mirror of
https://github.com/zkonduit/ezkl.git
synced 2026-01-13 16:27:59 -05:00
Compare commits
2 Commits
release-v2
...
v21.0.3
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
17ad9f76ce | ||
|
|
70469e3bf9 |
@@ -1,7 +1,7 @@
|
||||
import ezkl
|
||||
|
||||
project = 'ezkl'
|
||||
release = '21.0.2'
|
||||
release = '21.0.3'
|
||||
version = release
|
||||
|
||||
|
||||
|
||||
@@ -1,34 +1,34 @@
|
||||
use crate::circuit::modules::polycommit::PolyCommitChip;
|
||||
use crate::circuit::modules::poseidon::{
|
||||
spec::{PoseidonSpec, POSEIDON_RATE, POSEIDON_WIDTH},
|
||||
PoseidonChip,
|
||||
};
|
||||
use crate::circuit::modules::Module;
|
||||
use crate::Commitments;
|
||||
use crate::RunArgs;
|
||||
use crate::circuit::CheckMode;
|
||||
use crate::circuit::InputType;
|
||||
use crate::circuit::modules::Module;
|
||||
use crate::circuit::modules::polycommit::PolyCommitChip;
|
||||
use crate::circuit::modules::poseidon::{
|
||||
PoseidonChip,
|
||||
spec::{POSEIDON_RATE, POSEIDON_WIDTH, PoseidonSpec},
|
||||
};
|
||||
use crate::commands::*;
|
||||
use crate::fieldutils::{felt_to_integer_rep, integer_rep_to_felt, IntegerRep};
|
||||
use crate::fieldutils::{IntegerRep, felt_to_integer_rep, integer_rep_to_felt};
|
||||
use crate::graph::TestDataSource;
|
||||
use crate::graph::{
|
||||
quantize_float, scale_to_multiplier, GraphCircuit, GraphSettings, Model, Visibility,
|
||||
GraphCircuit, GraphSettings, Model, Visibility, quantize_float, scale_to_multiplier,
|
||||
};
|
||||
use crate::pfsys::evm::aggregation_kzg::AggregationCircuit;
|
||||
use crate::pfsys::{
|
||||
load_pk, load_vk, save_params, save_vk, srs::gen_srs as ezkl_gen_srs, srs::load_srs_prover,
|
||||
ProofType, TranscriptType,
|
||||
ProofType, TranscriptType, load_pk, load_vk, save_params, save_vk,
|
||||
srs::gen_srs as ezkl_gen_srs, srs::load_srs_prover,
|
||||
};
|
||||
use crate::Commitments;
|
||||
use crate::RunArgs;
|
||||
use halo2_proofs::poly::ipa::commitment::IPACommitmentScheme;
|
||||
use halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme;
|
||||
use halo2curves::bn256::{Bn256, Fq, Fr, G1Affine, G1};
|
||||
use halo2curves::bn256::{Bn256, Fq, Fr, G1, G1Affine};
|
||||
use pyo3::exceptions::{PyIOError, PyRuntimeError};
|
||||
use pyo3::prelude::*;
|
||||
use pyo3::wrap_pyfunction;
|
||||
use pyo3_log;
|
||||
use pyo3_stub_gen::{
|
||||
define_stub_info_gatherer, derive::gen_stub_pyclass, derive::gen_stub_pyclass_enum,
|
||||
derive::gen_stub_pyfunction, TypeInfo,
|
||||
TypeInfo, define_stub_info_gatherer, derive::gen_stub_pyclass, derive::gen_stub_pyclass_enum,
|
||||
derive::gen_stub_pyfunction,
|
||||
};
|
||||
use snark_verifier::util::arithmetic::PrimeField;
|
||||
use std::collections::HashSet;
|
||||
@@ -962,6 +962,8 @@ fn gen_settings(
|
||||
output=PathBuf::from(DEFAULT_SETTINGS),
|
||||
variables=Vec::from([("batch_size".to_string(), 1)]),
|
||||
seed=DEFAULT_SEED.parse().unwrap(),
|
||||
min=None,
|
||||
max=None
|
||||
))]
|
||||
#[gen_stub_pyfunction]
|
||||
fn gen_random_data(
|
||||
@@ -969,8 +971,10 @@ fn gen_random_data(
|
||||
output: PathBuf,
|
||||
variables: Vec<(String, usize)>,
|
||||
seed: u64,
|
||||
min: Option<f32>,
|
||||
max: Option<f32>,
|
||||
) -> Result<bool, PyErr> {
|
||||
crate::execute::gen_random_data(model, output, variables, seed).map_err(|e| {
|
||||
crate::execute::gen_random_data(model, output, variables, seed, min, max).map_err(|e| {
|
||||
let err_str = format!("Failed to generate settings: {}", e);
|
||||
PyRuntimeError::new_err(err_str)
|
||||
})?;
|
||||
|
||||
@@ -443,6 +443,12 @@ pub enum Commands {
|
||||
/// random seed for reproducibility (optional)
|
||||
#[arg(long, value_hint = clap::ValueHint::Other, default_value = DEFAULT_SEED)]
|
||||
seed: u64,
|
||||
/// min value for random data
|
||||
#[arg(long, value_hint = clap::ValueHint::Other)]
|
||||
min: Option<f32>,
|
||||
/// max value for random data
|
||||
#[arg(long, value_hint = clap::ValueHint::Other)]
|
||||
max: Option<f32>,
|
||||
},
|
||||
/// Calibrates the proving scale, lookup bits and logrows from a circuit settings file.
|
||||
CalibrateSettings {
|
||||
|
||||
@@ -45,6 +45,7 @@ use halo2curves::serde::SerdeObject;
|
||||
use indicatif::{ProgressBar, ProgressStyle};
|
||||
use instant::Instant;
|
||||
use itertools::Itertools;
|
||||
use lazy_static::lazy_static;
|
||||
use log::debug;
|
||||
use log::{info, trace, warn};
|
||||
use serde::Serialize;
|
||||
@@ -65,8 +66,6 @@ use thiserror::Error;
|
||||
use tract_onnx::prelude::IntoTensor;
|
||||
use tract_onnx::prelude::Tensor as TractTensor;
|
||||
|
||||
use lazy_static::lazy_static;
|
||||
|
||||
lazy_static! {
|
||||
#[derive(Debug)]
|
||||
/// The path to the ezkl related data.
|
||||
@@ -138,11 +137,15 @@ pub async fn run(command: Commands) -> Result<String, EZKLError> {
|
||||
data,
|
||||
variables,
|
||||
seed,
|
||||
min,
|
||||
max,
|
||||
} => gen_random_data(
|
||||
model.unwrap_or(DEFAULT_MODEL.into()),
|
||||
data.unwrap_or(DEFAULT_DATA.into()),
|
||||
variables,
|
||||
seed,
|
||||
min,
|
||||
max,
|
||||
),
|
||||
Commands::CalibrateSettings {
|
||||
model,
|
||||
@@ -840,6 +843,8 @@ pub(crate) fn gen_random_data(
|
||||
data_path: PathBuf,
|
||||
variables: Vec<(String, usize)>,
|
||||
seed: u64,
|
||||
min: Option<f32>,
|
||||
max: Option<f32>,
|
||||
) -> Result<String, EZKLError> {
|
||||
let mut file = std::fs::File::open(&model_path).map_err(|e| {
|
||||
crate::graph::errors::GraphError::ReadWriteFileError(
|
||||
@@ -858,22 +863,32 @@ pub(crate) fn gen_random_data(
|
||||
.collect::<tract_onnx::prelude::TractResult<Vec<_>>>()
|
||||
.map_err(|e| EZKLError::from(e.to_string()))?;
|
||||
|
||||
let min = min.unwrap_or(0.0);
|
||||
let max = max.unwrap_or(1.0);
|
||||
|
||||
/// Generates a random tensor of a given size and type.
|
||||
fn random(
|
||||
sizes: &[usize],
|
||||
datum_type: tract_onnx::prelude::DatumType,
|
||||
seed: u64,
|
||||
min: f32,
|
||||
max: f32,
|
||||
) -> TractTensor {
|
||||
use rand::{Rng, SeedableRng};
|
||||
let mut rng = rand::rngs::StdRng::seed_from_u64(seed);
|
||||
|
||||
let mut tensor = TractTensor::zero::<f32>(sizes).unwrap();
|
||||
let slice = tensor.as_slice_mut::<f32>().unwrap();
|
||||
slice.iter_mut().for_each(|x| *x = rng.r#gen());
|
||||
slice.iter_mut().for_each(|x| *x = rng.gen_range(min..max));
|
||||
tensor.cast_to_dt(datum_type).unwrap().into_owned()
|
||||
}
|
||||
|
||||
fn tensor_for_fact(fact: &tract_onnx::prelude::TypedFact, seed: u64) -> TractTensor {
|
||||
fn tensor_for_fact(
|
||||
fact: &tract_onnx::prelude::TypedFact,
|
||||
seed: u64,
|
||||
min: f32,
|
||||
max: f32,
|
||||
) -> TractTensor {
|
||||
if let Some(value) = &fact.konst {
|
||||
return value.clone().into_tensor();
|
||||
}
|
||||
@@ -884,12 +899,14 @@ pub(crate) fn gen_random_data(
|
||||
.expect("Expected concrete shape, found: {fact:?}"),
|
||||
fact.datum_type,
|
||||
seed,
|
||||
min,
|
||||
max,
|
||||
)
|
||||
}
|
||||
|
||||
let generated = input_facts
|
||||
.iter()
|
||||
.map(|v| tensor_for_fact(v, seed))
|
||||
.map(|v| tensor_for_fact(v, seed, min, max))
|
||||
.collect_vec();
|
||||
|
||||
let data = GraphData::from_tract_data(&generated)?;
|
||||
|
||||
Reference in New Issue
Block a user