Compare commits

...

1 Commits

Author SHA1 Message Date
dante
6819a3acf6 chore: more complete coverage tests (#748) 2024-03-20 18:53:47 +00:00
46 changed files with 838 additions and 9 deletions

View File

@@ -0,0 +1,40 @@
from torch import nn
import torch
import json
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.layer = nn.LPPool2d(2, 1, (1, 1))
def forward(self, x):
return self.layer(x)[0]
circuit = Model()
x = torch.empty(1, 3, 2, 2).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.7549541592597961, 0.990360677242279, 0.9473411440849304, 0.3951031565666199, 0.8500555753707886, 0.9352139830589294, 0.11867779493331909, 0.9493132829666138, 0.6588345766067505, 0.1933223009109497, 0.12139874696731567, 0.8547163605690002]]}

Binary file not shown.

42
examples/onnx/celu/gen.py Normal file
View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = nn.CELU()(x)
return m
circuit = MyModel()
x = torch.empty(1, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.35387128591537476, 0.030473172664642334, 0.08707714080810547, 0.2429301142692566, 0.45228832960128784, 0.496021032333374, 0.13245105743408203, 0.8497090339660645]]}

Binary file not shown.

41
examples/onnx/clip/gen.py Normal file
View File

@@ -0,0 +1,41 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = torch.clamp(x, min=0.4, max=0.8)
return m
circuit = MyModel()
x = torch.empty(1, 2, 2, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.03297048807144165, 0.46362626552581787, 0.6044231057167053, 0.4949902892112732, 0.48823297023773193, 0.6798646450042725, 0.6824942231178284, 0.03491640090942383, 0.19608813524246216, 0.24129939079284668, 0.9769315123558044, 0.6306831240653992, 0.7690497636795044, 0.252221941947937, 0.9167693853378296, 0.3882681131362915, 0.9307044148445129, 0.33559417724609375, 0.7815426588058472, 0.3435332179069519, 0.7871478796005249, 0.12240773439407349, 0.5295405983924866, 0.4874419569969177, 0.08262640237808228, 0.1124718189239502, 0.5834914445877075, 0.30927878618240356, 0.48899340629577637, 0.9376634955406189, 0.21893149614334106, 0.526070773601532]]}

View File

@@ -0,0 +1,24 @@
pytorch2.2.1:±
?/Constant_output_0 /Constant"Constant*
value*JÍÌÌ> 
C/Constant_1_output_0 /Constant_1"Constant*
value*JÍÌL? 
F
input
/Constant_output_0
/Constant_1_output_0output/Clip"Clip
main_graphZ)
input


batch_size


b*
output


batch_size


B

41
examples/onnx/gru/gen.py Normal file
View File

@@ -0,0 +1,41 @@
import random
import math
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import json
model = nn.GRU(3, 3) # Input dim is 3, output dim is 3
x = torch.randn(1, 3) # make a sequence of length 5
print(x)
# Flips the neural net into inference mode
model.eval()
model.to('cpu')
# Export the model
torch.onnx.export(model, # model being run
# model input (or a tuple for multiple inputs)
x,
# where to save the model (can be a file or file-like object)
"network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=10, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
data_array = ((x).detach().numpy()).reshape([-1]).tolist()
data_json = dict(input_data=[data_array])
print(data_json)
# Serialize data into file:
json.dump(data_json, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.4145222008228302, -0.4043896496295929, 0.7545749545097351]]}

Binary file not shown.

View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = torch.argmax(x)
return m
circuit = MyModel()
x = torch.empty(1, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.5505883693695068, 0.0766521692276001, 0.12006187438964844, 0.9497959017753601, 0.9100563526153564, 0.968717098236084, 0.5978299379348755, 0.9419963359832764]]}

Binary file not shown.

View File

@@ -9,7 +9,7 @@ class MyModel(nn.Module):
super(MyModel, self).__init__()
def forward(self, x):
m = nn.Logsoftmax()(x)
m = nn.Hardsigmoid()(x)
return m

View File

@@ -1 +1 @@
{"input_data": [[0.2971532940864563, 0.3465197682380676, 0.05381882190704346, 0.058654189109802246, 0.014198064804077148, 0.06088751554489136, 0.1723427176475525, 0.5115123987197876]]}
{"input_data": [[0.8326942324638367, 0.2796096205711365, 0.600328266620636, 0.3701696991920471, 0.17832040786743164, 0.6247223019599915, 0.501872718334198, 0.6961578726768494]]}

View File

@@ -1,4 +1,4 @@
pytorch2.1.0:<3A>
pytorch2.2.1:<3A>
;
inputoutput /HardSigmoid" HardSigmoid*
alpha«ª*> 

View File

@@ -0,0 +1,41 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = nn.Hardswish()(x)
return m
circuit = MyModel()
x = torch.empty(1, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.6996762752532959, 0.42992985248565674, 0.5102168321609497, 0.5540387630462646, 0.8489438891410828, 0.8533616065979004, 0.36736780405044556, 0.5859147310256958]]}

View File

@@ -0,0 +1,15 @@
pytorch2.2.1:{
&
inputoutput
/HardSwish" HardSwish
main_graphZ!
input


batch_size
b"
output


batch_size
B

View File

@@ -9,7 +9,7 @@ class MyModel(nn.Module):
super(MyModel, self).__init__()
def forward(self, x):
m = nn.Hardsigmoid()(x)
m = nn.LogSoftmax()(x)
return m

View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = torch.logsumexp(x, dim=1)
return m
circuit = MyModel()
x = torch.empty(1, 2, 2, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.7973018884658813, 0.5245689153671265, 0.34149593114852905, 0.1455438733100891, 0.9482707381248474, 0.4221445322036743, 0.001363217830657959, 0.8736765384674072, 0.42954301834106445, 0.7199509739875793, 0.37641745805740356, 0.5920265316963196, 0.42270803451538086, 0.41761744022369385, 0.603948712348938, 0.7250819802284241, 0.047173500061035156, 0.5115441679954529, 0.3743387460708618, 0.16794061660766602, 0.5352339148521423, 0.037976861000061035, 0.65323406457901, 0.5585184097290039, 0.10559147596359253, 0.07827490568161011, 0.6717077493667603, 0.6480781435966492, 0.9780838489532471, 0.8353415131568909, 0.6491701006889343, 0.6573048233985901]]}

Binary file not shown.

42
examples/onnx/mish/gen.py Normal file
View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = nn.Mish()(x)
return m
circuit = MyModel()
x = torch.empty(1, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.18563222885131836, 0.4843214750289917, 0.9991059899330139, 0.02534431219100952, 0.8105666041374207, 0.9658406376838684, 0.681107759475708, 0.5365872979164124]]}

View File

@@ -0,0 +1,19 @@
pytorch2.2.1:ä
0
input/Softplus_output_0 /Softplus"Softplus
1
/Softplus_output_0/Tanh_output_0/Tanh"Tanh
*
input
/Tanh_output_0output/Mul"Mul
main_graphZ!
input


batch_size
b"
output


batch_size
B

View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = torch.norm(x, p=1, dim=1)
return m
circuit = MyModel()
x = torch.empty(1, 2, 2, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.02284395694732666, 0.7941043376922607, 0.07971876859664917, 0.8898420929908752, 0.8233054280281067, 0.11066079139709473, 0.4424799084663391, 0.4355071783065796, 0.6723723411560059, 0.6818525195121765, 0.8726171851158142, 0.17742449045181274, 0.054257750511169434, 0.5775953531265259, 0.7758923172950745, 0.8431423306465149, 0.7602444887161255, 0.29686522483825684, 0.22489851713180542, 0.0675363540649414, 0.981339693069458, 0.15771394968032837, 0.5801441669464111, 0.9044001698493958, 0.49266451597213745, 0.42621421813964844, 0.35345613956451416, 0.042848050594329834, 0.6908614039421082, 0.5422852039337158, 0.01975083351135254, 0.5772860050201416]]}

Binary file not shown.

View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = torch.norm(x, p=2, dim=1)
return m
circuit = MyModel()
x = torch.empty(1, 2, 2, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.8709188103675842, 0.11553549766540527, 0.27376580238342285, 0.7518517971038818, 0.7879393100738525, 0.8765475749969482, 0.14315760135650635, 0.8982420563697815, 0.7274006605148315, 0.39007169008255005, 0.729040801525116, 0.11306107044219971, 0.658822774887085, 0.666404664516449, 0.3001367449760437, 0.45343858003616333, 0.7460223436355591, 0.7423691749572754, 0.7544230818748474, 0.5674425959587097, 0.8728761672973633, 0.27062875032424927, 0.1595977544784546, 0.22975260019302368, 0.6711723208427429, 0.8265992403030396, 0.48679041862487793, 0.689740777015686, 0.330846905708313, 0.5630669593811035, 0.8058932423591614, 0.5802426338195801]]}

Binary file not shown.

42
examples/onnx/tril/gen.py Normal file
View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = torch.triu(x)
return m
circuit = MyModel()
x = torch.empty(1, 3, 3).uniform_(0, 5)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.4870188236236572, 2.275230646133423, 3.126268148422241, 0.6412187218666077, 0.9967470169067383, 1.9814395904541016, 1.6355383396148682, 0.6397527456283569, 0.7825168967247009]]}

Binary file not shown.

42
examples/onnx/triu/gen.py Normal file
View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = torch.tril(x)
return m
circuit = MyModel()
x = torch.empty(1, 3, 3).uniform_(0, 5)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.2898547053337097, 1.8070811033248901, 0.30266255140304565, 3.00581955909729, 0.5379888415336609, 1.7057424783706665, 2.415961265563965, 0.589233934879303, 0.03824889659881592]]}

Binary file not shown.

View File

@@ -2660,13 +2660,43 @@ pub(crate) fn slice<F: PrimeField + TensorType + PartialOrd>(
end: &usize,
) -> Result<ValTensor<F>, Box<dyn Error>> {
// assigns the instance to the advice.
let mut output = region.assign(&config.custom_gates.output, &values[0])?;
region.increment(output.len());
let mut output = values[0].clone();
let is_assigned = output.all_prev_assigned();
if !is_assigned {
output = region.assign(&config.custom_gates.output, &values[0])?;
region.increment(output.len());
}
output.slice(axis, start, end)?;
Ok(output)
}
/// Trilu layout
pub(crate) fn trilu<F: PrimeField + TensorType + PartialOrd>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
k: &i32,
upper: &bool,
) -> Result<ValTensor<F>, Box<dyn Error>> {
// assigns the instance to the advice.
let mut output = values[0].clone();
let is_assigned = output.all_prev_assigned();
if !is_assigned {
output = region.assign(&config.custom_gates.inputs[0], &values[0])?;
}
let res = tensor::ops::trilu(output.get_inner_tensor()?, *k, *upper)?;
let output = region.assign(&config.custom_gates.output, &res.into())?;
region.increment(output.len());
Ok(output)
}
/// Concat layout
pub(crate) fn concat<F: PrimeField + TensorType + PartialOrd>(
values: &[ValTensor<F>],

View File

@@ -123,6 +123,9 @@ pub enum LookupOp {
scale: utils::F32,
a: utils::F32,
},
HardSwish {
scale: utils::F32,
},
}
impl LookupOp {
@@ -223,6 +226,9 @@ impl<F: PrimeField + TensorType + PartialOrd> Op<F> for LookupOp {
LookupOp::ATan { scale } => Ok(tensor::ops::nonlinearities::atan(&x, scale.into())),
LookupOp::ATanh { scale } => Ok(tensor::ops::nonlinearities::atanh(&x, scale.into())),
LookupOp::Tanh { scale } => Ok(tensor::ops::nonlinearities::tanh(&x, scale.into())),
LookupOp::HardSwish { scale } => {
Ok(tensor::ops::nonlinearities::hardswish(&x, scale.into()))
}
}?;
let output = res.map(|x| i128_to_felt(x));
@@ -276,6 +282,7 @@ impl<F: PrimeField + TensorType + PartialOrd> Op<F> for LookupOp {
LookupOp::ASin { scale } => format!("ASIN(scale={})", scale),
LookupOp::Sinh { scale } => format!("SINH(scale={})", scale),
LookupOp::ASinh { scale } => format!("ASINH(scale={})", scale),
LookupOp::HardSwish { scale } => format!("HARDSWISH(scale={})", scale),
}
}

View File

@@ -83,6 +83,10 @@ pub enum PolyOp {
And,
Or,
Xor,
Trilu {
upper: bool,
k: i32,
},
}
impl<F: PrimeField + TensorType + PartialOrd + Serialize + for<'de> Deserialize<'de>> Op<F>
@@ -114,7 +118,7 @@ impl<F: PrimeField + TensorType + PartialOrd + Serialize + for<'de> Deserialize<
PolyOp::Add => "ADD".into(),
PolyOp::Mult => "MULT".into(),
PolyOp::Sub => "SUB".into(),
PolyOp::Sum { .. } => "SUM".into(),
PolyOp::Sum { axes } => format!("SUM (axes={:?})", axes),
PolyOp::Prod { .. } => "PROD".into(),
PolyOp::Pow(_) => "POW".into(),
PolyOp::Conv { .. } => "CONV".into(),
@@ -128,6 +132,7 @@ impl<F: PrimeField + TensorType + PartialOrd + Serialize + for<'de> Deserialize<
PolyOp::And => "AND".into(),
PolyOp::Or => "OR".into(),
PolyOp::Xor => "XOR".into(),
PolyOp::Trilu { upper, k } => format!("TRILU (upper={}, k={})", upper, k),
}
}
@@ -265,6 +270,7 @@ impl<F: PrimeField + TensorType + PartialOrd + Serialize + for<'de> Deserialize<
};
tensor::ops::scatter_nd(&x, &idx, &src)
}
PolyOp::Trilu { upper, k } => tensor::ops::trilu(&inputs[0], *k, *upper),
}?;
Ok(ForwardResult { output: res })
@@ -384,6 +390,9 @@ impl<F: PrimeField + TensorType + PartialOrd + Serialize + for<'de> Deserialize<
PolyOp::Slice { axis, start, end } => {
layouts::slice(config, region, values[..].try_into()?, axis, start, end)?
}
PolyOp::Trilu { upper, k } => {
layouts::trilu(config, region, values[..].try_into()?, k, upper)?
}
}))
}

View File

@@ -248,6 +248,8 @@ pub fn new_op_from_onnx(
symbol_values: &SymbolValues,
rebase_frac_zero_constants: bool,
) -> Result<(SupportedOp, Vec<usize>), Box<dyn std::error::Error>> {
use tract_onnx::tract_core::ops::array::Trilu;
use crate::circuit::InputType;
let input_scales = inputs
@@ -363,6 +365,26 @@ pub fn new_op_from_onnx(
SupportedOp::Constant(c)
}
"Trilu" => {
let op = load_op::<Trilu>(node.op(), idx, node.op().name().to_string())?;
let upper = op.upper;
// assert second input is a constant
let diagonal = if let Some(c) = inputs[1].opkind().get_mutable_constant() {
inputs[1].decrement_use();
deleted_indices.push(1);
let raw_values = &c.raw_values;
if raw_values.len() != 1 {
return Err(Box::new(GraphError::InvalidDims(idx, "trilu".to_string())));
}
raw_values[0] as i32
} else {
return Err("we only support constant inputs for trilu diagonal".into());
};
SupportedOp::Linear(PolyOp::Trilu { upper, k: diagonal })
}
"Gather" => {
if inputs.len() != 2 {
return Err(Box::new(GraphError::InvalidDims(idx, "gather".to_string())));
@@ -839,6 +861,9 @@ pub fn new_op_from_onnx(
}
"Abs" => SupportedOp::Nonlinear(LookupOp::Abs),
"Neg" => SupportedOp::Linear(PolyOp::Neg),
"HardSwish" => SupportedOp::Nonlinear(LookupOp::HardSwish {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
}),
"Sigmoid" => SupportedOp::Nonlinear(LookupOp::Sigmoid {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
}),

View File

@@ -8,6 +8,142 @@ use maybe_rayon::{
use std::collections::{HashMap, HashSet};
pub use std::ops::{Add, Div, Mul, Neg, Sub};
/// Trilu operation.
/// # Arguments
/// * `a` - Tensor
/// * `k` - i32
/// * `upper` - Boolean
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::tensor::ops::trilu;
/// let a = Tensor::<i128>::new(
/// Some(&[1, 2, 3, 4, 5, 6]),
/// &[1, 3, 2],
/// ).unwrap();
/// let result = trilu(&a, 1, true).unwrap();
/// let expected = Tensor::<i128>::new(Some(&[0, 2, 0, 0, 0, 0]), &[1, 3, 2]).unwrap();
/// assert_eq!(result, expected);
///
/// let result = trilu(&a, 1, false).unwrap();
/// let expected = Tensor::<i128>::new(Some(&[1, 2, 3, 4, 5, 6]), &[1, 3, 2]).unwrap();
/// assert_eq!(result, expected);
///
/// let result = trilu(&a, 0, true).unwrap();
/// let expected = Tensor::<i128>::new(Some(&[1, 2, 0, 4, 0, 0]), &[1, 3, 2]).unwrap();
/// assert_eq!(result, expected);
///
/// let result = trilu(&a, 0, false).unwrap();
/// let expected = Tensor::<i128>::new(Some(&[1, 0, 3, 4, 5, 6]), &[1, 3, 2]).unwrap();
/// assert_eq!(result, expected);
///
/// let result = trilu(&a, -1, true).unwrap();
/// let expected = Tensor::<i128>::new(Some(&[1, 2, 3, 4, 0, 6]), &[1, 3, 2]).unwrap();
/// assert_eq!(result, expected);
///
/// let result = trilu(&a, -1, false).unwrap();
/// let expected = Tensor::<i128>::new(Some(&[0, 0, 3, 0, 5, 6]), &[1, 3, 2]).unwrap();
/// assert_eq!(result, expected);
///
/// let a = Tensor::<i128>::new(
/// Some(&[1, 2, 3, 4, 5, 6]),
/// &[1, 2, 3],
/// ).unwrap();
/// let result = trilu(&a, 1, true).unwrap();
/// let expected = Tensor::<i128>::new(Some(&[0, 2, 3, 0, 0, 6]), &[1, 2, 3]).unwrap();
/// assert_eq!(result, expected);
///
/// let result = trilu(&a, 1, false).unwrap();
/// let expected = Tensor::<i128>::new(Some(&[1, 2, 0, 4, 5, 6]), &[1, 2, 3]).unwrap();
/// assert_eq!(result, expected);
///
/// let result = trilu(&a, 0, true).unwrap();
/// let expected = Tensor::<i128>::new(Some(&[1, 2, 3, 0, 5, 6]), &[1, 2, 3]).unwrap();
/// assert_eq!(result, expected);
///
/// let result = trilu(&a, 0, false).unwrap();
/// let expected = Tensor::<i128>::new(Some(&[1, 0, 0, 4, 5, 0]), &[1, 2, 3]).unwrap();
/// assert_eq!(result, expected);
///
/// let result = trilu(&a, -1, true).unwrap();
/// let expected = Tensor::<i128>::new(Some(&[1, 2, 3, 4, 5, 6]), &[1, 2, 3]).unwrap();
/// assert_eq!(result, expected);
///
/// let result = trilu(&a, -1, false).unwrap();
/// let expected = Tensor::<i128>::new(Some(&[0, 0, 0, 4, 0, 0]), &[1, 2, 3]).unwrap();
/// assert_eq!(result, expected);
///
/// let a = Tensor::<i128>::new(
/// Some(&[1, 2, 3, 4, 5, 6, 7, 8, 9]),
/// &[1, 3, 3],
/// ).unwrap();
/// let result = trilu(&a, 1, true).unwrap();
/// let expected = Tensor::<i128>::new(Some(&[0, 2, 3, 0, 0, 6, 0, 0, 0]), &[1, 3, 3]).unwrap();
/// assert_eq!(result, expected);
///
/// let result = trilu(&a, 1, false).unwrap();
/// let expected = Tensor::<i128>::new(Some(&[1, 2, 0, 4, 5, 6, 7, 8, 9]), &[1, 3, 3]).unwrap();
/// assert_eq!(result, expected);
///
/// let result = trilu(&a, 0, true).unwrap();
/// let expected = Tensor::<i128>::new(Some(&[1, 2, 3, 0, 5, 6, 0, 0, 9]), &[1, 3, 3]).unwrap();
/// assert_eq!(result, expected);
///
/// let result = trilu(&a, 0, false).unwrap();
/// let expected = Tensor::<i128>::new(Some(&[1, 0, 0, 4, 5, 0, 7, 8, 9]), &[1, 3, 3]).unwrap();
/// assert_eq!(result, expected);
///
/// let result = trilu(&a, -1, true).unwrap();
/// let expected = Tensor::<i128>::new(Some(&[1, 2, 3, 4, 5, 6, 0, 8, 9]), &[1, 3, 3]).unwrap();
/// assert_eq!(result, expected);
///
/// let result = trilu(&a, -1, false).unwrap();
/// let expected = Tensor::<i128>::new(Some(&[0, 0, 0, 4, 0, 0, 7, 8, 0]), &[1, 3, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn trilu<T: TensorType + std::marker::Send + std::marker::Sync>(
a: &Tensor<T>,
k: i32,
upper: bool,
) -> Result<Tensor<T>, TensorError> {
let mut output = a.clone();
// Given a 2-D matrix or batches of 2-D matrices, returns the upper or lower triangular part of the tensor(s).
// The attribute “upper” determines whether the upper or lower part is retained.
// If set to true, the upper triangular matrix is retained. Lower triangular matrix is retained otherwise.
// Default value for the “upper” attribute is true. Trilu takes one input tensor of shape [*, N, M], where * is zero or more batch dimensions.
// The upper triangular part consists of the elements on and above the given diagonal (k).
// The lower triangular part consists of elements on and below the diagonal. All other elements in the matrix are set to zero.
let batch_dims = &a.dims()[0..a.dims().len() - 2];
let batch_cartiesian = batch_dims.iter().map(|d| 0..*d).multi_cartesian_product();
for b in batch_cartiesian {
for i in 0..a.dims()[1] {
for j in 0..a.dims()[2] {
let mut coord = b.clone();
coord.push(i);
coord.push(j);
// If k = 0, the triangular part on and above/below the main diagonal is retained.
if upper {
// If upper is set to true, a positive k retains the upper triangular matrix excluding the main diagonal and (k-1) diagonals above it.
if (j as i32) < (i as i32) + k {
output.set(&coord, T::zero().ok_or(TensorError::Unsupported)?);
}
} else {
// If upper is set to false, a positive k retains the lower triangular matrix including the main diagonal and k diagonals above it.
if (j as i32) > (i as i32) + k {
output.set(&coord, T::zero().ok_or(TensorError::Unsupported)?);
}
}
}
}
}
Ok(output)
}
/// IFF operation.
/// # Arguments
/// * `mask` - Tensor of 0s and 1s
@@ -3256,6 +3392,47 @@ pub mod nonlinearities {
.unwrap()
}
/// Elementwise applies hardswish to a tensor of integers.
/// Hardswish is defined as:
// Hardswish(x)={0if x≤3,xif x≥+3,x⋅(x+3)/6otherwise
// Hardswish(x)=⎩
// ⎨
// ⎧0xx⋅(x+3)/6if x≤3,if x≥+3,otherwise
/// # Arguments
///
/// * `a` - Tensor
/// * `scale_input` - Single value
/// * `scale_output` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::tensor::ops::nonlinearities::hardswish;
/// let x = Tensor::<i128>::new(
/// Some(&[-12, -3, 2, 1, 1, 15]),
/// &[2, 3],
/// ).unwrap();
/// let result = hardswish(&x, 1.0);
/// let expected = Tensor::<i128>::new(Some(&[0, 0, 2, 1, 1, 15]), &[2, 3]).unwrap();
///
/// assert_eq!(result, expected);
///
/// ```
pub fn hardswish(a: &Tensor<i128>, scale_input: f64) -> Tensor<i128> {
a.par_enum_map(|_, a_i| {
let kix = (a_i as f64) / scale_input;
let res = if kix <= -3.0 {
0.0
} else if kix >= 3.0 {
kix
} else {
kix * (kix + 3.0) / 6.0
};
let rounded = (res * scale_input).round();
Ok::<_, TensorError>(rounded as i128)
})
.unwrap()
}
/// Elementwise applies exponential to a tensor of integers.
/// # Arguments
///

View File

@@ -200,7 +200,7 @@ mod native_tests {
"1l_tiny_div",
];
const TESTS: [&str; 79] = [
const TESTS: [&str; 91] = [
"1l_mlp", //0
"1l_slice",
"1l_concat",
@@ -284,6 +284,18 @@ mod native_tests {
"bitshift",
"gather_nd",
"scatter_nd",
"celu",
"gru", // 80
"hard_swish", // 81
"hard_max",
"tril", // 83
"triu", // 84
"logsumexp", // 85
"clip",
"mish",
"reducel1",
"reducel2", // 89
"1l_lppool",
];
const WASM_TESTS: [&str; 46] = [
@@ -522,7 +534,7 @@ mod native_tests {
}
});
seq!(N in 0..=78 {
seq!(N in 0..=90 {
#(#[test_case(TESTS[N])])*
#[ignore]