Compare commits

...

5 Commits

Author SHA1 Message Date
github-actions[bot]
c45f04ee5a ci: update version string in docs 2024-05-08 11:31:02 +00:00
dante
5c574adc31 chore: logistic regression example (#792) 2024-05-08 20:30:13 +09:00
dante
749e0ba652 chore: update h2 solidity verifier (#787) 2024-05-03 01:25:14 +01:00
dante
d464ddf6b6 chore: medium sized lstm example (#785) 2024-05-01 16:35:11 +01:00
dante
8f6c0aced5 chore: update tract (#784) 2024-04-30 13:31:33 +01:00
9 changed files with 323 additions and 24 deletions

39
Cargo.lock generated
View File

@@ -1324,6 +1324,12 @@ version = "1.0.17"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0d6ef0072f8a535281e4876be788938b528e9a1d43900b82c2569af7da799125"
[[package]]
name = "dyn-hash"
version = "0.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a650a461c6a8ff1ef205ed9a2ad56579309853fecefc2423f73dced342f92258"
[[package]]
name = "ecc"
version = "0.1.0"
@@ -2270,7 +2276,7 @@ dependencies = [
[[package]]
name = "halo2_solidity_verifier"
version = "0.1.0"
source = "git+https://github.com/alexander-camuto/halo2-solidity-verifier?branch=main#eb04be1f7d005e5b9dd3ff41efa30aeb5e0c34a3"
source = "git+https://github.com/alexander-camuto/halo2-solidity-verifier?branch=main#fd74f1da2ce51664e2d4349965987ee606551060"
dependencies = [
"askama",
"blake2b_simd",
@@ -5476,8 +5482,8 @@ dependencies = [
[[package]]
name = "tract-core"
version = "0.21.3"
source = "git+https://github.com/sonos/tract/?rev=681a096f02c9d7d363102d9fb0e446d1710ac2c8#681a096f02c9d7d363102d9fb0e446d1710ac2c8"
version = "0.21.5-pre"
source = "git+https://github.com/sonos/tract/?rev=05ebf550aa9922b221af4635c21a67a8d2af12a9#05ebf550aa9922b221af4635c21a67a8d2af12a9"
dependencies = [
"anyhow",
"bit-set",
@@ -5500,10 +5506,12 @@ dependencies = [
[[package]]
name = "tract-data"
version = "0.21.3"
source = "git+https://github.com/sonos/tract/?rev=681a096f02c9d7d363102d9fb0e446d1710ac2c8#681a096f02c9d7d363102d9fb0e446d1710ac2c8"
version = "0.21.5-pre"
source = "git+https://github.com/sonos/tract/?rev=05ebf550aa9922b221af4635c21a67a8d2af12a9#05ebf550aa9922b221af4635c21a67a8d2af12a9"
dependencies = [
"anyhow",
"downcast-rs",
"dyn-hash",
"half 2.2.1",
"itertools 0.12.1",
"lazy_static",
@@ -5519,8 +5527,8 @@ dependencies = [
[[package]]
name = "tract-hir"
version = "0.21.3"
source = "git+https://github.com/sonos/tract/?rev=681a096f02c9d7d363102d9fb0e446d1710ac2c8#681a096f02c9d7d363102d9fb0e446d1710ac2c8"
version = "0.21.5-pre"
source = "git+https://github.com/sonos/tract/?rev=05ebf550aa9922b221af4635c21a67a8d2af12a9#05ebf550aa9922b221af4635c21a67a8d2af12a9"
dependencies = [
"derive-new",
"log",
@@ -5529,13 +5537,14 @@ dependencies = [
[[package]]
name = "tract-linalg"
version = "0.21.3"
source = "git+https://github.com/sonos/tract/?rev=681a096f02c9d7d363102d9fb0e446d1710ac2c8#681a096f02c9d7d363102d9fb0e446d1710ac2c8"
version = "0.21.5-pre"
source = "git+https://github.com/sonos/tract/?rev=05ebf550aa9922b221af4635c21a67a8d2af12a9#05ebf550aa9922b221af4635c21a67a8d2af12a9"
dependencies = [
"cc",
"derive-new",
"downcast-rs",
"dyn-clone",
"dyn-hash",
"half 2.2.1",
"lazy_static",
"liquid",
@@ -5553,8 +5562,8 @@ dependencies = [
[[package]]
name = "tract-nnef"
version = "0.21.3"
source = "git+https://github.com/sonos/tract/?rev=681a096f02c9d7d363102d9fb0e446d1710ac2c8#681a096f02c9d7d363102d9fb0e446d1710ac2c8"
version = "0.21.5-pre"
source = "git+https://github.com/sonos/tract/?rev=05ebf550aa9922b221af4635c21a67a8d2af12a9#05ebf550aa9922b221af4635c21a67a8d2af12a9"
dependencies = [
"byteorder",
"flate2",
@@ -5567,8 +5576,8 @@ dependencies = [
[[package]]
name = "tract-onnx"
version = "0.21.3"
source = "git+https://github.com/sonos/tract/?rev=681a096f02c9d7d363102d9fb0e446d1710ac2c8#681a096f02c9d7d363102d9fb0e446d1710ac2c8"
version = "0.21.5-pre"
source = "git+https://github.com/sonos/tract/?rev=05ebf550aa9922b221af4635c21a67a8d2af12a9#05ebf550aa9922b221af4635c21a67a8d2af12a9"
dependencies = [
"bytes",
"derive-new",
@@ -5584,8 +5593,8 @@ dependencies = [
[[package]]
name = "tract-onnx-opl"
version = "0.21.3"
source = "git+https://github.com/sonos/tract/?rev=681a096f02c9d7d363102d9fb0e446d1710ac2c8#681a096f02c9d7d363102d9fb0e446d1710ac2c8"
version = "0.21.5-pre"
source = "git+https://github.com/sonos/tract/?rev=05ebf550aa9922b221af4635c21a67a8d2af12a9#05ebf550aa9922b221af4635c21a67a8d2af12a9"
dependencies = [
"getrandom",
"log",

View File

@@ -81,7 +81,7 @@ pyo3-asyncio = { version = "0.20.0", features = [
"tokio-runtime",
], default_features = false, optional = true }
pyo3-log = { version = "0.9.0", default_features = false, optional = true }
tract-onnx = { git = "https://github.com/sonos/tract/", rev = "681a096f02c9d7d363102d9fb0e446d1710ac2c8", default_features = false, optional = true }
tract-onnx = { git = "https://github.com/sonos/tract/", rev = "05ebf550aa9922b221af4635c21a67a8d2af12a9", default_features = false, optional = true }
tabled = { version = "0.12.0", optional = true }
objc = { version = "0.2.4", optional = true }

View File

@@ -1,4 +1,4 @@
ezkl==0.0.0
ezkl==11.0.4
sphinx
sphinx-rtd-theme
sphinxcontrib-napoleon

View File

@@ -1,7 +1,7 @@
import ezkl
project = 'ezkl'
release = '0.0.0'
release = '11.0.4'
version = release

View File

@@ -0,0 +1,279 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "cf69bb3f-94e6-4dba-92cd-ce08df117d67",
"metadata": {},
"source": [
"## Logistic Regression\n",
"\n",
"\n",
"Sklearn based models are slightly finicky to get into a suitable onnx format. \n",
"This notebook showcases how to do so using the `hummingbird-ml` python package for a Logistic Regression model. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "95613ee9",
"metadata": {},
"outputs": [],
"source": [
"# check if notebook is in colab\n",
"try:\n",
" # install ezkl\n",
" import google.colab\n",
" import subprocess\n",
" import sys\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"hummingbird-ml\"])\n",
"\n",
"# rely on local installation of ezkl if the notebook is not in colab\n",
"except:\n",
" pass\n",
"\n",
"import os\n",
"import torch\n",
"import ezkl\n",
"import json\n",
"from hummingbird.ml import convert\n",
"\n",
"\n",
"# here we create and (potentially train a model)\n",
"\n",
"# make sure you have the dependencies required here already installed\n",
"import numpy as np\n",
"from sklearn.linear_model import LogisticRegression\n",
"X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])\n",
"# y = 1 * x_0 + 2 * x_1 + 3\n",
"y = np.dot(X, np.array([1, 2])) + 3\n",
"reg = LogisticRegression().fit(X, y)\n",
"reg.score(X, y)\n",
"\n",
"circuit = convert(reg, \"torch\", X[:1]).model\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b37637c4",
"metadata": {},
"outputs": [],
"source": [
"model_path = os.path.join('network.onnx')\n",
"compiled_model_path = os.path.join('network.compiled')\n",
"pk_path = os.path.join('test.pk')\n",
"vk_path = os.path.join('test.vk')\n",
"settings_path = os.path.join('settings.json')\n",
"\n",
"witness_path = os.path.join('witness.json')\n",
"data_path = os.path.join('input.json')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "82db373a",
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"# export to onnx format\n",
"# !!!!!!!!!!!!!!!!! This will flash a warning but it is fine !!!!!!!!!!!!!!!!!!!!!\n",
"\n",
"# Input to the model\n",
"shape = X.shape[1:]\n",
"x = torch.rand(1, *shape, requires_grad=True)\n",
"torch_out = circuit(x)\n",
"# Export the model\n",
"torch.onnx.export(circuit, # model being run\n",
" # model input (or a tuple for multiple inputs)\n",
" x,\n",
" # where to save the model (can be a file or file-like object)\n",
" \"network.onnx\",\n",
" export_params=True, # store the trained parameter weights inside the model file\n",
" opset_version=10, # the ONNX version to export the model to\n",
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
" input_names=['input'], # the model's input names\n",
" output_names=['output'], # the model's output names\n",
" dynamic_axes={'input': {0: 'batch_size'}, # variable length axes\n",
" 'output': {0: 'batch_size'}})\n",
"\n",
"d = ((x).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data = dict(input_shapes=[shape],\n",
" input_data=[d],\n",
" output_data=[((o).detach().numpy()).reshape([-1]).tolist() for o in torch_out])\n",
"\n",
"# Serialize data into file:\n",
"json.dump(data, open(\"input.json\", 'w'))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d5e374a2",
"metadata": {},
"outputs": [],
"source": [
"!RUST_LOG=trace\n",
"# TODO: Dictionary outputs\n",
"res = ezkl.gen_settings(model_path, settings_path)\n",
"assert res == True\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cal_path = os.path.join(\"calibration.json\")\n",
"\n",
"data_array = (torch.randn(20, *shape).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data = dict(input_data = [data_array])\n",
"\n",
"# Serialize data into file:\n",
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"res = ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"assert res == True\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3aa4f090",
"metadata": {},
"outputs": [],
"source": [
"res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8b74dcee",
"metadata": {},
"outputs": [],
"source": [
"# srs path\n",
"res = ezkl.get_srs( settings_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "18c8b7c7",
"metadata": {},
"outputs": [],
"source": [
"# now generate the witness file \n",
"\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b1c561a8",
"metadata": {},
"outputs": [],
"source": [
"\n",
"# HERE WE SETUP THE CIRCUIT PARAMS\n",
"# WE GOT KEYS\n",
"# WE GOT CIRCUIT PARAMETERS\n",
"# EVERYTHING ANYONE HAS EVER NEEDED FOR ZK\n",
"\n",
"\n",
"\n",
"res = ezkl.setup(\n",
" compiled_model_path,\n",
" vk_path,\n",
" pk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
"assert os.path.isfile(vk_path)\n",
"assert os.path.isfile(pk_path)\n",
"assert os.path.isfile(settings_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c384cbc8",
"metadata": {},
"outputs": [],
"source": [
"# GENERATE A PROOF\n",
"\n",
"\n",
"proof_path = os.path.join('test.pf')\n",
"\n",
"res = ezkl.prove(\n",
" witness_path,\n",
" compiled_model_path,\n",
" pk_path,\n",
" proof_path,\n",
" \n",
" \"single\",\n",
" )\n",
"\n",
"print(res)\n",
"assert os.path.isfile(proof_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "76f00d41",
"metadata": {},
"outputs": [],
"source": [
"# VERIFY IT\n",
"\n",
"res = ezkl.verify(\n",
" proof_path,\n",
" settings_path,\n",
" vk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
"print(\"verified\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,9 @@
{
"input_data": [
[
1.514470100402832, 1.519423007965088, 1.5182757377624512,
1.5262789726257324, 1.5298409461975098
]
],
"output_data": [[-0.1862019]]
}

Binary file not shown.

View File

@@ -200,7 +200,7 @@ mod native_tests {
"1l_tiny_div",
];
const TESTS: [&str; 92] = [
const TESTS: [&str; 93] = [
"1l_mlp", //0
"1l_slice",
"1l_concat",
@@ -296,7 +296,8 @@ mod native_tests {
"reducel1",
"reducel2", // 89
"1l_lppool",
"lstm_large", // 91
"lstm_large", // 91
"lstm_medium", // 92
];
const WASM_TESTS: [&str; 46] = [
@@ -535,7 +536,7 @@ mod native_tests {
}
});
seq!(N in 0..=91 {
seq!(N in 0..=92 {
#(#[test_case(TESTS[N])])*
#[ignore]
@@ -623,7 +624,7 @@ mod native_tests {
#(#[test_case(TESTS[N])])*
fn mock_large_batch_public_outputs_(test: &str) {
// currently variable output rank is not supported in ONNX
if test != "gather_nd" && test != "lstm_large" {
if test != "gather_nd" && test != "lstm_large" && test != "lstm_medium" {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);

View File

@@ -123,7 +123,7 @@ mod py_tests {
}
}
const TESTS: [&str; 32] = [
const TESTS: [&str; 33] = [
"proof_splitting.ipynb", // 0
"variance.ipynb",
"mnist_gan.ipynb",
@@ -157,6 +157,7 @@ mod py_tests {
"generalized_inverse.ipynb",
"mnist_classifier.ipynb", // 30
"world_rotation.ipynb",
"logistic_regression.ipynb",
];
macro_rules! test_func {
@@ -169,7 +170,7 @@ mod py_tests {
use super::*;
seq!(N in 0..=31 {
seq!(N in 0..=32 {
#(#[test_case(TESTS[N])])*
fn run_notebook_(test: &str) {