Compare commits

..

2 Commits

Author SHA1 Message Date
dante
4c8daf773c refactor: lookup-less layer norm (#706) 2024-02-07 21:19:17 +00:00
dante
80041ac523 refactor: equals argument without lookups (#705) 2024-02-07 14:20:13 +00:00
70 changed files with 2163 additions and 174 deletions

View File

@@ -198,8 +198,6 @@ jobs:
# chromedriver-version: "115.0.5790.102"
- name: Install wasm32-unknown-unknown
run: rustup target add wasm32-unknown-unknown
- name: Install wasm runner
run: cargo install wasm-server-runner
- name: Add rust-src
run: rustup component add rust-src --toolchain nightly-2023-08-24-x86_64-unknown-linux-gnu
- name: Run wasm verifier tests
@@ -352,9 +350,6 @@ jobs:
- name: Add wasm32-unknown-unknown target
run: rustup target add wasm32-unknown-unknown
- name: Install wasm-server-runner
run: cargo install wasm-server-runner
- name: Add rust-src
run: rustup component add rust-src --toolchain nightly-2023-08-24-x86_64-unknown-linux-gnu
- uses: actions/checkout@v3

View File

@@ -29,9 +29,6 @@ jobs:
- name: Add wasm32-unknown-unknown target
run: rustup target add wasm32-unknown-unknown
- name: Install wasm-server-runner
run: cargo install wasm-server-runner
- name: Add rust-src
run: rustup component add rust-src --toolchain nightly-2023-08-24-x86_64-unknown-linux-gnu
- name: Install binaryen

File diff suppressed because it is too large Load Diff

View File

Before

Width:  |  Height:  |  Size: 109 KiB

After

Width:  |  Height:  |  Size: 109 KiB

View File

@@ -125,8 +125,8 @@ impl BaseOp {
BaseOp::Sum => 1,
BaseOp::SumInit => 1,
BaseOp::Range { .. } => 1,
BaseOp::IsZero => 1,
BaseOp::IsBoolean => 1,
BaseOp::IsZero => 0,
BaseOp::IsBoolean => 0,
}
}

View File

@@ -276,9 +276,20 @@ impl<F: PrimeField + TensorType + PartialOrd> BaseConfig<F> {
let constraints = match base_op {
BaseOp::IsBoolean => {
vec![(qis[1].clone()) * (qis[1].clone() - Expression::Constant(F::from(1)))]
let expected_output: Tensor<Expression<F>> = output
.query_rng(meta, *block_idx, *inner_col_idx, 0, 1)
.expect("non accum: output query failed");
let output = expected_output[base_op.constraint_idx()].clone();
vec![(output.clone()) * (output.clone() - Expression::Constant(F::from(1)))]
}
BaseOp::IsZero => {
let expected_output: Tensor<Expression<F>> = output
.query_rng(meta, *block_idx, *inner_col_idx, 0, 1)
.expect("non accum: output query failed");
vec![expected_output[base_op.constraint_idx()].clone()]
}
BaseOp::IsZero => vec![qis[1].clone()],
_ => {
let expected_output: Tensor<Expression<F>> = output
.query_rng(meta, *block_idx, *inner_col_idx, rotation_offset, rng)
@@ -512,10 +523,10 @@ impl<F: PrimeField + TensorType + PartialOrd> BaseConfig<F> {
// we borrow mutably twice so we need to do this dance
let range_check = if !self.range_checks.contains_key(&range) {
let range_check = if let std::collections::btree_map::Entry::Vacant(e) = self.range_checks.entry(range) {
// as all tables have the same input we see if there's another table who's input we can reuse
let range_check = RangeCheck::<F>::configure(cs, range);
self.range_checks.insert(range, range_check.clone());
e.insert(range_check.clone());
range_check
} else {
return Ok(());

View File

@@ -160,23 +160,17 @@ impl<F: PrimeField + TensorType + PartialOrd> Op<F> for HybridOp {
}
HybridOp::ReduceArgMax { dim } => {
let res = tensor::ops::argmax_axes(&x, *dim)?;
let indices = Tensor::from(0..x.dims()[*dim] as i128);
let mut inter_equals: Vec<Tensor<i128>> = vec![indices.clone(), -indices];
let inter =
Op::f(&HybridOp::ReduceMax { axes: vec![*dim] }, inputs)?.intermediate_lookups;
inter_equals.extend(inter);
(res.clone(), inter_equals)
(res, inter)
}
HybridOp::ReduceArgMin { dim } => {
let res = tensor::ops::argmin_axes(&x, *dim)?;
let indices = Tensor::from(0..x.dims()[*dim] as i128);
let mut inter_equals: Vec<Tensor<i128>> = vec![indices.clone(), -indices];
let inter =
Op::f(&HybridOp::ReduceMin { axes: vec![*dim] }, inputs)?.intermediate_lookups;
inter_equals.extend(inter);
(res.clone(), inter_equals)
(res, inter)
}
HybridOp::Gather { dim, constant_idx } => {
if let Some(idx) = constant_idx {
@@ -185,18 +179,14 @@ impl<F: PrimeField + TensorType + PartialOrd> Op<F> for HybridOp {
(res.clone(), vec![])
} else {
let y = inputs[1].clone().map(|x| felt_to_i128(x));
let indices = Tensor::from(0..x.dims()[*dim] as i128);
let inter_equals: Vec<Tensor<i128>> = vec![indices.clone(), -indices];
let res = tensor::ops::gather(&x, &y.map(|x| x as usize), *dim)?;
(res.clone(), inter_equals)
(res.clone(), vec![])
}
}
HybridOp::OneHot { dim, num_classes } => {
let indices = Tensor::from(0..x.dims()[*dim] as i128);
let inter_equals: Vec<Tensor<i128>> = vec![indices.clone(), -indices];
let res = tensor::ops::one_hot(&x, *num_classes, *dim)?;
(res.clone(), inter_equals)
}
HybridOp::OneHot { dim, num_classes } => (
tensor::ops::one_hot(&x, *num_classes, *dim)?.clone(),
vec![],
),
HybridOp::TopK { dim, k, largest } => {
let res = tensor::ops::topk_axes(&x, *k, *dim, *largest)?;
@@ -228,10 +218,8 @@ impl<F: PrimeField + TensorType + PartialOrd> Op<F> for HybridOp {
(res.clone(), vec![])
} else {
let y = inputs[1].clone().map(|x| felt_to_i128(x));
let indices = Tensor::from(0..x.dims()[*dim] as i128);
let inter_equals: Vec<Tensor<i128>> = vec![indices.clone(), -indices];
let res = tensor::ops::gather_elements(&x, &y.map(|x| x as usize), *dim)?;
(res.clone(), inter_equals)
(res.clone(), vec![])
}
}
HybridOp::ScatterElements { dim, constant_idx } => {
@@ -243,10 +231,8 @@ impl<F: PrimeField + TensorType + PartialOrd> Op<F> for HybridOp {
} else {
let idx = inputs[1].clone().map(|x| felt_to_i128(x) as usize);
let src = inputs[2].clone().map(|x| felt_to_i128(x));
let indices = Tensor::from(0..x.dims()[*dim] as i128);
let inter_equals: Vec<Tensor<i128>> = vec![indices.clone(), -indices];
let res = tensor::ops::scatter(&x, &idx, &src, *dim)?;
(res.clone(), inter_equals)
(res.clone(), vec![])
}
}
HybridOp::MaxPool2d {
@@ -441,7 +427,7 @@ impl<F: PrimeField + TensorType + PartialOrd> Op<F> for HybridOp {
region,
values.try_into()?,
&LookupOp::Div {
denom: denom.clone(),
denom: *denom,
},
)?
}

View File

@@ -789,14 +789,7 @@ fn one_hot<F: PrimeField + TensorType + PartialOrd>(
let assigned_input = region.assign(&config.inputs[0], &input)?;
// now assert all elems are 0 or 1
let assigned_output = region.assign(&config.inputs[1], &output)?;
if !region.is_dummy() {
for i in 0..assigned_output.len() {
let (x, y, z) = config.output.cartesian_coord(region.linear_coord() + i);
let selector = config.selectors.get(&(BaseOp::IsBoolean, x, y));
region.enable(selector, z)?;
}
}
let assigned_output = boolean_identity(config, region, &[output.clone()], true)?;
region.increment(std::cmp::max(assigned_output.len(), assigned_input.len()));
let sum = sum(config, region, &[assigned_output.clone()])?;
@@ -1701,10 +1694,28 @@ pub fn equals<F: PrimeField + TensorType + PartialOrd>(
values: &[ValTensor<F>; 2],
) -> Result<ValTensor<F>, Box<dyn Error>> {
let diff = pairwise(config, region, values, BaseOp::Sub)?;
let diff_inverse = diff.inverse()?;
let product_diff_and_invert =
pairwise(config, region, &[diff.clone(), diff_inverse], BaseOp::Mult)?;
let res = nonlinearity(config, region, &[diff], &LookupOp::KroneckerDelta)?;
// constant of 1
let mut ones = Tensor::from(vec![ValType::Constant(F::from(1))].into_iter());
ones.set_visibility(&crate::graph::Visibility::Fixed);
Ok(res)
// subtract
let output = pairwise(
config,
region,
&[ones.into(), product_diff_and_invert],
BaseOp::Sub,
)?;
// take the product of diff and output
let prod_check = pairwise(config, region, &[diff, output.clone()], BaseOp::Mult)?;
is_zero_identity(config, region, &[prod_check], false)?;
Ok(output)
}
/// Xor boolean operation
@@ -1768,21 +1779,7 @@ pub fn iff<F: PrimeField + TensorType + PartialOrd>(
.into();
// make sure mask is boolean
let assigned_mask = region.assign(&config.inputs[1], mask)?;
// Enable the selectors
if !region.is_dummy() {
(0..assigned_mask.len())
.map(|i| {
let (x, y, z) = config.inputs[1].cartesian_coord(region.linear_coord() + i);
let selector = config.selectors.get(&(BaseOp::IsBoolean, x, y));
region.enable(selector, z)?;
Ok(())
})
.collect::<Result<Vec<_>, Box<dyn Error>>>()?;
}
region.increment(assigned_mask.len());
let assigned_mask = boolean_identity(config, region, &[mask.clone()], true)?;
let one_minus_mask = pairwise(config, region, &[unit, assigned_mask.clone()], BaseOp::Sub)?;
@@ -1880,13 +1877,11 @@ pub fn sumpool<F: PrimeField + TensorType + PartialOrd>(
last_elem.reshape(&[&[batch_size, image_channels], shape].concat())?;
if normalized {
last_elem = nonlinearity(
last_elem = div(
config,
region,
&[last_elem],
&LookupOp::Div {
denom: utils::F32((kernel_shape.0 * kernel_shape.1) as f32),
},
F::from((kernel_shape.0 * kernel_shape.1) as u64),
)?;
}
Ok(last_elem)
@@ -2383,18 +2378,60 @@ pub fn identity<F: PrimeField + TensorType + PartialOrd>(
Ok(output)
}
/// is zero identity constraint. Usually used to constrain an instance column to an advice so the returned cells / values can be operated upon.
pub fn is_zero_identity<F: PrimeField + TensorType + PartialOrd>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
assign: bool,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let output = if assign || !values[0].get_const_indices()?.is_empty() {
let output = region.assign(&config.output, &values[0])?;
region.increment(output.len());
output
} else {
values[0].clone()
};
// Enable the selectors
if !region.is_dummy() {
(0..output.len())
.map(|j| {
let index = region.linear_coord() - j - 1;
let (x, y, z) = config.output.cartesian_coord(index);
let selector = config.selectors.get(&(BaseOp::IsZero, x, y));
region.enable(selector, z)?;
Ok(())
})
.collect::<Result<Vec<_>, Box<dyn Error>>>()?;
}
Ok(output)
}
/// Boolean identity constraint. Usually used to constrain an instance column to an advice so the returned cells / values can be operated upon.
pub fn boolean_identity<F: PrimeField + TensorType + PartialOrd>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
assign: bool,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let output = region.assign(&config.inputs[1], &values[0])?;
let output = if assign || !values[0].get_const_indices()?.is_empty() {
// get zero constants indices
let output = region.assign(&config.output, &values[0])?;
region.increment(output.len());
output
} else {
values[0].clone()
};
// Enable the selectors
if !region.is_dummy() {
(0..output.len())
.map(|j| {
let (x, y, z) = config.inputs[1].cartesian_coord(region.linear_coord() + j);
let index = region.linear_coord() - j - 1;
let (x, y, z) = config.output.cartesian_coord(index);
let selector = config.selectors.get(&(BaseOp::IsBoolean, x, y));
region.enable(selector, z)?;
@@ -2402,7 +2439,6 @@ pub fn boolean_identity<F: PrimeField + TensorType + PartialOrd>(
})
.collect::<Result<Vec<_>, Box<dyn Error>>>()?;
}
region.increment(output.len());
Ok(output)
}
@@ -2471,7 +2507,7 @@ pub fn range_check<F: PrimeField + TensorType + PartialOrd>(
let (x, y, z) = config
.lookup_input
.cartesian_coord(region.linear_coord() + i);
let selector = config.range_check_selectors.get(&(range.clone(), x, y));
let selector = config.range_check_selectors.get(&(*range, x, y));
region.enable(selector, z)?;
Ok(())
})
@@ -2581,22 +2617,6 @@ pub fn nonlinearity<F: PrimeField + TensorType + PartialOrd>(
Ok(output)
}
/// mean function layout
pub fn mean<F: PrimeField + TensorType + PartialOrd>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
scale: usize,
) -> Result<ValTensor<F>, Box<dyn Error>> {
let x = &values[0];
let sum_x = sum(config, region, &[x.clone()])?;
let nl = LookupOp::Div {
denom: utils::F32((scale * x.len()) as f32),
};
nonlinearity(config, region, &[sum_x], &nl)
}
/// Argmax
pub fn argmax<F: PrimeField + TensorType + PartialOrd>(
config: &BaseConfig<F>,
@@ -2709,24 +2729,8 @@ pub fn max<F: PrimeField + TensorType + PartialOrd>(
)?;
// relu(x - max(x - 1))
let relu = nonlinearity(config, region, &[diff], &LookupOp::ReLU)?;
let len = relu.dims().iter().product();
// y_i*(1 - y_i) =0 // assert the values are either 0 or 1
region.assign(&config.inputs[1], &relu)?;
if !region.is_dummy() {
(0..len)
.map(|i| {
let (x, y, z) = config.inputs[1].cartesian_coord(region.linear_coord() + i);
let selector = config.selectors.get(&(BaseOp::IsBoolean, x, y));
region.enable(selector, z)?;
Ok(())
})
.collect::<Result<Vec<_>, Box<dyn Error>>>()?;
}
region.increment(len);
// constraining relu(x - max(x - 1)) = 0/1
boolean_identity(config, region, &[relu.clone()], false)?;
// sum(relu(x - max(x - 1)))
let sum_relu = sum(config, region, &[relu])?;
@@ -2737,13 +2741,7 @@ pub fn max<F: PrimeField + TensorType + PartialOrd>(
nonlinearity(config, region, &[one_minus_sum_relu], &LookupOp::ReLU)?;
// constraining 1 - sum(relu(x - max(x - 1))) = 0
region.assign(&config.inputs[1], &relu_one_minus_sum_relu)?;
let (x, y, z) = config.output.cartesian_coord(region.linear_coord());
let selector = config.selectors.get(&(BaseOp::IsZero, x, y));
region.enable(selector, z)?;
region.increment(relu_one_minus_sum_relu.len());
is_zero_identity(config, region, &[relu_one_minus_sum_relu], false)?;
Ok(assigned_max_val)
}
@@ -2788,23 +2786,8 @@ pub fn min<F: PrimeField + TensorType + PartialOrd>(
// relu(min(x + 1) - x)
let relu = nonlinearity(config, region, &[diff], &LookupOp::ReLU)?;
let len = relu.dims().iter().product();
region.assign(&config.inputs[1], &relu)?;
// y_i*(1 - y_i) =0 // assert the values are either 0 or 1
if !region.is_dummy() {
(0..len)
.map(|i| {
let (x, y, z) = config.inputs[1].cartesian_coord(region.linear_coord() + i);
let selector = config.selectors.get(&(BaseOp::IsBoolean, x, y));
region.enable(selector, z)?;
Ok(())
})
.collect::<Result<Vec<_>, Box<dyn Error>>>()?;
}
region.increment(len);
// constraining relu(min(x + 1) - x) = 0/1
boolean_identity(config, region, &[relu.clone()], false)?;
// sum(relu(min(x + 1) - x))
let sum_relu = sum(config, region, &[relu])?;
@@ -2815,14 +2798,8 @@ pub fn min<F: PrimeField + TensorType + PartialOrd>(
let relu_one_minus_sum_relu =
nonlinearity(config, region, &[one_minus_sum_relu], &LookupOp::ReLU)?;
region.assign(&config.inputs[1], &relu_one_minus_sum_relu)?;
// constraining product to 0
let (x, y, z) = config.output.cartesian_coord(region.linear_coord());
let selector = config.selectors.get(&(BaseOp::IsZero, x, y));
region.enable(selector, z)?;
region.increment(relu_one_minus_sum_relu.len());
is_zero_identity(config, region, &[relu_one_minus_sum_relu], false)?;
Ok(assigned_min_val)
}
@@ -3041,15 +3018,8 @@ pub fn range_check_percent<F: PrimeField + TensorType + PartialOrd>(
// Add the lower_bound and upper_bound
let sum = pairwise(config, region, &[lower_bound, upper_bound], BaseOp::Add)?;
// Assign the sum tensor to the inputs
region.assign(&config.inputs[1], &sum)?;
// Constrain the sum to be all zeros
let (x, y, z) = config.output.cartesian_coord(region.linear_coord());
let selector = config.selectors.get(&(BaseOp::IsZero, x, y));
region.enable(selector, z)?;
region.increment(sum.len());
is_zero_identity(config, region, &[sum.clone()], false)?;
Ok(sum)
}

View File

@@ -201,6 +201,7 @@ impl<F: PrimeField + TensorType + PartialOrd> Op<F> for Input {
config,
region,
values[..].try_into()?,
true,
)?))
}
_ => Ok(Some(super::layouts::identity(

View File

@@ -726,11 +726,11 @@ impl AccuracyResults {
let percentage_error = error.enum_map(|i, x| Ok::<_, TensorError>(x / original[i]))?;
let abs_percentage_error = percentage_error.map(|x| x.abs());
errors.extend(error.into_iter());
abs_errors.extend(abs_error.into_iter());
squared_errors.extend(squared_error.into_iter());
percentage_errors.extend(percentage_error.into_iter());
abs_percentage_errors.extend(abs_percentage_error.into_iter());
errors.extend(error);
abs_errors.extend(abs_error);
squared_errors.extend(squared_error);
percentage_errors.extend(percentage_error);
abs_percentage_errors.extend(abs_percentage_error);
}
let mean_percent_error =

View File

@@ -1173,8 +1173,8 @@ impl Model {
);
// set scale for HybridOp::RangeCheck and call self.conf_lookup on that op for percentage tolerance case
let input = &vars.advices[0];
let output = &vars.advices[1];
let index = &vars.advices[2];
let output = &vars.advices[2];
let index = &vars.advices[1];
for op in required_lookups {
base_gate.configure_lookup(meta, input, output, index, lookup_range, logrows, &op)?;
}

View File

@@ -148,7 +148,7 @@ impl RebaseScale {
SupportedOp::RebaseScale(RebaseScale {
inner: op.inner.clone(),
target_scale: op.target_scale,
multiplier: multiplier,
multiplier,
rebase_op: HybridOp::Div {
denom: crate::circuit::utils::F32((multiplier) as f32),
use_range_check_for_int: !div_rebasing,

View File

@@ -871,3 +871,30 @@ impl<F: PrimeField + TensorType + PartialOrd> ValTensor<F> {
}
}
}
impl<F: PrimeField + TensorType + PartialOrd> ValTensor<F> {
/// inverts the inner values
pub fn inverse(&self) -> Result<ValTensor<F>, Box<dyn Error>> {
let mut cloned_self = self.clone();
match &mut cloned_self {
ValTensor::Value {
inner: v, dims: d, ..
} => {
*v = v.map(|x| match x {
ValType::AssignedValue(v) => ValType::AssignedValue(v.invert()),
ValType::PrevAssigned(v) | ValType::AssignedConstant(v, ..) => {
ValType::AssignedValue(v.value_field().invert())
}
ValType::Value(v) => ValType::Value(v.map(|x| x.invert().unwrap_or(F::ZERO))),
ValType::Constant(v) => ValType::Constant(v.invert().unwrap_or(F::ZERO)),
});
*d = v.dims().to_vec();
}
ValTensor::Instance { .. } => {
return Err(Box::new(TensorError::WrongMethod));
}
};
Ok(cloned_self)
}
}

View File

@@ -192,86 +192,86 @@ mod native_tests {
];
const TESTS: [&str; 77] = [
"1l_mlp",
"1l_mlp", //0
"1l_slice",
"1l_concat",
"1l_flatten",
// "1l_average",
"1l_div",
"1l_pad",
"1l_pad", // 5
"1l_reshape",
"1l_eltwise_div",
"1l_sigmoid",
"1l_sqrt",
"1l_softmax",
"1l_softmax", //10
// "1l_instance_norm",
"1l_batch_norm",
"1l_prelu",
"1l_leakyrelu",
"1l_gelu_noappx",
// "1l_gelu_tanh_appx",
"1l_relu",
"1l_relu", //15
"1l_downsample",
"1l_tanh",
"2l_relu_sigmoid_small",
"2l_relu_fc",
"2l_relu_small",
"2l_relu_small", //20
"2l_relu_sigmoid",
"1l_conv",
"2l_sigmoid_small",
"2l_relu_sigmoid_conv",
"3l_relu_conv_fc",
"3l_relu_conv_fc", //25
"4l_relu_conv_fc",
"1l_erf",
"1l_var",
"1l_elu", //30
"min",
"1l_elu",
"min", //30
"max",
"1l_max_pool",
"1l_conv_transpose",
"1l_upsample", //35
"1l_identity",
"1l_upsample",
"1l_identity", //35
"idolmodel",
"trig",
"prelu_gmm",
"lstm", //40
"rnn",
"lstm",
"rnn", //40
"quantize_dequantize",
"1l_where",
"boolean",
"boolean_identity",
"decision_tree", // "variable_cnn",
"decision_tree", // 45
"random_forest",
"gradient_boosted_trees",
"1l_topk",
"xgboost", //50
"lightgbm",
"xgboost",
"lightgbm", //50
"hummingbird_decision_tree",
"oh_decision_tree",
"linear_svc",
"gather_elements",
"less",
"less", //55
"xgboost_reg",
"1l_powf",
"scatter_elements",
"1l_linear", //60
"linear_regression",
"1l_linear",
"linear_regression", //60
"sklearn_mlp",
"1l_mean",
"rounding_ops",
// "mean_as_constrain",
"arange",
"layernorm",
"layernorm", //65
"bitwise_ops",
"blackman_window",
"softsign", //70
"softsign", //68
"softplus",
"selu",
"selu", //70
"hard_sigmoid",
"log_softmax",
"eye",
"ltsf",
"remainder",
"remainder", //75
"bitshift",
];