<VarTensor>,
}
impl Shuffles {
@@ -224,9 +162,13 @@ impl Shuffles {
Self {
input_selectors: BTreeMap::new(),
reference_selectors: vec![],
inputs: vec![dummy_var.clone(), dummy_var.clone()],
references: vec![single_col_dummy_var.clone(), single_col_dummy_var.clone()],
output_selectors: vec![],
inputs: vec![dummy_var.clone(), dummy_var.clone(), dummy_var.clone()],
outputs: vec![
single_col_dummy_var.clone(),
single_col_dummy_var.clone(),
single_col_dummy_var.clone(),
],
}
}
}
@@ -326,6 +268,8 @@ pub struct BaseConfig<F: PrimeField + TensorType + PartialOrd> {
/// Activate sanity checks
pub check_mode: CheckMode,
_marker: PhantomData<F>,
/// shared table inputs
pub shared_table_inputs: Vec<TableColumn>,
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
@@ -338,6 +282,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
shuffles: Shuffles::dummy(col_size, num_inner_cols),
range_checks: RangeChecks::dummy(col_size, num_inner_cols),
check_mode: CheckMode::SAFE,
shared_table_inputs: vec![],
_marker: PhantomData,
}
}
@@ -364,13 +309,18 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
if inputs[0].num_cols() != output.num_cols() {
log::warn!("input and output shapes do not match");
}
if inputs[0].num_inner_cols() != inputs[1].num_inner_cols() {
log::warn!("input number of inner columns do not match");
}
if inputs[0].num_inner_cols() != output.num_inner_cols() {
log::warn!("input and output number of inner columns do not match");
}
for i in 0..output.num_blocks() {
for j in 0..output.num_inner_cols() {
nonaccum_selectors.insert((BaseOp::Add, i, j), meta.selector());
nonaccum_selectors.insert((BaseOp::Sub, i, j), meta.selector());
nonaccum_selectors.insert((BaseOp::Mult, i, j), meta.selector());
nonaccum_selectors.insert((BaseOp::IsBoolean, i, j), meta.selector());
}
}
@@ -404,24 +354,13 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
// Get output expressions for each input channel
let (rotation_offset, rng) = base_op.query_offset_rng();
let constraints = match base_op {
BaseOp::IsBoolean => {
let expected_output: Tensor<Expression<F>> = output
.query_rng(meta, *block_idx, *inner_col_idx, 0, 1)
.expect("non accum: output query failed");
let constraints = {
let expected_output: Tensor<Expression<F>> = output
.query_rng(meta, *block_idx, *inner_col_idx, rotation_offset, rng)
.expect("non accum: output query failed");
let output = expected_output[base_op.constraint_idx()].clone();
vec![(output.clone()) * (output.clone() - Expression::Constant(F::from(1)))]
}
_ => {
let expected_output: Tensor<Expression<F>> = output
.query_rng(meta, *block_idx, *inner_col_idx, rotation_offset, rng)
.expect("non accum: output query failed");
let res = base_op.nonaccum_f((qis[0].clone(), qis[1].clone()));
vec![expected_output[base_op.constraint_idx()].clone() - res]
}
let res = base_op.nonaccum_f((qis[0].clone(), qis[1].clone()));
vec![expected_output[base_op.constraint_idx()].clone() - res]
};
Constraints::with_selector(selector, constraints)
@@ -476,6 +415,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
dynamic_lookups: DynamicLookups::default(),
shuffles: Shuffles::default(),
range_checks: RangeChecks::default(),
shared_table_inputs: vec![],
check_mode,
_marker: PhantomData,
}
@@ -506,21 +446,9 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
return Err(CircuitError::WrongColumnType(output.name().to_string()));
}
// we borrow mutably twice so we need to do this dance
let table = if !self.static_lookups.tables.contains_key(nl) {
// as all tables have the same input we see if there's another table who's input we can reuse
let table = if let Some(table) = self.static_lookups.tables.values().next() {
Table::<F>::configure(
cs,
lookup_range,
logrows,
nl,
Some(table.table_inputs.clone()),
)
} else {
Table::<F>::configure(cs, lookup_range, logrows, nl, None)
};
let table =
Table::<F>::configure(cs, lookup_range, logrows, nl, &mut self.shared_table_inputs);
self.static_lookups.tables.insert(nl.clone(), table.clone());
table
} else {
@@ -571,9 +499,9 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
// this is 0 if the index is the same as the column index (starting from 1)
let col_expr = sel.clone()
* table
* (table
.selector_constructor
.get_expr_at_idx(col_idx, synthetic_sel);
.get_expr_at_idx(col_idx, synthetic_sel));
let multiplier =
table.selector_constructor.get_selector_val_at_idx(col_idx);
@@ -605,6 +533,40 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
res
});
}
// add a degree-k custom constraint of the following form to the range check and
// static lookup configuration.
// 𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑙 · ∏ (𝑠𝑒𝑙 𝑖) = 0 where 𝑠𝑒𝑙 is the synthetic_sel, and the product is over the set of overflowed columns
// and 𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑙 is the selector value at the column index
cs.create_gate("range_check_on_sel", |cs| {
let synthetic_sel = match len {
1 => Expression::Constant(F::from(1)),
_ => match index {
VarTensor::Advice { inner: advices, .. } => {
cs.query_advice(advices[x][y], Rotation(0))
}
_ => unreachable!(),
},
};
let range_check_on_synthetic_sel = match len {
1 => Expression::Constant(F::from(0)),
_ => {
let mut initial_expr = Expression::Constant(F::from(1));
for i in 0..len {
initial_expr = initial_expr
* (synthetic_sel.clone()
- Expression::Constant(F::from(i as u64)))
}
initial_expr
}
};
let sel = cs.query_selector(multi_col_selector);
Constraints::with_selector(sel, vec![range_check_on_synthetic_sel])
});
self.static_lookups
.selectors
.insert((nl.clone(), x, y), multi_col_selector);
@@ -730,8 +692,8 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
pub fn configure_shuffles(
&mut self,
cs: &mut ConstraintSystem<F>,
inputs: &[VarTensor; 2],
references: &[VarTensor; 2],
inputs: &[VarTensor; 3],
outputs: &[VarTensor; 3],
) -> Result<(), CircuitError>
where
F: Field,
@@ -742,14 +704,14 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
}
}
for t in references.iter() {
for t in outputs.iter() {
if !t.is_advice() || t.num_inner_cols() > 1 {
return Err(CircuitError::WrongDynamicColumnType(t.name().to_string()));
}
}
// assert all tables have the same number of blocks
if references
if outputs
.iter()
.map(|t| t.num_blocks())
.collect::<Vec<_>>()
@@ -757,23 +719,23 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
.any(|w| w[0] != w[1])
{
return Err(CircuitError::WrongDynamicColumnType(
"references inner cols".to_string(),
"outputs inner cols".to_string(),
));
}
let one = Expression::Constant(F::ONE);
for q in 0..references[0].num_blocks() {
let s_reference = cs.complex_selector();
for q in 0..outputs[0].num_blocks() {
let s_output = cs.complex_selector();
for x in 0..inputs[0].num_blocks() {
for y in 0..inputs[0].num_inner_cols() {
let s_input = cs.complex_selector();
cs.lookup_any("lookup", |cs| {
cs.lookup_any("shuffle", |cs| {
let s_inputq = cs.query_selector(s_input);
let mut expression = vec![];
let s_referenceq = cs.query_selector(s_reference);
let s_outputq = cs.query_selector(s_output);
let mut input_queries = vec![one.clone()];
for input in inputs {
@@ -785,9 +747,9 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
});
}
let mut ref_queries = vec![one.clone()];
for reference in references {
ref_queries.push(match reference {
let mut output_queries = vec![one.clone()];
for output in outputs {
output_queries.push(match output {
VarTensor::Advice { inner: advices, .. } => {
cs.query_advice(advices[q][0], Rotation(0))
}
@@ -796,7 +758,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
}
let lhs = input_queries.into_iter().map(|c| c * s_inputq.clone());
let rhs = ref_queries.into_iter().map(|c| c * s_referenceq.clone());
let rhs = output_queries.into_iter().map(|c| c * s_outputq.clone());
expression.extend(lhs.zip(rhs));
expression
@@ -807,13 +769,13 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
.or_insert(s_input);
}
}
self.shuffles.reference_selectors.push(s_reference);
self.shuffles.output_selectors.push(s_output);
}
// if we haven't previously initialized the input/output, do so now
if self.shuffles.references.is_empty() {
debug!("assigning shuffles reference");
self.shuffles.references = references.to_vec();
if self.shuffles.outputs.is_empty() {
debug!("assigning shuffles output");
self.shuffles.outputs = outputs.to_vec();
}
if self.shuffles.inputs.is_empty() {
debug!("assigning shuffles input");
@@ -845,7 +807,6 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
let range_check = if let std::collections::btree_map::Entry::Vacant(e) =
self.range_checks.ranges.entry(range)
{
// as all tables have the same input we see if there's another table who's input we can reuse
let range_check = RangeCheck::<F>::configure(cs, range, logrows);
e.insert(range_check.clone());
range_check
@@ -883,9 +844,9 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
let default_x = range_check.get_first_element(col_idx);
let col_expr = sel.clone()
* range_check
* (range_check
.selector_constructor
.get_expr_at_idx(col_idx, synthetic_sel);
.get_expr_at_idx(col_idx, synthetic_sel));
let multiplier = range_check
.selector_constructor
@@ -908,6 +869,40 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
res
});
}
// add a degree-k custom constraint of the following form to the range check and
// static lookup configuration.
// 𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑙 · ∏ (𝑠𝑒𝑙 𝑖) = 0 where 𝑠𝑒𝑙 is the synthetic_sel, and the product is over the set of overflowed columns
// and 𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑙 is the selector value at the column index
cs.create_gate("range_check_on_sel", |cs| {
let synthetic_sel = match len {
1 => Expression::Constant(F::from(1)),
_ => match index {
VarTensor::Advice { inner: advices, .. } => {
cs.query_advice(advices[x][y], Rotation(0))
}
_ => unreachable!(),
},
};
let range_check_on_synthetic_sel = match len {
1 => Expression::Constant(F::from(0)),
_ => {
let mut initial_expr = Expression::Constant(F::from(1));
for i in 0..len {
initial_expr = initial_expr
* (synthetic_sel.clone()
- Expression::Constant(F::from(i as u64)))
}
initial_expr
}
};
let sel = cs.query_selector(multi_col_selector);
Constraints::with_selector(sel, vec![range_check_on_synthetic_sel])
});
self.range_checks
.selectors
.insert((range, x, y), multi_col_selector);

View File

@@ -25,7 +25,7 @@ pub enum CircuitError {
/// This operation is unsupported
#[error("unsupported operation in graph")]
UnsupportedOp,
///
/// Invalid einsum expression
#[error("invalid einsum expression")]
InvalidEinsum,
/// Flush error
@@ -100,4 +100,13 @@ pub enum CircuitError {
#[error("invalid input type {0}")]
/// Invalid input type
InvalidInputType(String),
#[error("an element is missing from the shuffled version of the tensor")]
/// An element is missing from the shuffled version of the tensor
MissingShuffleElement,
/// Visibility has not been set
#[error("visibility has not been set")]
UnsetVisibility,
/// A decomposition base overflowed
#[error("decomposition base overflowed")]
DecompositionBaseOverflow,
}

View File

@@ -1,9 +1,9 @@
use super::*;
use crate::{
circuit::{layouts, utils, Tolerance},
fieldutils::integer_rep_to_felt,
circuit::{layouts, utils},
fieldutils::{integer_rep_to_felt, IntegerRep},
graph::multiplier_to_scale,
tensor::{self, Tensor, TensorType, ValTensor},
tensor::{self, DataFormat, Tensor, TensorType, ValTensor},
};
use halo2curves::ff::PrimeField;
use serde::{Deserialize, Serialize};
@@ -57,11 +57,13 @@ pub enum HybridOp {
stride: Vec<usize>,
kernel_shape: Vec<usize>,
normalized: bool,
data_format: DataFormat,
},
MaxPool {
padding: Vec<(usize, usize)>,
stride: Vec<usize>,
pool_dims: Vec<usize>,
data_format: DataFormat,
},
ReduceMin {
axes: Vec<usize>,
@@ -76,7 +78,9 @@ pub enum HybridOp {
output_scale: utils::F32,
axes: Vec<usize>,
},
RangeCheck(Tolerance),
Output {
decomp: bool,
},
Greater,
GreaterEqual,
Less,
@@ -151,10 +155,10 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
padding,
stride,
kernel_shape,
normalized,
normalized, data_format
} => format!(
"SUMPOOL (padding={:?}, stride={:?}, kernel_shape={:?}, normalized={})",
padding, stride, kernel_shape, normalized
"SUMPOOL (padding={:?}, stride={:?}, kernel_shape={:?}, normalized={}, data_format={:?})",
padding, stride, kernel_shape, normalized, data_format
),
HybridOp::ReduceMax { axes } => format!("REDUCEMAX (axes={:?})", axes),
HybridOp::ReduceArgMax { dim } => format!("REDUCEARGMAX (dim={})", dim),
@@ -162,9 +166,10 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
padding,
stride,
pool_dims,
data_format,
} => format!(
"MaxPool (padding={:?}, stride={:?}, pool_dims={:?})",
padding, stride, pool_dims
"MaxPool (padding={:?}, stride={:?}, pool_dims={:?}, data_format={:?})",
padding, stride, pool_dims, data_format
),
HybridOp::ReduceMin { axes } => format!("REDUCEMIN (axes={:?})", axes),
HybridOp::ReduceArgMin { dim } => format!("REDUCEARGMIN (dim={})", dim),
@@ -178,7 +183,9 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
input_scale, output_scale, axes
)
}
HybridOp::RangeCheck(p) => format!("RANGECHECK (tol={:?})", p),
HybridOp::Output { decomp } => {
format!("OUTPUT (decomp={})", decomp)
}
HybridOp::Greater => "GREATER".to_string(),
HybridOp::GreaterEqual => "GREATEREQUAL".to_string(),
HybridOp::Less => "LESS".to_string(),
@@ -234,6 +241,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
stride,
kernel_shape,
normalized,
data_format,
} => layouts::sumpool(
config,
region,
@@ -242,6 +250,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
stride,
kernel_shape,
*normalized,
*data_format,
)?,
HybridOp::Recip {
input_scale,
@@ -250,8 +259,8 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
config,
region,
values[..].try_into()?,
integer_rep_to_felt(input_scale.0 as i128),
integer_rep_to_felt(output_scale.0 as i128),
integer_rep_to_felt(input_scale.0 as IntegerRep),
integer_rep_to_felt(output_scale.0 as IntegerRep),
)?,
HybridOp::Div { denom, .. } => {
if denom.0.fract() == 0.0 {
@@ -259,7 +268,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
config,
region,
values[..].try_into()?,
integer_rep_to_felt(denom.0 as i128),
integer_rep_to_felt(denom.0 as IntegerRep),
)?
} else {
layouts::nonlinearity(
@@ -282,6 +291,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
padding,
stride,
pool_dims,
data_format,
} => layouts::max_pool(
config,
region,
@@ -289,6 +299,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
padding,
stride,
pool_dims,
*data_format,
)?,
HybridOp::ReduceMax { axes } => {
layouts::max_axes(config, region, values[..].try_into()?, axes)?
@@ -314,13 +325,9 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
*output_scale,
axes,
)?,
HybridOp::RangeCheck(tol) => layouts::range_check_percent(
config,
region,
values[..].try_into()?,
tol.scale,
tol.val,
)?,
HybridOp::Output { decomp } => {
layouts::output(config, region, values[..].try_into()?, *decomp)?
}
HybridOp::Greater => layouts::greater(config, region, values[..].try_into()?)?,
HybridOp::GreaterEqual => {
layouts::greater_equal(config, region, values[..].try_into()?)?

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,8 @@
use std::any::Any;
use serde::{Deserialize, Serialize};
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use tract_onnx::prelude::DatumType;
use crate::{
graph::quantize_tensor,
@@ -96,6 +98,8 @@ pub enum InputType {
Int,
///
TDim,
///
Unknown,
}
impl InputType {
@@ -132,6 +136,7 @@ impl InputType {
let int_input = input.clone().to_i64().unwrap();
*input = T::from_i64(int_input).unwrap();
}
InputType::Unknown => {}
}
}
}
@@ -152,6 +157,28 @@ impl std::str::FromStr for InputType {
}
}
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
impl From<DatumType> for InputType {
fn from(datum_type: DatumType) -> Self {
match datum_type {
DatumType::Bool => InputType::Bool,
DatumType::F16 => InputType::F16,
DatumType::F32 => InputType::F32,
DatumType::F64 => InputType::F64,
DatumType::I8 => InputType::Int,
DatumType::I16 => InputType::Int,
DatumType::I32 => InputType::Int,
DatumType::I64 => InputType::Int,
DatumType::U8 => InputType::Int,
DatumType::U16 => InputType::Int,
DatumType::U32 => InputType::Int,
DatumType::U64 => InputType::Int,
DatumType::TDim => InputType::TDim,
_ => unimplemented!(),
}
}
}
///
#[derive(Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, Serialize, Deserialize)]
pub struct Input {
@@ -159,6 +186,8 @@ pub struct Input {
pub scale: crate::Scale,
///
pub datum_type: InputType,
/// decomp check
pub decomp: bool,
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Input {
@@ -196,6 +225,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Input
config,
region,
values[..].try_into()?,
self.decomp,
)?)),
}
} else {
@@ -251,20 +281,26 @@ pub struct Constant<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> {
///
#[serde(skip)]
pub pre_assigned_val: Option<ValTensor<F>>,
///
pub decomp: bool,
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Constant<F> {
///
pub fn new(quantized_values: Tensor<F>, raw_values: Tensor<f32>) -> Self {
pub fn new(quantized_values: Tensor<F>, raw_values: Tensor<f32>, decomp: bool) -> Self {
Self {
quantized_values,
raw_values,
pre_assigned_val: None,
decomp,
}
}
/// Rebase the scale of the constant
pub fn rebase_scale(&mut self, new_scale: crate::Scale) -> Result<(), CircuitError> {
let visibility = self.quantized_values.visibility().unwrap();
let visibility = match self.quantized_values.visibility() {
Some(v) => v,
None => return Err(CircuitError::UnsetVisibility),
};
self.quantized_values = quantize_tensor(self.raw_values.clone(), new_scale, &visibility)?;
Ok(())
}
@@ -308,7 +344,12 @@ impl<
self.quantized_values.clone().try_into()?
};
// we gotta constrain it once if its used multiple times
Ok(Some(layouts::identity(config, region, &[value])?))
Ok(Some(layouts::identity(
config,
region,
&[value],
self.decomp,
)?))
}
fn clone_dyn(&self) -> Box<dyn Op<F>> {

View File

@@ -4,6 +4,7 @@ use crate::{
utils::{self, F32},
},
tensor::{self, Tensor, TensorError},
tensor::{DataFormat, KernelFormat},
};
use super::{base::BaseOp, *};
@@ -43,6 +44,8 @@ pub enum PolyOp {
padding: Vec<(usize, usize)>,
stride: Vec<usize>,
group: usize,
data_format: DataFormat,
kernel_format: KernelFormat,
},
Downsample {
axis: usize,
@@ -54,6 +57,8 @@ pub enum PolyOp {
output_padding: Vec<usize>,
stride: Vec<usize>,
group: usize,
data_format: DataFormat,
kernel_format: KernelFormat,
},
Add,
Sub,
@@ -165,10 +170,12 @@ impl<
stride,
padding,
group,
data_format,
kernel_format,
} => {
format!(
"CONV (stride={:?}, padding={:?}, group={})",
stride, padding, group
"CONV (stride={:?}, padding={:?}, group={}, data_format={:?}, kernel_format={:?})",
stride, padding, group, data_format, kernel_format
)
}
PolyOp::DeConv {
@@ -176,11 +183,12 @@ impl<
padding,
output_padding,
group,
data_format,
kernel_format,
} => {
format!(
"DECONV (stride={:?}, padding={:?}, output_padding={:?}, group={})",
stride, padding, output_padding, group
)
"DECONV (stride={:?}, padding={:?}, output_padding={:?}, group={}, data_format={:?}, kernel_format={:?})",
stride, padding, output_padding, group, data_format, kernel_format)
}
PolyOp::Concat { axis } => format!("CONCAT (axis={})", axis),
PolyOp::Slice { axis, start, end } => {
@@ -242,6 +250,8 @@ impl<
padding,
stride,
group,
data_format,
kernel_format,
} => layouts::conv(
config,
region,
@@ -249,9 +259,17 @@ impl<
padding,
stride,
*group,
*data_format,
*kernel_format,
)?,
PolyOp::GatherElements { dim, constant_idx } => {
if let Some(idx) = constant_idx {
if values.len() != 1 {
return Err(TensorError::DimError(
"GatherElements only accepts single inputs".to_string(),
)
.into());
}
tensor::ops::gather_elements(values[0].get_inner_tensor()?, idx, *dim)?.into()
} else {
layouts::gather_elements(config, region, values[..].try_into()?, *dim)?.0
@@ -269,6 +287,12 @@ impl<
}
PolyOp::ScatterElements { dim, constant_idx } => {
if let Some(idx) = constant_idx {
if values.len() != 2 {
return Err(TensorError::DimError(
"ScatterElements requires two inputs".to_string(),
)
.into());
}
tensor::ops::scatter(
values[0].get_inner_tensor()?,
idx,
@@ -297,6 +321,8 @@ impl<
output_padding,
stride,
group,
data_format,
kernel_format,
} => layouts::deconv(
config,
region,
@@ -305,13 +331,17 @@ impl<
output_padding,
stride,
*group,
*data_format,
*kernel_format,
)?,
PolyOp::Add => layouts::pairwise(config, region, values[..].try_into()?, BaseOp::Add)?,
PolyOp::Sub => layouts::pairwise(config, region, values[..].try_into()?, BaseOp::Sub)?,
PolyOp::Mult => {
layouts::pairwise(config, region, values[..].try_into()?, BaseOp::Mult)?
}
PolyOp::Identity { .. } => layouts::identity(config, region, values[..].try_into()?)?,
PolyOp::Identity { .. } => {
layouts::identity(config, region, values[..].try_into()?, false)?
}
PolyOp::Reshape(d) | PolyOp::Flatten(d) => layouts::reshape(values[..].try_into()?, d)?,
PolyOp::Pad(p) => {
if values.len() != 1 {

View File

@@ -132,21 +132,16 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Table<F> {
(first_element, op_f.output[0])
}
///
/// calculates the column size given the number of rows and reserved blinding rows
pub fn cal_col_size(logrows: usize, reserved_blinding_rows: usize) -> usize {
2usize.pow(logrows as u32) - reserved_blinding_rows
}
///
pub fn cal_bit_range(bits: usize, reserved_blinding_rows: usize) -> usize {
2usize.pow(bits as u32) - reserved_blinding_rows
}
}
///
pub fn num_cols_required(range_len: IntegerRep, col_size: usize) -> usize {
// number of cols needed to store the range
(range_len / (col_size as IntegerRep)) as usize + 1
(range_len / col_size as IntegerRep) as usize + 1
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Table<F> {
@@ -168,7 +163,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Table<F> {
range: Range,
logrows: usize,
nonlinearity: &LookupOp,
preexisting_inputs: Option<Vec<TableColumn>>,
preexisting_inputs: &mut Vec<TableColumn>,
) -> Table<F> {
let factors = cs.blinding_factors() + RESERVED_BLINDING_ROWS_PAD;
let col_size = Self::cal_col_size(logrows, factors);
@@ -177,28 +172,28 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Table<F> {
debug!("table range: {:?}", range);
let table_inputs = preexisting_inputs.unwrap_or_else(|| {
let mut cols = vec![];
for _ in 0..num_cols {
cols.push(cs.lookup_table_column());
// validate enough columns are provided to store the range
if preexisting_inputs.len() < num_cols {
// add columns to match the required number of columns
let diff = num_cols - preexisting_inputs.len();
for _ in 0..diff {
preexisting_inputs.push(cs.lookup_table_column());
}
cols
});
let num_cols = table_inputs.len();
}
let num_cols = preexisting_inputs.len();
if num_cols > 1 {
warn!("Using {} columns for non-linearity table.", num_cols);
}
let table_outputs = table_inputs
let table_outputs = preexisting_inputs
.iter()
.map(|_| cs.lookup_table_column())
.collect::<Vec<_>>();
Table {
nonlinearity: nonlinearity.clone(),
table_inputs,
table_inputs: preexisting_inputs.clone(),
table_outputs,
is_assigned: false,
selector_constructor: SelectorConstructor::new(num_cols),
@@ -355,16 +350,11 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RangeCheck<F> {
integer_rep_to_felt(chunk * (self.col_size as IntegerRep) + self.range.0)
}
///
/// calculates the column size
pub fn cal_col_size(logrows: usize, reserved_blinding_rows: usize) -> usize {
2usize.pow(logrows as u32) - reserved_blinding_rows
}
///
pub fn cal_bit_range(bits: usize, reserved_blinding_rows: usize) -> usize {
2usize.pow(bits as u32) - reserved_blinding_rows
}
/// get column index given input
pub fn get_col_index(&self, input: F) -> F {
// range is split up into chunks of size col_size, find the chunk that input is in

View File

@@ -1,5 +1,6 @@
use crate::circuit::ops::poly::PolyOp;
use crate::circuit::*;
use crate::tensor::{DataFormat, KernelFormat};
use crate::tensor::{Tensor, TensorType, ValTensor, VarTensor};
use halo2_proofs::{
circuit::{Layouter, SimpleFloorPlanner, Value},
@@ -1040,6 +1041,10 @@ mod conv {
let a = VarTensor::new_advice(cs, K, 1, (LEN + 1) * LEN);
let b = VarTensor::new_advice(cs, K, 1, (LEN + 1) * LEN);
let output = VarTensor::new_advice(cs, K, 1, (LEN + 1) * LEN);
// column for constants
let _constant = VarTensor::constant_cols(cs, K, 8, false);
Self::Config::configure(cs, &[a, b], &output, CheckMode::SAFE)
}
@@ -1061,6 +1066,8 @@ mod conv {
padding: vec![(1, 1); 2],
stride: vec![2; 2],
group: 1,
data_format: DataFormat::default(),
kernel_format: KernelFormat::default(),
}),
)
.map_err(|_| Error::Synthesis)
@@ -1171,7 +1178,7 @@ mod conv_col_ultra_overflow {
use super::*;
const K: usize = 4;
const K: usize = 6;
const LEN: usize = 10;
#[derive(Clone)]
@@ -1191,9 +1198,10 @@ mod conv_col_ultra_overflow {
}
fn configure(cs: &mut ConstraintSystem<F>) -> Self::Config {
let a = VarTensor::new_advice(cs, K, 1, LEN * LEN * LEN);
let b = VarTensor::new_advice(cs, K, 1, LEN * LEN * LEN);
let output = VarTensor::new_advice(cs, K, 1, LEN * LEN * LEN);
let a = VarTensor::new_advice(cs, K, 1, LEN * LEN * LEN * LEN);
let b = VarTensor::new_advice(cs, K, 1, LEN * LEN * LEN * LEN);
let output = VarTensor::new_advice(cs, K, 1, LEN * LEN * LEN * LEN);
let _constant = VarTensor::constant_cols(cs, K, LEN * LEN * LEN * LEN, false);
Self::Config::configure(cs, &[a, b], &output, CheckMode::SAFE)
}
@@ -1215,6 +1223,8 @@ mod conv_col_ultra_overflow {
padding: vec![(1, 1); 2],
stride: vec![2; 2],
group: 1,
data_format: DataFormat::default(),
kernel_format: KernelFormat::default(),
}),
)
.map_err(|_| Error::Synthesis)
@@ -1372,6 +1382,8 @@ mod conv_relu_col_ultra_overflow {
padding: vec![(1, 1); 2],
stride: vec![2; 2],
group: 1,
data_format: DataFormat::default(),
kernel_format: KernelFormat::default(),
}),
)
.map_err(|_| Error::Synthesis);
@@ -1776,13 +1788,18 @@ mod shuffle {
let d = VarTensor::new_advice(cs, K, 1, LEN);
let e = VarTensor::new_advice(cs, K, 1, LEN);
let f: VarTensor = VarTensor::new_advice(cs, K, 1, LEN);
let _constant = VarTensor::constant_cols(cs, K, LEN * NUM_LOOP, false);
let mut config =
Self::Config::configure(cs, &[a.clone(), b.clone()], &c, CheckMode::SAFE);
config
.configure_shuffles(cs, &[a.clone(), b.clone()], &[d.clone(), e.clone()])
.configure_shuffles(
cs,
&[a.clone(), b.clone(), c.clone()],
&[d.clone(), e.clone(), f.clone()],
)
.unwrap();
config
}
@@ -1803,6 +1820,7 @@ mod shuffle {
&mut region,
&self.inputs[i],
&self.references[i],
layouts::SortCollisionMode::Unsorted,
)
.map_err(|_| Error::Synthesis)?;
}
@@ -1988,7 +2006,7 @@ mod add_with_overflow_and_poseidon {
let base = BaseConfig::configure(cs, &[a, b], &output, CheckMode::SAFE);
VarTensor::constant_cols(cs, K, 2, false);
let poseidon = PoseidonChip::<PoseidonSpec, WIDTH, RATE, WIDTH>::configure(cs, ());
let poseidon = PoseidonChip::<PoseidonSpec, WIDTH, RATE>::configure(cs, ());
MyCircuitConfig { base, poseidon }
}
@@ -1998,7 +2016,7 @@ mod add_with_overflow_and_poseidon {
mut config: Self::Config,
mut layouter: impl Layouter<Fr>,
) -> Result<(), Error> {
let poseidon_chip: PoseidonChip<PoseidonSpec, WIDTH, RATE, WIDTH> =
let poseidon_chip: PoseidonChip<PoseidonSpec, WIDTH, RATE> =
PoseidonChip::new(config.poseidon.clone());
let assigned_inputs_a =
@@ -2033,11 +2051,9 @@ mod add_with_overflow_and_poseidon {
let b = (0..LEN)
.map(|i| halo2curves::bn256::Fr::from(i as u64 + 1))
.collect::<Vec<_>>();
let commitment_a =
PoseidonChip::<PoseidonSpec, WIDTH, RATE, WIDTH>::run(a.clone()).unwrap()[0][0];
let commitment_a = PoseidonChip::<PoseidonSpec, WIDTH, RATE>::run(a.clone()).unwrap()[0][0];
let commitment_b =
PoseidonChip::<PoseidonSpec, WIDTH, RATE, WIDTH>::run(b.clone()).unwrap()[0][0];
let commitment_b = PoseidonChip::<PoseidonSpec, WIDTH, RATE>::run(b.clone()).unwrap()[0][0];
// parameters
let a = Tensor::from(a.into_iter().map(Value::known));
@@ -2059,13 +2075,11 @@ mod add_with_overflow_and_poseidon {
let b = (0..LEN)
.map(|i| halo2curves::bn256::Fr::from(i as u64 + 1))
.collect::<Vec<_>>();
let commitment_a = PoseidonChip::<PoseidonSpec, WIDTH, RATE, WIDTH>::run(a.clone())
.unwrap()[0][0]
+ Fr::one();
let commitment_a =
PoseidonChip::<PoseidonSpec, WIDTH, RATE>::run(a.clone()).unwrap()[0][0] + Fr::one();
let commitment_b = PoseidonChip::<PoseidonSpec, WIDTH, RATE, WIDTH>::run(b.clone())
.unwrap()[0][0]
+ Fr::one();
let commitment_b =
PoseidonChip::<PoseidonSpec, WIDTH, RATE>::run(b.clone()).unwrap()[0][0] + Fr::one();
// parameters
let a = Tensor::from(a.into_iter().map(Value::known));

View File

@@ -1,6 +1,6 @@
use alloy::primitives::Address as H160;
use clap::{Command, Parser, Subcommand};
use clap_complete::{generate, Generator, Shell};
use clap_complete::{Generator, Shell, generate};
#[cfg(feature = "python-bindings")]
use pyo3::{conversion::FromPyObject, exceptions::PyValueError, prelude::*};
use serde::{Deserialize, Serialize};
@@ -8,7 +8,7 @@ use std::path::PathBuf;
use std::str::FromStr;
use tosubcommand::{ToFlags, ToSubcommand};
use crate::{pfsys::ProofType, Commitments, RunArgs};
use crate::{Commitments, RunArgs, pfsys::ProofType};
use crate::circuit::CheckMode;
use crate::graph::TestDataSource;
@@ -83,13 +83,15 @@ pub const DEFAULT_VK_SOL: &str = "vk.sol";
/// Default VK abi path
pub const DEFAULT_VK_ABI: &str = "vk.abi";
/// Default scale rebase multipliers for calibration
pub const DEFAULT_SCALE_REBASE_MULTIPLIERS: &str = "1,2,10";
pub const DEFAULT_SCALE_REBASE_MULTIPLIERS: &str = "1,10";
/// Default use reduced srs for verification
pub const DEFAULT_USE_REDUCED_SRS_FOR_VERIFICATION: &str = "false";
/// Default only check for range check rebase
pub const DEFAULT_ONLY_RANGE_CHECK_REBASE: &str = "false";
/// Default commitment
pub const DEFAULT_COMMITMENT: &str = "kzg";
/// Default seed used to generate random data
pub const DEFAULT_SEED: &str = "21242";
#[cfg(feature = "python-bindings")]
/// Converts TranscriptType into a PyObject (Required for TranscriptType to be compatible with Python)
@@ -358,8 +360,13 @@ pub fn get_styles() -> clap::builder::Styles {
}
/// Print completions for the given generator
pub fn print_completions<G: Generator>(gen: G, cmd: &mut Command) {
generate(gen, cmd, cmd.get_name().to_string(), &mut std::io::stdout());
pub fn print_completions<G: Generator>(r#gen: G, cmd: &mut Command) {
generate(
r#gen,
cmd,
cmd.get_name().to_string(),
&mut std::io::stdout(),
);
}
#[allow(missing_docs)]
@@ -394,8 +401,9 @@ pub enum Commands {
/// Generates the witness from an input file.
GenWitness {
/// The path to the .json data file
/// You can also pass the input data as a string, eg. --data '{"input_data": [1.0,2.0,3.0]}' directly and skip the file
#[arg(short = 'D', long, default_value = DEFAULT_DATA, value_hint = clap::ValueHint::FilePath)]
data: Option<PathBuf>,
data: Option<String>,
/// The path to the compiled model file (generated using the compile-circuit command)
#[arg(short = 'M', long, default_value = DEFAULT_COMPILED_CIRCUIT, value_hint = clap::ValueHint::FilePath)]
compiled_circuit: Option<PathBuf>,
@@ -422,12 +430,27 @@ pub enum Commands {
#[clap(flatten)]
args: RunArgs,
},
/// Generate random data for a model
GenRandomData {
/// The path to the .onnx model file
#[arg(short = 'M', long, default_value = DEFAULT_MODEL, value_hint = clap::ValueHint::FilePath)]
model: Option<PathBuf>,
/// The path to the .json data file to output
#[arg(short = 'D', long, default_value = DEFAULT_DATA, value_hint = clap::ValueHint::FilePath)]
data: Option<PathBuf>,
/// Hand-written parser for graph variables, eg. batch_size=1
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(short = 'V', long, value_parser = crate::parse_key_val::<String, usize>, default_value = "batch_size->1", value_delimiter = ',', value_hint = clap::ValueHint::Other))]
variables: Vec<(String, usize)>,
/// random seed for reproducibility (optional)
#[arg(long, value_hint = clap::ValueHint::Other, default_value = DEFAULT_SEED)]
seed: u64,
},
/// Calibrates the proving scale, lookup bits and logrows from a circuit settings file.
CalibrateSettings {
/// The path to the .json calibration data file.
/// You can also pass the input data as a string, eg. --data '{"input_data": [1.0,2.0,3.0]}' directly and skip the file
#[arg(short = 'D', long, default_value = DEFAULT_CALIBRATION_FILE, value_hint = clap::ValueHint::FilePath)]
data: Option<PathBuf>,
data: Option<String>,
/// The path to the .onnx model file
#[arg(short = 'M', long, default_value = DEFAULT_MODEL, value_hint = clap::ValueHint::FilePath)]
model: Option<PathBuf>,
@@ -610,8 +633,9 @@ pub enum Commands {
#[command(arg_required_else_help = true)]
SetupTestEvmData {
/// The path to the .json data file, which should include both the network input (possibly private) and the network output (public input to the proof)
/// You can also pass the input data as a string, eg. --data '{"input_data": [1.0,2.0,3.0]}' directly and skip the file
#[arg(short = 'D', long, value_hint = clap::ValueHint::FilePath)]
data: Option<PathBuf>,
data: Option<String>,
/// The path to the compiled model file (generated using the compile-circuit command)
#[arg(short = 'M', long, value_hint = clap::ValueHint::FilePath)]
compiled_circuit: Option<PathBuf>,
@@ -637,8 +661,9 @@ pub enum Commands {
#[arg(long, value_hint = clap::ValueHint::Other)]
addr: H160Flag,
/// The path to the .json data file.
/// You can also pass the input data as a string, eg. --data '{"input_data": [1.0,2.0,3.0]}' directly and skip the file
#[arg(short = 'D', long, value_hint = clap::ValueHint::FilePath)]
data: Option<PathBuf>,
data: Option<String>,
/// RPC URL for an Ethereum node, if None will use Anvil but WON'T persist state
#[arg(short = 'U', long, value_hint = clap::ValueHint::Url)]
rpc_url: Option<String>,
@@ -755,7 +780,7 @@ pub enum Commands {
/// view functions that return the data that the network
/// ingests as inputs.
#[arg(short = 'D', long, default_value = DEFAULT_DATA, value_hint = clap::ValueHint::FilePath)]
data: Option<PathBuf>,
data: Option<String>,
/// The path to the witness file. This is needed for proof swapping for kzg commitments.
#[arg(short = 'W', long, default_value = DEFAULT_WITNESS, value_hint = clap::ValueHint::FilePath)]
witness: Option<PathBuf>,
@@ -850,8 +875,9 @@ pub enum Commands {
#[command(name = "deploy-evm-da")]
DeployEvmDataAttestation {
/// The path to the .json data file, which should include both the network input (possibly private) and the network output (public input to the proof)
/// You can also pass the input data as a string, eg. --data '{"input_data": [1.0,2.0,3.0]}' directly and skip the file
#[arg(short = 'D', long, default_value = DEFAULT_DATA, value_hint = clap::ValueHint::FilePath)]
data: Option<PathBuf>,
data: Option<String>,
/// The path to load circuit settings .json file from (generated using the gen-settings command)
#[arg(long, default_value = DEFAULT_SETTINGS, value_hint = clap::ValueHint::FilePath)]
settings_path: Option<PathBuf>,

View File

@@ -383,7 +383,7 @@ pub async fn deploy_contract_via_solidity(
///
pub async fn deploy_da_verifier_via_solidity(
settings_path: PathBuf,
input: PathBuf,
input: String,
sol_code_path: PathBuf,
rpc_url: Option<&str>,
runs: usize,
@@ -391,7 +391,7 @@ pub async fn deploy_da_verifier_via_solidity(
) -> Result<H160, EthError> {
let (client, client_address) = setup_eth_backend(rpc_url, private_key).await?;
let input = GraphData::from_path(input).map_err(|_| EthError::GraphData)?;
let input = GraphData::from_str(&input).map_err(|_| EthError::GraphData)?;
let settings = GraphSettings::load(&settings_path).map_err(|_| EthError::GraphSettings)?;
@@ -517,6 +517,7 @@ pub async fn deploy_da_verifier_via_solidity(
}
}
#[allow(clippy::too_many_arguments)]
async fn deploy_multi_da_contract(
client: EthersClient,
contract_instance_offset: usize,
@@ -687,10 +688,10 @@ fn parse_call_to_account(call_to_account: CallToAccount) -> Result<ParsedCallToA
pub async fn update_account_calls(
addr: H160,
input: PathBuf,
input: String,
rpc_url: Option<&str>,
) -> Result<(), EthError> {
let input = GraphData::from_path(input).map_err(|_| EthError::GraphData)?;
let input = GraphData::from_str(&input).map_err(|_| EthError::GraphData)?;
// The data that will be stored in the test contracts that will eventually be read from.
let mut calls_to_accounts = vec![];

View File

@@ -1,5 +1,6 @@
use crate::circuit::region::RegionSettings;
use crate::EZKL_BUF_CAPACITY;
use crate::circuit::CheckMode;
use crate::circuit::region::RegionSettings;
use crate::commands::CalibrationTarget;
use crate::eth::{
deploy_contract_via_solidity, deploy_da_verifier_via_solidity, fix_da_multi_sol,
@@ -12,21 +13,21 @@ use crate::graph::{GraphCircuit, GraphSettings, GraphWitness, Model};
use crate::graph::{TestDataSource, TestSources};
use crate::pfsys::evm::aggregation_kzg::{AggregationCircuit, PoseidonTranscript};
use crate::pfsys::{
create_keys, load_pk, load_vk, save_params, save_pk, Snark, StrategyType, TranscriptType,
ProofSplitCommit, create_proof_circuit, swap_proof_commitments_polycommit, verify_proof_circuit,
};
use crate::pfsys::{
create_proof_circuit, swap_proof_commitments_polycommit, verify_proof_circuit, ProofSplitCommit,
Snark, StrategyType, TranscriptType, create_keys, load_pk, load_vk, save_params, save_pk,
};
use crate::pfsys::{save_vk, srs::*};
use crate::tensor::TensorError;
use crate::EZKL_BUF_CAPACITY;
use crate::{commands::*, EZKLError};
use crate::{Commitments, RunArgs};
use crate::{EZKLError, commands::*};
use colored::Colorize;
#[cfg(unix)]
use gag::Gag;
use halo2_proofs::dev::VerifyFailure;
use halo2_proofs::plonk::{self, Circuit};
use halo2_proofs::poly::VerificationStrategy;
use halo2_proofs::poly::commitment::{CommitmentScheme, Params};
use halo2_proofs::poly::commitment::{ParamsProver, Verifier};
use halo2_proofs::poly::ipa::commitment::{IPACommitmentScheme, ParamsIPA};
@@ -39,7 +40,6 @@ use halo2_proofs::poly::kzg::strategy::AccumulatorStrategy as KZGAccumulatorStra
use halo2_proofs::poly::kzg::{
commitment::ParamsKZG, strategy::SingleStrategy as KZGSingleStrategy,
};
use halo2_proofs::poly::VerificationStrategy;
use halo2_proofs::transcript::{EncodedChallenge, TranscriptReadBuffer};
use halo2_solidity_verifier;
use halo2curves::bn256::{Bn256, Fr, G1Affine};
@@ -50,12 +50,12 @@ use instant::Instant;
use itertools::Itertools;
use log::debug;
use log::{info, trace, warn};
use serde::de::DeserializeOwned;
use serde::Serialize;
use serde::de::DeserializeOwned;
use snark_verifier::loader::native::NativeLoader;
use snark_verifier::system::halo2::Config;
use snark_verifier::system::halo2::compile;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use snark_verifier::system::halo2::Config;
use std::fs::File;
use std::io::BufWriter;
use std::io::{Cursor, Write};
@@ -65,6 +65,8 @@ use std::str::FromStr;
use std::time::Duration;
use tabled::Tabled;
use thiserror::Error;
use tract_onnx::prelude::IntoTensor;
use tract_onnx::prelude::Tensor as TractTensor;
use lazy_static::lazy_static;
@@ -116,7 +118,7 @@ pub async fn run(command: Commands) -> Result<String, EZKLError> {
} => gen_srs_cmd(
srs_path,
logrows as u32,
commitment.unwrap_or(Commitments::from_str(DEFAULT_COMMITMENT).unwrap()),
commitment.unwrap_or_else(|| Commitments::from_str(DEFAULT_COMMITMENT).unwrap()),
),
Commands::GetSrs {
srs_path,
@@ -134,6 +136,17 @@ pub async fn run(command: Commands) -> Result<String, EZKLError> {
settings_path.unwrap_or(DEFAULT_SETTINGS.into()),
args,
),
Commands::GenRandomData {
model,
data,
variables,
seed,
} => gen_random_data(
model.unwrap_or(DEFAULT_MODEL.into()),
data.unwrap_or(DEFAULT_DATA.into()),
variables,
seed,
),
Commands::CalibrateSettings {
model,
settings_path,
@@ -503,7 +516,9 @@ fn update_ezkl_binary(version: &Option<String>) -> Result<String, EZKLError> {
.status()
.is_err()
{
log::warn!("bash is not installed on this system, trying to run the install script with sh (may fail)");
log::warn!(
"bash is not installed on this system, trying to run the install script with sh (may fail)"
);
"sh"
} else {
"bash"
@@ -712,7 +727,7 @@ pub(crate) fn table(model: PathBuf, run_args: RunArgs) -> Result<String, EZKLErr
pub(crate) async fn gen_witness(
compiled_circuit_path: PathBuf,
data: PathBuf,
data: String,
output: Option<PathBuf>,
vk_path: Option<PathBuf>,
srs_path: Option<PathBuf>,
@@ -720,7 +735,7 @@ pub(crate) async fn gen_witness(
// these aren't real values so the sanity checks are mostly meaningless
let mut circuit = GraphCircuit::load(compiled_circuit_path)?;
let data: GraphData = GraphData::from_path(data)?;
let data = GraphData::from_str(&data)?;
let settings = circuit.settings().clone();
let vk = if let Some(vk) = vk_path {
@@ -828,6 +843,71 @@ pub(crate) fn gen_circuit_settings(
Ok(String::new())
}
/// Generate a circuit settings file
pub(crate) fn gen_random_data(
model_path: PathBuf,
data_path: PathBuf,
variables: Vec<(String, usize)>,
seed: u64,
) -> Result<String, EZKLError> {
let mut file = std::fs::File::open(&model_path).map_err(|e| {
crate::graph::errors::GraphError::ReadWriteFileError(
model_path.display().to_string(),
e.to_string(),
)
})?;
let (tract_model, _symbol_values) = Model::load_onnx_using_tract(&mut file, &variables)?;
let input_facts = tract_model
.input_outlets()
.map_err(|e| EZKLError::from(e.to_string()))?
.iter()
.map(|&i| tract_model.outlet_fact(i))
.collect::<tract_onnx::prelude::TractResult<Vec<_>>>()
.map_err(|e| EZKLError::from(e.to_string()))?;
/// Generates a random tensor of a given size and type.
fn random(
sizes: &[usize],
datum_type: tract_onnx::prelude::DatumType,
seed: u64,
) -> TractTensor {
use rand::{Rng, SeedableRng};
let mut rng = rand::rngs::StdRng::seed_from_u64(seed);
let mut tensor = TractTensor::zero::<f32>(sizes).unwrap();
let slice = tensor.as_slice_mut::<f32>().unwrap();
slice.iter_mut().for_each(|x| *x = rng.r#gen());
tensor.cast_to_dt(datum_type).unwrap().into_owned()
}
fn tensor_for_fact(fact: &tract_onnx::prelude::TypedFact, seed: u64) -> TractTensor {
if let Some(value) = &fact.konst {
return value.clone().into_tensor();
}
random(
fact.shape
.as_concrete()
.expect("Expected concrete shape, found: {fact:?}"),
fact.datum_type,
seed,
)
}
let generated = input_facts
.iter()
.map(|v| tensor_for_fact(v, seed))
.collect_vec();
let data = GraphData::from_tract_data(&generated)?;
data.save(data_path)?;
Ok(String::new())
}
// not for wasm targets
pub(crate) fn init_spinner() -> ProgressBar {
let pb = indicatif::ProgressBar::new_spinner();
@@ -966,7 +1046,7 @@ impl AccuracyResults {
#[allow(clippy::too_many_arguments)]
pub(crate) async fn calibrate(
model_path: PathBuf,
data: PathBuf,
data: String,
settings_path: PathBuf,
target: CalibrationTarget,
lookup_safety_margin: f64,
@@ -980,7 +1060,7 @@ pub(crate) async fn calibrate(
use crate::fieldutils::IntegerRep;
let data = GraphData::from_path(data)?;
let data = GraphData::from_str(&data)?;
// load the pre-generated settings
let settings = GraphSettings::load(&settings_path)?;
// now retrieve the run args
@@ -1444,7 +1524,7 @@ pub(crate) async fn create_evm_data_attestation(
settings_path: PathBuf,
sol_code_path: PathBuf,
abi_path: PathBuf,
input: PathBuf,
input: String,
witness: Option<PathBuf>,
) -> Result<String, EZKLError> {
#[allow(unused_imports)]
@@ -1457,7 +1537,8 @@ pub(crate) async fn create_evm_data_attestation(
trace!("params computed");
// if input is not provided, we just instantiate dummy input data
let data = GraphData::from_path(input).unwrap_or(GraphData::new(DataSource::File(vec![])));
let data =
GraphData::from_str(&input).unwrap_or_else(|_| GraphData::new(DataSource::File(vec![])));
// The number of input and output instances we attest to for the single call data attestation
let mut input_len = None;
@@ -1546,7 +1627,7 @@ pub(crate) async fn create_evm_data_attestation(
}
pub(crate) async fn deploy_da_evm(
data: PathBuf,
data: String,
settings_path: PathBuf,
sol_code_path: PathBuf,
rpc_url: Option<String>,
@@ -1789,7 +1870,7 @@ pub(crate) fn setup(
}
pub(crate) async fn setup_test_evm_witness(
data_path: PathBuf,
data_path: String,
compiled_circuit_path: PathBuf,
test_data: PathBuf,
rpc_url: Option<String>,
@@ -1798,7 +1879,7 @@ pub(crate) async fn setup_test_evm_witness(
) -> Result<String, EZKLError> {
use crate::graph::TestOnChainData;
let mut data = GraphData::from_path(data_path)?;
let mut data = GraphData::from_str(&data_path)?;
let mut circuit = GraphCircuit::load(compiled_circuit_path)?;
// if both input and output are from files fail
@@ -1826,7 +1907,7 @@ pub(crate) async fn setup_test_evm_witness(
use crate::pfsys::ProofType;
pub(crate) async fn test_update_account_calls(
addr: H160Flag,
data: PathBuf,
data: String,
rpc_url: Option<String>,
) -> Result<String, EZKLError> {
use crate::eth::update_account_calls;
@@ -2048,6 +2129,7 @@ pub(crate) fn mock_aggregate(
Ok(String::new())
}
#[allow(clippy::too_many_arguments)]
pub(crate) fn setup_aggregate(
sample_snarks: Vec<PathBuf>,
vk_path: PathBuf,

View File

@@ -5,10 +5,12 @@ use halo2curves::ff::PrimeField;
/// Integer representation of a PrimeField element.
pub type IntegerRep = i128;
/// Converts an i64 to a PrimeField element.
/// Converts an integer rep to a PrimeField element.
pub fn integer_rep_to_felt<F: PrimeField>(x: IntegerRep) -> F {
if x >= 0 {
F::from_u128(x as u128)
} else if x == IntegerRep::MIN {
-F::from_u128(x.saturating_neg() as u128) - F::ONE
} else {
-F::from_u128(x.saturating_neg() as u128)
}
@@ -32,6 +34,9 @@ pub fn felt_to_f64<F: PrimeField + PartialOrd + Field>(x: F) -> f64 {
/// Converts a PrimeField element to an i64.
pub fn felt_to_integer_rep<F: PrimeField + PartialOrd + Field>(x: F) -> IntegerRep {
if x > F::from_u128(IntegerRep::MAX as u128) {
if x == -F::from_u128(IntegerRep::MAX as u128) - F::ONE {
return IntegerRep::MIN;
}
let rep = (-x).to_repr();
let negtmp: &[u8] = rep.as_ref();
let lower_128: u128 = u128::from_le_bytes(negtmp[..16].try_into().unwrap());
@@ -51,7 +56,7 @@ mod test {
use halo2curves::pasta::Fp as F;
#[test]
fn test_conv() {
fn integerreptofelt() {
let res: F = integer_rep_to_felt(-15);
assert_eq!(res, -F::from(15));
@@ -69,8 +74,24 @@ mod test {
fn felttointegerrep() {
for x in -(2_i128.pow(16))..(2_i128.pow(16)) {
let fieldx: F = integer_rep_to_felt::<F>(x);
let xf: i128 = felt_to_integer_rep::<F>(fieldx);
let xf: IntegerRep = felt_to_integer_rep::<F>(fieldx);
assert_eq!(x, xf);
}
}
#[test]
fn felttointegerrepmin() {
let x = IntegerRep::MIN;
let fieldx: F = integer_rep_to_felt::<F>(x);
let xf: IntegerRep = felt_to_integer_rep::<F>(fieldx);
assert_eq!(x, xf);
}
#[test]
fn felttointegerrepmax() {
let x = IntegerRep::MAX;
let fieldx: F = integer_rep_to_felt::<F>(x);
let xf: IntegerRep = felt_to_integer_rep::<F>(fieldx);
assert_eq!(x, xf);
}
}

View File

@@ -11,6 +11,12 @@ pub enum GraphError {
/// Shape mismatch in circuit construction
#[error("invalid dimensions used for node {0} ({1})")]
InvalidDims(usize, String),
/// Non scalar power
#[error("we only support scalar powers")]
NonScalarPower,
/// Non scalar base for exponentiation
#[error("we only support scalar bases for exponentiation")]
NonScalarBase,
/// Wrong method was called to configure an op
#[error("wrong method was called to configure node {0} ({1})")]
WrongMethod(usize, String),
@@ -27,7 +33,7 @@ pub enum GraphError {
#[error("a node is missing required params: {0}")]
MissingParams(String),
/// A node has missing parameters
#[error("a node is has misformed params: {0}")]
#[error("a node has misformed params: {0}")]
MisformedParams(String),
/// Error in the configuration of the visibility of variables
#[error("there should be at least one set of public variables")]
@@ -113,13 +119,13 @@ pub enum GraphError {
/// Missing input for a node
#[error("missing input for node {0}")]
MissingInput(usize),
///
/// Ranges can only be constant
#[error("range only supports constant inputs in a zk circuit")]
NonConstantRange,
///
/// Trilu diagonal must be constant
#[error("trilu only supports constant diagonals in a zk circuit")]
NonConstantTrilu,
///
/// The witness was too short
#[error("insufficient witness values to generate a fixed output")]
InsufficientWitnessValues,
/// Missing scale
@@ -143,4 +149,13 @@ pub enum GraphError {
/// Invalid RunArg
#[error("invalid RunArgs: {0}")]
InvalidRunArgs(String),
/// Only nearest neighbor interpolation is supported
#[error("only nearest neighbor interpolation is supported")]
InvalidInterpolation,
/// Node has a missing output
#[error("node {0} has a missing output")]
MissingOutput(usize),
/// Inssuficient advice columns
#[error("insuficcient advice columns (need {0} at least)")]
InsufficientAdviceColumns(usize),
}

View File

@@ -14,7 +14,6 @@ use pyo3::prelude::*;
use pyo3::types::PyDict;
#[cfg(feature = "python-bindings")]
use pyo3::ToPyObject;
use serde::ser::SerializeStruct;
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use std::io::BufReader;
use std::io::BufWriter;
@@ -25,6 +24,7 @@ use tract_onnx::tract_core::{
tract_data::{prelude::Tensor as TractTensor, TVec},
value::TValue,
};
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use tract_onnx::tract_hir::tract_num_traits::ToPrimitive;
@@ -32,30 +32,95 @@ type Decimals = u8;
type Call = String;
type RPCUrl = String;
///
/// Represents different types of values that can be stored in a file source
/// Used for handling various input types in zero-knowledge proofs
#[derive(Clone, Debug, PartialOrd, PartialEq)]
pub enum FileSourceInner {
/// Inner elements of float inputs coming from a file
/// Floating point value (64-bit)
Float(f64),
/// Inner elements of bool inputs coming from a file
/// Boolean value
Bool(bool),
/// Inner elements of inputs coming from a witness
/// Field element value for direct use in circuits
Field(Fp),
}
impl FileSourceInner {
///
/// Returns true if the value is a floating point number
pub fn is_float(&self) -> bool {
matches!(self, FileSourceInner::Float(_))
}
///
/// Returns true if the value is a boolean
pub fn is_bool(&self) -> bool {
matches!(self, FileSourceInner::Bool(_))
}
///
/// Returns true if the value is a field element
pub fn is_field(&self) -> bool {
matches!(self, FileSourceInner::Field(_))
}
/// Creates a new floating point value
pub fn new_float(f: f64) -> Self {
FileSourceInner::Float(f)
}
/// Creates a new field element value
pub fn new_field(f: Fp) -> Self {
FileSourceInner::Field(f)
}
/// Creates a new boolean value
pub fn new_bool(f: bool) -> Self {
FileSourceInner::Bool(f)
}
/// Adjusts the value according to the specified input type
///
/// # Arguments
/// * `input_type` - Type specification to convert the value to
pub fn as_type(&mut self, input_type: &InputType) {
match self {
FileSourceInner::Float(f) => input_type.roundtrip(f),
FileSourceInner::Bool(_) => assert!(matches!(input_type, InputType::Bool)),
FileSourceInner::Field(_) => {}
}
}
/// Converts the value to a field element using appropriate scaling
///
/// # Arguments
/// * `scale` - Scaling factor for floating point conversion
pub fn to_field(&self, scale: crate::Scale) -> Fp {
match self {
FileSourceInner::Float(f) => {
integer_rep_to_felt(quantize_float(f, 0.0, scale).unwrap())
}
FileSourceInner::Bool(f) => {
if *f {
Fp::one()
} else {
Fp::zero()
}
}
FileSourceInner::Field(f) => *f,
}
}
/// Converts the value to a floating point number
pub fn to_float(&self) -> f64 {
match self {
FileSourceInner::Float(f) => *f,
FileSourceInner::Bool(f) => {
if *f {
1.0
} else {
0.0
}
}
FileSourceInner::Field(f) => crate::fieldutils::felt_to_integer_rep(*f) as f64,
}
}
}
impl Serialize for FileSourceInner {
@@ -71,8 +136,8 @@ impl Serialize for FileSourceInner {
}
}
// !!! ALWAYS USE JSON SERIALIZATION FOR GRAPH INPUT
// UNTAGGED ENUMS WONT WORK :( as highlighted here:
// Deserialization implementation for FileSourceInner
// Uses JSON deserialization to handle the different variants
impl<'de> Deserialize<'de> for FileSourceInner {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
@@ -99,70 +164,16 @@ impl<'de> Deserialize<'de> for FileSourceInner {
}
}
/// Elements of inputs coming from a file
/// A collection of input values from a file source
/// Organized as a vector of vectors where each inner vector represents a row/entry
pub type FileSource = Vec<Vec<FileSourceInner>>;
impl FileSourceInner {
/// Create a new FileSourceInner
pub fn new_float(f: f64) -> Self {
FileSourceInner::Float(f)
}
/// Create a new FileSourceInner
pub fn new_field(f: Fp) -> Self {
FileSourceInner::Field(f)
}
/// Create a new FileSourceInner
pub fn new_bool(f: bool) -> Self {
FileSourceInner::Bool(f)
}
///
pub fn as_type(&mut self, input_type: &InputType) {
match self {
FileSourceInner::Float(f) => input_type.roundtrip(f),
FileSourceInner::Bool(_) => assert!(matches!(input_type, InputType::Bool)),
FileSourceInner::Field(_) => {}
}
}
/// Convert to a field element
pub fn to_field(&self, scale: crate::Scale) -> Fp {
match self {
FileSourceInner::Float(f) => {
integer_rep_to_felt(quantize_float(f, 0.0, scale).unwrap())
}
FileSourceInner::Bool(f) => {
if *f {
Fp::one()
} else {
Fp::zero()
}
}
FileSourceInner::Field(f) => *f,
}
}
/// Convert to a float
pub fn to_float(&self) -> f64 {
match self {
FileSourceInner::Float(f) => *f,
FileSourceInner::Bool(f) => {
if *f {
1.0
} else {
0.0
}
}
FileSourceInner::Field(f) => crate::fieldutils::felt_to_integer_rep(*f) as f64,
}
}
}
/// Call type for attested inputs on-chain
/// Represents different types of calls for fetching on-chain data
#[derive(Clone, Debug, PartialOrd, PartialEq)]
pub enum Calls {
/// Vector of calls to accounts, each returning an attested data point
/// Multiple calls to different accounts, each returning individual values
Multiple(Vec<CallsToAccount>),
/// Single call to account, returning an array of attested data points
/// Single call returning an array of values
Single(CallToAccount),
}
@@ -171,32 +182,6 @@ impl Default for Calls {
Calls::Multiple(Vec::new())
}
}
/// Inner elements of inputs/outputs coming from on-chain
#[derive(Clone, Debug, Deserialize, Serialize, Default, PartialOrd, PartialEq)]
pub struct OnChainSource {
/// Calls to accounts
pub calls: Calls,
/// RPC url
pub rpc: RPCUrl,
}
impl OnChainSource {
/// Create a new OnChainSource with multiple calls
pub fn new_multiple(calls: Vec<CallsToAccount>, rpc: RPCUrl) -> Self {
OnChainSource {
calls: Calls::Multiple(calls),
rpc,
}
}
/// Create a new OnChainSource with a single call
pub fn new_single(call: CallToAccount, rpc: RPCUrl) -> Self {
OnChainSource {
calls: Calls::Single(call),
rpc,
}
}
}
impl Serialize for Calls {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
@@ -218,7 +203,6 @@ impl<'de> Deserialize<'de> for Calls {
D: Deserializer<'de>,
{
let this_json: Box<serde_json::value::RawValue> = Deserialize::deserialize(deserializer)?;
let multiple_try: Result<Vec<CallsToAccount>, _> = serde_json::from_str(this_json.get());
if let Ok(t) = multiple_try {
return Ok(Calls::Multiple(t));
@@ -228,111 +212,52 @@ impl<'de> Deserialize<'de> for Calls {
return Ok(Calls::Single(t));
}
Err(serde::de::Error::custom(
"failed to deserialize FileSourceInner",
))
Err(serde::de::Error::custom("failed to deserialize Calls"))
}
}
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
/// Inner elements of inputs/outputs coming from postgres DB
/// Configuration for accessing on-chain data sources
#[derive(Clone, Debug, Deserialize, Serialize, Default, PartialOrd, PartialEq)]
pub struct PostgresSource {
/// postgres host
pub host: RPCUrl,
/// user to connect to postgres
pub user: String,
/// password to connect to postgres
pub password: String,
/// query to execute
pub query: String,
/// dbname
pub dbname: String,
/// port
pub port: String,
}
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
impl PostgresSource {
/// Create a new PostgresSource
pub fn new(
host: RPCUrl,
port: String,
user: String,
query: String,
dbname: String,
password: String,
) -> Self {
PostgresSource {
host,
user,
password,
query,
dbname,
port,
}
}
/// Fetch data from postgres
pub async fn fetch(&self) -> Result<Vec<Vec<pg_bigdecimal::PgNumeric>>, GraphError> {
// clone to move into thread
let user = self.user.clone();
let host = self.host.clone();
let query = self.query.clone();
let dbname = self.dbname.clone();
let port = self.port.clone();
let password = self.password.clone();
let config = if password.is_empty() {
format!(
"host={} user={} dbname={} port={}",
host, user, dbname, port
)
} else {
format!(
"host={} user={} dbname={} port={} password={}",
host, user, dbname, port, password
)
};
let mut client = Client::connect(&config).await?;
let mut res: Vec<pg_bigdecimal::PgNumeric> = Vec::new();
// extract rows from query
for row in client.query(&query, &[]).await? {
// extract features from row
for i in 0..row.len() {
res.push(row.get(i));
}
}
Ok(vec![res])
}
/// Fetch data from postgres and format it as a FileSource
pub async fn fetch_and_format_as_file(&self) -> Result<Vec<Vec<FileSourceInner>>, GraphError> {
Ok(self
.fetch()
.await?
.iter()
.map(|d| {
d.iter()
.map(|d| {
FileSourceInner::Float(
d.n.as_ref()
.unwrap()
.to_f64()
.ok_or("could not convert decimal to f64")
.unwrap(),
)
})
.collect()
})
.collect())
}
pub struct OnChainSource {
/// Call specifications for fetching data
pub calls: Calls,
/// RPC endpoint URL for accessing the chain
pub rpc: RPCUrl,
}
impl OnChainSource {
/// Creates a new OnChainSource with multiple calls
///
/// # Arguments
/// * `calls` - Vector of call specifications
/// * `rpc` - RPC endpoint URL
pub fn new_multiple(calls: Vec<CallsToAccount>, rpc: RPCUrl) -> Self {
OnChainSource {
calls: Calls::Multiple(calls),
rpc,
}
}
/// Creates a new OnChainSource with a single call
///
/// # Arguments
/// * `call` - Call specification
/// * `rpc` - RPC endpoint URL
pub fn new_single(call: CallToAccount, rpc: RPCUrl) -> Self {
OnChainSource {
calls: Calls::Single(call),
rpc,
}
}
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
/// Create dummy local on-chain data to test the OnChain data source
/// Creates test data for the OnChain data source
/// Used for testing and development purposes
///
/// # Arguments
/// * `data` - Sample file data to use
/// * `scales` - Scaling factors for each input
/// * `shapes` - Shapes of the input tensors
/// * `rpc` - Optional RPC endpoint override
pub async fn test_from_file_data(
data: &FileSource,
scales: Vec<crate::Scale>,
@@ -399,48 +324,40 @@ impl OnChainSource {
}
}
/// Defines the view only calls to accounts to fetch the on-chain input data.
/// This data will be included as part of the first elements in the publicInputs
/// for the sol evm verifier and will be verifyWithDataAttestation.sol
/// Specification for view-only calls to fetch on-chain data
/// Used for data attestation in smart contract verification
#[derive(Clone, Debug, Deserialize, Serialize, Default, PartialOrd, PartialEq)]
pub struct CallsToAccount {
/// A vector of tuples, where index 0 of tuples
/// are the byte strings representing the ABI encoded function calls to
/// read the data from the address. This call must return a single
/// elementary type (<https://docs.soliditylang.org/en/v0.8.20/abi-spec.html#types>).
/// The second index of the tuple is the number of decimals for f32 conversion.
/// We don't support dynamic types currently.
/// Vector of (call data, decimals) pairs
/// call_data: ABI-encoded function call
/// decimals: Number of decimal places for float conversion
pub call_data: Vec<(Call, Decimals)>,
/// Address of the contract to read the data from.
/// Contract address to call
pub address: String,
}
/// Defines a view only call to accounts to fetch the on-chain input data.
/// This data will be included as part of the first elements in the publicInputs
/// for the sol evm verifier and will be verifyWithDataAttestation.sol
/// Specification for a single view-only call returning an array
#[derive(Clone, Debug, Deserialize, Serialize, Default, PartialOrd, PartialEq)]
pub struct CallToAccount {
/// The call_data is a byte strings representing the ABI encoded function call to
/// read the data from the address. This call must return a single array of integers that can be
/// be safely cast to the int128 type in solidity.
/// ABI-encoded function call data
pub call_data: Call,
/// The number of decimals for f32 conversion of all of the elements returned from the
/// call.
/// Number of decimal places for float conversion
pub decimals: Decimals,
/// Address of the contract to read the data from.
/// Contract address to call
pub address: String,
/// The number of elements returned from the call.
/// Expected length of returned array
pub len: usize,
}
/// Enum that defines source of the inputs/outputs to the EZKL model
/// Represents different sources of input/output data for the EZKL model
#[derive(Clone, Debug, Serialize, PartialOrd, PartialEq)]
#[serde(untagged)]
pub enum DataSource {
/// .json File data source.
/// Data from a JSON file containing arrays of values
File(FileSource),
/// On-chain data source. The first element is the calls to the account, and the second is the RPC url.
/// Data fetched from blockchain contracts
OnChain(OnChainSource),
/// Postgres DB
/// Data from a PostgreSQL database
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
DB(PostgresSource),
}
@@ -483,8 +400,7 @@ impl From<OnChainSource> for DataSource {
}
}
// !!! ALWAYS USE JSON SERIALIZATION FOR GRAPH INPUT
// UNTAGGED ENUMS WONT WORK :( as highlighted here:
// Note: Always use JSON serialization for untagged enums
impl<'de> Deserialize<'de> for DataSource {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
@@ -492,15 +408,19 @@ impl<'de> Deserialize<'de> for DataSource {
{
let this_json: Box<serde_json::value::RawValue> = Deserialize::deserialize(deserializer)?;
// Try deserializing as FileSource first
let first_try: Result<FileSource, _> = serde_json::from_str(this_json.get());
if let Ok(t) = first_try {
return Ok(DataSource::File(t));
}
// Try deserializing as OnChainSource
let second_try: Result<OnChainSource, _> = serde_json::from_str(this_json.get());
if let Ok(t) = second_try {
return Ok(DataSource::OnChain(t));
}
// Try deserializing as PostgresSource if feature enabled
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
{
let third_try: Result<PostgresSource, _> = serde_json::from_str(this_json.get());
@@ -513,22 +433,29 @@ impl<'de> Deserialize<'de> for DataSource {
}
}
/// Input to graph as a datasource
/// Always use JSON serialization for GraphData. Seriously.
#[derive(Clone, Debug, Deserialize, Default, PartialEq)]
/// Container for input and output data for graph computations
///
/// Important: Always use JSON serialization for GraphData to handle enum variants correctly
#[derive(Clone, Debug, Deserialize, Default, PartialEq, Serialize)]
pub struct GraphData {
/// Inputs to the model / computational graph (can be empty vectors if inputs are coming from on-chain).
/// Input data for the model/graph
/// Can be empty if inputs come from on-chain sources
pub input_data: DataSource,
/// Outputs of the model / computational graph (can be empty vectors if outputs are coming from on-chain).
/// Optional output data for the model/graph
/// Can be empty if outputs come from on-chain sources
pub output_data: Option<DataSource>,
}
impl UnwindSafe for GraphData {}
impl GraphData {
// not wasm
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
/// Convert the input data to tract data
/// Converts the input data to tract's tensor format
///
/// # Arguments
/// * `shapes` - Expected shapes for each input tensor
/// * `datum_types` - Expected data types for each input
pub fn to_tract_data(
&self,
shapes: &[Vec<usize>],
@@ -557,7 +484,43 @@ impl GraphData {
Ok(inputs)
}
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
/// Converts tract tensor data into GraphData format
///
/// # Arguments
/// * `tensors` - Array of tract tensors to convert
///
/// # Returns
/// A new GraphData instance containing the converted tensor data
pub fn from_tract_data(tensors: &[TractTensor]) -> Result<Self, GraphError> {
use tract_onnx::prelude::DatumType;
let mut input_data = vec![];
for tensor in tensors {
match tensor.datum_type() {
tract_onnx::prelude::DatumType::Bool => {
let tensor = tensor.to_array_view::<bool>()?;
let tensor = tensor.iter().map(|e| FileSourceInner::Bool(*e)).collect();
input_data.push(tensor);
}
_ => {
let cast_tensor = tensor.cast_to_dt(DatumType::F64)?;
let tensor = cast_tensor.to_array_view::<f64>()?;
let tensor = tensor.iter().map(|e| FileSourceInner::Float(*e)).collect();
input_data.push(tensor);
}
}
}
Ok(GraphData {
input_data: DataSource::File(input_data),
output_data: None,
})
}
/// Creates a new GraphData instance with given input data
///
/// # Arguments
/// * `input_data` - The input data source
pub fn new(input_data: DataSource) -> Self {
GraphData {
input_data,
@@ -565,7 +528,34 @@ impl GraphData {
}
}
/// Load the model input from a file
/// Loads graph input data from a string, first seeing if it is a file path or JSON data
/// If it is a file path, it will load the data from the file
/// Otherwise, it will attempt to parse the string as JSON data
///
/// # Arguments
/// * `data` - String containing the input data
/// # Returns
/// A new GraphData instance containing the loaded data
pub fn from_str(data: &str) -> Result<Self, GraphError> {
let graph_input = serde_json::from_str(data);
match graph_input {
Ok(graph_input) => {
return Ok(graph_input);
}
Err(_) => {
let path = std::path::PathBuf::from(data);
GraphData::from_path(path)
}
}
}
/// Loads graph input data from a file
///
/// # Arguments
/// * `path` - Path to the input file
///
/// # Returns
/// A new GraphData instance containing the loaded data
pub fn from_path(path: std::path::PathBuf) -> Result<Self, GraphError> {
let reader = std::fs::File::open(&path).map_err(|e| {
GraphError::ReadWriteFileError(path.display().to_string(), e.to_string())
@@ -579,23 +569,35 @@ impl GraphData {
Ok(graph_input)
}
/// Save the model input to a file
/// Saves the graph data to a file
///
/// # Arguments
/// * `path` - Path where to save the data
pub fn save(&self, path: std::path::PathBuf) -> Result<(), GraphError> {
let file = std::fs::File::create(path.clone()).map_err(|e| {
GraphError::ReadWriteFileError(path.display().to_string(), e.to_string())
})?;
// buf writer
let writer = BufWriter::with_capacity(*EZKL_BUF_CAPACITY, file);
serde_json::to_writer(writer, self)?;
Ok(())
}
/// Splits the input data into multiple batches based on input shapes
///
/// # Arguments
/// * `input_shapes` - Vector of shapes for each input tensor
///
/// # Returns
/// Vector of GraphData instances, one for each batch
///
/// # Errors
/// Returns error if:
/// - Data is from on-chain source
/// - Input size is not evenly divisible by batch size
pub async fn split_into_batches(
&self,
input_shapes: Vec<Vec<usize>>,
) -> Result<Vec<Self>, GraphError> {
// split input data into batches
let mut batched_inputs = vec![];
let iterable = match self {
@@ -619,17 +621,25 @@ impl GraphData {
} => data.fetch_and_format_as_file().await?,
};
// Process each input tensor according to its shape
for (i, shape) in input_shapes.iter().enumerate() {
// ensure the input is evenly divisible by batch_size
let input_size = shape.clone().iter().product::<usize>();
let input = &iterable[i];
// Validate input size is divisible by batch size
if input.len() % input_size != 0 {
return Err(GraphError::InvalidDims(
0,
"calibration data length must be evenly divisible by the original input_size"
.to_string(),
format!(
"calibration data length (={}) must be evenly divisible by the original input_size(={})",
input.len(),
input_size
),
));
}
// Split input into batches
let mut batches = vec![];
for batch in input.chunks(input_size) {
batches.push(batch.to_vec());
@@ -637,18 +647,18 @@ impl GraphData {
batched_inputs.push(batches);
}
// now merge all the batches for each input into a vector of batches
// first assert each input has the same number of batches
// Merge batches across inputs
let num_batches = if batched_inputs.is_empty() {
0
} else {
let num_batches = batched_inputs[0].len();
// Verify all inputs have same number of batches
for input in batched_inputs.iter() {
assert_eq!(input.len(), num_batches);
}
num_batches
};
// now merge the batches
let mut input_batches = vec![];
for i in 0..num_batches {
let mut batch = vec![];
@@ -658,11 +668,12 @@ impl GraphData {
input_batches.push(DataSource::File(batch));
}
// Ensure at least one batch exists
if input_batches.is_empty() {
input_batches.push(DataSource::File(vec![vec![]]));
}
// create a new GraphWitness for each batch
// Create GraphData instance for each batch
let batches = input_batches
.into_iter()
.map(GraphData::new)
@@ -674,6 +685,7 @@ impl GraphData {
#[cfg(feature = "python-bindings")]
impl ToPyObject for CallsToAccount {
/// Converts CallsToAccount to Python object
fn to_object(&self, py: Python) -> PyObject {
let dict = PyDict::new(py);
dict.set_item("account", &self.address).unwrap();
@@ -682,6 +694,165 @@ impl ToPyObject for CallsToAccount {
}
}
// Additional Python bindings for various types...
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_postgres_source_new() {
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
{
let source = PostgresSource::new(
"localhost".to_string(),
"5432".to_string(),
"user".to_string(),
"SELECT * FROM table".to_string(),
"database".to_string(),
"password".to_string(),
);
assert_eq!(source.host, "localhost");
assert_eq!(source.port, "5432");
assert_eq!(source.user, "user");
assert_eq!(source.query, "SELECT * FROM table");
assert_eq!(source.dbname, "database");
assert_eq!(source.password, "password");
}
}
#[test]
fn test_data_source_serialization_round_trip() {
// Test backwards compatibility with old format
let source = DataSource::from(vec![vec![0.053_262_424, 0.074_970_566, 0.052_355_476]]);
let serialized = serde_json::to_string(&source).unwrap();
const JSON: &str = r#"[[0.053262424,0.074970566,0.052355476]]"#;
assert_eq!(serialized, JSON);
let expect = serde_json::from_str::<DataSource>(JSON)
.map_err(|e| e.to_string())
.unwrap();
assert_eq!(expect, source);
}
#[test]
fn test_graph_input_serialization_round_trip() {
// Test serialization/deserialization of graph input
let file = GraphData::new(DataSource::from(vec![vec![
0.05326242372393608,
0.07497056573629379,
0.05235547572374344,
]]));
let serialized = serde_json::to_string(&file).unwrap();
const JSON: &str = r#"{"input_data":[[0.05326242372393608,0.07497056573629379,0.05235547572374344]],"output_data":null}"#;
assert_eq!(serialized, JSON);
let graph_input3 = serde_json::from_str::<GraphData>(JSON)
.map_err(|e| e.to_string())
.unwrap();
assert_eq!(graph_input3, file);
}
#[test]
fn test_python_compat() {
// Test compatibility with mclbn256 library serialization
let source = Fp::from_raw([18445520602771460712, 838677322461845011, 3079992810, 0]);
let original_addr = "0x000000000000000000000000b794f5ea0ba39494ce839613fffba74279579268";
assert_eq!(format!("{:?}", source), original_addr);
}
}
/// Source data from a PostgreSQL database
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
#[derive(Clone, Debug, Deserialize, Serialize, Default, PartialOrd, PartialEq)]
pub struct PostgresSource {
/// Database host address
pub host: RPCUrl,
/// Database user name
pub user: String,
/// Database password
pub password: String,
/// SQL query to execute
pub query: String,
/// Database name
pub dbname: String,
/// Database port
pub port: String,
}
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
impl PostgresSource {
/// Creates a new PostgreSQL data source
pub fn new(
host: RPCUrl,
port: String,
user: String,
query: String,
dbname: String,
password: String,
) -> Self {
PostgresSource {
host,
user,
password,
query,
dbname,
port,
}
}
/// Fetches data from the PostgreSQL database
pub async fn fetch(&self) -> Result<Vec<Vec<pg_bigdecimal::PgNumeric>>, GraphError> {
// Configuration string
let config = if self.password.is_empty() {
format!(
"host={} user={} dbname={} port={}",
self.host, self.user, self.dbname, self.port
)
} else {
format!(
"host={} user={} dbname={} port={} password={}",
self.host, self.user, self.dbname, self.port, self.password
)
};
let mut client = Client::connect(&config).await?;
let mut res: Vec<pg_bigdecimal::PgNumeric> = Vec::new();
// Extract rows from query
for row in client.query(&self.query, &[]).await? {
for i in 0..row.len() {
res.push(row.get(i));
}
}
Ok(vec![res])
}
/// Fetches and formats data as FileSource
pub async fn fetch_and_format_as_file(&self) -> Result<Vec<Vec<FileSourceInner>>, GraphError> {
Ok(self
.fetch()
.await?
.iter()
.map(|d| {
d.iter()
.map(|d| {
FileSourceInner::Float(
d.n.as_ref()
.unwrap()
.to_f64()
.ok_or("could not convert decimal to f64")
.unwrap(),
)
})
.collect()
})
.collect())
}
}
#[cfg(feature = "python-bindings")]
impl ToPyObject for CallToAccount {
fn to_object(&self, py: Python) -> PyObject {
@@ -716,6 +887,7 @@ impl ToPyObject for DataSource {
.unwrap();
dict.to_object(py)
}
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
DataSource::DB(source) => {
let dict = PyDict::new(py);
dict.set_item("host", &source.host).unwrap();
@@ -740,69 +912,3 @@ impl ToPyObject for FileSourceInner {
}
}
}
impl Serialize for GraphData {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let mut state = serializer.serialize_struct("GraphData", 4)?;
state.serialize_field("input_data", &self.input_data)?;
state.serialize_field("output_data", &self.output_data)?;
state.end()
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
// this is for backwards compatibility with the old format
fn test_data_source_serialization_round_trip() {
let source = DataSource::from(vec![vec![0.053_262_424, 0.074_970_566, 0.052_355_476]]);
let serialized = serde_json::to_string(&source).unwrap();
const JSON: &str = r#"[[0.053262424,0.074970566,0.052355476]]"#;
assert_eq!(serialized, JSON);
let expect = serde_json::from_str::<DataSource>(JSON)
.map_err(|e| e.to_string())
.unwrap();
assert_eq!(expect, source);
}
#[test]
// this is for backwards compatibility with the old format
fn test_graph_input_serialization_round_trip() {
let file = GraphData::new(DataSource::from(vec![vec![
0.05326242372393608,
0.07497056573629379,
0.05235547572374344,
]]));
let serialized = serde_json::to_string(&file).unwrap();
const JSON: &str = r#"{"input_data":[[0.05326242372393608,0.07497056573629379,0.05235547572374344]],"output_data":null}"#;
assert_eq!(serialized, JSON);
let graph_input3 = serde_json::from_str::<GraphData>(JSON)
.map_err(|e| e.to_string())
.unwrap();
assert_eq!(graph_input3, file);
}
// test for the compatibility with the serialized elements from the mclbn256 library
#[test]
fn test_python_compat() {
let source = Fp::from_raw([18445520602771460712, 838677322461845011, 3079992810, 0]);
let original_addr = "0x000000000000000000000000b794f5ea0ba39494ce839613fffba74279579268";
assert_eq!(format!("{:?}", source), original_addr);
}
}

View File

@@ -281,7 +281,7 @@ impl GraphWitness {
let reader = std::io::BufReader::with_capacity(*EZKL_BUF_CAPACITY, file);
let witness: GraphWitness =
serde_json::from_reader(reader).map_err(|e| Into::<GraphError>::into(e))?;
serde_json::from_reader(reader).map_err(Into::<GraphError>::into)?;
// check versions match
crate::check_version_string_matches(witness.version.as_deref().unwrap_or(""));
@@ -455,6 +455,10 @@ pub struct GraphSettings {
pub num_blinding_factors: Option<usize>,
/// unix time timestamp
pub timestamp: Option<u128>,
/// Model inputs types (if any)
pub input_types: Option<Vec<InputType>>,
/// Model outputs types (if any)
pub output_types: Option<Vec<InputType>>,
}
impl GraphSettings {
@@ -619,11 +623,6 @@ impl GraphSettings {
}
}
///
pub fn uses_modules(&self) -> bool {
!self.module_sizes.max_constraints() > 0
}
/// if any visibility is encrypted or hashed
pub fn module_requires_fixed(&self) -> bool {
self.run_args.input_visibility.is_hashed()
@@ -766,7 +765,7 @@ pub struct TestOnChainData {
pub data: std::path::PathBuf,
/// rpc endpoint
pub rpc: Option<String>,
///
/// data sources for the on chain data
pub data_sources: TestSources,
}
@@ -954,7 +953,7 @@ impl GraphCircuit {
DataSource::File(file_data) => {
self.load_file_data(file_data, &shapes, scales, input_types)
}
_ => unreachable!("cannot load from on-chain data"),
_ => Err(GraphError::OnChainDataSource),
}
}

View File

@@ -1,7 +1,6 @@
use super::errors::GraphError;
use super::extract_const_quantized_values;
use super::node::*;
use super::scale_to_multiplier;
use super::vars::*;
use super::GraphSettings;
use crate::circuit::hybrid::HybridOp;
@@ -379,13 +378,18 @@ pub struct ParsedNodes {
pub nodes: BTreeMap<usize, NodeType>,
inputs: Vec<usize>,
outputs: Vec<Outlet>,
output_types: Vec<InputType>,
}
impl ParsedNodes {
/// Returns the output types of the computational graph.
pub fn get_output_types(&self) -> Vec<InputType> {
self.output_types.clone()
}
/// Returns the number of the computational graph's inputs
pub fn num_inputs(&self) -> usize {
let input_nodes = self.inputs.iter();
input_nodes.len()
self.inputs.len()
}
/// Input types
@@ -425,8 +429,7 @@ impl ParsedNodes {
/// Returns the number of the computational graph's outputs
pub fn num_outputs(&self) -> usize {
let output_nodes = self.outputs.iter();
output_nodes.len()
self.outputs.len()
}
/// Returns shapes of the computational graph's outputs
@@ -493,6 +496,16 @@ impl Model {
Ok(om)
}
/// Gets the input types from the parsed nodes
pub fn get_input_types(&self) -> Result<Vec<InputType>, GraphError> {
self.graph.get_input_types()
}
/// Gets the output types from the parsed nodes
pub fn get_output_types(&self) -> Vec<InputType> {
self.graph.get_output_types()
}
///
pub fn save(&self, path: PathBuf) -> Result<(), GraphError> {
let f = std::fs::File::create(&path).map_err(|e| {
@@ -576,6 +589,11 @@ impl Model {
required_range_checks: res.range_checks.into_iter().collect(),
model_output_scales: self.graph.get_output_scales()?,
model_input_scales: self.graph.get_input_scales(),
input_types: match self.get_input_types() {
Ok(x) => Some(x),
Err(_) => None,
},
output_types: Some(self.get_output_types()),
num_dynamic_lookups: res.num_dynamic_lookups,
total_dynamic_col_size: res.dynamic_lookup_col_coord,
num_shuffles: res.num_shuffles,
@@ -621,19 +639,23 @@ impl Model {
/// * `scale` - The scale to use for quantization.
/// * `public_params` - Whether to make the params public.
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
fn load_onnx_using_tract(
pub(crate) fn load_onnx_using_tract(
reader: &mut dyn std::io::Read,
run_args: &RunArgs,
variables: &[(String, usize)],
) -> Result<TractResult, GraphError> {
use tract_onnx::tract_hir::internal::GenericFactoid;
let mut model = tract_onnx::onnx().model_for_read(reader)?;
let variables: std::collections::HashMap<String, usize> =
std::collections::HashMap::from_iter(run_args.variables.clone());
std::collections::HashMap::from_iter(variables.iter().map(|(k, v)| (k.clone(), *v)));
for (i, id) in model.clone().inputs.iter().enumerate() {
let input = model.node_mut(id.node);
if input.outputs.len() == 0 {
return Err(GraphError::MissingOutput(id.node));
}
let mut fact: InferenceFact = input.outputs[0].fact.clone();
for (i, x) in fact.clone().shape.dims().enumerate() {
@@ -655,7 +677,7 @@ impl Model {
}
let mut symbol_values = SymbolValues::default();
for (symbol, value) in run_args.variables.iter() {
for (symbol, value) in variables.iter() {
let symbol = model.symbols.sym(symbol);
symbol_values = symbol_values.with(&symbol, *value as i64);
debug!("set {} to {}", symbol, value);
@@ -683,7 +705,7 @@ impl Model {
) -> Result<ParsedNodes, GraphError> {
let start_time = instant::Instant::now();
let (model, symbol_values) = Self::load_onnx_using_tract(reader, run_args)?;
let (model, symbol_values) = Self::load_onnx_using_tract(reader, &run_args.variables)?;
let scales = VarScales::from_args(run_args);
let nodes = Self::nodes_from_graph(
@@ -702,6 +724,11 @@ impl Model {
nodes,
inputs: model.inputs.iter().map(|o| o.node).collect(),
outputs: model.outputs.iter().map(|o| (o.node, o.slot)).collect(),
output_types: model
.outputs
.iter()
.map(|o| Ok::<InputType, GraphError>(model.outlet_fact(*o)?.datum_type.into()))
.collect::<Result<Vec<_>, GraphError>>()?,
};
let duration = start_time.elapsed();
@@ -860,6 +887,15 @@ impl Model {
nodes: subgraph_nodes,
inputs: model.inputs.iter().map(|o| o.node).collect(),
outputs: model.outputs.iter().map(|o| (o.node, o.slot)).collect(),
output_types: model
.outputs
.iter()
.map(|o| {
Ok::<InputType, GraphError>(
model.outlet_fact(*o)?.datum_type.into(),
)
})
.collect::<Result<Vec<_>, GraphError>>()?,
};
let om = Model {
@@ -906,6 +942,7 @@ impl Model {
n.opkind = SupportedOp::Input(Input {
scale,
datum_type: inp.datum_type,
decomp: !run_args.ignore_range_check_inputs_outputs,
});
input_idx += 1;
n.out_scale = scale;
@@ -964,7 +1001,7 @@ impl Model {
GraphError::ReadWriteFileError(model_path.display().to_string(), e.to_string())
})?;
let (model, _) = Model::load_onnx_using_tract(&mut file, run_args)?;
let (model, _) = Model::load_onnx_using_tract(&mut file, &run_args.variables)?;
let datum_types: Vec<DatumType> = model
.input_outlets()?
@@ -1016,6 +1053,10 @@ impl Model {
let required_lookups = settings.required_lookups.clone();
let required_range_checks = settings.required_range_checks.clone();
if vars.advices.len() < 3 {
return Err(GraphError::InsufficientAdviceColumns(3));
}
let mut base_gate = PolyConfig::configure(
meta,
vars.advices[0..2].try_into()?,
@@ -1035,6 +1076,10 @@ impl Model {
}
if settings.requires_dynamic_lookup() {
if vars.advices.len() < 6 {
return Err(GraphError::InsufficientAdviceColumns(6));
}
base_gate.configure_dynamic_lookup(
meta,
vars.advices[0..3].try_into()?,
@@ -1043,10 +1088,13 @@ impl Model {
}
if settings.requires_shuffle() {
if vars.advices.len() < 6 {
return Err(GraphError::InsufficientAdviceColumns(6));
}
base_gate.configure_shuffles(
meta,
vars.advices[0..2].try_into()?,
vars.advices[3..5].try_into()?,
vars.advices[0..3].try_into()?,
vars.advices[3..6].try_into()?,
)?;
}
@@ -1061,6 +1109,7 @@ impl Model {
/// * `vars` - The variables for the circuit.
/// * `witnessed_outputs` - The values to compare against.
/// * `constants` - The constants for the circuit.
#[allow(clippy::too_many_arguments)]
pub fn layout(
&self,
mut config: ModelConfig,
@@ -1123,17 +1172,10 @@ impl Model {
})?;
if run_args.output_visibility.is_public() || run_args.output_visibility.is_fixed() {
let output_scales = self.graph.get_output_scales().map_err(|e| {
error!("{}", e);
halo2_proofs::plonk::Error::Synthesis
})?;
let res = outputs
.iter()
.enumerate()
.map(|(i, output)| {
let mut tolerance = run_args.tolerance;
tolerance.scale = scale_to_multiplier(output_scales[i]).into();
let comparators = if run_args.output_visibility == Visibility::Public {
let res = vars
.instance
@@ -1155,7 +1197,9 @@ impl Model {
.layout(
&mut thread_safe_region,
&[output.clone(), comparators],
Box::new(HybridOp::RangeCheck(tolerance)),
Box::new(HybridOp::Output {
decomp: !run_args.ignore_range_check_inputs_outputs,
}),
)
.map_err(|e| e.into())
})
@@ -1415,11 +1459,9 @@ impl Model {
let outputs = self.layout_nodes(&mut model_config, &mut region, &mut results)?;
if self.visibility.output.is_public() || self.visibility.output.is_fixed() {
let output_scales = self.graph.get_output_scales()?;
let res = outputs
.iter()
.enumerate()
.map(|(i, output)| {
.map(|output| {
let mut comparator: ValTensor<Fp> = (0..output.len())
.map(|_| {
if !self.visibility.output.is_fixed() {
@@ -1432,13 +1474,12 @@ impl Model {
.into();
comparator.reshape(output.dims())?;
let mut tolerance = run_args.tolerance;
tolerance.scale = scale_to_multiplier(output_scales[i]).into();
dummy_config.layout(
&mut region,
&[output.clone(), comparator],
Box::new(HybridOp::RangeCheck(tolerance)),
Box::new(HybridOp::Output {
decomp: !run_args.ignore_range_check_inputs_outputs,
}),
)
})
.collect::<Result<Vec<_>, _>>();
@@ -1460,7 +1501,7 @@ impl Model {
.iter()
.map(|x| {
x.get_felt_evals()
.unwrap_or(Tensor::new(Some(&[Fp::ZERO]), &[1]).unwrap())
.unwrap_or_else(|_| Tensor::new(Some(&[Fp::ZERO]), &[1]).unwrap())
})
.collect();
@@ -1530,6 +1571,7 @@ impl Model {
let mut op = crate::circuit::Constant::new(
c.quantized_values.clone(),
c.raw_values.clone(),
c.decomp,
);
op.pre_assign(consts[const_idx].clone());
n.opkind = SupportedOp::Constant(op);
@@ -1557,4 +1599,16 @@ impl Model {
}
Ok(instance_shapes)
}
/// Input types of the computational graph's public inputs (if any)
pub fn instance_types(&self) -> Result<Vec<InputType>, GraphError> {
let mut instance_types = vec![];
if self.visibility.input.is_public() {
instance_types.extend(self.graph.get_input_types()?);
}
if self.visibility.output.is_public() {
instance_types.extend(self.graph.get_output_types());
}
Ok(instance_types)
}
}

View File

@@ -14,14 +14,11 @@ use serde::{Deserialize, Serialize};
use super::errors::GraphError;
use super::{VarVisibility, Visibility};
/// poseidon len to hash in tree
pub const POSEIDON_LEN_GRAPH: usize = 32;
/// Poseidon number of instances
pub const POSEIDON_INSTANCES: usize = 1;
/// Poseidon module type
pub type ModulePoseidon =
PoseidonChip<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, POSEIDON_LEN_GRAPH>;
pub type ModulePoseidon = PoseidonChip<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE>;
/// Poseidon module config
pub type ModulePoseidonConfig = PoseidonConfig<POSEIDON_WIDTH, POSEIDON_RATE>;
@@ -284,7 +281,6 @@ impl GraphModules {
log::error!("Poseidon config not initialized");
return Err(Error::Synthesis);
}
// If the module is encrypted, then we need to encrypt the inputs
}
Ok(())

View File

@@ -1,10 +1,19 @@
// Import dependencies for scaling operations
use super::scale_to_multiplier;
// Import ONNX-specific utilities when EZKL feature is enabled
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use super::utilities::node_output_shapes;
// Import scale management types for EZKL
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use super::VarScales;
// Import visibility settings for EZKL
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use super::Visibility;
// Import operation types for different circuit components
use crate::circuit::hybrid::HybridOp;
use crate::circuit::lookup::LookupOp;
use crate::circuit::poly::PolyOp;
@@ -13,28 +22,49 @@ use crate::circuit::Constant;
use crate::circuit::Input;
use crate::circuit::Op;
use crate::circuit::Unknown;
// Import graph error types for EZKL
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use crate::graph::errors::GraphError;
// Import ONNX operation conversion utilities
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use crate::graph::new_op_from_onnx;
// Import tensor error handling
use crate::tensor::TensorError;
// Import curve-specific field type
use halo2curves::bn256::Fr as Fp;
// Import logging for EZKL
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use log::trace;
// Import serialization traits
use serde::Deserialize;
use serde::Serialize;
// Import data structures for EZKL
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use std::collections::BTreeMap;
// Import formatting traits for EZKL
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use std::fmt;
// Import table display formatting for EZKL
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use tabled::Tabled;
// Import ONNX-specific types and traits for EZKL
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use tract_onnx::{
self,
prelude::{Node as OnnxNode, SymbolValues, TypedFact, TypedOp},
};
/// Helper function to format vectors for display
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
fn display_vector<T: fmt::Debug>(v: &Vec<T>) -> String {
if !v.is_empty() {
@@ -44,29 +74,35 @@ fn display_vector<T: fmt::Debug>(v: &Vec<T>) -> String {
}
}
/// Helper function to format operation kinds for display
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
fn display_opkind(v: &SupportedOp) -> String {
v.as_string()
}
/// A wrapper for an operation that has been rescaled.
/// A wrapper for an operation that has been rescaled to handle different precision requirements.
/// This enables operations to work with inputs that have been scaled to different fixed-point representations.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct Rescaled {
/// The operation that has to be rescaled.
/// The underlying operation that needs to be rescaled
pub inner: Box<SupportedOp>,
/// The scale of the operation's inputs.
/// Vector of (index, scale) pairs defining how each input should be scaled
pub scale: Vec<(usize, u128)>,
}
/// Implementation of the Op trait for Rescaled operations
impl Op<Fp> for Rescaled {
/// Convert to Any type for runtime type checking
fn as_any(&self) -> &dyn std::any::Any {
self
}
/// Get string representation of the operation
fn as_string(&self) -> String {
format!("RESCALED INPUT ({})", self.inner.as_string())
}
/// Calculate output scale based on input scales
fn out_scale(&self, in_scales: Vec<crate::Scale>) -> Result<crate::Scale, CircuitError> {
let in_scales = in_scales
.into_iter()
@@ -77,6 +113,7 @@ impl Op<Fp> for Rescaled {
Op::<Fp>::out_scale(&*self.inner, in_scales)
}
/// Layout the operation in the circuit
fn layout(
&self,
config: &mut crate::circuit::BaseConfig<Fp>,
@@ -93,28 +130,40 @@ impl Op<Fp> for Rescaled {
self.inner.layout(config, region, res)
}
/// Create a cloned boxed copy of this operation
fn clone_dyn(&self) -> Box<dyn Op<Fp>> {
Box::new(self.clone()) // Forward to the derive(Clone) impl
Box::new(self.clone())
}
}
/// A wrapper for an operation that has been rescaled.
/// A wrapper for operations that require scale rebasing
/// This handles cases where operation scales need to be adjusted to a target scale
/// while preserving the numerical relationships
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct RebaseScale {
/// The operation that has to be rescaled.
/// The operation that needs to be rescaled
pub inner: Box<SupportedOp>,
/// rebase op
/// Operation used for rebasing, typically division
pub rebase_op: HybridOp,
/// scale being rebased to
/// Scale that we're rebasing to
pub target_scale: i32,
/// The original scale of the operation's inputs.
/// Original scale of operation's inputs before rebasing
pub original_scale: i32,
/// multiplier
/// Scaling multiplier used in rebasing
pub multiplier: f64,
}
impl RebaseScale {
/// Creates a rebased version of an operation if needed
///
/// # Arguments
/// * `inner` - Operation to potentially rebase
/// * `global_scale` - Base scale for the system
/// * `op_out_scale` - Current output scale of the operation
/// * `scale_rebase_multiplier` - Factor determining when rebasing should occur
///
/// # Returns
/// Original or rebased operation depending on scale relationships
pub fn rebase(
inner: SupportedOp,
global_scale: crate::Scale,
@@ -155,7 +204,15 @@ impl RebaseScale {
}
}
/// Creates a rebased operation with increased scale
///
/// # Arguments
/// * `inner` - Operation to potentially rebase
/// * `target_scale` - Scale to rebase to
/// * `op_out_scale` - Current output scale of the operation
///
/// # Returns
/// Original or rebased operation with increased scale
pub fn rebase_up(
inner: SupportedOp,
target_scale: crate::Scale,
@@ -192,10 +249,12 @@ impl RebaseScale {
}
impl Op<Fp> for RebaseScale {
/// Convert to Any type for runtime type checking
fn as_any(&self) -> &dyn std::any::Any {
self
}
/// Get string representation of the operation
fn as_string(&self) -> String {
format!(
"REBASED (div={:?}, rebasing_op={}) ({})",
@@ -205,10 +264,12 @@ impl Op<Fp> for RebaseScale {
)
}
/// Calculate output scale based on input scales
fn out_scale(&self, _: Vec<crate::Scale>) -> Result<crate::Scale, CircuitError> {
Ok(self.target_scale)
}
/// Layout the operation in the circuit
fn layout(
&self,
config: &mut crate::circuit::BaseConfig<Fp>,
@@ -222,34 +283,40 @@ impl Op<Fp> for RebaseScale {
self.rebase_op.layout(config, region, &[original_res])
}
/// Create a cloned boxed copy of this operation
fn clone_dyn(&self) -> Box<dyn Op<Fp>> {
Box::new(self.clone()) // Forward to the derive(Clone) impl
Box::new(self.clone())
}
}
/// A single operation in a [crate::graph::Model].
/// Represents all supported operation types in the circuit
/// Each variant encapsulates a different type of operation with specific behavior
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum SupportedOp {
/// A linear operation.
/// Linear operations (polynomial-based)
Linear(PolyOp),
/// A nonlinear operation.
/// Nonlinear operations requiring lookup tables
Nonlinear(LookupOp),
/// A hybrid operation.
/// Mixed operations combining different approaches
Hybrid(HybridOp),
///
/// Input values to the circuit
Input(Input),
///
/// Constant values in the circuit
Constant(Constant<Fp>),
///
/// Placeholder for unsupported operations
Unknown(Unknown),
///
/// Operations requiring rescaling of inputs
Rescaled(Rescaled),
///
/// Operations requiring scale rebasing
RebaseScale(RebaseScale),
}
impl SupportedOp {
/// Checks if the operation is a lookup operation
///
/// # Returns
/// * `true` if operation requires lookup table
/// * `false` otherwise
pub fn is_lookup(&self) -> bool {
match self {
SupportedOp::Nonlinear(_) => true,
@@ -257,7 +324,12 @@ impl SupportedOp {
_ => false,
}
}
/// Returns input operation if this is an input
///
/// # Returns
/// * `Some(Input)` if this is an input operation
/// * `None` otherwise
pub fn get_input(&self) -> Option<Input> {
match self {
SupportedOp::Input(op) => Some(op.clone()),
@@ -265,7 +337,11 @@ impl SupportedOp {
}
}
/// Returns reference to rebased operation if this is a rebased operation
///
/// # Returns
/// * `Some(&RebaseScale)` if this is a rebased operation
/// * `None` otherwise
pub fn get_rebased(&self) -> Option<&RebaseScale> {
match self {
SupportedOp::RebaseScale(op) => Some(op),
@@ -273,7 +349,11 @@ impl SupportedOp {
}
}
/// Returns reference to lookup operation if this is a lookup operation
///
/// # Returns
/// * `Some(&LookupOp)` if this is a lookup operation
/// * `None` otherwise
pub fn get_lookup(&self) -> Option<&LookupOp> {
match self {
SupportedOp::Nonlinear(op) => Some(op),
@@ -281,7 +361,11 @@ impl SupportedOp {
}
}
/// Returns reference to constant if this is a constant
///
/// # Returns
/// * `Some(&Constant)` if this is a constant
/// * `None` otherwise
pub fn get_constant(&self) -> Option<&Constant<Fp>> {
match self {
SupportedOp::Constant(op) => Some(op),
@@ -289,7 +373,11 @@ impl SupportedOp {
}
}
/// Returns mutable reference to constant if this is a constant
///
/// # Returns
/// * `Some(&mut Constant)` if this is a constant
/// * `None` otherwise
pub fn get_mutable_constant(&mut self) -> Option<&mut Constant<Fp>> {
match self {
SupportedOp::Constant(op) => Some(op),
@@ -297,18 +385,19 @@ impl SupportedOp {
}
}
/// Creates a homogeneously rescaled version of this operation if needed
/// Only available with EZKL feature enabled
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
fn homogenous_rescale(
&self,
in_scales: Vec<crate::Scale>,
) -> Result<Box<dyn Op<Fp>>, GraphError> {
let inputs_to_scale = self.requires_homogenous_input_scales();
// creates a rescaled op if the inputs are not homogenous
let op = self.clone_dyn();
super::homogenize_input_scales(op, in_scales, inputs_to_scale)
}
/// Since each associated value of `SupportedOp` implements `Op`, let's define a helper method to retrieve it.
/// Returns reference to underlying Op implementation
fn as_op(&self) -> &dyn Op<Fp> {
match self {
SupportedOp::Linear(op) => op,
@@ -322,9 +411,10 @@ impl SupportedOp {
}
}
/// check if is the identity operation
/// Checks if this is an identity operation
///
/// # Returns
/// * `true` if the operation is the identity operation
/// * `true` if this operation passes input through unchanged
/// * `false` otherwise
pub fn is_identity(&self) -> bool {
match self {
@@ -361,9 +451,11 @@ impl From<Box<dyn Op<Fp>>> for SupportedOp {
if let Some(op) = value.as_any().downcast_ref::<Unknown>() {
return SupportedOp::Unknown(op.clone());
};
if let Some(op) = value.as_any().downcast_ref::<Rescaled>() {
return SupportedOp::Rescaled(op.clone());
};
if let Some(op) = value.as_any().downcast_ref::<RebaseScale>() {
return SupportedOp::RebaseScale(op.clone());
};
@@ -375,6 +467,7 @@ impl From<Box<dyn Op<Fp>>> for SupportedOp {
}
impl Op<Fp> for SupportedOp {
/// Layout this operation in the circuit
fn layout(
&self,
config: &mut crate::circuit::BaseConfig<Fp>,
@@ -384,54 +477,61 @@ impl Op<Fp> for SupportedOp {
self.as_op().layout(config, region, values)
}
/// Check if this is an input operation
fn is_input(&self) -> bool {
self.as_op().is_input()
}
/// Check if this is a constant operation
fn is_constant(&self) -> bool {
self.as_op().is_constant()
}
/// Get which inputs require homogeneous scales
fn requires_homogenous_input_scales(&self) -> Vec<usize> {
self.as_op().requires_homogenous_input_scales()
}
/// Create a clone of this operation
fn clone_dyn(&self) -> Box<dyn Op<Fp>> {
self.as_op().clone_dyn()
}
/// Get string representation
fn as_string(&self) -> String {
self.as_op().as_string()
}
/// Convert to Any type
fn as_any(&self) -> &dyn std::any::Any {
self
}
/// Calculate output scale from input scales
fn out_scale(&self, in_scales: Vec<crate::Scale>) -> Result<crate::Scale, CircuitError> {
self.as_op().out_scale(in_scales)
}
}
/// A node's input is a tensor from another node's output.
/// Represents a connection to another node's output
/// First element is node index, second is output slot index
pub type Outlet = (usize, usize);
/// A single operation in a [crate::graph::Model].
/// Represents a single computational node in the circuit graph
/// Contains all information needed to execute and connect operations
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct Node {
/// [Op] i.e what operation this node represents.
/// The operation this node performs
pub opkind: SupportedOp,
/// The denominator in the fixed point representation for the node's output. Tensors of differing scales should not be combined.
/// Fixed point scale factor for this node's output
pub out_scale: i32,
// Usually there is a simple in and out shape of the node as an operator. For example, an Affine node has three input_shapes (one for the input, weight, and bias),
// but in_dim is [in], out_dim is [out]
/// The indices of the node's inputs.
/// Connections to other nodes' outputs that serve as inputs
pub inputs: Vec<Outlet>,
/// Dimensions of output.
/// Shape of this node's output tensor
pub out_dims: Vec<usize>,
/// The node's unique identifier.
/// Unique identifier for this node
pub idx: usize,
/// The node's num of uses
/// Number of times this node's output is used
pub num_uses: usize,
}
@@ -469,12 +569,19 @@ impl PartialEq for Node {
}
impl Node {
/// Converts a tract [OnnxNode] into an ezkl [Node].
/// # Arguments:
/// * `node` - [OnnxNode]
/// * `other_nodes` - [BTreeMap] of other previously initialized [Node]s in the computational graph.
/// * `public_params` - flag if parameters of model are public
/// * `idx` - The node's unique identifier.
/// Creates a new Node from an ONNX node
/// Only available when EZKL feature is enabled
///
/// # Arguments
/// * `node` - Source ONNX node
/// * `other_nodes` - Map of existing nodes in the graph
/// * `scales` - Scale factors for variables
/// * `idx` - Unique identifier for this node
/// * `symbol_values` - ONNX symbol values
/// * `run_args` - Runtime configuration arguments
///
/// # Returns
/// New Node instance or error if creation fails
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
#[allow(clippy::too_many_arguments)]
pub fn new(
@@ -612,16 +719,14 @@ impl Node {
})
}
/// check if it is a softmax node
/// Check if this node performs softmax operation
pub fn is_softmax(&self) -> bool {
if let SupportedOp::Hybrid(HybridOp::Softmax { .. }) = self.opkind {
true
} else {
false
}
matches!(self.opkind, SupportedOp::Hybrid(HybridOp::Softmax { .. }))
}
}
/// Helper function to rescale constants that are only used once
/// Only available when EZKL feature is enabled
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
fn rescale_const_with_single_use(
constant: &mut Constant<Fp>,

View File

@@ -39,16 +39,15 @@ use tract_onnx::tract_hir::{
ops::array::{Pad, PadMode, TypedConcat},
ops::cnn::PoolSpec,
ops::konst::Const,
ops::nn::DataFormat,
tract_core::ops::cast::Cast,
tract_core::ops::cnn::{conv::KernelFormat, MaxPool, SumPool},
tract_core::ops::cnn::{MaxPool, SumPool},
};
/// Quantizes an iterable of f32s to a [Tensor] of i32s using a fixed point representation.
/// Quantizes an iterable of f64 to a [Tensor] of IntegerRep using a fixed point representation.
/// NAN gets mapped to 0. INFINITY and NEG_INFINITY error out.
/// Arguments
///
/// * `vec` - the vector to quantize.
/// * `dims` - the dimensionality of the resulting [Tensor].
/// * `elem` - the element to quantize.
/// * `shift` - offset used in the fixed point representation.
/// * `scale` - `2^scale` used in the fixed point representation.
pub fn quantize_float(
@@ -59,7 +58,7 @@ pub fn quantize_float(
let mult = scale_to_multiplier(scale);
let max_value = ((IntegerRep::MAX as f64 - shift) / mult).round(); // the maximum value that can be represented w/o sig bit truncation
if *elem > max_value {
if *elem > max_value || *elem < -max_value {
return Err(TensorError::SigBitTruncationError);
}
@@ -85,7 +84,7 @@ pub fn scale_to_multiplier(scale: crate::Scale) -> f64 {
f64::powf(2., scale as f64)
}
/// Converts a scale (log base 2) to a fixed point multiplier.
/// Converts a fixed point multiplier to a scale (log base 2).
pub fn multiplier_to_scale(mult: f64) -> crate::Scale {
mult.log2().round() as crate::Scale
}
@@ -228,10 +227,7 @@ pub fn extract_tensor_value(
.iter()
.map(|x| match x.to_i64() {
Ok(v) => Ok(v as f32),
Err(_) => match x.to_i64() {
Ok(v) => Ok(v as f32),
Err(_) => Err(GraphError::UnsupportedDataType(0, "TDim".to_string())),
},
Err(_) => Err(GraphError::UnsupportedDataType(0, "TDim".to_string())),
})
.collect();
@@ -277,11 +273,9 @@ pub fn new_op_from_onnx(
symbol_values: &SymbolValues,
run_args: &crate::RunArgs,
) -> Result<(SupportedOp, Vec<usize>), GraphError> {
use std::f64::consts::E;
use tract_onnx::tract_core::ops::array::Trilu;
use crate::circuit::InputType;
use std::f64::consts::E;
use tract_onnx::tract_core::ops::array::Trilu;
let input_scales = inputs
.iter()
@@ -312,6 +306,9 @@ pub fn new_op_from_onnx(
let mut deleted_indices = vec![];
let node = match node.op().name().as_ref() {
"ShiftLeft" => {
if inputs.len() != 2 {
return Err(GraphError::InvalidDims(idx, "shift left".to_string()));
};
// load shift amount
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
inputs[1].decrement_use();
@@ -324,10 +321,13 @@ pub fn new_op_from_onnx(
out_scale: Some(input_scales[0] - raw_values[0] as i32),
})
} else {
return Err(GraphError::OpMismatch(idx, "ShiftLeft".to_string()));
return Err(GraphError::OpMismatch(idx, "shift left".to_string()));
}
}
"ShiftRight" => {
if inputs.len() != 2 {
return Err(GraphError::InvalidDims(idx, "shift right".to_string()));
};
// load shift amount
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
inputs[1].decrement_use();
@@ -340,7 +340,7 @@ pub fn new_op_from_onnx(
out_scale: Some(input_scales[0] + raw_values[0] as i32),
})
} else {
return Err(GraphError::OpMismatch(idx, "ShiftRight".to_string()));
return Err(GraphError::OpMismatch(idx, "shift right".to_string()));
}
}
"MultiBroadcastTo" => {
@@ -363,7 +363,10 @@ pub fn new_op_from_onnx(
}
}
assert_eq!(input_ops.len(), 3, "Range requires 3 inputs");
if input_ops.len() != 3 {
return Err(GraphError::InvalidDims(idx, "range".to_string()));
}
let input_ops = input_ops
.iter()
.map(|x| x.get_constant().ok_or(GraphError::NonConstantRange))
@@ -378,7 +381,11 @@ pub fn new_op_from_onnx(
// Quantize the raw value (integers)
let quantized_value = quantize_tensor(raw_value.clone(), 0, &Visibility::Fixed)?;
let c = crate::circuit::ops::Constant::new(quantized_value, raw_value);
let c = crate::circuit::ops::Constant::new(
quantized_value,
raw_value,
!run_args.ignore_range_check_inputs_outputs,
);
// Create a constant op
SupportedOp::Constant(c)
}
@@ -419,6 +426,10 @@ pub fn new_op_from_onnx(
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
inputs[1].decrement_use();
deleted_indices.push(inputs.len() - 1);
if inputs[0].out_dims().is_empty() || inputs[0].out_dims()[0].len() <= axis {
return Err(GraphError::InvalidDims(idx, "gather".to_string()));
}
op = SupportedOp::Hybrid(crate::circuit::ops::hybrid::HybridOp::Gather {
dim: axis,
constant_idx: Some(c.raw_values.map(|x| {
@@ -436,6 +447,7 @@ pub fn new_op_from_onnx(
inputs[1].replace_opkind(SupportedOp::Input(crate::circuit::ops::Input {
scale: 0,
datum_type: InputType::TDim,
decomp: false,
}));
inputs[1].bump_scale(0);
}
@@ -447,8 +459,17 @@ pub fn new_op_from_onnx(
"Topk" => {
let op = load_op::<Topk>(node.op(), idx, node.op().name().to_string())?;
let axis = op.axis;
if inputs.len() != 2 {
return Err(GraphError::InvalidDims(idx, "topk".to_string()));
};
// if param_visibility.is_public() {
let k = if let Some(c) = inputs[1].opkind().get_mutable_constant() {
if c.raw_values.len() != 1 {
return Err(GraphError::InvalidDims(idx, "topk".to_string()));
}
inputs[1].decrement_use();
deleted_indices.push(inputs.len() - 1);
c.raw_values.map(|x| x as usize)[0]
@@ -488,6 +509,10 @@ pub fn new_op_from_onnx(
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
inputs[1].decrement_use();
deleted_indices.push(1);
if c.raw_values.is_empty() {
return Err(GraphError::InvalidDims(idx, "scatter elements".to_string()));
}
op = SupportedOp::Linear(crate::circuit::ops::poly::PolyOp::ScatterElements {
dim: axis,
constant_idx: Some(c.raw_values.map(|x| x as usize)),
@@ -499,6 +524,7 @@ pub fn new_op_from_onnx(
inputs[1].replace_opkind(SupportedOp::Input(crate::circuit::ops::Input {
scale: 0,
datum_type: InputType::TDim,
decomp: !run_args.ignore_range_check_inputs_outputs,
}));
inputs[1].bump_scale(0);
}
@@ -522,6 +548,9 @@ pub fn new_op_from_onnx(
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
inputs[1].decrement_use();
deleted_indices.push(1);
if c.raw_values.is_empty() {
return Err(GraphError::InvalidDims(idx, "scatter nd".to_string()));
}
op = SupportedOp::Linear(crate::circuit::ops::poly::PolyOp::ScatterND {
constant_idx: Some(c.raw_values.map(|x| x as usize)),
})
@@ -532,6 +561,7 @@ pub fn new_op_from_onnx(
inputs[1].replace_opkind(SupportedOp::Input(crate::circuit::ops::Input {
scale: 0,
datum_type: InputType::TDim,
decomp: !run_args.ignore_range_check_inputs_outputs,
}));
inputs[1].bump_scale(0);
}
@@ -555,6 +585,9 @@ pub fn new_op_from_onnx(
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
inputs[1].decrement_use();
deleted_indices.push(1);
if c.raw_values.is_empty() {
return Err(GraphError::InvalidDims(idx, "gather nd".to_string()));
}
op = SupportedOp::Linear(crate::circuit::ops::poly::PolyOp::GatherND {
batch_dims,
indices: Some(c.raw_values.map(|x| x as usize)),
@@ -566,6 +599,7 @@ pub fn new_op_from_onnx(
inputs[1].replace_opkind(SupportedOp::Input(crate::circuit::ops::Input {
scale: 0,
datum_type: InputType::TDim,
decomp: !run_args.ignore_range_check_inputs_outputs,
}));
inputs[1].bump_scale(0);
}
@@ -589,6 +623,9 @@ pub fn new_op_from_onnx(
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
inputs[1].decrement_use();
deleted_indices.push(1);
if c.raw_values.is_empty() {
return Err(GraphError::InvalidDims(idx, "gather elements".to_string()));
}
op = SupportedOp::Linear(crate::circuit::ops::poly::PolyOp::GatherElements {
dim: axis,
constant_idx: Some(c.raw_values.map(|x| x as usize)),
@@ -600,6 +637,7 @@ pub fn new_op_from_onnx(
inputs[1].replace_opkind(SupportedOp::Input(crate::circuit::ops::Input {
scale: 0,
datum_type: InputType::TDim,
decomp: !run_args.ignore_range_check_inputs_outputs,
}));
inputs[1].bump_scale(0);
}
@@ -674,7 +712,11 @@ pub fn new_op_from_onnx(
constant_scale,
&run_args.param_visibility,
)?;
let c = crate::circuit::ops::Constant::new(quantized_value, raw_value);
let c = crate::circuit::ops::Constant::new(
quantized_value,
raw_value,
run_args.ignore_range_check_inputs_outputs,
);
// Create a constant op
SupportedOp::Constant(c)
}
@@ -684,7 +726,9 @@ pub fn new_op_from_onnx(
};
let op = load_op::<Reduce>(node.op(), idx, node.op().name().to_string())?;
let axes: Vec<usize> = op.axes.into_iter().collect();
assert_eq!(axes.len(), 1, "only support argmax over one axis");
if axes.len() != 1 {
return Err(GraphError::InvalidDims(idx, "argmax".to_string()));
}
SupportedOp::Hybrid(HybridOp::ReduceArgMax { dim: axes[0] })
}
@@ -694,7 +738,9 @@ pub fn new_op_from_onnx(
};
let op = load_op::<Reduce>(node.op(), idx, node.op().name().to_string())?;
let axes: Vec<usize> = op.axes.into_iter().collect();
assert_eq!(axes.len(), 1, "only support argmin over one axis");
if axes.len() != 1 {
return Err(GraphError::InvalidDims(idx, "argmin".to_string()));
}
SupportedOp::Hybrid(HybridOp::ReduceArgMin { dim: axes[0] })
}
@@ -803,6 +849,9 @@ pub fn new_op_from_onnx(
}
}
"Recip" => {
if inputs.len() != 1 {
return Err(GraphError::InvalidDims(idx, "recip".to_string()));
};
let in_scale = input_scales[0];
let max_scale = std::cmp::max(scales.get_max(), in_scale);
// If the input scale is larger than the params scale
@@ -846,6 +895,9 @@ pub fn new_op_from_onnx(
scale: scale_to_multiplier(input_scales[0]).into(),
}),
"Rsqrt" => {
if input_scales.len() != 1 {
return Err(GraphError::InvalidDims(idx, "rsqrt".to_string()));
};
let in_scale = input_scales[0];
let max_scale = std::cmp::max(scales.get_max(), in_scale);
SupportedOp::Hybrid(HybridOp::Rsqrt {
@@ -927,13 +979,19 @@ pub fn new_op_from_onnx(
DatumType::F64 => (scales.input, InputType::F64),
_ => return Err(GraphError::UnsupportedDataType(idx, format!("{:?}", dt))),
};
SupportedOp::Input(crate::circuit::ops::Input { scale, datum_type })
SupportedOp::Input(crate::circuit::ops::Input {
scale,
datum_type,
decomp: !run_args.ignore_range_check_inputs_outputs,
})
}
"Cast" => {
let op = load_op::<Cast>(node.op(), idx, node.op().name().to_string())?;
let dt = op.to;
assert_eq!(input_scales.len(), 1);
if input_scales.len() != 1 {
return Err(GraphError::InvalidDims(idx, "cast".to_string()));
};
match dt {
DatumType::Bool
@@ -983,6 +1041,11 @@ pub fn new_op_from_onnx(
if const_idx.len() == 1 {
let const_idx = const_idx[0];
if inputs.len() <= const_idx {
return Err(GraphError::InvalidDims(idx, "mul".to_string()));
}
if let Some(c) = inputs[const_idx].opkind().get_mutable_constant() {
if c.raw_values.len() == 1 && c.raw_values[0] < 1. {
// if not divisible by 2 then we need to add a range check
@@ -1057,6 +1120,9 @@ pub fn new_op_from_onnx(
return Err(GraphError::OpMismatch(idx, "softmax".to_string()));
}
};
if input_scales.len() != 1 {
return Err(GraphError::InvalidDims(idx, "softmax".to_string()));
}
let in_scale = input_scales[0];
let max_scale = std::cmp::max(scales.get_max(), in_scale);
@@ -1079,13 +1145,6 @@ pub fn new_op_from_onnx(
let pool_spec: &PoolSpec = &sumpool_node.pool_spec;
// only support pytorch type formatting for now
if pool_spec.data_format != DataFormat::NCHW {
return Err(GraphError::MissingParams(
"data in wrong format".to_string(),
));
}
let stride = extract_strides(pool_spec)?;
let padding = extract_padding(pool_spec, &input_dims[0])?;
let kernel_shape = &pool_spec.kernel_shape;
@@ -1094,24 +1153,45 @@ pub fn new_op_from_onnx(
padding,
stride: stride.to_vec(),
pool_dims: kernel_shape.to_vec(),
data_format: pool_spec.data_format.into(),
})
}
"Ceil" => {
if input_scales.len() != 1 {
return Err(GraphError::InvalidDims(idx, "ceil".to_string()));
}
SupportedOp::Hybrid(HybridOp::Ceil {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
})
}
"Floor" => {
if input_scales.len() != 1 {
return Err(GraphError::InvalidDims(idx, "floor".to_string()));
}
SupportedOp::Hybrid(HybridOp::Floor {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
})
}
"Round" => {
if input_scales.len() != 1 {
return Err(GraphError::InvalidDims(idx, "round".to_string()));
}
SupportedOp::Hybrid(HybridOp::Round {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
})
}
"RoundHalfToEven" => {
if input_scales.len() != 1 {
return Err(GraphError::InvalidDims(idx, "roundhalftoeven".to_string()));
}
SupportedOp::Hybrid(HybridOp::RoundHalfToEven {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
})
}
"Ceil" => SupportedOp::Hybrid(HybridOp::Ceil {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
}),
"Floor" => SupportedOp::Hybrid(HybridOp::Floor {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
}),
"Round" => SupportedOp::Hybrid(HybridOp::Round {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
}),
"RoundHalfToEven" => SupportedOp::Hybrid(HybridOp::RoundHalfToEven {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
}),
"Sign" => SupportedOp::Linear(PolyOp::Sign),
"Pow" => {
// Extract the slope layer hyperparams from a const
@@ -1121,7 +1201,9 @@ pub fn new_op_from_onnx(
inputs[1].decrement_use();
deleted_indices.push(1);
if c.raw_values.len() > 1 {
unimplemented!("only support scalar pow")
return Err(GraphError::NonScalarPower);
} else if c.raw_values.is_empty() {
return Err(GraphError::InvalidDims(idx, "pow".to_string()));
}
let exponent = c.raw_values[0];
@@ -1138,7 +1220,9 @@ pub fn new_op_from_onnx(
inputs[0].decrement_use();
deleted_indices.push(0);
if c.raw_values.len() > 1 {
unimplemented!("only support scalar base")
return Err(GraphError::NonScalarBase);
} else if c.raw_values.is_empty() {
return Err(GraphError::InvalidDims(idx, "pow".to_string()));
}
let base = c.raw_values[0];
@@ -1148,10 +1232,14 @@ pub fn new_op_from_onnx(
base: base.into(),
})
} else {
unimplemented!("only support constant base or pow for now")
return Err(GraphError::InvalidDims(idx, "pow".to_string()));
}
}
"Div" => {
if inputs.len() != 2 {
return Err(GraphError::InvalidDims(idx, "div".to_string()));
}
let const_idx = inputs
.iter()
.enumerate()
@@ -1159,14 +1247,15 @@ pub fn new_op_from_onnx(
.map(|(i, _)| i)
.collect::<Vec<_>>();
if const_idx.len() > 1 {
if const_idx.len() > 1 || const_idx.is_empty() {
return Err(GraphError::InvalidDims(idx, "div".to_string()));
}
let const_idx = const_idx[0];
if const_idx != 1 {
unimplemented!("only support div with constant as second input")
return Err(GraphError::MisformedParams(
"only support div with constant as second input".to_string(),
));
}
if let Some(c) = inputs[const_idx].opkind().get_mutable_constant() {
@@ -1176,14 +1265,28 @@ pub fn new_op_from_onnx(
// get the non constant index
let denom = c.raw_values[0];
SupportedOp::Hybrid(HybridOp::Div {
let op = SupportedOp::Hybrid(HybridOp::Div {
denom: denom.into(),
})
});
// if the input is scale 0 we re up to the max scale
if input_scales[0] == 0 {
SupportedOp::Rescaled(Rescaled {
inner: Box::new(op),
scale: vec![(0, scale_to_multiplier(scales.get_max()) as u128)],
})
} else {
op
}
} else {
unimplemented!("only support non zero divisors of size 1")
return Err(GraphError::MisformedParams(
"only support non zero divisors of size 1".to_string(),
));
}
} else {
unimplemented!("only support div with constant as second input")
return Err(GraphError::MisformedParams(
"only support div with constant as second input".to_string(),
));
}
}
"Cube" => SupportedOp::Linear(PolyOp::Pow(3)),
@@ -1204,15 +1307,6 @@ pub fn new_op_from_onnx(
}
}
if ((conv_node.pool_spec.data_format != DataFormat::NCHW)
&& (conv_node.pool_spec.data_format != DataFormat::CHW))
|| (conv_node.kernel_fmt != KernelFormat::OIHW)
{
return Err(GraphError::MisformedParams(
"data or kernel in wrong format".to_string(),
));
}
let pool_spec = &conv_node.pool_spec;
let stride = extract_strides(pool_spec)?;
@@ -1240,6 +1334,8 @@ pub fn new_op_from_onnx(
padding,
stride,
group,
data_format: conv_node.pool_spec.data_format.into(),
kernel_format: conv_node.kernel_fmt.into(),
})
}
"Not" => SupportedOp::Linear(PolyOp::Not),
@@ -1263,14 +1359,6 @@ pub fn new_op_from_onnx(
}
}
if (deconv_node.pool_spec.data_format != DataFormat::NCHW)
|| (deconv_node.kernel_format != KernelFormat::OIHW)
{
return Err(GraphError::MisformedParams(
"data or kernel in wrong format".to_string(),
));
}
let pool_spec = &deconv_node.pool_spec;
let stride = extract_strides(pool_spec)?;
@@ -1296,6 +1384,8 @@ pub fn new_op_from_onnx(
output_padding: deconv_node.adjustments.to_vec(),
stride,
group: deconv_node.group,
data_format: deconv_node.pool_spec.data_format.into(),
kernel_format: deconv_node.kernel_format.into(),
})
}
"Downsample" => {
@@ -1323,7 +1413,7 @@ pub fn new_op_from_onnx(
if !resize_node.contains("interpolator: Nearest")
&& !resize_node.contains("nearest: Floor")
{
unimplemented!("Only nearest neighbor interpolation is supported")
return Err(GraphError::InvalidInterpolation);
}
// check if optional scale factor is present
if inputs.len() != 2 && inputs.len() != 3 {
@@ -1379,13 +1469,6 @@ pub fn new_op_from_onnx(
let pool_spec: &PoolSpec = &sumpool_node.pool_spec;
// only support pytorch type formatting for now
if pool_spec.data_format != DataFormat::NCHW {
return Err(GraphError::MissingParams(
"data in wrong format".to_string(),
));
}
let stride = extract_strides(pool_spec)?;
let padding = extract_padding(pool_spec, &input_dims[0])?;
@@ -1394,6 +1477,7 @@ pub fn new_op_from_onnx(
stride: stride.to_vec(),
kernel_shape: pool_spec.kernel_shape.to_vec(),
normalized: sumpool_node.normalize,
data_format: pool_spec.data_format.into(),
})
}
"Pad" => {
@@ -1427,6 +1511,10 @@ pub fn new_op_from_onnx(
SupportedOp::Linear(PolyOp::Reshape(output_shape))
}
"Flatten" => {
if inputs.len() != 1 || inputs[0].out_dims().is_empty() {
return Err(GraphError::InvalidDims(idx, "flatten".to_string()));
};
let new_dims: Vec<usize> = vec![inputs[0].out_dims()[0].iter().product::<usize>()];
SupportedOp::Linear(PolyOp::Flatten(new_dims))
}
@@ -1500,12 +1588,10 @@ pub fn homogenize_input_scales(
input_scales: Vec<crate::Scale>,
inputs_to_scale: Vec<usize>,
) -> Result<Box<dyn Op<Fp>>, GraphError> {
let relevant_input_scales = input_scales
.clone()
.into_iter()
.enumerate()
.filter(|(idx, _)| inputs_to_scale.contains(idx))
.map(|(_, scale)| scale)
let relevant_input_scales = inputs_to_scale
.iter()
.filter(|idx| input_scales.len() > **idx)
.map(|&idx| input_scales[idx])
.collect_vec();
if inputs_to_scale.is_empty() {
@@ -1546,10 +1632,30 @@ pub fn homogenize_input_scales(
}
#[cfg(test)]
/// tests for the utility module
pub mod tests {
use super::*;
// quantization tests
#[test]
fn test_quantize_tensor() {
let tensor: Tensor<f32> = (0..10).map(|x| x as f32).into();
let reference: Tensor<Fp> = (0..10).map(|x| x.into()).into();
let scale = 0;
let visibility = &Visibility::Public;
let quantized: Tensor<Fp> = quantize_tensor(tensor, scale, visibility).unwrap();
assert_eq!(quantized.len(), 10);
assert_eq!(quantized, reference);
}
#[test]
fn test_quantize_edge_cases() {
assert_eq!(quantize_float(&f64::NAN, 0.0, 0).unwrap(), 0);
assert!(quantize_float(&f64::INFINITY, 0.0, 0).is_err());
assert!(quantize_float(&f64::NEG_INFINITY, 0.0, 0).is_err());
}
#[test]
fn test_flatten_valtensors() {
let tensor1: Tensor<Fp> = (0..10).map(|x| x.into()).into();

View File

@@ -11,35 +11,34 @@ use log::debug;
use pyo3::{
exceptions::PyValueError, FromPyObject, IntoPy, PyObject, PyResult, Python, ToPyObject,
};
use serde::{Deserialize, Serialize};
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use tosubcommand::ToFlags;
use self::errors::GraphError;
use super::*;
/// Label enum to track whether model input, model parameters, and model output are public, private, or hashed
/// Defines the visibility level of values within the zero-knowledge circuit
/// Controls how values are handled during proof generation and verification
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq, Eq, PartialOrd, Ord, Default)]
pub enum Visibility {
/// Mark an item as private to the prover (not in the proof submitted for verification)
/// Value is private to the prover and not included in proof
#[default]
Private,
/// Mark an item as public (sent in the proof submitted for verification)
/// Value is public and included in proof for verification
Public,
/// Mark an item as publicly committed to (hash sent in the proof submitted for verification)
/// Value is hashed and the hash is included in proof
Hashed {
/// Whether the hash is used as an instance (sent in the proof submitted for verification)
/// if false the hash is used as an advice (not in the proof submitted for verification) and is then sent to the computational graph
/// if true the hash is used as an instance (sent in the proof submitted for verification) the *inputs* to the hashing function are then sent to the computational graph
/// Controls how the hash is handled in proof
/// true - hash is included directly in proof (public)
/// false - hash is used as advice and passed to computational graph
hash_is_public: bool,
///
/// Specifies which outputs this hash affects
outlets: Vec<usize>,
},
/// Mark an item as publicly committed to (KZG commitment sent in the proof submitted for verification)
/// Value is committed using KZG commitment scheme
KZGCommit,
/// assigned as a constant in the circuit
/// Value is assigned as a constant in the circuit
Fixed,
}
@@ -66,15 +65,17 @@ impl Display for Visibility {
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
impl ToFlags for Visibility {
/// Converts visibility to command line flags
fn to_flags(&self) -> Vec<String> {
vec![format!("{}", self)]
}
}
impl<'a> From<&'a str> for Visibility {
/// Converts string representation to Visibility
fn from(s: &'a str) -> Self {
if s.contains("hashed/private") {
// split on last occurrence of '/'
// Split on last occurrence of '/'
let (_, outlets) = s.split_at(s.rfind('/').unwrap());
let outlets = outlets
.trim_start_matches('/')
@@ -106,8 +107,8 @@ impl<'a> From<&'a str> for Visibility {
}
#[cfg(feature = "python-bindings")]
/// Converts Visibility into a PyObject (Required for Visibility to be compatible with Python)
impl IntoPy<PyObject> for Visibility {
/// Converts Visibility to Python object
fn into_py(self, py: Python) -> PyObject {
match self {
Visibility::Private => "private".to_object(py),
@@ -134,14 +135,13 @@ impl IntoPy<PyObject> for Visibility {
}
#[cfg(feature = "python-bindings")]
/// Obtains Visibility from PyObject (Required for Visibility to be compatible with Python)
impl<'source> FromPyObject<'source> for Visibility {
/// Extracts Visibility from Python object
fn extract_bound(ob: &pyo3::Bound<'source, pyo3::PyAny>) -> PyResult<Self> {
let strval = String::extract_bound(ob)?;
let strval = strval.as_str();
if strval.contains("hashed/private") {
// split on last occurence of '/'
let (_, outlets) = strval.split_at(strval.rfind('/').unwrap());
let outlets = outlets
.trim_start_matches('/')
@@ -174,29 +174,32 @@ impl<'source> FromPyObject<'source> for Visibility {
}
impl Visibility {
#[allow(missing_docs)]
/// Returns true if visibility is Fixed
pub fn is_fixed(&self) -> bool {
matches!(&self, Visibility::Fixed)
}
#[allow(missing_docs)]
/// Returns true if visibility is Private or hashed private
pub fn is_private(&self) -> bool {
matches!(&self, Visibility::Private) || self.is_hashed_private()
}
#[allow(missing_docs)]
/// Returns true if visibility is Public
pub fn is_public(&self) -> bool {
matches!(&self, Visibility::Public)
}
#[allow(missing_docs)]
/// Returns true if visibility involves hashing
pub fn is_hashed(&self) -> bool {
matches!(&self, Visibility::Hashed { .. })
}
#[allow(missing_docs)]
/// Returns true if visibility uses KZG commitment
pub fn is_polycommit(&self) -> bool {
matches!(&self, Visibility::KZGCommit)
}
#[allow(missing_docs)]
/// Returns true if visibility is hashed with public hash
pub fn is_hashed_public(&self) -> bool {
if let Visibility::Hashed {
hash_is_public: true,
@@ -207,7 +210,8 @@ impl Visibility {
}
false
}
#[allow(missing_docs)]
/// Returns true if visibility is hashed with private hash
pub fn is_hashed_private(&self) -> bool {
if let Visibility::Hashed {
hash_is_public: false,
@@ -219,11 +223,12 @@ impl Visibility {
false
}
#[allow(missing_docs)]
/// Returns true if visibility requires additional processing
pub fn requires_processing(&self) -> bool {
matches!(&self, Visibility::Hashed { .. }) | matches!(&self, Visibility::KZGCommit)
}
#[allow(missing_docs)]
/// Returns vector of output indices that this visibility setting affects
pub fn overwrites_inputs(&self) -> Vec<usize> {
if let Visibility::Hashed { outlets, .. } = self {
return outlets.clone();
@@ -232,14 +237,14 @@ impl Visibility {
}
}
/// Represents the scale of the model input, model parameters.
/// Manages scaling factors for different parts of the model
#[derive(Clone, Debug, Default, Deserialize, Serialize, PartialEq, PartialOrd)]
pub struct VarScales {
///
/// Scale factor for input values
pub input: crate::Scale,
///
/// Scale factor for parameter values
pub params: crate::Scale,
///
/// Multiplier for scale rebasing
pub rebase_multiplier: u32,
}
@@ -250,17 +255,17 @@ impl std::fmt::Display for VarScales {
}
impl VarScales {
///
/// Returns maximum scale value
pub fn get_max(&self) -> crate::Scale {
std::cmp::max(self.input, self.params)
}
///
/// Returns minimum scale value
pub fn get_min(&self) -> crate::Scale {
std::cmp::min(self.input, self.params)
}
/// Place in [VarScales] struct.
/// Creates VarScales from runtime arguments
pub fn from_args(args: &RunArgs) -> Self {
Self {
input: args.input_scale,
@@ -270,16 +275,17 @@ impl VarScales {
}
}
/// Represents whether the model input, model parameters, and model output are Public or Private to the prover.
/// Controls visibility settings for different parts of the model
#[derive(Clone, Debug, Deserialize, Serialize, PartialEq, PartialOrd)]
pub struct VarVisibility {
/// Input to the model or computational graph
/// Visibility of model inputs
pub input: Visibility,
/// Parameters, such as weights and biases, in the model
/// Visibility of model parameters (weights, biases)
pub params: Visibility,
/// Output of the model or computational graph
/// Visibility of model outputs
pub output: Visibility,
}
impl std::fmt::Display for VarVisibility {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(
@@ -301,8 +307,7 @@ impl Default for VarVisibility {
}
impl VarVisibility {
/// Read from cli args whether the model input, model parameters, and model output are Public or Private to the prover.
/// Place in [VarVisibility] struct.
/// Creates visibility settings from runtime arguments
pub fn from_args(args: &RunArgs) -> Result<Self, GraphError> {
let input_vis = &args.input_visibility;
let params_vis = &args.param_visibility;
@@ -313,17 +318,17 @@ impl VarVisibility {
}
if !output_vis.is_public()
& !params_vis.is_public()
& !input_vis.is_public()
& !output_vis.is_fixed()
& !params_vis.is_fixed()
& !input_vis.is_fixed()
& !output_vis.is_hashed()
& !params_vis.is_hashed()
& !input_vis.is_hashed()
& !output_vis.is_polycommit()
& !params_vis.is_polycommit()
& !input_vis.is_polycommit()
&& !params_vis.is_public()
&& !input_vis.is_public()
&& !output_vis.is_fixed()
&& !params_vis.is_fixed()
&& !input_vis.is_fixed()
&& !output_vis.is_hashed()
&& !params_vis.is_hashed()
&& !input_vis.is_hashed()
&& !output_vis.is_polycommit()
&& !params_vis.is_polycommit()
&& !input_vis.is_polycommit()
{
return Err(GraphError::Visibility);
}
@@ -335,17 +340,17 @@ impl VarVisibility {
}
}
/// A wrapper for holding all columns that will be assigned to by a model.
/// Container for circuit columns used by a model
#[derive(Clone, Debug)]
pub struct ModelVars<F: PrimeField + TensorType + PartialOrd> {
#[allow(missing_docs)]
/// Advice columns for circuit assignments
pub advices: Vec<VarTensor>,
#[allow(missing_docs)]
/// Optional instance column for public inputs
pub instance: Option<ValTensor<F>>,
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ModelVars<F> {
/// Get instance col
/// Gets reference to instance column if it exists
pub fn get_instance_col(&self) -> Option<&Column<Instance>> {
if let Some(instance) = &self.instance {
match instance {
@@ -357,14 +362,14 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ModelVars<F> {
}
}
/// Set the initial instance offset
/// Sets initial offset for instance values
pub fn set_initial_instance_offset(&mut self, offset: usize) {
if let Some(instance) = &mut self.instance {
instance.set_initial_instance_offset(offset);
}
}
/// Get the total instance len
/// Gets total length of instance data
pub fn get_instance_len(&self) -> usize {
if let Some(instance) = &self.instance {
instance.get_total_instance_len()
@@ -373,21 +378,21 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ModelVars<F> {
}
}
/// Increment the instance offset
/// Increments instance index
pub fn increment_instance_idx(&mut self) {
if let Some(instance) = &mut self.instance {
instance.increment_idx();
}
}
/// Reset the instance offset
/// Sets instance index to specific value
pub fn set_instance_idx(&mut self, val: usize) {
if let Some(instance) = &mut self.instance {
instance.set_idx(val);
}
}
/// Get the instance offset
/// Gets current instance index
pub fn get_instance_idx(&self) -> usize {
if let Some(instance) = &self.instance {
instance.get_idx()
@@ -396,7 +401,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ModelVars<F> {
}
}
///
/// Initializes instance column with specified dimensions and scale
pub fn instantiate_instance(
&mut self,
cs: &mut ConstraintSystem<F>,
@@ -417,7 +422,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ModelVars<F> {
};
}
/// Allocate all columns that will be assigned to by a model.
/// Creates new ModelVars with allocated columns based on settings
pub fn new(cs: &mut ConstraintSystem<F>, params: &GraphSettings) -> Self {
debug!("number of blinding factors: {}", cs.blinding_factors());
@@ -435,7 +440,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ModelVars<F> {
.collect_vec();
if requires_dynamic_lookup || requires_shuffle {
let num_cols = if requires_dynamic_lookup { 3 } else { 2 };
let num_cols = 3;
for _ in 0..num_cols {
let dynamic_lookup =
VarTensor::new_advice(cs, logrows, 1, dynamic_lookup_and_shuffle_size);

View File

@@ -28,6 +28,9 @@
//! A library for turning computational graphs, such as neural networks, into ZK-circuits.
//!
use log::warn;
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use mimalloc as _;
/// Error type
// #[cfg_attr(not(feature = "ezkl"), derive(uniffi::Error))]
@@ -94,12 +97,11 @@ impl From<String> for EZKLError {
use std::str::FromStr;
use circuit::{table::Range, CheckMode, Tolerance};
use circuit::{table::Range, CheckMode};
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use clap::Args;
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use fieldutils::IntegerRep;
use graph::Visibility;
use graph::{Visibility, MAX_PUBLIC_SRS};
use halo2_proofs::poly::{
ipa::commitment::IPACommitmentScheme, kzg::commitment::KZGCommitmentScheme,
};
@@ -165,7 +167,6 @@ pub mod srs_sha;
pub mod tensor;
#[cfg(feature = "ios-bindings")]
uniffi::setup_scaffolding!();
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use lazy_static::lazy_static;
@@ -180,11 +181,9 @@ lazy_static! {
.unwrap_or("8000".to_string())
.parse()
.unwrap();
/// The serialization format for the keys
pub static ref EZKL_KEY_FORMAT: String = std::env::var("EZKL_KEY_FORMAT")
.unwrap_or("raw-bytes".to_string());
}
#[cfg(any(not(feature = "ezkl"), target_arch = "wasm32"))]
@@ -266,80 +265,101 @@ impl From<String> for Commitments {
}
/// Parameters specific to a proving run
///
/// RunArgs contains all configuration parameters needed to control the proving process,
/// including scaling factors, visibility settings, and circuit parameters.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq, PartialOrd)]
#[cfg_attr(
all(feature = "ezkl", not(target_arch = "wasm32")),
derive(Args, ToFlags)
)]
pub struct RunArgs {
/// The tolerance for error on model outputs
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(short = 'T', long, default_value = "0", value_hint = clap::ValueHint::Other))]
pub tolerance: Tolerance,
/// The denominator in the fixed point representation used when quantizing inputs
/// Fixed point scaling factor for quantizing inputs
/// Higher values provide more precision but increase circuit complexity
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(short = 'S', long, default_value = "7", value_hint = clap::ValueHint::Other))]
pub input_scale: Scale,
/// The denominator in the fixed point representation used when quantizing parameters
/// Fixed point scaling factor for quantizing parameters
/// Higher values provide more precision but increase circuit complexity
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(long, default_value = "7", value_hint = clap::ValueHint::Other))]
pub param_scale: Scale,
/// if the scale is ever > scale_rebase_multiplier * input_scale then the scale is rebased to input_scale (this a more advanced parameter, use with caution)
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(long, default_value = "1", value_hint = clap::ValueHint::Other))]
/// Scale rebase threshold multiplier
/// When scale exceeds input_scale * multiplier, it is rebased to input_scale
/// Advanced parameter that should be used with caution
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(long, default_value = "1", value_hint = clap::ValueHint::Other))]
pub scale_rebase_multiplier: u32,
/// The min and max elements in the lookup table input column
/// Range for lookup table input column values
/// Specified as (min, max) pair
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(short = 'B', long, value_parser = parse_key_val::<IntegerRep, IntegerRep>, default_value = "-32768->32768"))]
pub lookup_range: Range,
/// The log_2 number of rows
/// Log2 of the number of rows in the circuit
/// Controls circuit size and proving time
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(short = 'K', long, default_value = "17", value_hint = clap::ValueHint::Other))]
pub logrows: u32,
/// The log_2 number of rows
/// Number of inner columns per block
/// Affects circuit layout and efficiency
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(short = 'N', long, default_value = "2", value_hint = clap::ValueHint::Other))]
pub num_inner_cols: usize,
/// Hand-written parser for graph variables, eg. batch_size=1
/// Graph variables for parameterizing the computation
/// Format: "name->value", e.g. "batch_size->1"
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(short = 'V', long, value_parser = parse_key_val::<String, usize>, default_value = "batch_size->1", value_delimiter = ',', value_hint = clap::ValueHint::Other))]
pub variables: Vec<(String, usize)>,
/// Flags whether inputs are public, private, fixed, hashed, polycommit
/// Visibility setting for input values
/// Controls whether inputs are public or private in the circuit
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(long, default_value = "private", value_hint = clap::ValueHint::Other))]
pub input_visibility: Visibility,
/// Flags whether outputs are public, private, fixed, hashed, polycommit
/// Visibility setting for output values
/// Controls whether outputs are public or private in the circuit
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(long, default_value = "public", value_hint = clap::ValueHint::Other))]
pub output_visibility: Visibility,
/// Flags whether params are fixed, private, hashed, polycommit
/// Visibility setting for parameters
/// Controls how parameters are handled in the circuit
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(long, default_value = "private", value_hint = clap::ValueHint::Other))]
pub param_visibility: Visibility,
#[cfg_attr(
all(feature = "ezkl", not(target_arch = "wasm32")),
arg(long, default_value = "false")
)]
/// Should constants with 0.0 fraction be rebased to scale 0
/// Whether to rebase constants with zero fractional part to scale 0
/// Can improve efficiency for integer constants
#[cfg_attr(
all(feature = "ezkl", not(target_arch = "wasm32")),
arg(long, default_value = "false")
)]
pub rebase_frac_zero_constants: bool,
/// check mode (safe, unsafe, etc)
/// Circuit checking mode
/// Controls level of constraint verification
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(long, default_value = "unsafe", value_hint = clap::ValueHint::Other))]
pub check_mode: CheckMode,
/// commitment scheme
/// Commitment scheme for circuit proving
/// Affects proof size and verification time
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(long, default_value = "kzg", value_hint = clap::ValueHint::Other))]
pub commitment: Option<Commitments>,
/// the base used for decompositions
/// Base for number decomposition
/// Must be a power of 2
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(long, default_value = "16384", value_hint = clap::ValueHint::Other))]
pub decomp_base: usize,
/// Number of decomposition legs
/// Controls decomposition granularity
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(long, default_value = "2", value_hint = clap::ValueHint::Other))]
/// the number of legs used for decompositions
pub decomp_legs: usize,
/// Whether to use bounded lookup for logarithm computation
#[cfg_attr(
all(feature = "ezkl", not(target_arch = "wasm32")),
arg(long, default_value = "false")
)]
/// use unbounded lookup for the log
pub bounded_log_lookup: bool,
/// Range check inputs and outputs (turn off if the inputs are felts)
#[cfg_attr(
all(feature = "ezkl", not(target_arch = "wasm32")),
arg(long, default_value = "false")
)]
pub ignore_range_check_inputs_outputs: bool,
}
impl Default for RunArgs {
/// Creates a new RunArgs instance with default values
///
/// Default configuration is optimized for common use cases
/// while maintaining reasonable proving time and circuit size
fn default() -> Self {
Self {
bounded_log_lookup: false,
tolerance: Tolerance::default(),
input_scale: 7,
param_scale: 7,
scale_rebase_multiplier: 1,
@@ -355,54 +375,139 @@ impl Default for RunArgs {
commitment: None,
decomp_base: 16384,
decomp_legs: 2,
ignore_range_check_inputs_outputs: false,
}
}
}
impl RunArgs {
/// Validates the RunArgs configuration
///
/// Performs comprehensive validation of all parameters to ensure they are within
/// acceptable ranges and follow required constraints. Returns accumulated errors
/// if any validations fail.
///
/// # Returns
/// - Ok(()) if all validations pass
/// - Err(String) with detailed error message if any validation fails
pub fn validate(&self) -> Result<(), String> {
let mut errors = Vec::new();
// check if the largest represented integer in the decomposed form overflows IntegerRep
// try it with the largest possible value
let max_decomp = (self.decomp_base as IntegerRep).checked_pow(self.decomp_legs as u32);
if max_decomp.is_none() {
errors.push(format!(
"decomp_base^decomp_legs overflows IntegerRep: {}^{}",
self.decomp_base, self.decomp_legs
));
}
// Visibility validations
if self.param_visibility == Visibility::Public {
return Err(
"params cannot be public instances, you are probably trying to use `fixed` or `kzgcommit`"
.into(),
errors.push(
"Parameters cannot be public instances. Use 'fixed' or 'kzgcommit' instead"
.to_string(),
);
}
// Scale validations
if self.scale_rebase_multiplier < 1 {
return Err("scale_rebase_multiplier must be >= 1".into());
errors.push("scale_rebase_multiplier must be >= 1".to_string());
}
// if any of the scales are too small
if self.input_scale < 8 || self.param_scale < 8 {
warn!("low scale values (<8) may impact precision");
}
// Lookup range validations
if self.lookup_range.0 > self.lookup_range.1 {
return Err("lookup_range min is greater than max".into());
errors.push(format!(
"Invalid lookup range: min ({}) is greater than max ({})",
self.lookup_range.0, self.lookup_range.1
));
}
// Size validations
if self.logrows < 1 {
return Err("logrows must be >= 1".into());
errors.push("logrows must be >= 1".to_string());
}
if self.num_inner_cols < 1 {
return Err("num_inner_cols must be >= 1".into());
errors.push("num_inner_cols must be >= 1".to_string());
}
if self.tolerance.val > 0.0 && self.output_visibility != Visibility::Public {
return Err("tolerance > 0.0 requires output_visibility to be public".into());
let batch_size = self.variables.iter().find(|(name, _)| name == "batch_size");
if let Some(batch_size) = batch_size {
if batch_size.1 == 0 {
errors.push("'batch_size' cannot be 0".to_string());
}
}
// Decomposition validations
if self.decomp_base == 0 {
errors.push("decomp_base cannot be 0".to_string());
}
if self.decomp_legs == 0 {
errors.push("decomp_legs cannot be 0".to_string());
}
// Performance validations
if self.logrows > MAX_PUBLIC_SRS {
warn!("logrows exceeds maximum public SRS size");
}
// Performance warnings
if self.input_scale > 20 || self.param_scale > 20 {
warn!("High scale values (>20) may impact performance");
}
if errors.is_empty() {
Ok(())
} else {
Err(errors.join("\n"))
}
Ok(())
}
/// Export the ezkl configuration as json
/// Exports the configuration as JSON
///
/// Serializes the RunArgs instance to a JSON string
///
/// # Returns
/// * `Ok(String)` containing JSON representation
/// * `Err` if serialization fails
pub fn as_json(&self) -> Result<String, Box<dyn std::error::Error>> {
let serialized = match serde_json::to_string(&self) {
Ok(s) => s,
Err(e) => {
return Err(Box::new(e));
}
};
Ok(serialized)
let res = serde_json::to_string(&self)?;
Ok(res)
}
/// Parse an ezkl configuration from a json
/// Parses configuration from JSON
///
/// Deserializes a RunArgs instance from a JSON string
///
/// # Arguments
/// * `arg_json` - JSON string containing configuration
///
/// # Returns
/// * `Ok(RunArgs)` if parsing succeeds
/// * `Err` if parsing fails
pub fn from_json(arg_json: &str) -> Result<Self, serde_json::Error> {
serde_json::from_str(arg_json)
}
}
/// Parse a single key-value pair
// Additional helper functions for the module
/// Parses a key-value pair from a string in the format "key->value"
///
/// # Arguments
/// * `s` - Input string in the format "key->value"
///
/// # Returns
/// * `Ok((T, U))` - Parsed key and value
/// * `Err` - If parsing fails
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
fn parse_key_val<T, U>(
s: &str,
@@ -415,14 +520,15 @@ where
{
let pos = s
.find("->")
.ok_or_else(|| format!("invalid x->y: no `->` found in `{s}`"))?;
let a = s[..pos].parse()?;
let b = s[pos + 2..].parse()?;
Ok((a, b))
.ok_or_else(|| format!("invalid KEY->VALUE: no `->` found in `{s}`"))?;
Ok((s[..pos].parse()?, s[pos + 2..].parse()?))
}
/// Check if the version string matches the artifact version
/// If the version string does not match the artifact version, log a warning
/// Verifies that a version string matches the expected artifact version
/// Logs warnings for version mismatches or unversioned artifacts
///
/// # Arguments
/// * `artifact_version` - Version string from the artifact
pub fn check_version_string_matches(artifact_version: &str) {
if artifact_version == "0.0.0"
|| artifact_version == "source - no compatibility guaranteed"
@@ -447,3 +553,81 @@ pub fn check_version_string_matches(artifact_version: &str) {
);
}
}
#[cfg(test)]
#[allow(clippy::field_reassign_with_default)]
mod tests {
use super::*;
#[test]
fn test_valid_default_args() {
let args = RunArgs::default();
assert!(args.validate().is_ok());
}
#[test]
fn test_invalid_param_visibility() {
let mut args = RunArgs::default();
args.param_visibility = Visibility::Public;
let err = args.validate().unwrap_err();
assert!(err.contains("Parameters cannot be public instances"));
}
#[test]
fn test_invalid_scale_rebase() {
let mut args = RunArgs::default();
args.scale_rebase_multiplier = 0;
let err = args.validate().unwrap_err();
assert!(err.contains("scale_rebase_multiplier must be >= 1"));
}
#[test]
fn test_invalid_lookup_range() {
let mut args = RunArgs::default();
args.lookup_range = (100, -100);
let err = args.validate().unwrap_err();
assert!(err.contains("Invalid lookup range"));
}
#[test]
fn test_invalid_logrows() {
let mut args = RunArgs::default();
args.logrows = 0;
let err = args.validate().unwrap_err();
assert!(err.contains("logrows must be >= 1"));
}
#[test]
fn test_invalid_inner_cols() {
let mut args = RunArgs::default();
args.num_inner_cols = 0;
let err = args.validate().unwrap_err();
assert!(err.contains("num_inner_cols must be >= 1"));
}
#[test]
fn test_zero_batch_size() {
let mut args = RunArgs::default();
args.variables = vec![("batch_size".to_string(), 0)];
let err = args.validate().unwrap_err();
assert!(err.contains("'batch_size' cannot be 0"));
}
#[test]
fn test_json_serialization() {
let args = RunArgs::default();
let json = args.as_json().unwrap();
let deserialized = RunArgs::from_json(&json).unwrap();
assert_eq!(args, deserialized);
}
#[test]
fn test_multiple_validation_errors() {
let mut args = RunArgs::default();
args.logrows = 0;
args.lookup_range = (100, -100);
let err = args.validate().unwrap_err();
// Should contain multiple error messages
assert!(err.matches("\n").count() >= 1);
}
}

View File

@@ -133,7 +133,6 @@ pub fn aggregate<'a>(
.collect_vec()
}));
// loader.ctx().constrain_equal(cell_0, cell_1)
let mut transcript = PoseidonTranscript::<Rc<Halo2Loader>, _>::new(loader, snark.proof());
let proof = PlonkSuccinctVerifier::read_proof(svk, &protocol, &instances, &mut transcript)
.map_err(|_| plonk::Error::Synthesis)?;
@@ -309,11 +308,11 @@ impl AggregationCircuit {
})
}
///
/// Number of limbs used for decomposition
pub fn num_limbs() -> usize {
LIMBS
}
///
/// Number of bits used for decomposition
pub fn num_bits() -> usize {
BITS
}

View File

@@ -353,6 +353,7 @@ where
C::ScalarExt: Serialize + DeserializeOwned,
{
/// Create a new application snark from proof and instance variables ready for aggregation
#[allow(clippy::too_many_arguments)]
pub fn new(
protocol: Option<PlonkProtocol<C>>,
instances: Vec<Vec<F>>,
@@ -528,7 +529,6 @@ pub fn create_keys<Scheme: CommitmentScheme, C: Circuit<Scheme::Scalar>>(
disable_selector_compression: bool,
) -> Result<ProvingKey<Scheme::Curve>, halo2_proofs::plonk::Error>
where
C: Circuit<Scheme::Scalar>,
<Scheme as CommitmentScheme>::Scalar: FromUniformBytes<64>,
{
// Real proof
@@ -794,7 +794,6 @@ pub fn load_vk<Scheme: CommitmentScheme, C: Circuit<Scheme::Scalar>>(
params: <C as Circuit<Scheme::Scalar>>::Params,
) -> Result<VerifyingKey<Scheme::Curve>, PfsysError>
where
C: Circuit<Scheme::Scalar>,
Scheme::Curve: SerdeObject + CurveAffine,
Scheme::Scalar: PrimeField + SerdeObject + FromUniformBytes<64>,
{
@@ -817,7 +816,6 @@ pub fn load_pk<Scheme: CommitmentScheme, C: Circuit<Scheme::Scalar>>(
params: <C as Circuit<Scheme::Scalar>>::Params,
) -> Result<ProvingKey<Scheme::Curve>, PfsysError>
where
C: Circuit<Scheme::Scalar>,
Scheme::Curve: SerdeObject + CurveAffine,
Scheme::Scalar: PrimeField + SerdeObject + FromUniformBytes<64>,
{

View File

@@ -1,6 +1,6 @@
use thiserror::Error;
use super::ops::DecompositionError;
use super::{ops::DecompositionError, DataFormat};
/// A wrapper for tensor related errors.
#[derive(Debug, Error)]
@@ -38,4 +38,13 @@ pub enum TensorError {
/// Decomposition error
#[error("decomposition error: {0}")]
DecompositionError(#[from] DecompositionError),
/// Invalid argument
#[error("invalid argument: {0}")]
InvalidArgument(String),
/// Index out of bounds
#[error("index {0} out of bounds for dimension {1}")]
IndexOutOfBounds(usize, usize),
/// Invalid data conversion
#[error("invalid data conversion from format {0} to {1}")]
InvalidDataConversion(DataFormat, DataFormat),
}

View File

@@ -9,6 +9,7 @@ pub mod var;
pub use errors::TensorError;
use core::hash::Hash;
use halo2curves::ff::PrimeField;
use maybe_rayon::{
prelude::{
@@ -24,9 +25,6 @@ use std::path::PathBuf;
pub use val::*;
pub use var::*;
#[cfg(feature = "metal")]
use instant::Instant;
use crate::{
circuit::utils,
fieldutils::{integer_rep_to_felt, IntegerRep},
@@ -40,8 +38,6 @@ use halo2_proofs::{
poly::Rotation,
};
use itertools::Itertools;
#[cfg(feature = "metal")]
use metal::{Device, MTLResourceOptions, MTLSize};
use std::error::Error;
use std::fmt::Debug;
use std::io::Read;
@@ -49,31 +45,6 @@ use std::iter::Iterator;
use std::ops::{Add, Deref, DerefMut, Div, Mul, Neg, Range, Sub};
use std::{cmp::max, ops::Rem};
#[cfg(feature = "metal")]
use std::collections::HashMap;
#[cfg(feature = "metal")]
const LIB_DATA: &[u8] = include_bytes!("metal/tensor_ops.metallib");
#[cfg(feature = "metal")]
lazy_static::lazy_static! {
static ref DEVICE: Device = Device::system_default().expect("no device found");
static ref LIB: metal::Library = DEVICE.new_library_with_data(LIB_DATA).unwrap();
static ref QUEUE: metal::CommandQueue = DEVICE.new_command_queue();
static ref PIPELINES: HashMap<String, metal::ComputePipelineState> = {
let mut map = HashMap::new();
for name in ["add", "sub", "mul"] {
let function = LIB.get_function(name, None).unwrap();
let pipeline = DEVICE.new_compute_pipeline_state_with_function(&function).unwrap();
map.insert(name.to_string(), pipeline);
}
map
};
}
/// The (inner) type of tensor elements.
pub trait TensorType: Clone + Debug + 'static {
/// Returns the zero value.
@@ -91,7 +62,7 @@ pub trait TensorType: Clone + Debug + 'static {
}
macro_rules! tensor_type {
($rust_type:ty, $tensor_type:ident, $zero:expr, $one:expr) => {
($rust_type:ty, $tensor_type:ident, $zero:expr_2021, $one:expr_2021) => {
impl TensorType for $rust_type {
fn zero() -> Option<Self> {
Some($zero)
@@ -833,6 +804,12 @@ impl<T: Clone + TensorType> Tensor<T> {
num_repeats: usize,
initial_offset: usize,
) -> Result<Tensor<T>, TensorError> {
if n == 0 {
return Err(TensorError::InvalidArgument(
"Cannot duplicate every 0th element".to_string(),
));
}
let mut inner: Vec<T> = Vec::with_capacity(self.inner.len());
let mut offset = initial_offset;
for (i, elem) in self.inner.clone().into_iter().enumerate() {
@@ -862,11 +839,17 @@ impl<T: Clone + TensorType> Tensor<T> {
num_repeats: usize,
initial_offset: usize,
) -> Result<Tensor<T>, TensorError> {
if n == 0 {
return Err(TensorError::InvalidArgument(
"Cannot remove every 0th element".to_string(),
));
}
// Pre-calculate capacity to avoid reallocations
let estimated_size = self.inner.len() - (self.inner.len() / n) * num_repeats;
let mut inner = Vec::with_capacity(estimated_size);
// Use iterator directly instead of creating intermediate collections
// Use iterator directly instead of creating intermediate collectionsif
let mut i = 0;
while i < self.inner.len() {
// Add the current element
@@ -885,7 +868,6 @@ impl<T: Clone + TensorType> Tensor<T> {
}
/// Remove indices
/// WARN: assumes indices are in ascending order for speed
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
@@ -912,7 +894,11 @@ impl<T: Clone + TensorType> Tensor<T> {
}
// remove indices
for elem in indices.iter().rev() {
inner.remove(*elem);
if *elem < self.len() {
inner.remove(*elem);
} else {
return Err(TensorError::IndexOutOfBounds(*elem, self.len()));
}
}
Tensor::new(Some(&inner), &[inner.len()])
@@ -1404,10 +1390,6 @@ impl<T: TensorType + Add<Output = T> + std::marker::Send + std::marker::Sync> Ad
let lhs = self.expand(&broadcasted_shape).unwrap();
let rhs = rhs.expand(&broadcasted_shape).unwrap();
#[cfg(feature = "metal")]
let res = metal_tensor_op(&lhs, &rhs, "add");
#[cfg(not(feature = "metal"))]
let res = {
let mut res: Tensor<T> = lhs
.par_iter()
@@ -1505,10 +1487,6 @@ impl<T: TensorType + Sub<Output = T> + std::marker::Send + std::marker::Sync> Su
let lhs = self.expand(&broadcasted_shape).unwrap();
let rhs = rhs.expand(&broadcasted_shape).unwrap();
#[cfg(feature = "metal")]
let res = metal_tensor_op(&lhs, &rhs, "sub");
#[cfg(not(feature = "metal"))]
let res = {
let mut res: Tensor<T> = lhs
.par_iter()
@@ -1576,10 +1554,6 @@ impl<T: TensorType + Mul<Output = T> + std::marker::Send + std::marker::Sync> Mu
let lhs = self.expand(&broadcasted_shape).unwrap();
let rhs = rhs.expand(&broadcasted_shape).unwrap();
#[cfg(feature = "metal")]
let res = metal_tensor_op(&lhs, &rhs, "mul");
#[cfg(not(feature = "metal"))]
let res = {
let mut res: Tensor<T> = lhs
.par_iter()
@@ -1685,7 +1659,9 @@ impl<T: TensorType + Div<Output = T> + std::marker::Send + std::marker::Sync> Di
}
// implement remainder
impl<T: TensorType + Rem<Output = T> + std::marker::Send + std::marker::Sync> Rem for Tensor<T> {
impl<T: TensorType + Rem<Output = T> + std::marker::Send + std::marker::Sync + PartialEq> Rem
for Tensor<T>
{
type Output = Result<Tensor<T>, TensorError>;
/// Elementwise remainder of a tensor with another tensor.
@@ -1714,9 +1690,25 @@ impl<T: TensorType + Rem<Output = T> + std::marker::Send + std::marker::Sync> Re
let mut lhs = self.expand(&broadcasted_shape).unwrap();
let rhs = rhs.expand(&broadcasted_shape).unwrap();
lhs.par_iter_mut().zip(rhs).for_each(|(o, r)| {
*o = o.clone() % r;
});
lhs.par_iter_mut()
.zip(rhs)
.map(|(o, r)| {
match T::zero() { Some(zero) => {
if r != zero {
*o = o.clone() % r;
Ok(())
} else {
Err(TensorError::InvalidArgument(
"Cannot divide by zero in remainder".to_string(),
))
}
} _ => {
Err(TensorError::InvalidArgument(
"Undefined zero value".to_string(),
))
}}
})
.collect::<Result<Vec<_>, _>>()?;
Ok(lhs)
}
@@ -1751,7 +1743,6 @@ impl<T: TensorType + Rem<Output = T> + std::marker::Send + std::marker::Sync> Re
/// assert_eq!(c, vec![2, 3]);
///
/// ```
pub fn get_broadcasted_shape(
shape_a: &[usize],
shape_b: &[usize],
@@ -1759,23 +1750,247 @@ pub fn get_broadcasted_shape(
let num_dims_a = shape_a.len();
let num_dims_b = shape_b.len();
match (num_dims_a, num_dims_b) {
(a, b) if a == b => {
let mut broadcasted_shape = Vec::with_capacity(num_dims_a);
for (dim_a, dim_b) in shape_a.iter().zip(shape_b.iter()) {
let max_dim = dim_a.max(dim_b);
broadcasted_shape.push(*max_dim);
}
Ok(broadcasted_shape)
if num_dims_a == num_dims_b {
let mut broadcasted_shape = Vec::with_capacity(num_dims_a);
for (dim_a, dim_b) in shape_a.iter().zip(shape_b.iter()) {
let max_dim = dim_a.max(dim_b);
broadcasted_shape.push(*max_dim);
}
(a, b) if a < b => Ok(shape_b.to_vec()),
(a, b) if a > b => Ok(shape_a.to_vec()),
_ => Err(TensorError::DimError(
Ok(broadcasted_shape)
} else if num_dims_a < num_dims_b {
Ok(shape_b.to_vec())
} else if num_dims_a > num_dims_b {
Ok(shape_a.to_vec())
} else {
Err(TensorError::DimError(
"Unknown condition for broadcasting".to_string(),
)),
))
}
}
////////////////////////
///
/// The shape of data for some operations
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq, Default, Copy)]
pub enum DataFormat {
/// NCHW
#[default]
NCHW,
/// NHWC
NHWC,
/// CHW
CHW,
/// HWC
HWC,
}
// as str
impl core::fmt::Display for DataFormat {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
DataFormat::NCHW => write!(f, "NCHW"),
DataFormat::NHWC => write!(f, "NHWC"),
DataFormat::CHW => write!(f, "CHW"),
DataFormat::HWC => write!(f, "HWC"),
}
}
}
impl DataFormat {
/// Get the format's canonical form
pub fn canonical(&self) -> DataFormat {
match self {
DataFormat::NHWC => DataFormat::NCHW,
DataFormat::HWC => DataFormat::CHW,
_ => self.clone(),
}
}
/// no batch dim
pub fn has_no_batch(&self) -> bool {
match self {
DataFormat::CHW | DataFormat::HWC => true,
_ => false,
}
}
/// Convert tensor to canonical format (NCHW or CHW)
pub fn to_canonical<F: PrimeField + TensorType + PartialOrd + Hash>(
&self,
tensor: &mut ValTensor<F>,
) -> Result<(), TensorError> {
match self {
DataFormat::NHWC => {
// For ND: Move channels from last axis to position after batch
let ndims = tensor.dims().len();
if ndims > 2 {
tensor.move_axis(ndims - 1, 1)?;
}
}
DataFormat::HWC => {
// For ND: Move channels from last axis to first position
let ndims = tensor.dims().len();
if ndims > 1 {
tensor.move_axis(ndims - 1, 0)?;
}
}
_ => {} // NCHW/CHW are already in canonical format
}
Ok(())
}
/// Convert tensor from canonical format to target format
pub fn from_canonical<F: PrimeField + TensorType + PartialOrd + Hash>(
&self,
tensor: &mut ValTensor<F>,
) -> Result<(), TensorError> {
match self {
DataFormat::NHWC => {
// Move channels from position 1 to end
let ndims = tensor.dims().len();
if ndims > 2 {
tensor.move_axis(1, ndims - 1)?;
}
}
DataFormat::HWC => {
// Move channels from position 0 to end
let ndims = tensor.dims().len();
if ndims > 1 {
tensor.move_axis(0, ndims - 1)?;
}
}
_ => {} // NCHW/CHW don't need conversion
}
Ok(())
}
/// Get the position of the channel dimension
pub fn get_channel_dim(&self, ndims: usize) -> usize {
match self {
DataFormat::NCHW => 1,
DataFormat::NHWC => ndims - 1,
DataFormat::CHW => 0,
DataFormat::HWC => ndims - 1,
}
}
}
/// The shape of the kernel for some operations
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq, Default, Copy)]
pub enum KernelFormat {
/// HWIO
HWIO,
/// OIHW
#[default]
OIHW,
/// OHWI
OHWI,
}
impl core::fmt::Display for KernelFormat {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
KernelFormat::HWIO => write!(f, "HWIO"),
KernelFormat::OIHW => write!(f, "OIHW"),
KernelFormat::OHWI => write!(f, "OHWI"),
}
}
}
impl KernelFormat {
/// Get the format's canonical form
pub fn canonical(&self) -> KernelFormat {
match self {
KernelFormat::HWIO => KernelFormat::OIHW,
KernelFormat::OHWI => KernelFormat::OIHW,
_ => self.clone(),
}
}
/// Convert kernel to canonical format (OIHW)
pub fn to_canonical<F: PrimeField + TensorType + PartialOrd + Hash>(
&self,
kernel: &mut ValTensor<F>,
) -> Result<(), TensorError> {
match self {
KernelFormat::HWIO => {
let kdims = kernel.dims().len();
// Move output channels from last to first
kernel.move_axis(kdims - 1, 0)?;
// Move input channels from new last to second position
kernel.move_axis(kdims - 1, 1)?;
}
KernelFormat::OHWI => {
let kdims = kernel.dims().len();
// Move input channels from last to second position
kernel.move_axis(kdims - 1, 1)?;
}
_ => {} // OIHW is already canonical
}
Ok(())
}
/// Convert kernel from canonical format to target format
pub fn from_canonical<F: PrimeField + TensorType + PartialOrd + Hash>(
&self,
kernel: &mut ValTensor<F>,
) -> Result<(), TensorError> {
match self {
KernelFormat::HWIO => {
let kdims = kernel.dims().len();
// Move input channels from second position to last
kernel.move_axis(1, kdims - 1)?;
// Move output channels from first to last
kernel.move_axis(0, kdims - 1)?;
}
KernelFormat::OHWI => {
let kdims = kernel.dims().len();
// Move input channels from second position to last
kernel.move_axis(1, kdims - 1)?;
}
_ => {} // OIHW doesn't need conversion
}
Ok(())
}
/// Get the position of input and output channel dimensions
pub fn get_channel_dims(&self, ndims: usize) -> (usize, usize) {
// (input_ch, output_ch)
match self {
KernelFormat::OIHW => (1, 0),
KernelFormat::HWIO => (ndims - 2, ndims - 1),
KernelFormat::OHWI => (ndims - 1, 0),
}
}
}
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
impl From<tract_onnx::tract_hir::ops::nn::DataFormat> for DataFormat {
fn from(fmt: tract_onnx::tract_hir::ops::nn::DataFormat) -> Self {
match fmt {
tract_onnx::tract_hir::ops::nn::DataFormat::NCHW => DataFormat::NCHW,
tract_onnx::tract_hir::ops::nn::DataFormat::NHWC => DataFormat::NHWC,
tract_onnx::tract_hir::ops::nn::DataFormat::CHW => DataFormat::CHW,
tract_onnx::tract_hir::ops::nn::DataFormat::HWC => DataFormat::HWC,
}
}
}
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
impl From<tract_onnx::tract_hir::tract_core::ops::cnn::conv::KernelFormat> for KernelFormat {
fn from(fmt: tract_onnx::tract_hir::tract_core::ops::cnn::conv::KernelFormat) -> Self {
match fmt {
tract_onnx::tract_hir::tract_core::ops::cnn::conv::KernelFormat::HWIO => {
KernelFormat::HWIO
}
tract_onnx::tract_hir::tract_core::ops::cnn::conv::KernelFormat::OIHW => {
KernelFormat::OIHW
}
tract_onnx::tract_hir::tract_core::ops::cnn::conv::KernelFormat::OHWI => {
KernelFormat::OHWI
}
}
}
}
#[cfg(test)]
mod tests {
@@ -1811,66 +2026,4 @@ mod tests {
let b = Tensor::<IntegerRep>::new(Some(&[1, 4]), &[2, 1]).unwrap();
assert_eq!(a.get_slice(&[0..2, 0..1]).unwrap(), b);
}
#[test]
#[cfg(feature = "metal")]
fn tensor_metal_int() {
let a = Tensor::<i64>::new(Some(&[1, 2, 3, 4]), &[2, 2]).unwrap();
let b = Tensor::<i64>::new(Some(&[1, 2, 3, 4]), &[2, 2]).unwrap();
let c = metal_tensor_op(&a, &b, "add");
assert_eq!(c, Tensor::new(Some(&[2, 4, 6, 8]), &[2, 2]).unwrap());
let c = metal_tensor_op(&a, &b, "sub");
assert_eq!(c, Tensor::new(Some(&[0, 0, 0, 0]), &[2, 2]).unwrap());
let c = metal_tensor_op(&a, &b, "mul");
assert_eq!(c, Tensor::new(Some(&[1, 4, 9, 16]), &[2, 2]).unwrap());
}
#[test]
#[cfg(feature = "metal")]
fn tensor_metal_felt() {
use halo2curves::bn256::Fr;
let a = Tensor::<Fr>::new(
Some(&[Fr::from(1), Fr::from(2), Fr::from(3), Fr::from(4)]),
&[2, 2],
)
.unwrap();
let b = Tensor::<Fr>::new(
Some(&[Fr::from(1), Fr::from(2), Fr::from(3), Fr::from(4)]),
&[2, 2],
)
.unwrap();
let c = metal_tensor_op(&a, &b, "add");
assert_eq!(
c,
Tensor::<Fr>::new(
Some(&[Fr::from(2), Fr::from(4), Fr::from(6), Fr::from(8)]),
&[2, 2],
)
.unwrap()
);
let c = metal_tensor_op(&a, &b, "sub");
assert_eq!(
c,
Tensor::<Fr>::new(
Some(&[Fr::from(0), Fr::from(0), Fr::from(0), Fr::from(0)]),
&[2, 2],
)
.unwrap()
);
let c = metal_tensor_op(&a, &b, "mul");
assert_eq!(
c,
Tensor::<Fr>::new(
Some(&[Fr::from(1), Fr::from(4), Fr::from(9), Fr::from(16)]),
&[2, 2],
)
.unwrap()
);
}
}

View File

@@ -27,7 +27,7 @@ pub fn get_rep(
n: usize,
) -> Result<Vec<IntegerRep>, DecompositionError> {
// check if x is too large
if x.abs() > (base.pow(n as u32) as IntegerRep) - 1 {
if (*x).abs() > ((base as i128).pow(n as u32)) - 1 {
return Err(DecompositionError::TooLarge(*x, base, n));
}
let mut rep = vec![0; n + 1];
@@ -43,8 +43,8 @@ pub fn get_rep(
let mut x = x.abs();
//
for i in (1..rep.len()).rev() {
rep[i] = x % base as i128;
x /= base as i128;
rep[i] = x % base as IntegerRep;
x /= base as IntegerRep;
}
Ok(rep)
@@ -127,7 +127,7 @@ pub fn decompose(
.flatten()
.collect::<Vec<IntegerRep>>();
let output = Tensor::<i128>::new(Some(&resp), &dims)?;
let output = Tensor::<IntegerRep>::new(Some(&resp), &dims)?;
Ok(output)
}
@@ -385,6 +385,12 @@ pub fn resize<T: TensorType + Send + Sync>(
pub fn add<T: TensorType + Add<Output = T> + std::marker::Send + std::marker::Sync>(
t: &[Tensor<T>],
) -> Result<Tensor<T>, TensorError> {
if t.len() == 1 {
return Ok(t[0].clone());
} else if t.is_empty() {
return Err(TensorError::DimMismatch("add".to_string()));
}
// calculate value of output
let mut output: Tensor<T> = t[0].clone();
@@ -433,6 +439,11 @@ pub fn add<T: TensorType + Add<Output = T> + std::marker::Send + std::marker::Sy
pub fn sub<T: TensorType + Sub<Output = T> + std::marker::Send + std::marker::Sync>(
t: &[Tensor<T>],
) -> Result<Tensor<T>, TensorError> {
if t.len() == 1 {
return Ok(t[0].clone());
} else if t.is_empty() {
return Err(TensorError::DimMismatch("sub".to_string()));
}
// calculate value of output
let mut output: Tensor<T> = t[0].clone();
@@ -479,6 +490,11 @@ pub fn sub<T: TensorType + Sub<Output = T> + std::marker::Send + std::marker::Sy
pub fn mult<T: TensorType + Mul<Output = T> + std::marker::Send + std::marker::Sync>(
t: &[Tensor<T>],
) -> Result<Tensor<T>, TensorError> {
if t.len() == 1 {
return Ok(t[0].clone());
} else if t.is_empty() {
return Err(TensorError::DimMismatch("mult".to_string()));
}
// calculate value of output
let mut output: Tensor<T> = t[0].clone();
@@ -1310,7 +1326,6 @@ pub fn pad<T: TensorType>(
///
/// # Errors
/// Returns a TensorError if the tensors in `inputs` have incompatible dimensions for concatenation along the specified `axis`.
pub fn concat<T: TensorType + Send + Sync>(
inputs: &[&Tensor<T>],
axis: usize,
@@ -2086,7 +2101,6 @@ pub mod nonlinearities {
/// let expected = Tensor::<IntegerRep>::new(Some(&[4, 25, 8, 1, 1, 0]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn tanh(a: &Tensor<IntegerRep>, scale_input: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| {
let kix = (a_i as f64) / scale_input;

File diff suppressed because it is too large Load Diff

View File

@@ -5,33 +5,35 @@ use log::{debug, error, warn};
use crate::circuit::{region::ConstantsMap, CheckMode};
use super::*;
/// A wrapper around Halo2's `Column<Fixed>` or `Column<Advice>`.
/// Typically assign [ValTensor]s to [VarTensor]s when laying out a circuit.
/// A wrapper around Halo2's Column types that represents a tensor of variables in the circuit.
/// VarTensors are used to store and manage circuit columns, typically for assigning ValTensor
/// values during circuit layout. The tensor organizes storage into blocks of columns, where each
/// block contains multiple columns and each column contains multiple rows.
#[derive(Clone, Default, Debug, PartialEq, Eq)]
pub enum VarTensor {
/// A VarTensor for holding Advice values, which are assigned at proving time.
Advice {
/// Vec of Advice columns, we have [[xx][xx][xx]...] where each inner vec is xx columns
inner: Vec<Vec<Column<Advice>>>,
///
/// The number of columns in each inner block
num_inner_cols: usize,
/// Number of rows available to be used in each column of the storage
col_size: usize,
},
/// Dummy var
/// A placeholder tensor used for testing or temporary storage
Dummy {
///
/// The number of columns in each inner block
num_inner_cols: usize,
/// Number of rows available to be used in each column of the storage
col_size: usize,
},
/// Empty var
/// An empty tensor with no storage
#[default]
Empty,
}
impl VarTensor {
/// name of the tensor
/// Returns the name of the tensor variant as a static string
pub fn name(&self) -> &'static str {
match self {
VarTensor::Advice { .. } => "Advice",
@@ -40,22 +42,35 @@ impl VarTensor {
}
}
///
/// Returns true if the tensor is an Advice variant
pub fn is_advice(&self) -> bool {
matches!(self, VarTensor::Advice { .. })
}
/// Calculates the maximum number of usable rows in the constraint system
///
/// # Arguments
/// * `cs` - The constraint system
/// * `logrows` - Log base 2 of the total number of rows (including system and blinding rows)
///
/// # Returns
/// The maximum number of usable rows after accounting for blinding factors
pub fn max_rows<F: PrimeField>(cs: &ConstraintSystem<F>, logrows: usize) -> usize {
let base = 2u32;
base.pow(logrows as u32) as usize - cs.blinding_factors() - 1
}
/// Create a new VarTensor::Advice that is unblinded
/// Arguments
/// * `cs` - The constraint system
/// * `logrows` - log2 number of rows in the matrix, including any system and blinding rows.
/// * `capacity` - The number of advice cells to allocate
/// Creates a new VarTensor::Advice with unblinded columns. Unblinded columns are used when
/// the values do not need to be hidden in the proof.
///
/// # Arguments
/// * `cs` - The constraint system to create columns in
/// * `logrows` - Log base 2 of the total number of rows
/// * `num_inner_cols` - Number of columns in each inner block
/// * `capacity` - Total number of advice cells to allocate
///
/// # Returns
/// A new VarTensor::Advice with unblinded columns enabled for equality constraints
pub fn new_unblinded_advice<F: PrimeField>(
cs: &mut ConstraintSystem<F>,
logrows: usize,
@@ -93,11 +108,17 @@ impl VarTensor {
}
}
/// Create a new VarTensor::Advice
/// Arguments
/// * `cs` - The constraint system
/// * `logrows` - log2 number of rows in the matrix, including any system and blinding rows.
/// * `capacity` - The number of advice cells to allocate
/// Creates a new VarTensor::Advice with standard (blinded) columns, used when
/// the values need to be hidden in the proof.
///
/// # Arguments
/// * `cs` - The constraint system to create columns in
/// * `logrows` - Log base 2 of the total number of rows
/// * `num_inner_cols` - Number of columns in each inner block
/// * `capacity` - Total number of advice cells to allocate
///
/// # Returns
/// A new VarTensor::Advice with blinded columns enabled for equality constraints
pub fn new_advice<F: PrimeField>(
cs: &mut ConstraintSystem<F>,
logrows: usize,
@@ -133,11 +154,17 @@ impl VarTensor {
}
}
/// Initializes fixed columns to support the VarTensor::Advice
/// Arguments
/// * `cs` - The constraint system
/// * `logrows` - log2 number of rows in the matrix, including any system and blinding rows.
/// * `capacity` - The number of advice cells to allocate
/// Initializes fixed columns in the constraint system to support the VarTensor::Advice
/// Fixed columns are used for constant values that are known at circuit creation time.
///
/// # Arguments
/// * `cs` - The constraint system to create columns in
/// * `logrows` - Log base 2 of the total number of rows
/// * `num_constants` - Number of constant values needed
/// * `module_requires_fixed` - Whether the module requires at least one fixed column
///
/// # Returns
/// The number of fixed columns created
pub fn constant_cols<F: PrimeField>(
cs: &mut ConstraintSystem<F>,
logrows: usize,
@@ -169,7 +196,14 @@ impl VarTensor {
modulo
}
/// Create a new VarTensor::Dummy
/// Creates a new dummy VarTensor for testing or temporary storage
///
/// # Arguments
/// * `logrows` - Log base 2 of the total number of rows
/// * `num_inner_cols` - Number of columns in each inner block
///
/// # Returns
/// A new VarTensor::Dummy with the specified dimensions
pub fn dummy(logrows: usize, num_inner_cols: usize) -> Self {
let base = 2u32;
let max_rows = base.pow(logrows as u32) as usize - 6;
@@ -179,7 +213,7 @@ impl VarTensor {
}
}
/// Gets the dims of the object the VarTensor represents
/// Returns the number of blocks in the tensor
pub fn num_blocks(&self) -> usize {
match self {
VarTensor::Advice { inner, .. } => inner.len(),
@@ -187,7 +221,7 @@ impl VarTensor {
}
}
/// Num inner cols
/// Returns the number of columns in each inner block
pub fn num_inner_cols(&self) -> usize {
match self {
VarTensor::Advice { num_inner_cols, .. } | VarTensor::Dummy { num_inner_cols, .. } => {
@@ -197,7 +231,7 @@ impl VarTensor {
}
}
/// Total number of columns
/// Returns the total number of columns across all blocks
pub fn num_cols(&self) -> usize {
match self {
VarTensor::Advice { inner, .. } => inner[0].len() * inner.len(),
@@ -205,7 +239,7 @@ impl VarTensor {
}
}
/// Gets the size of each column
/// Returns the maximum number of rows in each column
pub fn col_size(&self) -> usize {
match self {
VarTensor::Advice { col_size, .. } | VarTensor::Dummy { col_size, .. } => *col_size,
@@ -213,7 +247,7 @@ impl VarTensor {
}
}
/// Gets the size of each column
/// Returns the total size of each block (num_inner_cols * col_size)
pub fn block_size(&self) -> usize {
match self {
VarTensor::Advice {
@@ -230,7 +264,13 @@ impl VarTensor {
}
}
/// Take a linear coordinate and output the (column, row) position in the storage block.
/// Converts a linear coordinate to (block, column, row) coordinates in the storage
///
/// # Arguments
/// * `linear_coord` - The linear index to convert
///
/// # Returns
/// A tuple of (block_index, column_index, row_index)
pub fn cartesian_coord(&self, linear_coord: usize) -> (usize, usize, usize) {
// x indexes over blocks of size num_inner_cols
let x = linear_coord / self.block_size();
@@ -243,7 +283,17 @@ impl VarTensor {
}
impl VarTensor {
/// Retrieve the value of a specific cell in the tensor.
/// Queries a range of cells in the tensor during circuit synthesis
///
/// # Arguments
/// * `meta` - Virtual cells accessor
/// * `x` - Block index
/// * `y` - Column index within block
/// * `z` - Starting row offset
/// * `rng` - Number of consecutive rows to query
///
/// # Returns
/// A tensor of expressions representing the queried cells
pub fn query_rng<F: PrimeField>(
&self,
meta: &mut VirtualCells<'_, F>,
@@ -268,7 +318,16 @@ impl VarTensor {
}
}
/// Retrieve the value of a specific block at an offset in the tensor.
/// Queries an entire block of cells at a given offset
///
/// # Arguments
/// * `meta` - Virtual cells accessor
/// * `x` - Block index
/// * `z` - Row offset
/// * `rng` - Number of consecutive rows to query
///
/// # Returns
/// A tensor of expressions representing the queried block
pub fn query_whole_block<F: PrimeField>(
&self,
meta: &mut VirtualCells<'_, F>,
@@ -293,7 +352,16 @@ impl VarTensor {
}
}
/// Assigns a constant value to a specific cell in the tensor.
/// Assigns a constant value to a specific cell in the tensor
///
/// # Arguments
/// * `region` - The region to assign values in
/// * `offset` - Base offset for the assignment
/// * `coord` - Coordinate within the tensor
/// * `constant` - The constant value to assign
///
/// # Returns
/// The assigned cell or an error if assignment fails
pub fn assign_constant<F: PrimeField + TensorType + PartialOrd>(
&self,
region: &mut Region<F>,
@@ -313,7 +381,17 @@ impl VarTensor {
}
}
/// Assigns [ValTensor] to the columns of the inner tensor.
/// Assigns values from a ValTensor to this tensor, excluding specified positions
///
/// # Arguments
/// * `region` - The region to assign values in
/// * `offset` - Base offset for assignments
/// * `values` - The ValTensor containing values to assign
/// * `omissions` - Set of positions to skip during assignment
/// * `constants` - Map for tracking constant assignments
///
/// # Returns
/// The assigned ValTensor or an error if assignment fails
pub fn assign_with_omissions<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
&self,
region: &mut Region<F>,
@@ -344,7 +422,16 @@ impl VarTensor {
Ok(res)
}
/// Assigns [ValTensor] to the columns of the inner tensor.
/// Assigns values from a ValTensor to this tensor
///
/// # Arguments
/// * `region` - The region to assign values in
/// * `offset` - Base offset for assignments
/// * `values` - The ValTensor containing values to assign
/// * `constants` - Map for tracking constant assignments
///
/// # Returns
/// The assigned ValTensor or an error if assignment fails
pub fn assign<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
&self,
region: &mut Region<F>,
@@ -396,14 +483,23 @@ impl VarTensor {
Ok(res)
}
/// Helper function to get the remaining size of the column
/// Returns the remaining available space in a column for assignments
///
/// # Arguments
/// * `offset` - Current offset in the column
/// * `values` - The ValTensor to check space for
///
/// # Returns
/// The number of rows that need to be flushed or an error if space is insufficient
pub fn get_column_flush<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
&self,
offset: usize,
values: &ValTensor<F>,
) -> Result<usize, halo2_proofs::plonk::Error> {
if values.len() > self.col_size() {
error!("Values are too large for the column");
error!(
"There are too many values to flush for this column size, try setting the logrows to a higher value (eg. --logrows 22 on the cli)"
);
return Err(halo2_proofs::plonk::Error::Synthesis);
}
@@ -427,8 +523,16 @@ impl VarTensor {
Ok(flush_len)
}
/// Assigns [ValTensor] to the columns of the inner tensor. Whereby the values are assigned to a single column, without overflowing.
/// So for instance if we are assigning 10 values and we are at index 18 of the column, and the columns are of length 20, we skip the last 2 values of current column and start from the beginning of the next column.
/// Assigns values to a single column, avoiding column overflow by flushing to the next column if needed
///
/// # Arguments
/// * `region` - The region to assign values in
/// * `offset` - Base offset for assignments
/// * `values` - The ValTensor containing values to assign
/// * `constants` - Map for tracking constant assignments
///
/// # Returns
/// A tuple of (assigned ValTensor, number of rows flushed) or an error if assignment fails
pub fn assign_exact_column<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
&self,
region: &mut Region<F>,
@@ -443,8 +547,17 @@ impl VarTensor {
Ok((assigned_vals, flush_len))
}
/// Assigns specific values (`ValTensor`) to the columns of the inner tensor but allows for column wrapping for accumulated operations.
/// Duplication occurs by copying the last cell of the column to the first cell next column and creating a copy constraint between the two.
/// Assigns values with duplication in dummy mode, used for testing and simulation
///
/// # Arguments
/// * `row` - Starting row for assignment
/// * `offset` - Base offset for assignments
/// * `values` - The ValTensor containing values to assign
/// * `single_inner_col` - Whether to treat as a single column
/// * `constants` - Map for tracking constant assignments
///
/// # Returns
/// A tuple of (assigned ValTensor, total length used) or an error if assignment fails
pub fn dummy_assign_with_duplication<
F: PrimeField + TensorType + PartialOrd + std::hash::Hash,
>(
@@ -494,7 +607,16 @@ impl VarTensor {
}
}
/// Assigns specific values (`ValTensor`) to the columns of the inner tensor but allows for column wrapping for accumulated operations.
/// Assigns values with duplication but without enforcing constraints between duplicated values
///
/// # Arguments
/// * `region` - The region to assign values in
/// * `offset` - Base offset for assignments
/// * `values` - The ValTensor containing values to assign
/// * `constants` - Map for tracking constant assignments
///
/// # Returns
/// A tuple of (assigned ValTensor, total length used) or an error if assignment fails
pub fn assign_with_duplication_unconstrained<
F: PrimeField + TensorType + PartialOrd + std::hash::Hash,
>(
@@ -533,8 +655,18 @@ impl VarTensor {
}
}
/// Assigns specific values (`ValTensor`) to the columns of the inner tensor but allows for column wrapping for accumulated operations.
/// Duplication occurs by copying the last cell of the column to the first cell next column and creating a copy constraint between the two.
/// Assigns values with duplication and enforces equality constraints between duplicated values
///
/// # Arguments
/// * `region` - The region to assign values in
/// * `row` - Starting row for assignment
/// * `offset` - Base offset for assignments
/// * `values` - The ValTensor containing values to assign
/// * `check_mode` - Mode for checking equality constraints
/// * `constants` - Map for tracking constant assignments
///
/// # Returns
/// A tuple of (assigned ValTensor, total length used) or an error if assignment fails
pub fn assign_with_duplication_constrained<
F: PrimeField + TensorType + PartialOrd + std::hash::Hash,
>(
@@ -558,7 +690,7 @@ impl VarTensor {
// duplicates every nth element to adjust for column overflow
let v = v.duplicate_every_n(duplication_freq, num_repeats, duplication_offset).unwrap();
let mut res: ValTensor<F> = {
let mut res: ValTensor<F> =
v.enum_map(|coord, k| {
let step = self.num_inner_cols();
@@ -579,12 +711,18 @@ impl VarTensor {
prev_cell = Some(cell.clone());
} else if coord > 0 && at_beginning_of_column {
if let Some(prev_cell) = prev_cell.as_ref() {
let cell = cell.cell().ok_or({
let cell = if let Some(cell) = cell.cell() {
cell
} else {
error!("Error getting cell: {:?}", (x,y));
halo2_proofs::plonk::Error::Synthesis})?;
let prev_cell = prev_cell.cell().ok_or({
error!("Error getting cell: {:?}", (x,y));
halo2_proofs::plonk::Error::Synthesis})?;
return Err(halo2_proofs::plonk::Error::Synthesis);
};
let prev_cell = if let Some(prev_cell) = prev_cell.cell() {
prev_cell
} else {
error!("Error getting prev cell: {:?}", (x,y));
return Err(halo2_proofs::plonk::Error::Synthesis);
};
region.constrain_equal(prev_cell,cell)?;
} else {
error!("Previous cell was not set");
@@ -594,7 +732,8 @@ impl VarTensor {
Ok(cell)
})?.into()};
})?.into();
let total_used_len = res.len();
res.remove_every_n(duplication_freq, num_repeats, duplication_offset).unwrap();
@@ -606,6 +745,17 @@ impl VarTensor {
}
}
/// Assigns a single value to the tensor. This is a helper function used by other assignment methods.
///
/// # Arguments
/// * `region` - The region to assign values in
/// * `offset` - Base offset for the assignment
/// * `k` - The value to assign
/// * `coord` - The coordinate where to assign the value
/// * `constants` - Map for tracking constant assignments
///
/// # Returns
/// The assigned value or an error if assignment fails
fn assign_value<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
&self,
region: &mut Region<F>,
@@ -616,24 +766,28 @@ impl VarTensor {
) -> Result<ValType<F>, halo2_proofs::plonk::Error> {
let (x, y, z) = self.cartesian_coord(offset + coord);
let res = match k {
// Handle direct value assignment
ValType::Value(v) => match &self {
VarTensor::Advice { inner: advices, .. } => {
ValType::PrevAssigned(region.assign_advice(|| "k", advices[x][y], z, || v)?)
}
_ => unimplemented!(),
},
// Handle copying previously assigned value
ValType::PrevAssigned(v) => match &self {
VarTensor::Advice { inner: advices, .. } => {
ValType::PrevAssigned(v.copy_advice(|| "k", region, advices[x][y], z)?)
}
_ => unimplemented!(),
},
// Handle copying previously assigned constant
ValType::AssignedConstant(v, val) => match &self {
VarTensor::Advice { inner: advices, .. } => {
ValType::AssignedConstant(v.copy_advice(|| "k", region, advices[x][y], z)?, val)
}
_ => unimplemented!(),
},
// Handle assigning evaluated value
ValType::AssignedValue(v) => match &self {
VarTensor::Advice { inner: advices, .. } => ValType::PrevAssigned(
region
@@ -642,6 +796,7 @@ impl VarTensor {
),
_ => unimplemented!(),
},
// Handle constant value assignment with caching
ValType::Constant(v) => {
if let std::collections::hash_map::Entry::Vacant(e) = constants.entry(v) {
let value = ValType::AssignedConstant(

Binary file not shown.

Binary file not shown.

File diff suppressed because one or more lines are too long

View File

@@ -28,11 +28,12 @@
"commitment": "KZG",
"decomp_base": 128,
"decomp_legs": 2,
"bounded_log_lookup": false
"bounded_log_lookup": false,
"ignore_range_check_inputs_outputs": false
},
"num_rows": 46,
"total_assignments": 92,
"total_const_size": 3,
"num_rows": 236,
"total_assignments": 472,
"total_const_size": 4,
"total_dynamic_col_size": 0,
"max_dynamic_input_len": 0,
"num_dynamic_lookups": 0,

Binary file not shown.

File diff suppressed because it is too large Load Diff

View File

@@ -46,7 +46,28 @@ mod py_tests {
assert!(status.success());
});
// set VOICE_DATA_DIR environment variable
std::env::set_var("VOICE_DATA_DIR", format!("{}", voice_data_dir));
unsafe {
std::env::set_var("VOICE_DATA_DIR", format!("{}", voice_data_dir));
}
}
fn download_catdog_data() {
let cat_and_dog_data_dir = shellexpand::tilde("~/data/catdog_data");
DOWNLOAD_VOICE_DATA.call_once(|| {
let status = Command::new("bash")
.args([
"examples/notebooks/cat_and_dog_data.sh",
&cat_and_dog_data_dir,
])
.status()
.expect("failed to execute process");
assert!(status.success());
});
// set VOICE_DATA_DIR environment variable
unsafe {
std::env::set_var("CATDOG_DATA_DIR", format!("{}", cat_and_dog_data_dir));
}
}
fn setup_py_env() {
@@ -72,11 +93,10 @@ mod py_tests {
"torchtext==0.17.2",
"torchvision==0.17.2",
"pandas==2.2.1",
"numpy==1.26.4",
"seaborn==0.13.2",
"notebook==7.1.2",
"nbconvert==7.16.3",
"onnx==1.16.0",
"onnx==1.17.0",
"kaggle==1.6.8",
"py-solc-x==2.0.3",
"web3==7.5.0",
@@ -90,12 +110,13 @@ mod py_tests {
"xgboost==2.0.3",
"hummingbird-ml==0.4.11",
"lightgbm==4.3.0",
"numpy==1.26.4",
])
.status()
.expect("failed to execute process");
assert!(status.success());
let status = Command::new("pip")
.args(["install", "numpy==1.23"])
.args(["install", "numpy==1.26.4"])
.status()
.expect("failed to execute process");
@@ -126,10 +147,10 @@ mod py_tests {
}
const TESTS: [&str; 35] = [
"ezkl_demo_batch.ipynb", // 0
"proof_splitting.ipynb", // 1
"variance.ipynb", // 2
"mnist_gan.ipynb", // 3
"mnist_gan.ipynb", // 0
"ezkl_demo_batch.ipynb", // 1
"proof_splitting.ipynb", // 2
"variance.ipynb", // 3
"keras_simple_demo.ipynb", // 4
"mnist_gan_proof_splitting.ipynb", // 5
"hashed_vis.ipynb", // 6
@@ -225,6 +246,20 @@ mod py_tests {
anvil_child.kill().unwrap();
}
#[test]
fn cat_and_dog_notebook_() {
crate::py_tests::init_binary();
let mut anvil_child = crate::py_tests::start_anvil(false);
crate::py_tests::download_catdog_data();
let test_dir: TempDir = TempDir::new("cat_and_dog").unwrap();
let path = test_dir.path().to_str().unwrap();
crate::py_tests::mv_test_(path, "cat_and_dog.ipynb");
run_notebook(path, "cat_and_dog.ipynb");
test_dir.close().unwrap();
anvil_child.kill().unwrap();
}
#[test]
fn reusable_verifier_notebook_() {
crate::py_tests::init_binary();

View File

@@ -48,7 +48,6 @@ def test_py_run_args():
run_args = ezkl.PyRunArgs()
run_args.input_visibility = "hashed"
run_args.output_visibility = "hashed"
run_args.tolerance = 1.5
def test_poseidon_hash():
@@ -59,7 +58,7 @@ def test_poseidon_hash():
message = [ezkl.float_to_felt(x, 7) for x in message]
res = ezkl.poseidon_hash(message)
assert ezkl.felt_to_big_endian(
res[0]) == "0x0da7e5e5c8877242fa699f586baf770d731defd54f952d4adeb85047a0e32f45"
res[0]) == "0x2369898875588bf49b6539376b09705ea69aee318a58e6fcc1e68fc3e7ad81ab"
@@ -873,6 +872,8 @@ def get_examples():
'linear_regression',
"mnist_gan",
"smallworm",
"fr_age",
"1d_conv",
]
examples = []
for subdir, _, _ in os.walk(os.path.join(examples_path, "onnx")):
@@ -899,7 +900,12 @@ async def test_all_examples(model_file, input_file):
proof_path = os.path.join(folder_path, 'proof.json')
print("Testing example: ", model_file)
res = ezkl.gen_settings(model_file, settings_path)
run_args = ezkl.PyRunArgs()
run_args.variables = [("batch_size", 1), ("sequence_length", 100), ("<Sym1>", 1)]
run_args.logrows = 22
res = ezkl.gen_settings(model_file, settings_path, py_run_args=run_args)
assert res
res = await ezkl.calibrate_settings(

View File

@@ -11,7 +11,6 @@ mod wasm32 {
use ezkl::circuit::modules::poseidon::spec::{PoseidonSpec, POSEIDON_RATE, POSEIDON_WIDTH};
use ezkl::circuit::modules::poseidon::PoseidonChip;
use ezkl::circuit::modules::Module;
use ezkl::graph::modules::POSEIDON_LEN_GRAPH;
use ezkl::graph::GraphCircuit;
use ezkl::graph::{GraphSettings, GraphWitness};
use ezkl::pfsys;
@@ -227,11 +226,9 @@ mod wasm32 {
let hash: Vec<Vec<Fr>> = serde_json::from_slice(&hash[..]).unwrap();
let reference_hash =
PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, POSEIDON_LEN_GRAPH>::run(
message.clone(),
)
.map_err(|_| "failed")
.unwrap();
PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE>::run(message.clone())
.map_err(|_| "failed")
.unwrap();
assert_eq!(hash, reference_hash)
}
@@ -340,7 +337,7 @@ mod wasm32 {
// Run compiled circuit validation on onnx network (should fail)
let circuit = compiledCircuitValidation(wasm_bindgen::Clamped(NETWORK.to_vec()));
assert!(circuit.is_err());
// Run compiled circuit validation on comiled network (should pass)
// Run compiled circuit validation on compiled network (should pass)
let circuit = compiledCircuitValidation(wasm_bindgen::Clamped(NETWORK_COMPILED.to_vec()));
assert!(circuit.is_ok());
// Run input validation on witness (should fail)