Compare commits

...

9 Commits

Author SHA1 Message Date
github-actions[bot]
1da7cac21a ci: update version string in docs 2024-08-04 21:28:53 +00:00
dante
ada45a3197 chore: swap h2 collections hash for rustc hasher (#832) 2024-08-04 17:28:36 -04:00
dante
616b421967 fix: bump compiler to latest to accomodate latest serde diagnostic (#830) 2024-07-25 07:56:21 -04:00
dante
f64f0ecd23 fix: instance order when using processed params (#829) 2024-07-24 07:58:46 -04:00
dante
5be12b7a54 fix: num groups for conv operations should be specified at load time (#828) 2024-07-18 09:58:41 -04:00
dante
2fd877c716 chore: small worm example (#568) 2024-07-15 09:20:37 -04:00
dante
8197340985 chore: const filtering optimizations (#825) 2024-07-12 12:37:02 +01:00
dante
6855ea1947 feat: parallel polynomial reads in halo2 (#826) 2024-07-12 00:33:14 +01:00
dante
2ca57bde2c chore: bump tract (#823) 2024-06-29 01:53:18 +01:00
53 changed files with 2057 additions and 1987 deletions

View File

@@ -22,7 +22,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
- uses: jetli/wasm-pack-action@v0.4.0
@@ -30,7 +30,7 @@ jobs:
run: rustup target add wasm32-unknown-unknown
- name: Add rust-src
run: rustup component add rust-src --toolchain nightly-2024-02-06-x86_64-unknown-linux-gnu
run: rustup component add rust-src --toolchain nightly-2024-07-18-x86_64-unknown-linux-gnu
- name: Install binaryen
run: |
set -e

View File

@@ -11,7 +11,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
- name: nanoGPT Mock

View File

@@ -40,7 +40,7 @@ jobs:
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
@@ -86,7 +86,7 @@ jobs:
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy

View File

@@ -45,7 +45,7 @@ jobs:
steps:
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
- name: Checkout repo
@@ -106,27 +106,27 @@ jobs:
include:
- build: windows-msvc
os: windows-latest
rust: nightly-2024-02-06
rust: nightly-2024-07-18
target: x86_64-pc-windows-msvc
- build: macos
os: macos-13
rust: nightly-2024-02-06
rust: nightly-2024-07-18
target: x86_64-apple-darwin
- build: macos-aarch64
os: macos-13
rust: nightly-2024-02-06
rust: nightly-2024-07-18
target: aarch64-apple-darwin
- build: linux-musl
os: ubuntu-22.04
rust: nightly-2024-02-06
rust: nightly-2024-07-18
target: x86_64-unknown-linux-musl
- build: linux-gnu
os: ubuntu-22.04
rust: nightly-2024-02-06
rust: nightly-2024-07-18
target: x86_64-unknown-linux-gnu
- build: linux-aarch64
os: ubuntu-22.04
rust: nightly-2024-02-06
rust: nightly-2024-07-18
target: aarch64-unknown-linux-gnu
steps:

View File

@@ -26,7 +26,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
- name: Build
@@ -38,7 +38,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
- name: Docs
@@ -50,7 +50,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -73,7 +73,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -106,7 +106,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -139,7 +139,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -172,7 +172,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -189,7 +189,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
- uses: jetli/wasm-pack-action@v0.4.0
@@ -199,7 +199,7 @@ jobs:
- name: Install wasm32-unknown-unknown
run: rustup target add wasm32-unknown-unknown
- name: Add rust-src
run: rustup component add rust-src --toolchain nightly-2024-02-06-x86_64-unknown-linux-gnu
run: rustup component add rust-src --toolchain nightly-2024-07-18-x86_64-unknown-linux-gnu
- name: Run wasm verifier tests
# on mac:
# AR=/opt/homebrew/opt/llvm/bin/llvm-ar CC=/opt/homebrew/opt/llvm/bin/clang wasm-pack test --firefox --headless -- -Z build-std="panic_abort,std" --features web
@@ -212,7 +212,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -229,13 +229,15 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
with:
crate: cargo-nextest
locked: true
# - name: The Worm Mock
# run: cargo nextest run --release --verbose tests::large_mock_::large_tests_5_expects -- --include-ignored
- name: public outputs and tolerance > 0
run: cargo nextest run --release --verbose tests::mock_tolerance_public_outputs_ --test-threads 32
- name: public outputs + batch size == 10
@@ -258,6 +260,8 @@ jobs:
run: cargo nextest run --release --verbose tests::mock_hashed_input_::t --test-threads 32
- name: hashed params
run: cargo nextest run --release --verbose tests::mock_hashed_params_::t --test-threads 32
- name: hashed params public inputs
run: cargo nextest run --release --verbose tests::mock_hashed_params_public_inputs_::t --test-threads 32
- name: hashed outputs
run: cargo nextest run --release --verbose tests::mock_hashed_output_::t --test-threads 32
- name: hashed inputs + params + outputs
@@ -286,7 +290,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -304,7 +308,7 @@ jobs:
node-version: "18.12.1"
cache: "pnpm"
- name: "Add rust-src"
run: rustup component add rust-src --toolchain nightly-2024-02-06-x86_64-unknown-linux-gnu
run: rustup component add rust-src --toolchain nightly-2024-07-18-x86_64-unknown-linux-gnu
- name: Install dependencies for js tests and in-browser-evm-verifier package
run: |
pnpm install --frozen-lockfile
@@ -326,7 +330,7 @@ jobs:
- name: Install solc
run: (hash svm 2>/dev/null || cargo install svm-rs) && svm install 0.8.20 && solc --version
- name: Install Anvil
run: cargo install --git https://github.com/foundry-rs/foundry --rev c2233ec9fe61e0920c61c6d779bc707252852037 --profile local --locked anvil --force
run: cargo install --git https://github.com/foundry-rs/foundry --rev 62cdea8ff9e6efef011f77e295823b5f2dbeb3a1 --locked anvil --force
- name: KZG prove and verify tests (EVM + VK rendered seperately)
run: cargo nextest run --release --verbose tests_evm::kzg_evm_prove_and_verify_render_seperately_ --test-threads 1
- name: KZG prove and verify tests (EVM + kzg all)
@@ -365,7 +369,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
- uses: jetli/wasm-pack-action@v0.4.0
@@ -373,7 +377,7 @@ jobs:
run: rustup target add wasm32-unknown-unknown
- name: Add rust-src
run: rustup component add rust-src --toolchain nightly-2024-02-06-x86_64-unknown-linux-gnu
run: rustup component add rust-src --toolchain nightly-2024-07-18-x86_64-unknown-linux-gnu
- uses: actions/checkout@v3
- name: Use pnpm 8
uses: pnpm/action-setup@v2
@@ -439,11 +443,11 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
- name: Add rust-src
run: rustup component add rust-src --toolchain nightly-2024-02-06-x86_64-unknown-linux-gnu
run: rustup component add rust-src --toolchain nightly-2024-07-18-x86_64-unknown-linux-gnu
- uses: actions/checkout@v3
- uses: baptiste0928/cargo-install@v1
with:
@@ -473,7 +477,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -491,7 +495,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -508,7 +512,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -525,7 +529,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -535,7 +539,7 @@ jobs:
- name: Install solc
run: (hash svm 2>/dev/null || cargo install svm-rs) && svm install 0.8.20 && solc --version
- name: Install Anvil
run: cargo install --git https://github.com/foundry-rs/foundry --rev c2233ec9fe61e0920c61c6d779bc707252852037 --profile local --locked anvil --force
run: cargo install --git https://github.com/foundry-rs/foundry --rev 62cdea8ff9e6efef011f77e295823b5f2dbeb3a1 --locked anvil --force
- name: KZG prove and verify aggr tests
run: cargo nextest run --release --verbose tests_evm::kzg_evm_aggr_prove_and_verify_::t --test-threads 4 -- --include-ignored
@@ -546,7 +550,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -566,7 +570,7 @@ jobs:
python-version: "3.12"
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
- name: Install cmake
@@ -576,7 +580,7 @@ jobs:
- name: Setup Virtual Env and Install python dependencies
run: python -m venv .env --clear; source .env/bin/activate; pip install -r requirements.txt;
- name: Install Anvil
run: cargo install --git https://github.com/foundry-rs/foundry --rev c2233ec9fe61e0920c61c6d779bc707252852037 --profile local --locked anvil --force
run: cargo install --git https://github.com/foundry-rs/foundry --rev 62cdea8ff9e6efef011f77e295823b5f2dbeb3a1 --locked anvil --force
- name: Build python ezkl
run: source .env/bin/activate; unset CONDA_PREFIX; maturin develop --features python-bindings --release
- name: Run pytest
@@ -592,7 +596,7 @@ jobs:
python-version: "3.12"
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -641,7 +645,7 @@ jobs:
python-version: "3.11"
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-02-06
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -651,7 +655,7 @@ jobs:
- name: Install solc
run: (hash svm 2>/dev/null || cargo install svm-rs) && svm install 0.8.20 && solc --version
- name: Install Anvil
run: cargo install --git https://github.com/foundry-rs/foundry --rev c2233ec9fe61e0920c61c6d779bc707252852037 --profile local --locked anvil --force
run: cargo install --git https://github.com/foundry-rs/foundry --rev 62cdea8ff9e6efef011f77e295823b5f2dbeb3a1 --locked anvil --force
- name: Install pip
run: python -m ensurepip --upgrade
- name: Setup Virtual Env and Install python dependencies

545
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -39,7 +39,6 @@ snark-verifier = { git = "https://github.com/zkonduit/snark-verifier", branch =
halo2_solidity_verifier = { git = "https://github.com/alexander-camuto/halo2-solidity-verifier", branch = "main" }
maybe-rayon = { version = "0.1.1", default_features = false }
bincode = { version = "1.3.3", default_features = false }
ark-std = { version = "^0.3.0", default-features = false }
unzip-n = "0.1.2"
num = "0.4.1"
portable-atomic = "1.6.0"
@@ -63,16 +62,13 @@ reqwest = { version = "0.12.4", default-features = false, features = [
openssl = { version = "0.10.55", features = ["vendored"] }
tokio-postgres = "0.7.10"
pg_bigdecimal = "0.1.5"
futures-util = "0.3.30"
lazy_static = "1.4.0"
colored_json = { version = "3.0.1", default_features = false, optional = true }
plotters = { version = "0.3.0", default_features = false, optional = true }
regex = { version = "1", default_features = false }
tokio = { version = "1.35", default_features = false, features = [
"macros",
"rt-multi-thread"
] }
tokio-util = { version = "0.7.9", features = ["codec"] }
pyo3 = { version = "0.21.2", features = [
"extension-module",
"abi3-py37",
@@ -83,9 +79,8 @@ pyo3-asyncio = { git = "https://github.com/jopemachine/pyo3-asyncio/", branch="m
"tokio-runtime",
], default_features = false, optional = true }
pyo3-log = { version = "0.10.0", default_features = false, optional = true }
tract-onnx = { git = "https://github.com/sonos/tract/", rev = "05ebf550aa9922b221af4635c21a67a8d2af12a9", default_features = false, optional = true }
tract-onnx = { git = "https://github.com/sonos/tract/", rev = "40c64319291184814d9fea5fdf4fa16f5a4f7116", default_features = false, optional = true }
tabled = { version = "0.12.0", optional = true }
objc = { version = "0.2.4", optional = true }
@@ -108,8 +103,10 @@ console_error_panic_hook = "0.1.7"
wasm-bindgen-console-logger = "0.1.1"
[target.'cfg(not(all(target_arch = "wasm32", target_os = "unknown")))'.dev-dependencies]
criterion = { version = "0.5.1", features = ["html_reports"] }
[dev-dependencies]
criterion = { version = "0.3", features = ["html_reports"] }
tempfile = "3.3.0"
lazy_static = "1.4.0"
mnist = "0.5"
@@ -180,7 +177,7 @@ required-features = ["ezkl"]
[features]
web = ["wasm-bindgen-rayon"]
default = ["ezkl", "mv-lookup", "no-banner"]
default = ["ezkl", "mv-lookup", "no-banner", "parallel-poly-read"]
onnx = ["dep:tract-onnx"]
python-bindings = ["pyo3", "pyo3-log", "pyo3-asyncio"]
ezkl = [
@@ -194,6 +191,7 @@ ezkl = [
"colored_json",
"halo2_proofs/circuit-params",
]
parallel-poly-read = ["halo2_proofs/parallel-poly-read"]
mv-lookup = [
"halo2_proofs/mv-lookup",
"snark-verifier/mv-lookup",
@@ -211,7 +209,7 @@ metal = ["dep:metal", "dep:objc"]
icicle = { git = "https://github.com/ingonyama-zk/icicle?rev=45b00fb", package = "icicle", branch = "fix/vhnat/ezkl-build-fix" }
[patch.'https://github.com/zkonduit/halo2']
halo2_proofs = { git = "https://github.com/zkonduit/halo2?branch=ac/optional-selector-poly#54f54453cf186aa5d89579c4e7663f9a27cfb89a", package = "halo2_proofs", branch = "ac/optional-selector-poly" }
halo2_proofs = { git = "https://github.com/zkonduit/halo2#098ac0ef3b29255e0e2524ecbb4e7e325ae6e7fd", package = "halo2_proofs" }
[profile.release]

View File

@@ -72,6 +72,7 @@ impl Circuit<Fr> for MyCircuit {
Box::new(PolyOp::Conv {
padding: vec![(0, 0)],
stride: vec![1; 2],
group: 1,
}),
)
.unwrap();

View File

@@ -2,6 +2,7 @@ use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Through
use ezkl::circuit::region::RegionCtx;
use ezkl::circuit::table::Range;
use ezkl::circuit::{ops::lookup::LookupOp, BaseConfig as Config, CheckMode};
use ezkl::fieldutils::IntegerRep;
use ezkl::pfsys::create_proof_circuit;
use ezkl::pfsys::TranscriptType;
use ezkl::pfsys::{create_keys, srs::gen_srs};
@@ -84,7 +85,7 @@ fn runrelu(c: &mut Criterion) {
};
let input: Tensor<Value<Fr>> =
Tensor::<i32>::from((0..len).map(|_| rng.gen_range(0..10))).into();
Tensor::<IntegerRep>::from((0..len).map(|_| rng.gen_range(0..10))).into();
let circuit = NLCircuit {
input: ValTensor::from(input.clone()),

View File

@@ -1,4 +1,4 @@
ezkl==0.0.0
ezkl==12.0.2
sphinx
sphinx-rtd-theme
sphinxcontrib-napoleon

View File

@@ -1,7 +1,7 @@
import ezkl
project = 'ezkl'
release = '0.0.0'
release = '12.0.2'
version = release

View File

@@ -2,8 +2,7 @@ use ezkl::circuit::region::RegionCtx;
use ezkl::circuit::{
ops::lookup::LookupOp, ops::poly::PolyOp, BaseConfig as PolyConfig, CheckMode,
};
use ezkl::fieldutils;
use ezkl::fieldutils::i32_to_felt;
use ezkl::fieldutils::{self, integer_rep_to_felt, IntegerRep};
use ezkl::tensor::*;
use halo2_proofs::dev::MockProver;
use halo2_proofs::poly::commitment::Params;
@@ -42,8 +41,8 @@ const NUM_INNER_COLS: usize = 1;
struct Config<
const LEN: usize, //LEN = CHOUT x OH x OW flattened //not supported yet in rust stable
const CLASSES: usize,
const LOOKUP_MIN: i64,
const LOOKUP_MAX: i64,
const LOOKUP_MIN: IntegerRep,
const LOOKUP_MAX: IntegerRep,
// Convolution
const KERNEL_HEIGHT: usize,
const KERNEL_WIDTH: usize,
@@ -66,8 +65,8 @@ struct Config<
struct MyCircuit<
const LEN: usize, //LEN = CHOUT x OH x OW flattened
const CLASSES: usize,
const LOOKUP_MIN: i64,
const LOOKUP_MAX: i64,
const LOOKUP_MIN: IntegerRep,
const LOOKUP_MAX: IntegerRep,
// Convolution
const KERNEL_HEIGHT: usize,
const KERNEL_WIDTH: usize,
@@ -90,8 +89,8 @@ struct MyCircuit<
impl<
const LEN: usize,
const CLASSES: usize,
const LOOKUP_MIN: i64,
const LOOKUP_MAX: i64,
const LOOKUP_MIN: IntegerRep,
const LOOKUP_MAX: IntegerRep,
// Convolution
const KERNEL_HEIGHT: usize,
const KERNEL_WIDTH: usize,
@@ -205,6 +204,7 @@ where
let op = PolyOp::Conv {
padding: vec![(PADDING, PADDING); 2],
stride: vec![STRIDE; 2],
group: 1,
};
let x = config
.layer_config
@@ -315,7 +315,11 @@ pub fn runconv() {
.test_set_length(10_000)
.finalize();
let mut train_data = Tensor::from(trn_img.iter().map(|x| i32_to_felt::<F>(*x as i32 / 16)));
let mut train_data = Tensor::from(
trn_img
.iter()
.map(|x| integer_rep_to_felt::<F>(*x as IntegerRep / 16)),
);
train_data.reshape(&[50_000, 28, 28]).unwrap();
let mut train_labels = Tensor::from(trn_lbl.iter().map(|x| *x as f32));
@@ -343,8 +347,8 @@ pub fn runconv() {
.map(|fl| {
let dx = fl * 32_f32;
let rounded = dx.round();
let integral: i32 = unsafe { rounded.to_int_unchecked() };
fieldutils::i32_to_felt(integral)
let integral: IntegerRep = unsafe { rounded.to_int_unchecked() };
fieldutils::integer_rep_to_felt(integral)
}),
);
@@ -355,7 +359,8 @@ pub fn runconv() {
let l0_kernels = l0_kernels.try_into().unwrap();
let mut l0_bias = Tensor::<F>::from((0..OUT_CHANNELS).map(|_| fieldutils::i32_to_felt(0)));
let mut l0_bias =
Tensor::<F>::from((0..OUT_CHANNELS).map(|_| fieldutils::integer_rep_to_felt(0)));
l0_bias.set_visibility(&ezkl::graph::Visibility::Private);
let l0_bias = l0_bias.try_into().unwrap();
@@ -363,8 +368,8 @@ pub fn runconv() {
let mut l2_biases = Tensor::<F>::from(myparams.biases.into_iter().map(|fl| {
let dx = fl * 32_f32;
let rounded = dx.round();
let integral: i32 = unsafe { rounded.to_int_unchecked() };
fieldutils::i32_to_felt(integral)
let integral: IntegerRep = unsafe { rounded.to_int_unchecked() };
fieldutils::integer_rep_to_felt(integral)
}));
l2_biases.set_visibility(&ezkl::graph::Visibility::Private);
l2_biases.reshape(&[l2_biases.len(), 1]).unwrap();
@@ -374,8 +379,8 @@ pub fn runconv() {
let mut l2_weights = Tensor::<F>::from(myparams.weights.into_iter().flatten().map(|fl| {
let dx = fl * 32_f32;
let rounded = dx.round();
let integral: i32 = unsafe { rounded.to_int_unchecked() };
fieldutils::i32_to_felt(integral)
let integral: IntegerRep = unsafe { rounded.to_int_unchecked() };
fieldutils::integer_rep_to_felt(integral)
}));
l2_weights.set_visibility(&ezkl::graph::Visibility::Private);
l2_weights.reshape(&[CLASSES, LEN]).unwrap();
@@ -401,13 +406,13 @@ pub fn runconv() {
l2_params: [l2_weights, l2_biases],
};
let public_input: Tensor<i32> = vec![
-25124i32, -19304, -16668, -4399, -6209, -4548, -2317, -8349, -6117, -23461,
let public_input: Tensor<IntegerRep> = vec![
-25124, -19304, -16668, -4399, -6209, -4548, -2317, -8349, -6117, -23461,
]
.into_iter()
.into();
let pi_inner: Tensor<F> = public_input.map(i32_to_felt::<F>);
let pi_inner: Tensor<F> = public_input.map(integer_rep_to_felt::<F>);
println!("MOCK PROVING");
let now = Instant::now();

View File

@@ -2,7 +2,7 @@ use ezkl::circuit::region::RegionCtx;
use ezkl::circuit::{
ops::lookup::LookupOp, ops::poly::PolyOp, BaseConfig as PolyConfig, CheckMode,
};
use ezkl::fieldutils::i32_to_felt;
use ezkl::fieldutils::{integer_rep_to_felt, IntegerRep};
use ezkl::tensor::*;
use halo2_proofs::dev::MockProver;
use halo2_proofs::{
@@ -23,8 +23,8 @@ struct MyConfig {
#[derive(Clone)]
struct MyCircuit<
const LEN: usize, //LEN = CHOUT x OH x OW flattened
const LOOKUP_MIN: i64,
const LOOKUP_MAX: i64,
const LOOKUP_MIN: IntegerRep,
const LOOKUP_MAX: IntegerRep,
> {
// Given the stateless MyConfig type information, a DNN trace is determined by its input and the parameters of its layers.
// Computing the trace still requires a forward pass. The intermediate activations are stored only by the layouter.
@@ -34,7 +34,7 @@ struct MyCircuit<
_marker: PhantomData<F>,
}
impl<const LEN: usize, const LOOKUP_MIN: i64, const LOOKUP_MAX: i64> Circuit<F>
impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRep> Circuit<F>
for MyCircuit<LEN, LOOKUP_MIN, LOOKUP_MAX>
{
type Config = MyConfig;
@@ -215,33 +215,33 @@ pub fn runmlp() {
#[cfg(not(target_arch = "wasm32"))]
env_logger::init();
// parameters
let mut l0_kernel: Tensor<F> = Tensor::<i32>::new(
let mut l0_kernel: Tensor<F> = Tensor::<IntegerRep>::new(
Some(&[10, 0, 0, -1, 0, 10, 1, 0, 0, 1, 10, 0, 1, 0, 0, 10]),
&[4, 4],
)
.unwrap()
.map(i32_to_felt);
.map(integer_rep_to_felt);
l0_kernel.set_visibility(&ezkl::graph::Visibility::Private);
let mut l0_bias: Tensor<F> = Tensor::<i32>::new(Some(&[0, 0, 0, 1]), &[4, 1])
let mut l0_bias: Tensor<F> = Tensor::<IntegerRep>::new(Some(&[0, 0, 0, 1]), &[4, 1])
.unwrap()
.map(i32_to_felt);
.map(integer_rep_to_felt);
l0_bias.set_visibility(&ezkl::graph::Visibility::Private);
let mut l2_kernel: Tensor<F> = Tensor::<i32>::new(
let mut l2_kernel: Tensor<F> = Tensor::<IntegerRep>::new(
Some(&[0, 3, 10, -1, 0, 10, 1, 0, 0, 1, 0, 12, 1, -2, 32, 0]),
&[4, 4],
)
.unwrap()
.map(i32_to_felt);
.map(integer_rep_to_felt);
l2_kernel.set_visibility(&ezkl::graph::Visibility::Private);
// input data, with 1 padding to allow for bias
let input: Tensor<Value<F>> = Tensor::<i32>::new(Some(&[-30, -21, 11, 40]), &[4, 1])
let input: Tensor<Value<F>> = Tensor::<IntegerRep>::new(Some(&[-30, -21, 11, 40]), &[4, 1])
.unwrap()
.into();
let mut l2_bias: Tensor<F> = Tensor::<i32>::new(Some(&[0, 0, 0, 1]), &[4, 1])
let mut l2_bias: Tensor<F> = Tensor::<IntegerRep>::new(Some(&[0, 0, 0, 1]), &[4, 1])
.unwrap()
.map(i32_to_felt);
.map(integer_rep_to_felt);
l2_bias.set_visibility(&ezkl::graph::Visibility::Private);
let circuit = MyCircuit::<4, -8192, 8192> {
@@ -251,12 +251,12 @@ pub fn runmlp() {
_marker: PhantomData,
};
let public_input: Vec<i32> = unsafe {
let public_input: Vec<IntegerRep> = unsafe {
vec![
(531f32 / 128f32).round().to_int_unchecked::<i32>(),
(103f32 / 128f32).round().to_int_unchecked::<i32>(),
(4469f32 / 128f32).round().to_int_unchecked::<i32>(),
(2849f32 / 128f32).to_int_unchecked::<i32>(),
(531f32 / 128f32).round().to_int_unchecked::<IntegerRep>(),
(103f32 / 128f32).round().to_int_unchecked::<IntegerRep>(),
(4469f32 / 128f32).round().to_int_unchecked::<IntegerRep>(),
(2849f32 / 128f32).to_int_unchecked::<IntegerRep>(),
]
};
@@ -265,7 +265,10 @@ pub fn runmlp() {
let prover = MockProver::run(
K as u32,
&circuit,
vec![public_input.iter().map(|x| i32_to_felt::<F>(*x)).collect()],
vec![public_input
.iter()
.map(|x| integer_rep_to_felt::<F>(*x))
.collect()],
)
.unwrap();
prover.assert_satisfied();

View File

@@ -39,7 +39,7 @@
"import json\n",
"import numpy as np\n",
"from sklearn.svm import SVC\n",
"import sk2torch\n",
"from hummingbird.ml import convert\n",
"import torch\n",
"import ezkl\n",
"import os\n",
@@ -59,11 +59,11 @@
"# Train an SVM on the data and wrap it in PyTorch.\n",
"sk_model = SVC(probability=True)\n",
"sk_model.fit(xs, ys)\n",
"model = sk2torch.wrap(sk_model)\n",
"\n",
"model = convert(sk_model, \"torch\").model\n",
"\n",
"\n",
"\n",
"model\n",
"\n"
]
},
@@ -84,33 +84,6 @@
"data_path = os.path.join('input.json')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7f0ca328",
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"# Create a coordinate grid to compute a vector field on.\n",
"spaced = np.linspace(-2, 2, num=25)\n",
"grid_xs = torch.tensor([[x, y] for x in spaced for y in spaced], requires_grad=True)\n",
"\n",
"\n",
"# Compute the gradients of the SVM output.\n",
"outputs = model.predict_proba(grid_xs)[:, 1]\n",
"(input_grads,) = torch.autograd.grad(outputs.sum(), (grid_xs,))\n",
"\n",
"\n",
"# Create a quiver plot of the vector field.\n",
"plt.quiver(\n",
" grid_xs[:, 0].detach().numpy(),\n",
" grid_xs[:, 1].detach().numpy(),\n",
" input_grads[:, 0].detach().numpy(),\n",
" input_grads[:, 1].detach().numpy(),\n",
")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -119,14 +92,14 @@
"outputs": [],
"source": [
"\n",
"\n",
"spaced = np.linspace(-2, 2, num=25)\n",
"grid_xs = torch.tensor([[x, y] for x in spaced for y in spaced], requires_grad=True)\n",
"# export to onnx format\n",
"# !!!!!!!!!!!!!!!!! This will flash a warning but it is fine !!!!!!!!!!!!!!!!!!!!!\n",
"\n",
"# Input to the model\n",
"shape = xs.shape[1:]\n",
"x = grid_xs[0:1]\n",
"torch_out = model.predict(x)\n",
"# Export the model\n",
"torch.onnx.export(model, # model being run\n",
" # model input (or a tuple for multiple inputs)\n",
@@ -143,9 +116,7 @@
"\n",
"d = ((x).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data = dict(input_shapes=[shape],\n",
" input_data=[d],\n",
" output_data=[o.reshape([-1]).tolist() for o in torch_out])\n",
"data = dict(input_data=[d])\n",
"\n",
"# Serialize data into file:\n",
"json.dump(data, open(\"input.json\", 'w'))\n"
@@ -167,6 +138,7 @@
{
"cell_type": "code",
"execution_count": null,
"id": "0bee4d7f",
"metadata": {},
"outputs": [],
"source": [
@@ -220,7 +192,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": null,
"id": "b1c561a8",
"metadata": {},
"outputs": [],
@@ -441,9 +413,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
}

Binary file not shown.

View File

@@ -0,0 +1 @@
{"run_args":{"tolerance":{"val":0.0,"scale":1.0},"input_scale":7,"param_scale":7,"scale_rebase_multiplier":10,"lookup_range":[0,0],"logrows":13,"variables":[["batch_size",1]],"input_visibility":"Private","output_visibility":"Public","param_visibility":"Private"},"num_constraints":5619,"total_const_size":513,"model_instance_shapes":[[1,3,10,10]],"model_output_scales":[14],"model_input_scales":[7],"module_sizes":{"kzg":[],"poseidon":[0,[0]],"elgamal":[0,[0]]},"required_lookups":[],"check_mode":"UNSAFE","version":"0.0.0","num_blinding_factors":null}

File diff suppressed because one or more lines are too long

Binary file not shown.

View File

@@ -0,0 +1 @@
network.onnx filter=lfs diff=lfs merge=lfs -text

View File

@@ -0,0 +1,47 @@
## The worm
This is an onnx file for a [WormVAE](https://github.com/TuragaLab/wormvae?tab=readme-ov-file) model, which is a VAE / latent-space representation of the C. elegans connectome.
The model "is a large-scale latent variable model with a very high-dimensional latent space
consisting of voltage dynamics of 300 neurons over 5 minutes of time at the simulation frequency
of 160 Hz. The generative model for these latent variables is described by stochastic differential
equations modeling the nonlinear dynamics of the network activity." (see [here](https://openreview.net/pdf?id=CJzi3dRlJE-)).
In effect this is a generative model for a worm's voltage dynamics, which can be used to generate new worm-like voltage dynamics given previous connectome state.
Using ezkl you can create a zk circuit equivalent to the wormvae model, allowing you to "prove" execution of the worm model. If you're feeling particularly adventurous, you can also use the zk circuit to generate new worm-state that can be verified on chain.
To do so you'll first want to fetch the files using git-lfs (as the onnx file is too large to be stored in git).
```bash
git lfs fetch --all
```
You'll then want to use the usual ezkl loop to generate the zk circuit. We recommend using fixed visibility for the model parameters, as the model is quite large and this will prune the circuit significantly.
```bash
ezkl gen-settings --param-visibility=fixed
cp input.json calibration.json
ezkl calibrate-settings
ezkl compile-circuit
ezkl gen-witness
ezkl prove
```
You might also need to aggregate the proof to get it to fit on chain.
```bash
ezkl aggregate
```
You can then create a smart contract that verifies this aggregate proof
```bash
ezkl create-evm-verifier-aggr
```
This can then be deployed on the chain of your choice.
> Note: the model is large and thus we recommend a machine with at least 512GB of RAM to run the above commands. If you're ever compute constrained you can always use the lilith service to generate the zk circuit. Message us on discord or telegram for more details :)

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:2f88c5901d3768ec21e3cf2f2840d255e84fa13c364df86b24d960cca3333769
size 82095882

View File

@@ -0,0 +1 @@
{"run_args":{"tolerance":{"val":0.0,"scale":1.0},"input_scale":0,"param_scale":6,"scale_rebase_multiplier":1,"lookup_range":[-32768,32768],"logrows":17,"variables":[["batch_size",1]],"input_visibility":"Private","output_visibility":"Public","param_visibility":"Fixed"},"num_constraints":367422820,"total_const_size":365577160,"model_instance_shapes":[[1,300,1200]],"model_output_scales":[6],"model_input_scales":[0,0,0],"module_sizes":{"kzg":[],"poseidon":[0,[0]],"elgamal":[0,[0]]},"required_lookups":[{"Div":{"denom":64.0}},"ReLU",{"Ln":{"scale":64.0}},{"Exp":{"scale":64.0}}],"check_mode":"UNSAFE","version":"0.0.0","num_blinding_factors":null}

View File

@@ -1,3 +1,3 @@
[toolchain]
channel = "nightly-2024-02-06"
channel = "nightly-2024-07-18"
components = ["rustfmt", "clippy"]

View File

@@ -22,7 +22,7 @@ use crate::{
table::{Range, RangeCheck, Table},
utils,
},
tensor::{IntoI64, Tensor, TensorType, ValTensor, VarTensor},
tensor::{Tensor, TensorType, ValTensor, VarTensor},
};
use std::{collections::BTreeMap, marker::PhantomData};
@@ -327,7 +327,7 @@ pub struct BaseConfig<F: PrimeField + TensorType + PartialOrd> {
_marker: PhantomData<F>,
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash + IntoI64> BaseConfig<F> {
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
/// Returns a new [BaseConfig] with no inputs, no selectors, and no tables.
pub fn dummy(col_size: usize, num_inner_cols: usize) -> Self {
Self {

View File

@@ -1,6 +1,6 @@
use std::convert::Infallible;
use crate::tensor::TensorError;
use crate::{fieldutils::IntegerRep, tensor::TensorError};
use halo2_proofs::plonk::Error as PlonkError;
use thiserror::Error;
@@ -57,7 +57,7 @@ pub enum CircuitError {
InvalidConversion(#[from] Infallible),
/// Invalid min/max lookup range
#[error("invalid min/max lookup range: min: {0}, max: {1}")]
InvalidMinMaxRange(i64, i64),
InvalidMinMaxRange(IntegerRep, IntegerRep),
/// Missing product in einsum
#[error("missing product in einsum")]
MissingEinsumProduct,
@@ -81,7 +81,7 @@ pub enum CircuitError {
MissingSelectors(String),
/// Table lookup error
#[error("value ({0}) out of range: ({1}, {2})")]
TableOOR(i64, i64, i64),
TableOOR(IntegerRep, IntegerRep, IntegerRep),
/// Loookup not configured
#[error("lookup not configured: {0}")]
LookupNotConfigured(String),

View File

@@ -1,7 +1,7 @@
use super::*;
use crate::{
circuit::{layouts, utils, Tolerance},
fieldutils::i64_to_felt,
fieldutils::integer_rep_to_felt,
graph::multiplier_to_scale,
tensor::{self, Tensor, TensorType, ValTensor},
};
@@ -71,7 +71,7 @@ pub enum HybridOp {
},
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash + IntoI64> Op<F> for HybridOp {
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash > Op<F> for HybridOp {
///
fn requires_homogenous_input_scales(&self) -> Vec<usize> {
match self {
@@ -184,8 +184,8 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash + IntoI64> Op<F>
config,
region,
values[..].try_into()?,
i64_to_felt(input_scale.0 as i64),
i64_to_felt(output_scale.0 as i64),
integer_rep_to_felt(input_scale.0 as i128),
integer_rep_to_felt(output_scale.0 as i128),
)?
} else {
layouts::nonlinearity(
@@ -209,7 +209,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash + IntoI64> Op<F>
config,
region,
values[..].try_into()?,
i64_to_felt(denom.0 as i64),
integer_rep_to_felt(denom.0 as i128),
)?
} else {
layouts::nonlinearity(

File diff suppressed because it is too large Load Diff

View File

@@ -3,9 +3,9 @@ use serde::{Deserialize, Serialize};
use crate::{
circuit::{layouts, table::Range, utils},
fieldutils::{felt_to_i64, i64_to_felt},
fieldutils::{felt_to_integer_rep, integer_rep_to_felt, IntegerRep},
graph::multiplier_to_scale,
tensor::{self, IntoI64, Tensor, TensorError, TensorType},
tensor::{self, Tensor, TensorError, TensorType},
};
use super::Op;
@@ -131,16 +131,16 @@ impl LookupOp {
/// Returns the range of values that can be represented by the table
pub fn bit_range(max_len: usize) -> Range {
let range = (max_len - 1) as f64 / 2_f64;
let range = range as i64;
let range = range as IntegerRep;
(-range, range)
}
/// Matches a [Op] to an operation in the `tensor::ops` module.
pub(crate) fn f<F: PrimeField + TensorType + PartialOrd + std::hash::Hash + IntoI64>(
pub(crate) fn f<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
&self,
x: &[Tensor<F>],
) -> Result<ForwardResult<F>, TensorError> {
let x = x[0].clone().map(|x| felt_to_i64(x));
let x = x[0].clone().map(|x| felt_to_integer_rep(x));
let res = match &self {
LookupOp::Abs => Ok(tensor::ops::abs(&x)?),
LookupOp::Ceil { scale } => Ok(tensor::ops::nonlinearities::ceil(&x, scale.into())),
@@ -227,13 +227,13 @@ impl LookupOp {
}
}?;
let output = res.map(|x| i64_to_felt(x));
let output = res.map(|x| integer_rep_to_felt(x));
Ok(ForwardResult { output })
}
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash + IntoI64> Op<F> for LookupOp {
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for LookupOp {
/// Returns a reference to the Any trait.
fn as_any(&self) -> &dyn Any {
self

View File

@@ -4,7 +4,7 @@ use serde::{Deserialize, Serialize};
use crate::{
graph::quantize_tensor,
tensor::{self, IntoI64, Tensor, TensorType, ValTensor},
tensor::{self, Tensor, TensorType, ValTensor},
};
use halo2curves::ff::PrimeField;
@@ -31,12 +31,12 @@ pub use errors::CircuitError;
/// A struct representing the result of a forward pass.
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
pub struct ForwardResult<F: PrimeField + TensorType + PartialOrd + std::hash::Hash + IntoI64> {
pub struct ForwardResult<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> {
pub(crate) output: Tensor<F>,
}
/// A trait representing operations that can be represented as constraints in a circuit.
pub trait Op<F: PrimeField + TensorType + PartialOrd + std::hash::Hash + IntoI64>:
pub trait Op<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>:
std::fmt::Debug + Send + Sync + Any
{
/// Returns a string representation of the operation.
@@ -75,7 +75,7 @@ pub trait Op<F: PrimeField + TensorType + PartialOrd + std::hash::Hash + IntoI64
fn as_any(&self) -> &dyn Any;
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash + IntoI64> Clone for Box<dyn Op<F>> {
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Clone for Box<dyn Op<F>> {
fn clone(&self) -> Self {
self.clone_dyn()
}
@@ -142,7 +142,7 @@ pub struct Input {
pub datum_type: InputType,
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash + IntoI64> Op<F> for Input {
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Input {
fn out_scale(&self, _: Vec<crate::Scale>) -> Result<crate::Scale, CircuitError> {
Ok(self.scale)
}
@@ -197,7 +197,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash + IntoI64> Op<F>
#[derive(Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, Serialize, Deserialize)]
pub struct Unknown;
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash + IntoI64> Op<F> for Unknown {
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Unknown {
fn out_scale(&self, _: Vec<crate::Scale>) -> Result<crate::Scale, CircuitError> {
Ok(0)
}
@@ -224,7 +224,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash + IntoI64> Op<F>
///
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct Constant<F: PrimeField + TensorType + PartialOrd + std::hash::Hash + IntoI64> {
pub struct Constant<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> {
///
pub quantized_values: Tensor<F>,
///
@@ -234,7 +234,7 @@ pub struct Constant<F: PrimeField + TensorType + PartialOrd + std::hash::Hash +
pub pre_assigned_val: Option<ValTensor<F>>,
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash + IntoI64> Constant<F> {
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Constant<F> {
///
pub fn new(quantized_values: Tensor<F>, raw_values: Tensor<f32>) -> Self {
Self {
@@ -267,8 +267,7 @@ impl<
+ PartialOrd
+ std::hash::Hash
+ Serialize
+ for<'de> Deserialize<'de>
+ IntoI64,
+ for<'de> Deserialize<'de>,
> Op<F> for Constant<F>
{
fn as_any(&self) -> &dyn Any {

View File

@@ -33,6 +33,7 @@ pub enum PolyOp {
Conv {
padding: Vec<(usize, usize)>,
stride: Vec<usize>,
group: usize,
},
Downsample {
axis: usize,
@@ -43,6 +44,7 @@ pub enum PolyOp {
padding: Vec<(usize, usize)>,
output_padding: Vec<usize>,
stride: Vec<usize>,
group: usize,
},
Add,
Sub,
@@ -98,7 +100,7 @@ impl<
+ std::hash::Hash
+ Serialize
+ for<'de> Deserialize<'de>
+ IntoI64,
,
> Op<F> for PolyOp
{
/// Returns a reference to the Any trait.
@@ -148,17 +150,25 @@ impl<
PolyOp::Sum { axes } => format!("SUM (axes={:?})", axes),
PolyOp::Prod { .. } => "PROD".into(),
PolyOp::Pow(_) => "POW".into(),
PolyOp::Conv { stride, padding } => {
format!("CONV (stride={:?}, padding={:?})", stride, padding)
PolyOp::Conv {
stride,
padding,
group,
} => {
format!(
"CONV (stride={:?}, padding={:?}, group={})",
stride, padding, group
)
}
PolyOp::DeConv {
stride,
padding,
output_padding,
group,
} => {
format!(
"DECONV (stride={:?}, padding={:?}, output_padding={:?})",
stride, padding, output_padding
"DECONV (stride={:?}, padding={:?}, output_padding={:?}, group={})",
stride, padding, output_padding, group
)
}
PolyOp::Concat { axis } => format!("CONCAT (axis={})", axis),
@@ -212,9 +222,18 @@ impl<
PolyOp::Prod { axes, .. } => {
layouts::prod_axes(config, region, values[..].try_into()?, axes)?
}
PolyOp::Conv { padding, stride } => {
layouts::conv(config, region, values[..].try_into()?, padding, stride)?
}
PolyOp::Conv {
padding,
stride,
group,
} => layouts::conv(
config,
region,
values[..].try_into()?,
padding,
stride,
*group,
)?,
PolyOp::GatherElements { dim, constant_idx } => {
if let Some(idx) = constant_idx {
tensor::ops::gather_elements(values[0].get_inner_tensor()?, idx, *dim)?.into()
@@ -261,6 +280,7 @@ impl<
padding,
output_padding,
stride,
group,
} => layouts::deconv(
config,
region,
@@ -268,6 +288,7 @@ impl<
padding,
output_padding,
stride,
*group,
)?,
PolyOp::Add => layouts::pairwise(config, region, values[..].try_into()?, BaseOp::Add)?,
PolyOp::Sub => layouts::pairwise(config, region, values[..].try_into()?, BaseOp::Sub)?,

View File

@@ -1,5 +1,6 @@
use crate::{
circuit::table::Range,
fieldutils::IntegerRep,
tensor::{Tensor, TensorType, ValTensor, ValType, VarTensor},
};
#[cfg(not(target_arch = "wasm32"))]
@@ -9,7 +10,8 @@ use halo2_proofs::{
plonk::{Error, Selector},
};
use halo2curves::ff::PrimeField;
use portable_atomic::AtomicI64 as AtomicInt;
use itertools::Itertools;
use maybe_rayon::iter::ParallelExtend;
use std::{
cell::RefCell,
collections::{HashMap, HashSet},
@@ -84,6 +86,78 @@ impl ShuffleIndex {
}
}
#[derive(Debug, Clone)]
/// Some settings for a region to differentiate it across the different phases of proof generation
pub struct RegionSettings {
/// whether we are in witness generation mode
pub witness_gen: bool,
/// whether we should check range checks for validity
pub check_range: bool,
}
#[allow(unsafe_code)]
unsafe impl Sync for RegionSettings {}
#[allow(unsafe_code)]
unsafe impl Send for RegionSettings {}
impl RegionSettings {
/// Create a new region settings
pub fn new(witness_gen: bool, check_range: bool) -> RegionSettings {
RegionSettings {
witness_gen,
check_range,
}
}
/// Create a new region settings with all true
pub fn all_true() -> RegionSettings {
RegionSettings {
witness_gen: true,
check_range: true,
}
}
/// Create a new region settings with all false
pub fn all_false() -> RegionSettings {
RegionSettings {
witness_gen: false,
check_range: false,
}
}
}
#[derive(Debug, Default, Clone)]
/// Region statistics
pub struct RegionStatistics {
/// the current maximum value of the lookup inputs
pub max_lookup_inputs: IntegerRep,
/// the current minimum value of the lookup inputs
pub min_lookup_inputs: IntegerRep,
/// the current maximum value of the range size
pub max_range_size: IntegerRep,
/// the current set of used lookups
pub used_lookups: HashSet<LookupOp>,
/// the current set of used range checks
pub used_range_checks: HashSet<Range>,
}
impl RegionStatistics {
/// update the statistics with another set of statistics
pub fn update(&mut self, other: &RegionStatistics) {
self.max_lookup_inputs = self.max_lookup_inputs.max(other.max_lookup_inputs);
self.min_lookup_inputs = self.min_lookup_inputs.min(other.min_lookup_inputs);
self.max_range_size = self.max_range_size.max(other.max_range_size);
self.used_lookups.extend(other.used_lookups.clone());
self.used_range_checks
.extend(other.used_range_checks.clone());
}
}
#[allow(unsafe_code)]
unsafe impl Sync for RegionStatistics {}
#[allow(unsafe_code)]
unsafe impl Send for RegionStatistics {}
#[derive(Debug)]
/// A context for a region
pub struct RegionCtx<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> {
@@ -93,13 +167,8 @@ pub struct RegionCtx<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Ha
num_inner_cols: usize,
dynamic_lookup_index: DynamicLookupIndex,
shuffle_index: ShuffleIndex,
used_lookups: HashSet<LookupOp>,
used_range_checks: HashSet<Range>,
max_lookup_inputs: i64,
min_lookup_inputs: i64,
max_range_size: i64,
witness_gen: bool,
check_lookup_range: bool,
statistics: RegionStatistics,
settings: RegionSettings,
assigned_constants: ConstantsMap<F>,
}
@@ -151,12 +220,17 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
///
pub fn witness_gen(&self) -> bool {
self.witness_gen
self.settings.witness_gen
}
///
pub fn check_lookup_range(&self) -> bool {
self.check_lookup_range
pub fn check_range(&self) -> bool {
self.settings.check_range
}
///
pub fn statistics(&self) -> &RegionStatistics {
&self.statistics
}
/// Create a new region context
@@ -171,13 +245,8 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
linear_coord,
dynamic_lookup_index: DynamicLookupIndex::default(),
shuffle_index: ShuffleIndex::default(),
used_lookups: HashSet::new(),
used_range_checks: HashSet::new(),
max_lookup_inputs: 0,
min_lookup_inputs: 0,
max_range_size: 0,
witness_gen: true,
check_lookup_range: true,
statistics: RegionStatistics::default(),
settings: RegionSettings::all_true(),
assigned_constants: HashMap::new(),
}
}
@@ -193,39 +262,12 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
new_self.assigned_constants = constants;
new_self
}
/// Create a new region context from a wrapped region
pub fn from_wrapped_region(
region: Option<RefCell<Region<'a, F>>>,
row: usize,
num_inner_cols: usize,
dynamic_lookup_index: DynamicLookupIndex,
shuffle_index: ShuffleIndex,
) -> RegionCtx<'a, F> {
let linear_coord = row * num_inner_cols;
RegionCtx {
region,
num_inner_cols,
linear_coord,
row,
dynamic_lookup_index,
shuffle_index,
used_lookups: HashSet::new(),
used_range_checks: HashSet::new(),
max_lookup_inputs: 0,
min_lookup_inputs: 0,
max_range_size: 0,
witness_gen: false,
check_lookup_range: false,
assigned_constants: HashMap::new(),
}
}
/// Create a new region context
pub fn new_dummy(
row: usize,
num_inner_cols: usize,
witness_gen: bool,
check_lookup_range: bool,
settings: RegionSettings,
) -> RegionCtx<'a, F> {
let region = None;
let linear_coord = row * num_inner_cols;
@@ -237,13 +279,8 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
row,
dynamic_lookup_index: DynamicLookupIndex::default(),
shuffle_index: ShuffleIndex::default(),
used_lookups: HashSet::new(),
used_range_checks: HashSet::new(),
max_lookup_inputs: 0,
min_lookup_inputs: 0,
max_range_size: 0,
witness_gen,
check_lookup_range,
statistics: RegionStatistics::default(),
settings,
assigned_constants: HashMap::new(),
}
}
@@ -253,8 +290,7 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
row: usize,
linear_coord: usize,
num_inner_cols: usize,
witness_gen: bool,
check_lookup_range: bool,
settings: RegionSettings,
) -> RegionCtx<'a, F> {
let region = None;
RegionCtx {
@@ -264,13 +300,8 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
row,
dynamic_lookup_index: DynamicLookupIndex::default(),
shuffle_index: ShuffleIndex::default(),
used_lookups: HashSet::new(),
used_range_checks: HashSet::new(),
max_lookup_inputs: 0,
min_lookup_inputs: 0,
max_range_size: 0,
witness_gen,
check_lookup_range,
statistics: RegionStatistics::default(),
settings,
assigned_constants: HashMap::new(),
}
}
@@ -321,12 +352,9 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
) -> Result<(), CircuitError> {
let row = AtomicUsize::new(self.row());
let linear_coord = AtomicUsize::new(self.linear_coord());
let max_lookup_inputs = AtomicInt::new(self.max_lookup_inputs());
let min_lookup_inputs = AtomicInt::new(self.min_lookup_inputs());
let lookups = Arc::new(Mutex::new(self.used_lookups.clone()));
let range_checks = Arc::new(Mutex::new(self.used_range_checks.clone()));
let dynamic_lookup_index = Arc::new(Mutex::new(self.dynamic_lookup_index.clone()));
let statistics = Arc::new(Mutex::new(self.statistics.clone()));
let shuffle_index = Arc::new(Mutex::new(self.shuffle_index.clone()));
let dynamic_lookup_index = Arc::new(Mutex::new(self.dynamic_lookup_index.clone()));
let constants = Arc::new(Mutex::new(self.assigned_constants.clone()));
*output = output.par_enum_map(|idx, _| {
@@ -340,8 +368,7 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
starting_offset,
starting_linear_coord,
self.num_inner_cols,
self.witness_gen,
self.check_lookup_range,
self.settings.clone(),
);
let res = inner_loop_function(idx, &mut local_reg);
// we update the offset and constants
@@ -351,14 +378,9 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
Ordering::SeqCst,
);
max_lookup_inputs.fetch_max(local_reg.max_lookup_inputs(), Ordering::SeqCst);
min_lookup_inputs.fetch_min(local_reg.min_lookup_inputs(), Ordering::SeqCst);
// update the lookups
let mut lookups = lookups.lock().unwrap();
lookups.extend(local_reg.used_lookups());
// update the range checks
let mut range_checks = range_checks.lock().unwrap();
range_checks.extend(local_reg.used_range_checks());
let mut statistics = statistics.lock().unwrap();
statistics.update(local_reg.statistics());
// update the dynamic lookup index
let mut dynamic_lookup_index = dynamic_lookup_index.lock().unwrap();
dynamic_lookup_index.update(&local_reg.dynamic_lookup_index);
@@ -372,20 +394,11 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
res
})?;
self.linear_coord = linear_coord.into_inner();
#[allow(trivial_numeric_casts)]
{
self.max_lookup_inputs = max_lookup_inputs.into_inner();
self.min_lookup_inputs = min_lookup_inputs.into_inner();
}
self.row = row.into_inner();
self.used_lookups = Arc::try_unwrap(lookups)
self.statistics = Arc::try_unwrap(statistics)
.map_err(|e| CircuitError::GetLookupsError(format!("{:?}", e)))?
.into_inner()
.map_err(|e| CircuitError::GetLookupsError(format!("{:?}", e)))?;
self.used_range_checks = Arc::try_unwrap(range_checks)
.map_err(|e| CircuitError::GetRangeChecksError(format!("{:?}", e)))?
.into_inner()
.map_err(|e| CircuitError::GetRangeChecksError(format!("{:?}", e)))?;
self.dynamic_lookup_index = Arc::try_unwrap(dynamic_lookup_index)
.map_err(|e| CircuitError::GetDynamicLookupError(format!("{:?}", e)))?
.into_inner()
@@ -409,11 +422,11 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
) -> Result<(), CircuitError> {
let (mut min, mut max) = (0, 0);
for i in inputs {
max = max.max(i.get_int_evals()?.into_iter().max().unwrap_or_default());
min = min.min(i.get_int_evals()?.into_iter().min().unwrap_or_default());
max = max.max(i.int_evals()?.into_iter().max().unwrap_or_default());
min = min.min(i.int_evals()?.into_iter().min().unwrap_or_default());
}
self.max_lookup_inputs = self.max_lookup_inputs.max(max);
self.min_lookup_inputs = self.min_lookup_inputs.min(min);
self.statistics.max_lookup_inputs = self.statistics.max_lookup_inputs.max(max);
self.statistics.min_lookup_inputs = self.statistics.min_lookup_inputs.min(min);
Ok(())
}
@@ -425,7 +438,7 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
let range_size = (range.1 - range.0).abs();
self.max_range_size = self.max_range_size.max(range_size);
self.statistics.max_range_size = self.statistics.max_range_size.max(range_size);
Ok(())
}
@@ -440,13 +453,13 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
lookup: LookupOp,
inputs: &[ValTensor<F>],
) -> Result<(), CircuitError> {
self.used_lookups.insert(lookup);
self.statistics.used_lookups.insert(lookup);
self.update_max_min_lookup_inputs(inputs)
}
/// add used range check
pub fn add_used_range_check(&mut self, range: Range) -> Result<(), CircuitError> {
self.used_range_checks.insert(range);
self.statistics.used_range_checks.insert(range);
self.update_max_min_lookup_range(range)
}
@@ -487,27 +500,27 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
/// get used lookups
pub fn used_lookups(&self) -> HashSet<LookupOp> {
self.used_lookups.clone()
self.statistics.used_lookups.clone()
}
/// get used range checks
pub fn used_range_checks(&self) -> HashSet<Range> {
self.used_range_checks.clone()
self.statistics.used_range_checks.clone()
}
/// max lookup inputs
pub fn max_lookup_inputs(&self) -> i64 {
self.max_lookup_inputs
pub fn max_lookup_inputs(&self) -> IntegerRep {
self.statistics.max_lookup_inputs
}
/// min lookup inputs
pub fn min_lookup_inputs(&self) -> i64 {
self.min_lookup_inputs
pub fn min_lookup_inputs(&self) -> IntegerRep {
self.statistics.min_lookup_inputs
}
/// max range check
pub fn max_range_size(&self) -> i64 {
self.max_range_size
pub fn max_range_size(&self) -> IntegerRep {
self.statistics.max_range_size
}
/// Assign a valtensor to a vartensor
@@ -515,18 +528,18 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
&mut self,
var: &VarTensor,
values: &ValTensor<F>,
) -> Result<ValTensor<F>, Error> {
) -> Result<ValTensor<F>, CircuitError> {
if let Some(region) = &self.region {
var.assign(
Ok(var.assign(
&mut region.borrow_mut(),
self.linear_coord,
values,
&mut self.assigned_constants,
)
)?)
} else {
if !values.is_instance() {
let values_map = values.create_constants_map_iterator();
self.assigned_constants.extend(values_map);
self.assigned_constants.par_extend(values_map);
}
Ok(values.clone())
}
@@ -542,18 +555,18 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
&mut self,
var: &VarTensor,
values: &ValTensor<F>,
) -> Result<ValTensor<F>, Error> {
) -> Result<ValTensor<F>, CircuitError> {
if let Some(region) = &self.region {
var.assign(
Ok(var.assign(
&mut region.borrow_mut(),
self.combined_dynamic_shuffle_coord(),
values,
&mut self.assigned_constants,
)
)?)
} else {
if !values.is_instance() {
let values_map = values.create_constants_map_iterator();
self.assigned_constants.extend(values_map);
self.assigned_constants.par_extend(values_map);
}
Ok(values.clone())
}
@@ -564,7 +577,7 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
&mut self,
var: &VarTensor,
values: &ValTensor<F>,
) -> Result<ValTensor<F>, Error> {
) -> Result<ValTensor<F>, CircuitError> {
self.assign_dynamic_lookup(var, values)
}
@@ -573,27 +586,24 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
&mut self,
var: &VarTensor,
values: &ValTensor<F>,
ommissions: &HashSet<&usize>,
) -> Result<ValTensor<F>, Error> {
ommissions: &HashSet<usize>,
) -> Result<ValTensor<F>, CircuitError> {
if let Some(region) = &self.region {
var.assign_with_omissions(
Ok(var.assign_with_omissions(
&mut region.borrow_mut(),
self.linear_coord,
values,
ommissions,
&mut self.assigned_constants,
)
)?)
} else {
let inner_tensor = values.get_inner_tensor().unwrap();
let mut values_map = values.create_constants_map();
let mut values_clone = values.clone();
let mut indices = ommissions.clone().into_iter().collect_vec();
values_clone.remove_indices(&mut indices, false)?;
for o in ommissions {
if let ValType::Constant(value) = inner_tensor.get_flat_index(**o) {
values_map.remove(&value);
}
}
let values_map = values.create_constants_map();
self.assigned_constants.extend(values_map);
self.assigned_constants.par_extend(values_map);
Ok(values.clone())
}

View File

@@ -11,17 +11,17 @@ use maybe_rayon::prelude::{IntoParallelIterator, ParallelIterator};
use crate::{
circuit::CircuitError,
fieldutils::i64_to_felt,
tensor::{IntoI64, Tensor, TensorType},
fieldutils::{integer_rep_to_felt, IntegerRep},
tensor::{Tensor, TensorType},
};
use crate::circuit::lookup::LookupOp;
/// The range of the lookup table.
pub type Range = (i64, i64);
pub type Range = (IntegerRep, IntegerRep);
/// The safety factor for the range of the lookup table.
pub const RANGE_MULTIPLIER: i64 = 2;
pub const RANGE_MULTIPLIER: IntegerRep = 2;
/// The safety factor offset for the number of rows in the lookup table.
pub const RESERVED_BLINDING_ROWS_PAD: usize = 3;
@@ -96,21 +96,22 @@ pub struct Table<F: PrimeField> {
_marker: PhantomData<F>,
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash + IntoI64> Table<F> {
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Table<F> {
/// get column index given input
pub fn get_col_index(&self, input: F) -> F {
// range is split up into chunks of size col_size, find the chunk that input is in
let chunk =
(crate::fieldutils::felt_to_i64(input) - self.range.0).abs() / (self.col_size as i64);
let chunk = (crate::fieldutils::felt_to_integer_rep(input) - self.range.0).abs()
/ (self.col_size as IntegerRep);
i64_to_felt(chunk)
integer_rep_to_felt(chunk)
}
/// get first_element of column
pub fn get_first_element(&self, chunk: usize) -> (F, F) {
let chunk = chunk as i64;
let chunk = chunk as IntegerRep;
// we index from 1 to prevent soundness issues
let first_element = i64_to_felt(chunk * (self.col_size as i64) + self.range.0);
let first_element =
integer_rep_to_felt(chunk * (self.col_size as IntegerRep) + self.range.0);
let op_f = self
.nonlinearity
.f(&[Tensor::from(vec![first_element].into_iter())])
@@ -130,12 +131,12 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash + IntoI64> Table<
}
///
pub fn num_cols_required(range_len: i64, col_size: usize) -> usize {
pub fn num_cols_required(range_len: IntegerRep, col_size: usize) -> usize {
// number of cols needed to store the range
(range_len / (col_size as i64)) as usize + 1
(range_len / (col_size as IntegerRep)) as usize + 1
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash + IntoI64> Table<F> {
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Table<F> {
/// Configures the table.
pub fn configure(
cs: &mut ConstraintSystem<F>,
@@ -202,7 +203,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash + IntoI64> Table<
let smallest = self.range.0;
let largest = self.range.1;
let inputs: Tensor<F> = Tensor::from(smallest..=largest).map(|x| i64_to_felt(x));
let inputs: Tensor<F> = Tensor::from(smallest..=largest).map(|x| integer_rep_to_felt(x));
let evals = self.nonlinearity.f(&[inputs.clone()])?;
let chunked_inputs = inputs.chunks(self.col_size);
@@ -272,12 +273,12 @@ pub struct RangeCheck<F: PrimeField> {
_marker: PhantomData<F>,
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash + IntoI64> RangeCheck<F> {
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RangeCheck<F> {
/// get first_element of column
pub fn get_first_element(&self, chunk: usize) -> F {
let chunk = chunk as i64;
let chunk = chunk as IntegerRep;
// we index from 1 to prevent soundness issues
i64_to_felt(chunk * (self.col_size as i64) + self.range.0)
integer_rep_to_felt(chunk * (self.col_size as IntegerRep) + self.range.0)
}
///
@@ -293,14 +294,14 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash + IntoI64> RangeC
/// get column index given input
pub fn get_col_index(&self, input: F) -> F {
// range is split up into chunks of size col_size, find the chunk that input is in
let chunk =
(crate::fieldutils::felt_to_i64(input) - self.range.0).abs() / (self.col_size as i64);
let chunk = (crate::fieldutils::felt_to_integer_rep(input) - self.range.0).abs()
/ (self.col_size as IntegerRep);
i64_to_felt(chunk)
integer_rep_to_felt(chunk)
}
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash + IntoI64> RangeCheck<F> {
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RangeCheck<F> {
/// Configures the table.
pub fn configure(cs: &mut ConstraintSystem<F>, range: Range, logrows: usize) -> RangeCheck<F> {
log::debug!("range check range: {:?}", range);
@@ -350,7 +351,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash + IntoI64> RangeC
let smallest = self.range.0;
let largest = self.range.1;
let inputs: Tensor<F> = Tensor::from(smallest..=largest).map(|x| i64_to_felt(x));
let inputs: Tensor<F> = Tensor::from(smallest..=largest).map(|x| integer_rep_to_felt(x));
let chunked_inputs = inputs.chunks(self.col_size);
self.is_assigned = true;

View File

@@ -1050,6 +1050,7 @@ mod conv {
Box::new(PolyOp::Conv {
padding: vec![(1, 1); 2],
stride: vec![2; 2],
group: 1,
}),
)
.map_err(|_| Error::Synthesis)
@@ -1200,6 +1201,7 @@ mod conv_col_ultra_overflow {
Box::new(PolyOp::Conv {
padding: vec![(1, 1); 2],
stride: vec![2; 2],
group: 1,
}),
)
.map_err(|_| Error::Synthesis)
@@ -1345,6 +1347,7 @@ mod conv_relu_col_ultra_overflow {
Box::new(PolyOp::Conv {
padding: vec![(1, 1); 2],
stride: vec![2; 2],
group: 1,
}),
)
.map_err(|_| Error::Synthesis);

View File

@@ -1,3 +1,4 @@
use crate::circuit::region::RegionSettings;
use crate::circuit::CheckMode;
#[cfg(not(target_arch = "wasm32"))]
use crate::commands::CalibrationTarget;
@@ -785,6 +786,8 @@ pub(crate) async fn gen_witness(
let commitment: Commitments = settings.run_args.commitment.into();
let region_settings = RegionSettings::all_true();
let start_time = Instant::now();
let witness = if settings.module_requires_polycommit() {
if get_srs_path(settings.run_args.logrows, srs_path.clone(), commitment).exists() {
@@ -799,8 +802,7 @@ pub(crate) async fn gen_witness(
&mut input,
vk.as_ref(),
Some(&srs),
true,
true,
region_settings,
)?
}
Commitments::IPA => {
@@ -814,8 +816,7 @@ pub(crate) async fn gen_witness(
&mut input,
vk.as_ref(),
Some(&srs),
true,
true,
region_settings,
)?
}
}
@@ -825,12 +826,16 @@ pub(crate) async fn gen_witness(
&mut input,
vk.as_ref(),
None,
true,
true,
region_settings,
)?
}
} else {
circuit.forward::<KZGCommitmentScheme<Bn256>>(&mut input, vk.as_ref(), None, true, true)?
circuit.forward::<KZGCommitmentScheme<Bn256>>(
&mut input,
vk.as_ref(),
None,
region_settings,
)?
};
// print each variable tuple (symbol, value) as symbol=value
@@ -1023,6 +1028,8 @@ pub(crate) async fn calibrate(
use std::collections::HashMap;
use tabled::Table;
use crate::fieldutils::IntegerRep;
let data = GraphData::from_path(data)?;
// load the pre-generated settings
let settings = GraphSettings::load(&settings_path)?;
@@ -1131,7 +1138,7 @@ pub(crate) async fn calibrate(
param_scale,
scale_rebase_multiplier,
div_rebasing,
lookup_range: (i64::MIN, i64::MAX),
lookup_range: (IntegerRep::MIN, IntegerRep::MAX),
..settings.run_args.clone()
};
@@ -1171,8 +1178,7 @@ pub(crate) async fn calibrate(
&mut data.clone(),
None,
None,
true,
false,
RegionSettings::all_true(),
)
.map_err(|e| format!("failed to forward: {}", e))?;
@@ -1502,10 +1508,10 @@ pub(crate) async fn create_evm_vk(
#[cfg(not(target_arch = "wasm32"))]
pub(crate) async fn create_evm_data_attestation(
settings_path: PathBuf,
_sol_code_path: PathBuf,
_abi_path: PathBuf,
_input: PathBuf,
_witness: Option<PathBuf>,
sol_code_path: PathBuf,
abi_path: PathBuf,
input: PathBuf,
witness: Option<PathBuf>,
) -> Result<String, EZKLError> {
#[allow(unused_imports)]
use crate::graph::{DataSource, VarVisibility};
@@ -1517,7 +1523,7 @@ pub(crate) async fn create_evm_data_attestation(
trace!("params computed");
// if input is not provided, we just instantiate dummy input data
let data = GraphData::from_path(_input).unwrap_or(GraphData::new(DataSource::File(vec![])));
let data = GraphData::from_path(input).unwrap_or(GraphData::new(DataSource::File(vec![])));
let output_data = if let Some(DataSource::OnChain(source)) = data.output_data {
if visibility.output.is_private() {
@@ -1552,7 +1558,7 @@ pub(crate) async fn create_evm_data_attestation(
|| settings.run_args.output_visibility == Visibility::KZGCommit
|| settings.run_args.param_visibility == Visibility::KZGCommit
{
let witness = GraphWitness::from_path(_witness.unwrap_or(DEFAULT_WITNESS.into()))?;
let witness = GraphWitness::from_path(witness.unwrap_or(DEFAULT_WITNESS.into()))?;
let commitments = witness.get_polycommitments();
let proof_first_bytes = get_proof_commitments::<
KZGCommitmentScheme<Bn256>,
@@ -1566,12 +1572,12 @@ pub(crate) async fn create_evm_data_attestation(
};
let output = fix_da_sol(input_data, output_data, commitment_bytes)?;
let mut f = File::create(_sol_code_path.clone())?;
let mut f = File::create(sol_code_path.clone())?;
let _ = f.write(output.as_bytes());
// fetch abi of the contract
let (abi, _, _) = get_contract_artifacts(_sol_code_path, "DataAttestation", 0).await?;
let (abi, _, _) = get_contract_artifacts(sol_code_path, "DataAttestation", 0).await?;
// save abi to file
serde_json::to_writer(std::fs::File::create(_abi_path)?, &abi)?;
serde_json::to_writer(std::fs::File::create(abi_path)?, &abi)?;
Ok(String::new())
}

View File

@@ -2,42 +2,21 @@ use halo2_proofs::arithmetic::Field;
/// Utilities for converting from Halo2 PrimeField types to integers (and vice-versa).
use halo2curves::ff::PrimeField;
/// Converts an i32 to a PrimeField element.
pub fn i32_to_felt<F: PrimeField>(x: i32) -> F {
if x >= 0 {
F::from(x as u64)
} else {
-F::from(x.unsigned_abs() as u64)
}
}
/// Integer representation of a PrimeField element.
pub type IntegerRep = i128;
/// Converts an i64 to a PrimeField element.
pub fn i64_to_felt<F: PrimeField>(x: i64) -> F {
pub fn integer_rep_to_felt<F: PrimeField>(x: IntegerRep) -> F {
if x >= 0 {
F::from_u128(x as u128)
} else {
-F::from_u128((-x) as u128)
}
}
/// Converts a PrimeField element to an i32.
pub fn felt_to_i32<F: PrimeField + PartialOrd + Field>(x: F) -> i32 {
if x > F::from(i32::MAX as u64) {
let rep = (-x).to_repr();
let negtmp: &[u8] = rep.as_ref();
let lower_32 = u32::from_le_bytes(negtmp[..4].try_into().unwrap());
-(lower_32 as i32)
} else {
let rep = (x).to_repr();
let tmp: &[u8] = rep.as_ref();
let lower_32 = u32::from_le_bytes(tmp[..4].try_into().unwrap());
lower_32 as i32
-F::from_u128(x.saturating_neg() as u128)
}
}
/// Converts a PrimeField element to an f64.
pub fn felt_to_f64<F: PrimeField + PartialOrd + Field>(x: F) -> f64 {
if x > F::from_u128(i64::MAX as u128) {
if x > F::from_u128(IntegerRep::MAX as u128) {
let rep = (-x).to_repr();
let negtmp: &[u8] = rep.as_ref();
let lower_128: u128 = u128::from_le_bytes(negtmp[..16].try_into().unwrap());
@@ -51,17 +30,17 @@ pub fn felt_to_f64<F: PrimeField + PartialOrd + Field>(x: F) -> f64 {
}
/// Converts a PrimeField element to an i64.
pub fn felt_to_i64<F: PrimeField + PartialOrd + Field>(x: F) -> i64 {
if x > F::from_u128(i64::MAX as u128) {
pub fn felt_to_integer_rep<F: PrimeField + PartialOrd + Field>(x: F) -> IntegerRep {
if x > F::from_u128(IntegerRep::MAX as u128) {
let rep = (-x).to_repr();
let negtmp: &[u8] = rep.as_ref();
let lower_128: u128 = u128::from_le_bytes(negtmp[..16].try_into().unwrap());
-(lower_128 as i64)
-(lower_128 as IntegerRep)
} else {
let rep = (x).to_repr();
let tmp: &[u8] = rep.as_ref();
let lower_128: u128 = u128::from_le_bytes(tmp[..16].try_into().unwrap());
lower_128 as i64
lower_128 as IntegerRep
}
}
@@ -73,33 +52,24 @@ mod test {
#[test]
fn test_conv() {
let res: F = i32_to_felt(-15i32);
let res: F = integer_rep_to_felt(-15);
assert_eq!(res, -F::from(15));
let res: F = i32_to_felt(2_i32.pow(17));
let res: F = integer_rep_to_felt(2_i128.pow(17));
assert_eq!(res, F::from(131072));
let res: F = i64_to_felt(-15i64);
let res: F = integer_rep_to_felt(-15);
assert_eq!(res, -F::from(15));
let res: F = i64_to_felt(2_i64.pow(17));
let res: F = integer_rep_to_felt(2_i128.pow(17));
assert_eq!(res, F::from(131072));
}
#[test]
fn felttoi32() {
for x in -(2i32.pow(16))..(2i32.pow(16)) {
let fieldx: F = i32_to_felt::<F>(x);
let xf: i32 = felt_to_i32::<F>(fieldx);
assert_eq!(x, xf);
}
}
#[test]
fn felttoi64() {
for x in -(2i64.pow(20))..(2i64.pow(20)) {
let fieldx: F = i64_to_felt::<F>(x);
let xf: i64 = felt_to_i64::<F>(fieldx);
fn felttointegerrep() {
for x in -(2_i128.pow(16))..(2_i128.pow(16)) {
let fieldx: F = integer_rep_to_felt::<F>(x);
let xf: i128 = felt_to_integer_rep::<F>(fieldx);
assert_eq!(x, xf);
}
}

View File

@@ -50,7 +50,7 @@ pub enum GraphError {
/// Tract error
#[cfg(not(all(target_arch = "wasm32", target_os = "unknown")))]
#[error("[tract] {0}")]
TractError(#[from] tract_onnx::tract_core::anyhow::Error),
TractError(#[from] tract_onnx::prelude::TractError),
/// Packing exponent is too large
#[error("largest packing exponent exceeds max. try reducing the scale")]
PackingExponent,

View File

@@ -1,7 +1,7 @@
use super::errors::GraphError;
use super::quantize_float;
use crate::circuit::InputType;
use crate::fieldutils::i64_to_felt;
use crate::fieldutils::integer_rep_to_felt;
#[cfg(not(target_arch = "wasm32"))]
use crate::graph::postgres::Client;
#[cfg(not(target_arch = "wasm32"))]
@@ -128,7 +128,7 @@ impl FileSourceInner {
/// Convert to a field element
pub fn to_field(&self, scale: crate::Scale) -> Fp {
match self {
FileSourceInner::Float(f) => i64_to_felt(quantize_float(f, 0.0, scale).unwrap()),
FileSourceInner::Float(f) => integer_rep_to_felt(quantize_float(f, 0.0, scale).unwrap()),
FileSourceInner::Bool(f) => {
if *f {
Fp::one()
@@ -150,7 +150,7 @@ impl FileSourceInner {
0.0
}
}
FileSourceInner::Field(f) => crate::fieldutils::felt_to_i64(*f) as f64,
FileSourceInner::Field(f) => crate::fieldutils::felt_to_integer_rep(*f) as f64,
}
}
}

View File

@@ -34,10 +34,10 @@ use self::input::{FileSource, GraphData};
use self::modules::{GraphModules, ModuleConfigs, ModuleForwardResult, ModuleSizes};
use crate::circuit::lookup::LookupOp;
use crate::circuit::modules::ModulePlanner;
use crate::circuit::region::ConstantsMap;
use crate::circuit::region::{ConstantsMap, RegionSettings};
use crate::circuit::table::{num_cols_required, Range, Table, RESERVED_BLINDING_ROWS_PAD};
use crate::circuit::{CheckMode, InputType};
use crate::fieldutils::felt_to_f64;
use crate::fieldutils::{felt_to_f64, IntegerRep};
use crate::pfsys::PrettyElements;
use crate::tensor::{Tensor, ValTensor};
use crate::{RunArgs, EZKL_BUF_CAPACITY};
@@ -69,13 +69,14 @@ pub use vars::*;
use crate::pfsys::field_to_string;
/// The safety factor for the range of the lookup table.
pub const RANGE_MULTIPLIER: i64 = 2;
pub const RANGE_MULTIPLIER: IntegerRep = 2;
/// The maximum number of columns in a lookup table.
pub const MAX_NUM_LOOKUP_COLS: usize = 12;
/// Max representation of a lookup table input
pub const MAX_LOOKUP_ABS: i64 = (MAX_NUM_LOOKUP_COLS as i64) * 2_i64.pow(MAX_PUBLIC_SRS);
pub const MAX_LOOKUP_ABS: IntegerRep =
(MAX_NUM_LOOKUP_COLS as IntegerRep) * 2_i128.pow(MAX_PUBLIC_SRS);
#[cfg(not(target_arch = "wasm32"))]
lazy_static! {
@@ -126,11 +127,11 @@ pub struct GraphWitness {
/// Any hashes of outputs generated during the forward pass
pub processed_outputs: Option<ModuleForwardResult>,
/// max lookup input
pub max_lookup_inputs: i64,
pub max_lookup_inputs: IntegerRep,
/// max lookup input
pub min_lookup_inputs: i64,
pub min_lookup_inputs: IntegerRep,
/// max range check size
pub max_range_size: i64,
pub max_range_size: IntegerRep,
}
impl GraphWitness {
@@ -804,18 +805,26 @@ impl GraphCircuit {
// the ordering here is important, we want the inputs to come before the outputs
// as they are configured in that order as Column<Instances>
let mut public_inputs: Vec<Fp> = vec![];
if self.settings().run_args.input_visibility.is_public() {
public_inputs.extend(self.graph_witness.inputs.clone().into_iter().flatten())
} else if let Some(processed_inputs) = &data.processed_inputs {
// we first process the inputs
if let Some(processed_inputs) = &data.processed_inputs {
public_inputs.extend(processed_inputs.get_instances().into_iter().flatten());
}
// we then process the params
if let Some(processed_params) = &data.processed_params {
public_inputs.extend(processed_params.get_instances().into_iter().flatten());
}
// if the inputs are public, we add them to the public inputs AFTER the processed params as they are configured in that order as Column<Instances>
if self.settings().run_args.input_visibility.is_public() {
public_inputs.extend(self.graph_witness.inputs.clone().into_iter().flatten())
}
// if the outputs are public, we add them to the public inputs
if self.settings().run_args.output_visibility.is_public() {
public_inputs.extend(self.graph_witness.outputs.clone().into_iter().flatten());
// if the outputs are processed, we add the processed outputs to the public inputs
} else if let Some(processed_outputs) = &data.processed_outputs {
public_inputs.extend(processed_outputs.get_instances().into_iter().flatten());
}
@@ -1036,12 +1045,12 @@ impl GraphCircuit {
fn calc_safe_lookup_range(min_max_lookup: Range, lookup_safety_margin: f64) -> Range {
(
(lookup_safety_margin * min_max_lookup.0 as f64).floor() as i64,
(lookup_safety_margin * min_max_lookup.1 as f64).ceil() as i64,
(lookup_safety_margin * min_max_lookup.0 as f64).floor() as IntegerRep,
(lookup_safety_margin * min_max_lookup.1 as f64).ceil() as IntegerRep,
)
}
fn calc_num_cols(range_len: i64, max_logrows: u32) -> usize {
fn calc_num_cols(range_len: IntegerRep, max_logrows: u32) -> usize {
let max_col_size = Table::<Fp>::cal_col_size(max_logrows as usize, RESERVED_BLINDING_ROWS);
num_cols_required(range_len, max_col_size)
}
@@ -1049,7 +1058,7 @@ impl GraphCircuit {
fn table_size_logrows(
&self,
safe_lookup_range: Range,
max_range_size: i64,
max_range_size: IntegerRep,
) -> Result<u32, GraphError> {
// pick the range with the largest absolute size safe_lookup_range or max_range_size
let safe_range = std::cmp::max(
@@ -1068,7 +1077,7 @@ impl GraphCircuit {
pub fn calc_min_logrows(
&mut self,
min_max_lookup: Range,
max_range_size: i64,
max_range_size: IntegerRep,
max_logrows: Option<u32>,
lookup_safety_margin: f64,
) -> Result<(), GraphError> {
@@ -1086,7 +1095,7 @@ impl GraphCircuit {
(safe_lookup_range.1.saturating_sub(safe_lookup_range.0)).saturating_abs();
// check if has overflowed max lookup input
if lookup_size > (MAX_LOOKUP_ABS as f64 / lookup_safety_margin).floor() as i64 {
if lookup_size > (MAX_LOOKUP_ABS as f64 / lookup_safety_margin).floor() as IntegerRep {
return Err(GraphError::LookupRangeTooLarge(
lookup_size.unsigned_abs() as usize
));
@@ -1166,7 +1175,7 @@ impl GraphCircuit {
&self,
k: u32,
safe_lookup_range: Range,
max_range_size: i64,
max_range_size: IntegerRep,
) -> bool {
// if num cols is too large then the extended k is too large
if Self::calc_num_cols(safe_lookup_range.1 - safe_lookup_range.0, k) > MAX_NUM_LOOKUP_COLS
@@ -1224,8 +1233,7 @@ impl GraphCircuit {
inputs: &mut [Tensor<Fp>],
vk: Option<&VerifyingKey<G1Affine>>,
srs: Option<&Scheme::ParamsProver>,
witness_gen: bool,
check_lookup: bool,
region_settings: RegionSettings,
) -> Result<GraphWitness, GraphError> {
let original_inputs = inputs.to_vec();
@@ -1274,7 +1282,7 @@ impl GraphCircuit {
let mut model_results =
self.model()
.forward(inputs, &self.settings().run_args, witness_gen, check_lookup)?;
.forward(inputs, &self.settings().run_args, region_settings)?;
if visibility.output.requires_processing() {
let module_outlets = visibility.output.overwrites_inputs();

View File

@@ -7,10 +7,12 @@ use super::GraphSettings;
use crate::circuit::hybrid::HybridOp;
use crate::circuit::region::ConstantsMap;
use crate::circuit::region::RegionCtx;
use crate::circuit::region::RegionSettings;
use crate::circuit::table::Range;
use crate::circuit::Input;
use crate::circuit::InputType;
use crate::circuit::Unknown;
use crate::fieldutils::IntegerRep;
use crate::tensor::ValType;
use crate::{
circuit::{lookup::LookupOp, BaseConfig as PolyConfig, CheckMode, Op},
@@ -64,11 +66,11 @@ pub struct ForwardResult {
/// The outputs of the forward pass.
pub outputs: Vec<Tensor<Fp>>,
/// The maximum value of any input to a lookup operation.
pub max_lookup_inputs: i64,
pub max_lookup_inputs: IntegerRep,
/// The minimum value of any input to a lookup operation.
pub min_lookup_inputs: i64,
pub min_lookup_inputs: IntegerRep,
/// The max range check size
pub max_range_size: i64,
pub max_range_size: IntegerRep,
}
impl From<DummyPassRes> for ForwardResult {
@@ -116,11 +118,11 @@ pub struct DummyPassRes {
/// range checks
pub range_checks: HashSet<Range>,
/// max lookup inputs
pub max_lookup_inputs: i64,
pub max_lookup_inputs: IntegerRep,
/// min lookup inputs
pub min_lookup_inputs: i64,
pub min_lookup_inputs: IntegerRep,
/// min range check
pub max_range_size: i64,
pub max_range_size: IntegerRep,
/// outputs
pub outputs: Vec<Tensor<Fp>>,
}
@@ -545,7 +547,7 @@ impl Model {
})
.collect::<Result<Vec<_>, GraphError>>()?;
let res = self.dummy_layout(run_args, &inputs, false, false)?;
let res = self.dummy_layout(run_args, &inputs, RegionSettings::all_false())?;
// if we're using percentage tolerance, we need to add the necessary range check ops for it.
@@ -588,14 +590,13 @@ impl Model {
&self,
model_inputs: &[Tensor<Fp>],
run_args: &RunArgs,
witness_gen: bool,
check_lookup: bool,
region_settings: RegionSettings,
) -> Result<ForwardResult, GraphError> {
let valtensor_inputs: Vec<ValTensor<Fp>> = model_inputs
.iter()
.map(|x| x.map(|elem| ValType::Value(Value::known(elem))).into())
.collect();
let res = self.dummy_layout(run_args, &valtensor_inputs, witness_gen, check_lookup)?;
let res = self.dummy_layout(run_args, &valtensor_inputs, region_settings)?;
Ok(res.into())
}
@@ -609,9 +610,7 @@ impl Model {
reader: &mut dyn std::io::Read,
run_args: &RunArgs,
) -> Result<TractResult, GraphError> {
use tract_onnx::{
tract_core::internal::IntoArcTensor, tract_hir::internal::GenericFactoid,
};
use tract_onnx::tract_hir::internal::GenericFactoid;
let mut model = tract_onnx::onnx().model_for_read(reader)?;
@@ -648,29 +647,11 @@ impl Model {
}
// Note: do not optimize the model, as the layout will depend on underlying hardware
let mut typed_model = model
let typed_model = model
.into_typed()?
.concretize_dims(&symbol_values)?
.into_decluttered()?;
// concretize constants
for node in typed_model.eval_order()? {
let node = typed_model.node_mut(node);
if let Some(op) = node.op_as_mut::<tract_onnx::tract_core::ops::konst::Const>() {
if op.0.datum_type() == DatumType::TDim {
// get inner value to Arc<Tensor>
let mut constant = op.0.as_ref().clone();
// Generally a shape or hyperparam
constant
.as_slice_mut::<tract_onnx::prelude::TDim>()?
.iter_mut()
.for_each(|x| *x = x.eval(&symbol_values));
op.0 = constant.into_arc_tensor();
}
}
}
Ok((typed_model, symbol_values))
}
@@ -1410,8 +1391,7 @@ impl Model {
&self,
run_args: &RunArgs,
inputs: &[ValTensor<Fp>],
witness_gen: bool,
check_lookup: bool,
region_settings: RegionSettings,
) -> Result<DummyPassRes, GraphError> {
debug!("calculating num of constraints using dummy model layout...");
@@ -1430,8 +1410,7 @@ impl Model {
vars: ModelVars::new_dummy(),
};
let mut region =
RegionCtx::new_dummy(0, run_args.num_inner_cols, witness_gen, check_lookup);
let mut region = RegionCtx::new_dummy(0, run_args.num_inner_cols, region_settings);
let outputs = self.layout_nodes(&mut model_config, &mut region, &mut results)?;

View File

@@ -9,6 +9,7 @@ use crate::circuit::lookup::LookupOp;
#[cfg(not(target_arch = "wasm32"))]
use crate::circuit::poly::PolyOp;
use crate::circuit::Op;
use crate::fieldutils::IntegerRep;
use crate::tensor::{Tensor, TensorError, TensorType};
use halo2curves::bn256::Fr as Fp;
use halo2curves::ff::PrimeField;
@@ -50,16 +51,20 @@ use tract_onnx::tract_hir::{
/// * `dims` - the dimensionality of the resulting [Tensor].
/// * `shift` - offset used in the fixed point representation.
/// * `scale` - `2^scale` used in the fixed point representation.
pub fn quantize_float(elem: &f64, shift: f64, scale: crate::Scale) -> Result<i64, TensorError> {
pub fn quantize_float(
elem: &f64,
shift: f64,
scale: crate::Scale,
) -> Result<IntegerRep, TensorError> {
let mult = scale_to_multiplier(scale);
let max_value = ((i64::MAX as f64 - shift) / mult).round(); // the maximum value that can be represented w/o sig bit truncation
let max_value = ((IntegerRep::MAX as f64 - shift) / mult).round(); // the maximum value that can be represented w/o sig bit truncation
if *elem > max_value {
return Err(TensorError::SigBitTruncationError);
}
// we parallelize the quantization process as it seems to be quite slow at times
let scaled = (mult * *elem + shift).round() as i64;
let scaled = (mult * *elem + shift).round() as IntegerRep;
Ok(scaled)
}
@@ -70,7 +75,7 @@ pub fn quantize_float(elem: &f64, shift: f64, scale: crate::Scale) -> Result<i64
/// * `scale` - `2^scale` used in the fixed point representation.
/// * `shift` - offset used in the fixed point representation.
pub fn dequantize(felt: Fp, scale: crate::Scale, shift: f64) -> f64 {
let int_rep = crate::fieldutils::felt_to_i64(felt);
let int_rep = crate::fieldutils::felt_to_integer_rep(felt);
let multiplier = scale_to_multiplier(scale);
int_rep as f64 / multiplier - shift
}
@@ -85,6 +90,34 @@ pub fn multiplier_to_scale(mult: f64) -> crate::Scale {
mult.log2().round() as crate::Scale
}
#[cfg(not(target_arch = "wasm32"))]
/// extract padding from a onnx node.
pub fn extract_padding(
pool_spec: &PoolSpec,
num_dims: usize,
) -> Result<Vec<(usize, usize)>, GraphError> {
let padding = match &pool_spec.padding {
PaddingSpec::Explicit(b, a) | PaddingSpec::ExplicitOnnxPool(b, a, _) => {
b.iter().zip(a.iter()).map(|(b, a)| (*b, *a)).collect()
}
PaddingSpec::Valid => vec![(0, 0); num_dims],
_ => {
return Err(GraphError::MissingParams("padding".to_string()));
}
};
Ok(padding)
}
#[cfg(not(target_arch = "wasm32"))]
/// Extracts the strides from a onnx node.
pub fn extract_strides(pool_spec: &PoolSpec) -> Result<Vec<usize>, GraphError> {
Ok(pool_spec
.strides
.clone()
.ok_or(GraphError::MissingParams("stride".to_string()))?
.to_vec())
}
/// Gets the shape of a onnx node's outlets.
#[cfg(not(target_arch = "wasm32"))]
pub fn node_output_shapes(
@@ -255,6 +288,8 @@ pub fn new_op_from_onnx(
.flat_map(|x| x.out_scales())
.collect::<Vec<_>>();
let input_dims = inputs.iter().flat_map(|x| x.out_dims()).collect::<Vec<_>>();
let mut replace_const = |scale: crate::Scale,
index: usize,
default_op: SupportedOp|
@@ -309,12 +344,9 @@ pub fn new_op_from_onnx(
}
}
"MultiBroadcastTo" => {
let op = load_op::<MultiBroadcastTo>(node.op(), idx, node.op().name().to_string())?;
let shape = op.shape.clone();
let shape = shape
.iter()
.map(|x| x.to_usize())
.collect::<Result<Vec<_>, _>>()?;
let _op = load_op::<MultiBroadcastTo>(node.op(), idx, node.op().name().to_string())?;
let shapes = node_output_shapes(&node, symbol_values)?;
let shape = shapes[0].clone();
SupportedOp::Linear(PolyOp::MultiBroadcastTo { shape })
}
@@ -1073,18 +1105,8 @@ pub fn new_op_from_onnx(
));
}
let stride = pool_spec
.strides
.clone()
.ok_or(GraphError::MissingParams("stride".to_string()))?;
let padding = match &pool_spec.padding {
PaddingSpec::Explicit(b, a) | PaddingSpec::ExplicitOnnxPool(b, a, _) => {
b.iter().zip(a.iter()).map(|(b, a)| (*b, *a)).collect()
}
_ => {
return Err(GraphError::MissingParams("padding".to_string()));
}
};
let stride = extract_strides(pool_spec)?;
let padding = extract_padding(pool_spec, input_dims[0].len())?;
let kernel_shape = &pool_spec.kernel_shape;
SupportedOp::Hybrid(HybridOp::MaxPool {
@@ -1151,21 +1173,10 @@ pub fn new_op_from_onnx(
));
}
let stride = match conv_node.pool_spec.strides.clone() {
Some(s) => s.to_vec(),
None => {
return Err(GraphError::MissingParams("strides".to_string()));
}
};
let pool_spec = &conv_node.pool_spec;
let padding = match &conv_node.pool_spec.padding {
PaddingSpec::Explicit(b, a) | PaddingSpec::ExplicitOnnxPool(b, a, _) => {
b.iter().zip(a.iter()).map(|(b, a)| (*b, *a)).collect()
}
_ => {
return Err(GraphError::MissingParams("padding".to_string()));
}
};
let stride = extract_strides(pool_spec)?;
let padding = extract_padding(pool_spec, input_dims[0].len())?;
// if bias exists then rescale it to the input + kernel scale
if input_scales.len() == 3 {
@@ -1183,7 +1194,13 @@ pub fn new_op_from_onnx(
}
}
SupportedOp::Linear(PolyOp::Conv { padding, stride })
let group = conv_node.group;
SupportedOp::Linear(PolyOp::Conv {
padding,
stride,
group,
})
}
"Not" => SupportedOp::Linear(PolyOp::Not),
"And" => SupportedOp::Linear(PolyOp::And),
@@ -1214,21 +1231,10 @@ pub fn new_op_from_onnx(
));
}
let stride = match deconv_node.pool_spec.strides.clone() {
Some(s) => s.to_vec(),
None => {
return Err(GraphError::MissingParams("strides".to_string()));
}
};
let padding = match &deconv_node.pool_spec.padding {
PaddingSpec::Explicit(b, a) | PaddingSpec::ExplicitOnnxPool(b, a, _) => {
b.iter().zip(a.iter()).map(|(b, a)| (*b, *a)).collect()
}
_ => {
return Err(GraphError::MissingParams("padding".to_string()));
}
};
let pool_spec = &deconv_node.pool_spec;
let stride = extract_strides(pool_spec)?;
let padding = extract_padding(pool_spec, input_dims[0].len())?;
// if bias exists then rescale it to the input + kernel scale
if input_scales.len() == 3 {
let bias_scale = input_scales[2];
@@ -1249,6 +1255,7 @@ pub fn new_op_from_onnx(
padding,
output_padding: deconv_node.adjustments.to_vec(),
stride,
group: deconv_node.group,
})
}
"Downsample" => {
@@ -1339,18 +1346,8 @@ pub fn new_op_from_onnx(
));
}
let stride = pool_spec
.strides
.clone()
.ok_or(GraphError::MissingParams("stride".to_string()))?;
let padding = match &pool_spec.padding {
PaddingSpec::Explicit(b, a) | PaddingSpec::ExplicitOnnxPool(b, a, _) => {
b.iter().zip(a.iter()).map(|(b, a)| (*b, *a)).collect()
}
_ => {
return Err(GraphError::MissingParams("padding".to_string()));
}
};
let stride = extract_strides(pool_spec)?;
let padding = extract_padding(pool_spec, input_dims[0].len())?;
SupportedOp::Hybrid(HybridOp::SumPool {
padding,
@@ -1432,7 +1429,7 @@ pub fn quantize_tensor<F: PrimeField + TensorType + PartialOrd>(
visibility: &Visibility,
) -> Result<Tensor<F>, TensorError> {
let mut value: Tensor<F> = const_value.par_enum_map(|_, x| {
Ok::<_, TensorError>(crate::fieldutils::i64_to_felt::<F>(quantize_float(
Ok::<_, TensorError>(crate::fieldutils::integer_rep_to_felt::<F>(quantize_float(
&(x).into(),
0.0,
scale,

View File

@@ -85,6 +85,7 @@ use std::str::FromStr;
use circuit::{table::Range, CheckMode, Tolerance};
use clap::Args;
use fieldutils::IntegerRep;
use graph::Visibility;
use halo2_proofs::poly::{
ipa::commitment::IPACommitmentScheme, kzg::commitment::KZGCommitmentScheme,
@@ -243,7 +244,7 @@ pub struct RunArgs {
#[arg(long, default_value = "1", value_hint = clap::ValueHint::Other)]
pub scale_rebase_multiplier: u32,
/// The min and max elements in the lookup table input column
#[arg(short = 'B', long, value_parser = parse_key_val::<i64, i64>, default_value = "-32768->32768")]
#[arg(short = 'B', long, value_parser = parse_key_val::<IntegerRep, IntegerRep>, default_value = "-32768->32768")]
pub lookup_range: Range,
/// The log_2 number of rows
#[arg(short = 'K', long, default_value = "17", value_hint = clap::ValueHint::Other)]

View File

@@ -6,7 +6,7 @@ use crate::circuit::modules::poseidon::{
use crate::circuit::modules::Module;
use crate::circuit::{CheckMode, Tolerance};
use crate::commands::*;
use crate::fieldutils::{felt_to_i64, i64_to_felt};
use crate::fieldutils::{felt_to_integer_rep, integer_rep_to_felt, IntegerRep};
use crate::graph::modules::POSEIDON_LEN_GRAPH;
use crate::graph::TestDataSource;
use crate::graph::{
@@ -331,9 +331,9 @@ fn felt_to_big_endian(felt: PyFelt) -> PyResult<String> {
#[pyfunction(signature = (
felt,
))]
fn felt_to_int(felt: PyFelt) -> PyResult<i64> {
fn felt_to_int(felt: PyFelt) -> PyResult<IntegerRep> {
let felt = crate::pfsys::string_to_field::<Fr>(&felt);
let int_rep = felt_to_i64(felt);
let int_rep = felt_to_integer_rep(felt);
Ok(int_rep)
}
@@ -357,7 +357,7 @@ fn felt_to_int(felt: PyFelt) -> PyResult<i64> {
))]
fn felt_to_float(felt: PyFelt, scale: crate::Scale) -> PyResult<f64> {
let felt = crate::pfsys::string_to_field::<Fr>(&felt);
let int_rep = felt_to_i64(felt);
let int_rep = felt_to_integer_rep(felt);
let multiplier = scale_to_multiplier(scale);
let float_rep = int_rep as f64 / multiplier;
Ok(float_rep)
@@ -385,7 +385,7 @@ fn felt_to_float(felt: PyFelt, scale: crate::Scale) -> PyResult<f64> {
fn float_to_felt(input: f64, scale: crate::Scale) -> PyResult<PyFelt> {
let int_rep = quantize_float(&input, 0.0, scale)
.map_err(|_| PyIOError::new_err("Failed to quantize input"))?;
let felt = i64_to_felt(int_rep);
let felt = integer_rep_to_felt(int_rep);
Ok(crate::pfsys::field_to_string::<Fr>(&felt))
}

View File

@@ -9,7 +9,7 @@ pub mod var;
pub use errors::TensorError;
use halo2curves::{bn256::Fr, ff::PrimeField};
use halo2curves::ff::PrimeField;
use maybe_rayon::{
prelude::{
IndexedParallelIterator, IntoParallelRefIterator, IntoParallelRefMutIterator,
@@ -26,7 +26,7 @@ use instant::Instant;
use crate::{
circuit::utils,
fieldutils::{felt_to_i32, felt_to_i64, i32_to_felt, i64_to_felt},
fieldutils::{integer_rep_to_felt, IntegerRep},
graph::Visibility,
};
@@ -108,7 +108,7 @@ impl TensorType for f32 {
Some(0.0)
}
// f32 doesnt impl Ord so we cant just use max like we can for i32, usize.
// f32 doesnt impl Ord so we cant just use max like we can for IntegerRep, usize.
// A comparison between f32s needs to handle NAN values.
fn tmax(&self, other: &Self) -> Option<Self> {
match (self.is_nan(), other.is_nan()) {
@@ -131,7 +131,7 @@ impl TensorType for f64 {
Some(0.0)
}
// f32 doesnt impl Ord so we cant just use max like we can for i32, usize.
// f32 doesnt impl Ord so we cant just use max like we can for IntegerRep, usize.
// A comparison between f32s needs to handle NAN values.
fn tmax(&self, other: &Self) -> Option<Self> {
match (self.is_nan(), other.is_nan()) {
@@ -150,8 +150,7 @@ impl TensorType for f64 {
}
tensor_type!(bool, Bool, false, true);
tensor_type!(i64, Int64, 0, 1);
tensor_type!(i32, Int32, 0, 1);
tensor_type!(IntegerRep, IntegerRep, 0, 1);
tensor_type!(usize, USize, 0, 1);
tensor_type!((), Empty, (), ());
tensor_type!(utils::F32, F32, utils::F32(0.0), utils::F32(1.0));
@@ -316,92 +315,6 @@ impl<T: TensorType> DerefMut for Tensor<T> {
self.inner.deref_mut()
}
}
/// Convert to i64 trait
pub trait IntoI64 {
/// Convert to i64
fn into_i64(self) -> i64;
/// From i64
fn from_i64(i: i64) -> Self;
}
impl IntoI64 for i64 {
fn into_i64(self) -> i64 {
self
}
fn from_i64(i: i64) -> i64 {
i
}
}
impl IntoI64 for i32 {
fn into_i64(self) -> i64 {
self as i64
}
fn from_i64(i: i64) -> Self {
i as i32
}
}
impl IntoI64 for usize {
fn into_i64(self) -> i64 {
self as i64
}
fn from_i64(i: i64) -> Self {
i as usize
}
}
impl IntoI64 for f32 {
fn into_i64(self) -> i64 {
self as i64
}
fn from_i64(i: i64) -> Self {
i as f32
}
}
impl IntoI64 for f64 {
fn into_i64(self) -> i64 {
self as i64
}
fn from_i64(i: i64) -> Self {
i as f64
}
}
impl IntoI64 for () {
fn into_i64(self) -> i64 {
0
}
fn from_i64(_: i64) -> Self {}
}
impl IntoI64 for Fr {
fn into_i64(self) -> i64 {
felt_to_i64(self)
}
fn from_i64(i: i64) -> Self {
i64_to_felt::<Fr>(i)
}
}
impl<F: PrimeField + IntoI64> IntoI64 for Value<F> {
fn into_i64(self) -> i64 {
let mut res = vec![];
self.map(|x| res.push(x.into_i64()));
if res.is_empty() {
0
} else {
res[0]
}
}
fn from_i64(i: i64) -> Self {
Value::known(F::from_i64(i))
}
}
impl<T: PartialEq + TensorType> PartialEq for Tensor<T> {
fn eq(&self, other: &Tensor<T>) -> bool {
@@ -431,42 +344,6 @@ where
}
}
impl<F: PrimeField + Clone + TensorType + PartialOrd> From<Tensor<AssignedCell<Assigned<F>, F>>>
for Tensor<i32>
{
fn from(value: Tensor<AssignedCell<Assigned<F>, F>>) -> Tensor<i32> {
let mut output = Vec::new();
value.map(|x| {
x.evaluate().value().map(|y| {
let e = felt_to_i32(*y);
output.push(e);
e
})
});
Tensor::new(Some(&output), value.dims()).unwrap()
}
}
impl<F: PrimeField + Clone + TensorType + PartialOrd> From<Tensor<AssignedCell<F, F>>>
for Tensor<i32>
{
fn from(value: Tensor<AssignedCell<F, F>>) -> Tensor<i32> {
let mut output = Vec::new();
value.map(|x| {
let mut i = 0;
x.value().map(|y| {
let e = felt_to_i32(*y);
output.push(e);
i += 1;
});
if i == 0 {
output.push(0);
}
});
Tensor::new(Some(&output), value.dims()).unwrap()
}
}
impl<F: PrimeField + Clone + TensorType + PartialOrd> From<Tensor<AssignedCell<Assigned<F>, F>>>
for Tensor<Value<F>>
{
@@ -479,24 +356,6 @@ impl<F: PrimeField + Clone + TensorType + PartialOrd> From<Tensor<AssignedCell<A
}
}
impl<F: PrimeField + TensorType + Clone + PartialOrd> From<Tensor<Value<F>>> for Tensor<i32> {
fn from(t: Tensor<Value<F>>) -> Tensor<i32> {
let mut output = Vec::new();
t.map(|x| {
let mut i = 0;
x.map(|y| {
let e = felt_to_i32(y);
output.push(e);
i += 1;
});
if i == 0 {
output.push(0);
}
});
Tensor::new(Some(&output), t.dims()).unwrap()
}
}
impl<F: PrimeField + TensorType + Clone + PartialOrd> From<Tensor<Value<F>>>
for Tensor<Value<Assigned<F>>>
{
@@ -508,20 +367,10 @@ impl<F: PrimeField + TensorType + Clone + PartialOrd> From<Tensor<Value<F>>>
}
}
impl<F: PrimeField + TensorType + Clone> From<Tensor<i32>> for Tensor<Value<F>> {
fn from(t: Tensor<i32>) -> Tensor<Value<F>> {
impl<F: PrimeField + TensorType + Clone> From<Tensor<IntegerRep>> for Tensor<Value<F>> {
fn from(t: Tensor<IntegerRep>) -> Tensor<Value<F>> {
let mut ta: Tensor<Value<F>> =
Tensor::from((0..t.len()).map(|i| Value::known(i32_to_felt::<F>(t[i]))));
// safe to unwrap as we know the dims are correct
ta.reshape(t.dims()).unwrap();
ta
}
}
impl<F: PrimeField + TensorType + Clone> From<Tensor<i64>> for Tensor<Value<F>> {
fn from(t: Tensor<i64>) -> Tensor<Value<F>> {
let mut ta: Tensor<Value<F>> =
Tensor::from((0..t.len()).map(|i| Value::known(i64_to_felt::<F>(t[i]))));
Tensor::from((0..t.len()).map(|i| Value::known(integer_rep_to_felt::<F>(t[i]))));
// safe to unwrap as we know the dims are correct
ta.reshape(t.dims()).unwrap();
ta
@@ -633,7 +482,8 @@ impl<T: Clone + TensorType> Tensor<T> {
///
/// ```
/// use ezkl::tensor::Tensor;
/// let mut a = Tensor::<i32>::new(None, &[3, 3, 3]).unwrap();
/// use ezkl::fieldutils::IntegerRep;
/// let mut a = Tensor::<IntegerRep>::new(None, &[3, 3, 3]).unwrap();
///
/// a.set(&[0, 0, 1], 10);
/// assert_eq!(a[0 + 0 + 1], 10);
@@ -650,7 +500,8 @@ impl<T: Clone + TensorType> Tensor<T> {
///
/// ```
/// use ezkl::tensor::Tensor;
/// let mut a = Tensor::<i32>::new(None, &[2, 3, 5]).unwrap();
/// use ezkl::fieldutils::IntegerRep;
/// let mut a = Tensor::<IntegerRep>::new(None, &[2, 3, 5]).unwrap();
///
/// a[1*15 + 1*5 + 1] = 5;
/// assert_eq!(a.get(&[1, 1, 1]), 5);
@@ -664,7 +515,8 @@ impl<T: Clone + TensorType> Tensor<T> {
///
/// ```
/// use ezkl::tensor::Tensor;
/// let mut a = Tensor::<i32>::new(None, &[2, 3, 5]).unwrap();
/// use ezkl::fieldutils::IntegerRep;
/// let mut a = Tensor::<IntegerRep>::new(None, &[2, 3, 5]).unwrap();
///
/// a[1*15 + 1*5 + 1] = 5;
/// assert_eq!(a.get(&[1, 1, 1]), 5);
@@ -684,11 +536,12 @@ impl<T: Clone + TensorType> Tensor<T> {
/// Pad to a length that is divisible by n
/// ```
/// use ezkl::tensor::Tensor;
/// let mut a = Tensor::<i32>::new(Some(&[1,2,3,4,5,6]), &[2, 3]).unwrap();
/// let expected = Tensor::<i32>::new(Some(&[1, 2, 3, 4, 5, 6, 0, 0]), &[8]).unwrap();
/// use ezkl::fieldutils::IntegerRep;
/// let mut a = Tensor::<IntegerRep>::new(Some(&[1,2,3,4,5,6]), &[2, 3]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[1, 2, 3, 4, 5, 6, 0, 0]), &[8]).unwrap();
/// assert_eq!(a.pad_to_zero_rem(4, 0).unwrap(), expected);
///
/// let expected = Tensor::<i32>::new(Some(&[1, 2, 3, 4, 5, 6, 0, 0, 0]), &[9]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[1, 2, 3, 4, 5, 6, 0, 0, 0]), &[9]).unwrap();
/// assert_eq!(a.pad_to_zero_rem(9, 0).unwrap(), expected);
/// ```
pub fn pad_to_zero_rem(&self, n: usize, pad: T) -> Result<Tensor<T>, TensorError> {
@@ -704,7 +557,8 @@ impl<T: Clone + TensorType> Tensor<T> {
///
/// ```
/// use ezkl::tensor::Tensor;
/// let mut a = Tensor::<i32>::new(None, &[2, 3, 5]).unwrap();
/// use ezkl::fieldutils::IntegerRep;
/// let mut a = Tensor::<IntegerRep>::new(None, &[2, 3, 5]).unwrap();
///
/// let flat_index = 1*15 + 1*5 + 1;
/// a[1*15 + 1*5 + 1] = 5;
@@ -731,8 +585,9 @@ impl<T: Clone + TensorType> Tensor<T> {
/// Get a slice from the Tensor.
/// ```
/// use ezkl::tensor::Tensor;
/// let mut a = Tensor::<i32>::new(Some(&[1, 2, 3]), &[3]).unwrap();
/// let mut b = Tensor::<i32>::new(Some(&[1, 2]), &[2]).unwrap();
/// use ezkl::fieldutils::IntegerRep;
/// let mut a = Tensor::<IntegerRep>::new(Some(&[1, 2, 3]), &[3]).unwrap();
/// let mut b = Tensor::<IntegerRep>::new(Some(&[1, 2]), &[2]).unwrap();
///
/// assert_eq!(a.get_slice(&[0..2]).unwrap(), b);
/// ```
@@ -782,9 +637,10 @@ impl<T: Clone + TensorType> Tensor<T> {
/// Set a slice of the Tensor.
/// ```
/// use ezkl::tensor::Tensor;
/// let mut a = Tensor::<i32>::new(Some(&[1, 2, 3, 4, 5, 6]), &[2, 3]).unwrap();
/// let b = Tensor::<i32>::new(Some(&[1, 2, 3, 1, 2, 3]), &[2, 3]).unwrap();
/// a.set_slice(&[1..2], &Tensor::<i32>::new(Some(&[1, 2, 3]), &[1, 3]).unwrap()).unwrap();
/// use ezkl::fieldutils::IntegerRep;
/// let mut a = Tensor::<IntegerRep>::new(Some(&[1, 2, 3, 4, 5, 6]), &[2, 3]).unwrap();
/// let b = Tensor::<IntegerRep>::new(Some(&[1, 2, 3, 1, 2, 3]), &[2, 3]).unwrap();
/// a.set_slice(&[1..2], &Tensor::<IntegerRep>::new(Some(&[1, 2, 3]), &[1, 3]).unwrap()).unwrap();
/// assert_eq!(a, b);
/// ```
pub fn set_slice(
@@ -845,6 +701,7 @@ impl<T: Clone + TensorType> Tensor<T> {
///
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// let a = Tensor::<f32>::new(None, &[3, 3, 3]).unwrap();
///
/// assert_eq!(a.get_index(&[2, 2, 2]), 26);
@@ -868,12 +725,13 @@ impl<T: Clone + TensorType> Tensor<T> {
///
/// ```
/// use ezkl::tensor::Tensor;
/// let a = Tensor::<i32>::new(Some(&[1, 2, 3, 4, 5, 6]), &[6]).unwrap();
/// let expected = Tensor::<i32>::new(Some(&[1, 2, 3, 3, 4, 5, 5, 6]), &[8]).unwrap();
/// use ezkl::fieldutils::IntegerRep;
/// let a = Tensor::<IntegerRep>::new(Some(&[1, 2, 3, 4, 5, 6]), &[6]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[1, 2, 3, 3, 4, 5, 5, 6]), &[8]).unwrap();
/// assert_eq!(a.duplicate_every_n(3, 1, 0).unwrap(), expected);
/// assert_eq!(a.duplicate_every_n(7, 1, 0).unwrap(), a);
///
/// let expected = Tensor::<i32>::new(Some(&[1, 1, 2, 3, 3, 4, 5, 5, 6]), &[9]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[1, 1, 2, 3, 3, 4, 5, 5, 6]), &[9]).unwrap();
/// assert_eq!(a.duplicate_every_n(3, 1, 2).unwrap(), expected);
///
/// ```
@@ -900,8 +758,9 @@ impl<T: Clone + TensorType> Tensor<T> {
///
/// ```
/// use ezkl::tensor::Tensor;
/// let a = Tensor::<i32>::new(Some(&[1, 2, 3, 3, 4, 5, 6, 6]), &[8]).unwrap();
/// let expected = Tensor::<i32>::new(Some(&[1, 2, 3, 3, 5, 6, 6]), &[7]).unwrap();
/// use ezkl::fieldutils::IntegerRep;
/// let a = Tensor::<IntegerRep>::new(Some(&[1, 2, 3, 3, 4, 5, 6, 6]), &[8]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[1, 2, 3, 3, 5, 6, 6]), &[7]).unwrap();
/// assert_eq!(a.remove_every_n(4, 1, 0).unwrap(), expected);
///
///
@@ -935,14 +794,15 @@ impl<T: Clone + TensorType> Tensor<T> {
/// WARN: assumes indices are in ascending order for speed
/// ```
/// use ezkl::tensor::Tensor;
/// let a = Tensor::<i32>::new(Some(&[1, 2, 3, 4, 5, 6]), &[6]).unwrap();
/// let expected = Tensor::<i32>::new(Some(&[1, 2, 3, 6]), &[4]).unwrap();
/// use ezkl::fieldutils::IntegerRep;
/// let a = Tensor::<IntegerRep>::new(Some(&[1, 2, 3, 4, 5, 6]), &[6]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[1, 2, 3, 6]), &[4]).unwrap();
/// let mut indices = vec![3, 4];
/// assert_eq!(a.remove_indices(&mut indices, true).unwrap(), expected);
///
///
/// let a = Tensor::<i32>::new(Some(&[52, -245, 153, 13, -4, -56, -163, 249, -128, -172, 396, 143, 2, -96, 504, -44, -158, -393, 61, 95, 191, 74, 64, -219, 553, 104, 235, 222, 44, -216, 63, -251, 40, -140, 112, -355, 60, 123, 26, -116, -89, -200, -109, 168, 135, -34, -99, -54, 5, -81, 322, 87, 4, -139, 420, 92, -295, -12, 262, -1, 26, -48, 231, 1, -335, 244, 188, -4, 5, -362, 57, -198, -184, -117, 40, 305, 49, 30, -59, -26, -37, 96]), &[82]).unwrap();
/// let b = Tensor::<i32>::new(Some(&[52, -245, 153, 13, -4, -56, -163, 249, -128, -172, 396, 143, 2, -96, 504, -44, -158, -393, 61, 95, 191, 74, 64, -219, 553, 104, 235, 222, 44, -216, 63, -251, 40, -140, 112, -355, 60, 123, 26, -116, -89, -200, -109, 168, 135, -34, -99, -54, 5, -81, 322, 87, 4, -139, 420, 92, -295, -12, 262, -1, 26, -48, 231, -335, 244, 188, 5, -362, 57, -198, -184, -117, 40, 305, 49, 30, -59, -26, -37, 96]), &[80]).unwrap();
/// let a = Tensor::<IntegerRep>::new(Some(&[52, -245, 153, 13, -4, -56, -163, 249, -128, -172, 396, 143, 2, -96, 504, -44, -158, -393, 61, 95, 191, 74, 64, -219, 553, 104, 235, 222, 44, -216, 63, -251, 40, -140, 112, -355, 60, 123, 26, -116, -89, -200, -109, 168, 135, -34, -99, -54, 5, -81, 322, 87, 4, -139, 420, 92, -295, -12, 262, -1, 26, -48, 231, 1, -335, 244, 188, -4, 5, -362, 57, -198, -184, -117, 40, 305, 49, 30, -59, -26, -37, 96]), &[82]).unwrap();
/// let b = Tensor::<IntegerRep>::new(Some(&[52, -245, 153, 13, -4, -56, -163, 249, -128, -172, 396, 143, 2, -96, 504, -44, -158, -393, 61, 95, 191, 74, 64, -219, 553, 104, 235, 222, 44, -216, 63, -251, 40, -140, 112, -355, 60, 123, 26, -116, -89, -200, -109, 168, 135, -34, -99, -54, 5, -81, 322, 87, 4, -139, 420, 92, -295, -12, 262, -1, 26, -48, 231, -335, 244, 188, 5, -362, 57, -198, -184, -117, 40, 305, 49, 30, -59, -26, -37, 96]), &[80]).unwrap();
/// let mut indices = vec![63, 67];
/// assert_eq!(a.remove_indices(&mut indices, true).unwrap(), b);
/// ```
@@ -972,6 +832,7 @@ impl<T: Clone + TensorType> Tensor<T> {
///Reshape the tensor
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// let mut a = Tensor::<f32>::new(None, &[3, 3, 3]).unwrap();
/// a.reshape(&[9, 3]);
/// assert_eq!(a.dims(), &[9, 3]);
@@ -1006,22 +867,23 @@ impl<T: Clone + TensorType> Tensor<T> {
/// Move axis of the tensor
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// let mut a = Tensor::<f32>::new(None, &[3, 3, 3]).unwrap();
/// let b = a.move_axis(0, 2).unwrap();
/// assert_eq!(b.dims(), &[3, 3, 3]);
///
/// let mut a = Tensor::<i32>::new(Some(&[1, 2, 3, 4, 5, 6]), &[3, 1, 2]).unwrap();
/// let mut expected = Tensor::<i32>::new(Some(&[1, 3, 5, 2, 4, 6]), &[1, 2, 3]).unwrap();
/// let mut a = Tensor::<IntegerRep>::new(Some(&[1, 2, 3, 4, 5, 6]), &[3, 1, 2]).unwrap();
/// let mut expected = Tensor::<IntegerRep>::new(Some(&[1, 3, 5, 2, 4, 6]), &[1, 2, 3]).unwrap();
/// let b = a.move_axis(0, 2).unwrap();
/// assert_eq!(b, expected);
///
/// let mut a = Tensor::<i32>::new(Some(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), &[2, 3, 2]).unwrap();
/// let mut expected = Tensor::<i32>::new(Some(&[1, 3, 5, 2, 4, 6, 7, 9, 11, 8, 10, 12]), &[2, 2, 3]).unwrap();
/// let mut a = Tensor::<IntegerRep>::new(Some(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), &[2, 3, 2]).unwrap();
/// let mut expected = Tensor::<IntegerRep>::new(Some(&[1, 3, 5, 2, 4, 6, 7, 9, 11, 8, 10, 12]), &[2, 2, 3]).unwrap();
/// let b = a.move_axis(1, 2).unwrap();
/// assert_eq!(b, expected);
///
/// let mut a = Tensor::<i32>::new(Some(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), &[2, 3, 2]).unwrap();
/// let mut expected = Tensor::<i32>::new(Some(&[1, 3, 5, 2, 4, 6, 7, 9, 11, 8, 10, 12]), &[2, 2, 3]).unwrap();
/// let mut a = Tensor::<IntegerRep>::new(Some(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), &[2, 3, 2]).unwrap();
/// let mut expected = Tensor::<IntegerRep>::new(Some(&[1, 3, 5, 2, 4, 6, 7, 9, 11, 8, 10, 12]), &[2, 2, 3]).unwrap();
/// let b = a.move_axis(2, 1).unwrap();
/// assert_eq!(b, expected);
/// ```
@@ -1086,22 +948,23 @@ impl<T: Clone + TensorType> Tensor<T> {
/// Swap axes of the tensor
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// let mut a = Tensor::<f32>::new(None, &[3, 3, 3]).unwrap();
/// let b = a.swap_axes(0, 2).unwrap();
/// assert_eq!(b.dims(), &[3, 3, 3]);
///
/// let mut a = Tensor::<i32>::new(Some(&[1, 2, 3, 4, 5, 6]), &[3, 1, 2]).unwrap();
/// let mut expected = Tensor::<i32>::new(Some(&[1, 3, 5, 2, 4, 6]), &[2, 1, 3]).unwrap();
/// let mut a = Tensor::<IntegerRep>::new(Some(&[1, 2, 3, 4, 5, 6]), &[3, 1, 2]).unwrap();
/// let mut expected = Tensor::<IntegerRep>::new(Some(&[1, 3, 5, 2, 4, 6]), &[2, 1, 3]).unwrap();
/// let b = a.swap_axes(0, 2).unwrap();
/// assert_eq!(b, expected);
///
/// let mut a = Tensor::<i32>::new(Some(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), &[2, 3, 2]).unwrap();
/// let mut expected = Tensor::<i32>::new(Some(&[1, 3, 5, 2, 4, 6, 7, 9, 11, 8, 10, 12]), &[2, 2, 3]).unwrap();
/// let mut a = Tensor::<IntegerRep>::new(Some(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), &[2, 3, 2]).unwrap();
/// let mut expected = Tensor::<IntegerRep>::new(Some(&[1, 3, 5, 2, 4, 6, 7, 9, 11, 8, 10, 12]), &[2, 2, 3]).unwrap();
/// let b = a.swap_axes(1, 2).unwrap();
/// assert_eq!(b, expected);
///
/// let mut a = Tensor::<i32>::new(Some(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), &[2, 3, 2]).unwrap();
/// let mut expected = Tensor::<i32>::new(Some(&[1, 3, 5, 2, 4, 6, 7, 9, 11, 8, 10, 12]), &[2, 2, 3]).unwrap();
/// let mut a = Tensor::<IntegerRep>::new(Some(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), &[2, 3, 2]).unwrap();
/// let mut expected = Tensor::<IntegerRep>::new(Some(&[1, 3, 5, 2, 4, 6, 7, 9, 11, 8, 10, 12]), &[2, 2, 3]).unwrap();
/// let b = a.swap_axes(2, 1).unwrap();
/// assert_eq!(b, expected);
/// ```
@@ -1148,9 +1011,10 @@ impl<T: Clone + TensorType> Tensor<T> {
/// Broadcasts the tensor to a given shape
/// ```
/// use ezkl::tensor::Tensor;
/// let mut a = Tensor::<i32>::new(Some(&[1, 2, 3]), &[3, 1]).unwrap();
/// use ezkl::fieldutils::IntegerRep;
/// let mut a = Tensor::<IntegerRep>::new(Some(&[1, 2, 3]), &[3, 1]).unwrap();
///
/// let mut expected = Tensor::<i32>::new(Some(&[1, 1, 1, 2, 2, 2, 3, 3, 3]), &[3, 3]).unwrap();
/// let mut expected = Tensor::<IntegerRep>::new(Some(&[1, 1, 1, 2, 2, 2, 3, 3, 3]), &[3, 3]).unwrap();
/// assert_eq!(a.expand(&[3, 3]).unwrap(), expected);
///
/// ```
@@ -1204,6 +1068,7 @@ impl<T: Clone + TensorType> Tensor<T> {
///Flatten the tensor shape
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// let mut a = Tensor::<f32>::new(None, &[3, 3, 3]).unwrap();
/// a.flatten();
/// assert_eq!(a.dims(), &[27]);
@@ -1217,8 +1082,9 @@ impl<T: Clone + TensorType> Tensor<T> {
/// Maps a function to tensors
/// ```
/// use ezkl::tensor::Tensor;
/// let mut a = Tensor::<i32>::new(Some(&[1, 4]), &[2]).unwrap();
/// let mut c = a.map(|x| i32::pow(x,2));
/// use ezkl::fieldutils::IntegerRep;
/// let mut a = Tensor::<IntegerRep>::new(Some(&[1, 4]), &[2]).unwrap();
/// let mut c = a.map(|x| IntegerRep::pow(x,2));
/// assert_eq!(c, Tensor::from([1, 16].into_iter()))
/// ```
pub fn map<F: FnMut(T) -> G, G: TensorType>(&self, mut f: F) -> Tensor<G> {
@@ -1231,8 +1097,9 @@ impl<T: Clone + TensorType> Tensor<T> {
/// Maps a function to tensors and enumerates
/// ```
/// use ezkl::tensor::{Tensor, TensorError};
/// let mut a = Tensor::<i32>::new(Some(&[1, 4]), &[2]).unwrap();
/// let mut c = a.enum_map::<_,_,TensorError>(|i, x| Ok(i32::pow(x + i as i32, 2))).unwrap();
/// use ezkl::fieldutils::IntegerRep;
/// let mut a = Tensor::<IntegerRep>::new(Some(&[1, 4]), &[2]).unwrap();
/// let mut c = a.enum_map::<_,_,TensorError>(|i, x| Ok(IntegerRep::pow(x + i as IntegerRep, 2))).unwrap();
/// assert_eq!(c, Tensor::from([1, 25].into_iter()));
/// ```
pub fn enum_map<F: FnMut(usize, T) -> Result<G, E>, G: TensorType, E: Error>(
@@ -1254,8 +1121,9 @@ impl<T: Clone + TensorType> Tensor<T> {
/// Maps a function to tensors and enumerates in parallel
/// ```
/// use ezkl::tensor::{Tensor, TensorError};
/// let mut a = Tensor::<i32>::new(Some(&[1, 4]), &[2]).unwrap();
/// let mut c = a.par_enum_map::<_,_,TensorError>(|i, x| Ok(i32::pow(x + i as i32, 2))).unwrap();
/// use ezkl::fieldutils::IntegerRep;
/// let mut a = Tensor::<IntegerRep>::new(Some(&[1, 4]), &[2]).unwrap();
/// let mut c = a.par_enum_map::<_,_,TensorError>(|i, x| Ok(IntegerRep::pow(x + i as IntegerRep, 2))).unwrap();
/// assert_eq!(c, Tensor::from([1, 25].into_iter()));
/// ```
pub fn par_enum_map<
@@ -1281,11 +1149,37 @@ impl<T: Clone + TensorType> Tensor<T> {
Ok(t)
}
/// Get last elem from Tensor
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// let mut a = Tensor::<IntegerRep>::new(Some(&[1, 2, 3]), &[3]).unwrap();
/// let mut b = Tensor::<IntegerRep>::new(Some(&[3]), &[1]).unwrap();
///
/// assert_eq!(a.last().unwrap(), b);
/// ```
pub fn last(&self) -> Result<Tensor<T>, TensorError>
where
T: Send + Sync,
{
let res = match self.inner.last() {
Some(e) => e.clone(),
None => {
return Err(TensorError::DimError(
"Cannot get last element of empty tensor".to_string(),
))
}
};
Tensor::new(Some(&[res]), &[1])
}
/// Maps a function to tensors and enumerates in parallel
/// ```
/// use ezkl::tensor::{Tensor, TensorError};
/// let mut a = Tensor::<i32>::new(Some(&[1, 4]), &[2]).unwrap();
/// let mut c = a.par_enum_map::<_,_,TensorError>(|i, x| Ok(i32::pow(x + i as i32, 2))).unwrap();
/// use ezkl::fieldutils::IntegerRep;
/// let mut a = Tensor::<IntegerRep>::new(Some(&[1, 4]), &[2]).unwrap();
/// let mut c = a.par_enum_map::<_,_,TensorError>(|i, x| Ok(IntegerRep::pow(x + i as IntegerRep, 2))).unwrap();
/// assert_eq!(c, Tensor::from([1, 25].into_iter()));
/// ```
pub fn par_enum_map_mut_filtered<
@@ -1293,7 +1187,7 @@ impl<T: Clone + TensorType> Tensor<T> {
E: Error + std::marker::Send + std::marker::Sync,
>(
&mut self,
filter_indices: &std::collections::HashSet<&usize>,
filter_indices: &std::collections::HashSet<usize>,
f: F,
) -> Result<(), E>
where
@@ -1308,103 +1202,13 @@ impl<T: Clone + TensorType> Tensor<T> {
}
}
#[cfg(feature = "metal")]
#[allow(unsafe_code)]
/// Perform a tensor operation on the GPU using Metal.
pub fn metal_tensor_op<T: Clone + TensorType + IntoI64 + Send + Sync>(
v: &Tensor<T>,
w: &Tensor<T>,
op: &str,
) -> Tensor<T> {
assert_eq!(v.dims(), w.dims());
log::trace!("------------------------------------------------");
let start = Instant::now();
let v = v
.par_enum_map(|_, x| Ok::<_, TensorError>(x.into_i64()))
.unwrap();
let w = w
.par_enum_map(|_, x| Ok::<_, TensorError>(x.into_i64()))
.unwrap();
log::trace!("Time to map tensors: {:?}", start.elapsed());
objc::rc::autoreleasepool(|| {
// create function pipeline.
// this compiles the function, so a pipline can't be created in performance sensitive code.
let pipeline = &PIPELINES[op];
let length = v.len() as u64;
let size = length * core::mem::size_of::<i64>() as u64;
assert_eq!(v.len(), w.len());
let start = Instant::now();
let buffer_a = DEVICE.new_buffer_with_data(
unsafe { std::mem::transmute(v.as_ptr()) },
size,
MTLResourceOptions::StorageModeShared,
);
let buffer_b = DEVICE.new_buffer_with_data(
unsafe { std::mem::transmute(w.as_ptr()) },
size,
MTLResourceOptions::StorageModeShared,
);
let buffer_result = DEVICE.new_buffer(
size, // the operation will return an array with the same size.
MTLResourceOptions::StorageModeShared,
);
log::trace!("Time to load buffers: {:?}", start.elapsed());
// for sending commands, a command buffer is needed.
let start = Instant::now();
let command_buffer = QUEUE.new_command_buffer();
log::trace!("Time to load command buffer: {:?}", start.elapsed());
// to write commands into a buffer an encoder is needed, in our case a compute encoder.
let start = Instant::now();
let compute_encoder = command_buffer.new_compute_command_encoder();
compute_encoder.set_compute_pipeline_state(&pipeline);
compute_encoder.set_buffers(
0,
&[Some(&buffer_a), Some(&buffer_b), Some(&buffer_result)],
&[0; 3],
);
log::trace!("Time to load compute encoder: {:?}", start.elapsed());
// specify thread count and organization
let start = Instant::now();
let grid_size = MTLSize::new(length, 1, 1);
let threadgroup_size = MTLSize::new(length, 1, 1);
compute_encoder.dispatch_threads(grid_size, threadgroup_size);
log::trace!("Time to dispatch threads: {:?}", start.elapsed());
// end encoding and execute commands
let start = Instant::now();
compute_encoder.end_encoding();
command_buffer.commit();
command_buffer.wait_until_completed();
log::trace!("Time to commit: {:?}", start.elapsed());
let start = Instant::now();
let ptr = buffer_result.contents() as *const i64;
let len = buffer_result.length() as usize / std::mem::size_of::<i64>();
let slice = unsafe { core::slice::from_raw_parts(ptr, len) };
let res = Tensor::new(Some(&slice.to_vec()), &v.dims()).unwrap();
log::trace!("Time to get result: {:?}", start.elapsed());
res.map(|x| T::from_i64(x))
})
}
impl<T: Clone + TensorType> Tensor<Tensor<T>> {
/// Flattens a tensor of tensors
/// ```
/// use ezkl::tensor::Tensor;
/// let mut a = Tensor::<i32>::new(Some(&[1, 2, 3, 4, 5, 6]), &[2, 3]).unwrap();
/// let mut b = Tensor::<i32>::new(Some(&[1, 4]), &[2, 1]).unwrap();
/// use ezkl::fieldutils::IntegerRep;
/// let mut a = Tensor::<IntegerRep>::new(Some(&[1, 2, 3, 4, 5, 6]), &[2, 3]).unwrap();
/// let mut b = Tensor::<IntegerRep>::new(Some(&[1, 4]), &[2, 1]).unwrap();
/// let mut c = Tensor::new(Some(&[a,b]), &[2]).unwrap();
/// let mut d = c.combine().unwrap();
/// assert_eq!(d.dims(), &[8]);
@@ -1420,9 +1224,7 @@ impl<T: Clone + TensorType> Tensor<Tensor<T>> {
}
}
impl<T: TensorType + Add<Output = T> + std::marker::Send + std::marker::Sync + IntoI64> Add
for Tensor<T>
{
impl<T: TensorType + Add<Output = T> + std::marker::Send + std::marker::Sync> Add for Tensor<T> {
type Output = Result<Tensor<T>, TensorError>;
/// Adds tensors.
/// # Arguments
@@ -1432,42 +1234,43 @@ impl<T: TensorType + Add<Output = T> + std::marker::Send + std::marker::Sync + I
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use std::ops::Add;
/// let x = Tensor::<i32>::new(
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 1, 2, 1, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let k = Tensor::<i32>::new(
/// let k = Tensor::<IntegerRep>::new(
/// Some(&[2, 3, 2, 1, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let result = x.add(k).unwrap();
/// let expected = Tensor::<i32>::new(Some(&[4, 4, 4, 2, 2, 2]), &[2, 3]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[4, 4, 4, 2, 2, 2]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
///
/// // Now test 1D casting
/// let x = Tensor::<i32>::new(
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 1, 2, 1, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let k = Tensor::<i32>::new(
/// let k = Tensor::<IntegerRep>::new(
/// Some(&[2]),
/// &[1]).unwrap();
/// let result = x.add(k).unwrap();
/// let expected = Tensor::<i32>::new(Some(&[4, 3, 4, 3, 3, 3]), &[2, 3]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[4, 3, 4, 3, 3, 3]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
///
///
/// // Now test 2D casting
/// let x = Tensor::<i32>::new(
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 1, 2, 1, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let k = Tensor::<i32>::new(
/// let k = Tensor::<IntegerRep>::new(
/// Some(&[2, 3]),
/// &[2]).unwrap();
/// let result = x.add(k).unwrap();
/// let expected = Tensor::<i32>::new(Some(&[4, 3, 4, 4, 4, 4]), &[2, 3]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[4, 3, 4, 4, 4, 4]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
fn add(self, rhs: Self) -> Self::Output {
@@ -1501,13 +1304,14 @@ impl<T: TensorType + Neg<Output = T> + std::marker::Send + std::marker::Sync> Ne
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use std::ops::Neg;
/// let x = Tensor::<i32>::new(
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 1, 2, 1, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let result = x.neg();
/// let expected = Tensor::<i32>::new(Some(&[-2, -1, -2, -1, -1, -1]), &[2, 3]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[-2, -1, -2, -1, -1, -1]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
fn neg(self) -> Self {
@@ -1520,9 +1324,7 @@ impl<T: TensorType + Neg<Output = T> + std::marker::Send + std::marker::Sync> Ne
}
}
impl<T: TensorType + Sub<Output = T> + std::marker::Send + std::marker::Sync + IntoI64> Sub
for Tensor<T>
{
impl<T: TensorType + Sub<Output = T> + std::marker::Send + std::marker::Sync> Sub for Tensor<T> {
type Output = Result<Tensor<T>, TensorError>;
/// Subtracts tensors.
/// # Arguments
@@ -1532,43 +1334,44 @@ impl<T: TensorType + Sub<Output = T> + std::marker::Send + std::marker::Sync + I
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use std::ops::Sub;
/// let x = Tensor::<i32>::new(
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 1, 2, 1, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let k = Tensor::<i32>::new(
/// let k = Tensor::<IntegerRep>::new(
/// Some(&[2, 3, 2, 1, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let result = x.sub(k).unwrap();
/// let expected = Tensor::<i32>::new(Some(&[0, -2, 0, 0, 0, 0]), &[2, 3]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, -2, 0, 0, 0, 0]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
///
/// // Now test 1D sub
/// let x = Tensor::<i32>::new(
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 1, 2, 1, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let k = Tensor::<i32>::new(
/// let k = Tensor::<IntegerRep>::new(
/// Some(&[2]),
/// &[1],
/// ).unwrap();
/// let result = x.sub(k).unwrap();
/// let expected = Tensor::<i32>::new(Some(&[0, -1, 0, -1, -1, -1]), &[2, 3]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, -1, 0, -1, -1, -1]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
///
/// // Now test 2D sub
/// let x = Tensor::<i32>::new(
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 1, 2, 1, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let k = Tensor::<i32>::new(
/// let k = Tensor::<IntegerRep>::new(
/// Some(&[2, 3]),
/// &[2],
/// ).unwrap();
/// let result = x.sub(k).unwrap();
/// let expected = Tensor::<i32>::new(Some(&[0, -1, 0, -2, -2, -2]), &[2, 3]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, -1, 0, -2, -2, -2]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
fn sub(self, rhs: Self) -> Self::Output {
@@ -1594,9 +1397,7 @@ impl<T: TensorType + Sub<Output = T> + std::marker::Send + std::marker::Sync + I
}
}
impl<T: TensorType + Mul<Output = T> + std::marker::Send + std::marker::Sync + IntoI64> Mul
for Tensor<T>
{
impl<T: TensorType + Mul<Output = T> + std::marker::Send + std::marker::Sync> Mul for Tensor<T> {
type Output = Result<Tensor<T>, TensorError>;
/// Elementwise multiplies tensors.
/// # Arguments
@@ -1606,41 +1407,42 @@ impl<T: TensorType + Mul<Output = T> + std::marker::Send + std::marker::Sync + I
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use std::ops::Mul;
/// let x = Tensor::<i32>::new(
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 1, 2, 1, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let k = Tensor::<i32>::new(
/// let k = Tensor::<IntegerRep>::new(
/// Some(&[2, 3, 2, 1, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let result = x.mul(k).unwrap();
/// let expected = Tensor::<i32>::new(Some(&[4, 3, 4, 1, 1, 1]), &[2, 3]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[4, 3, 4, 1, 1, 1]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
///
/// // Now test 1D mult
/// let x = Tensor::<i32>::new(
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 1, 2, 1, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let k = Tensor::<i32>::new(
/// let k = Tensor::<IntegerRep>::new(
/// Some(&[2]),
/// &[1]).unwrap();
/// let result = x.mul(k).unwrap();
/// let expected = Tensor::<i32>::new(Some(&[4, 2, 4, 2, 2, 2]), &[2, 3]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[4, 2, 4, 2, 2, 2]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
///
/// // Now test 2D mult
/// let x = Tensor::<i32>::new(
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 1, 2, 1, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let k = Tensor::<i32>::new(
/// let k = Tensor::<IntegerRep>::new(
/// Some(&[2, 2]),
/// &[2]).unwrap();
/// let result = x.mul(k).unwrap();
/// let expected = Tensor::<i32>::new(Some(&[4, 2, 4, 2, 2, 2]), &[2, 3]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[4, 2, 4, 2, 2, 2]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
fn mul(self, rhs: Self) -> Self::Output {
@@ -1666,7 +1468,7 @@ impl<T: TensorType + Mul<Output = T> + std::marker::Send + std::marker::Sync + I
}
}
impl<T: TensorType + Mul<Output = T> + std::marker::Send + std::marker::Sync + IntoI64> Tensor<T> {
impl<T: TensorType + Mul<Output = T> + std::marker::Send + std::marker::Sync> Tensor<T> {
/// Elementwise raise a tensor to the nth power.
/// # Arguments
///
@@ -1675,13 +1477,14 @@ impl<T: TensorType + Mul<Output = T> + std::marker::Send + std::marker::Sync + I
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use std::ops::Mul;
/// let x = Tensor::<i32>::new(
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 15, 2, 1, 1, 0]),
/// &[2, 3],
/// ).unwrap();
/// let result = x.pow(3).unwrap();
/// let expected = Tensor::<i32>::new(Some(&[8, 3375, 8, 1, 1, 0]), &[2, 3]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[8, 3375, 8, 1, 1, 0]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn pow(&self, mut exp: u32) -> Result<Self, TensorError> {
@@ -1715,30 +1518,31 @@ impl<T: TensorType + Div<Output = T> + std::marker::Send + std::marker::Sync> Di
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use std::ops::Div;
/// let x = Tensor::<i32>::new(
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[4, 1, 4, 1, 1, 4]),
/// &[2, 3],
/// ).unwrap();
/// let y = Tensor::<i32>::new(
/// let y = Tensor::<IntegerRep>::new(
/// Some(&[2, 1, 2, 1, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let result = x.div(y).unwrap();
/// let expected = Tensor::<i32>::new(Some(&[2, 1, 2, 1, 1, 4]), &[2, 3]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[2, 1, 2, 1, 1, 4]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
///
/// // test 1D casting
/// let x = Tensor::<i32>::new(
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[4, 1, 4, 1, 1, 4]),
/// &[2, 3],
/// ).unwrap();
/// let y = Tensor::<i32>::new(
/// let y = Tensor::<IntegerRep>::new(
/// Some(&[2]),
/// &[1],
/// ).unwrap();
/// let result = x.div(y).unwrap();
/// let expected = Tensor::<i32>::new(Some(&[2, 0, 2, 0, 0, 2]), &[2, 3]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[2, 0, 2, 0, 0, 2]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
fn div(self, rhs: Self) -> Self::Output {
@@ -1765,17 +1569,18 @@ impl<T: TensorType + Rem<Output = T> + std::marker::Send + std::marker::Sync> Re
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use std::ops::Rem;
/// let x = Tensor::<i32>::new(
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[4, 1, 4, 1, 1, 4]),
/// &[2, 3],
/// ).unwrap();
/// let y = Tensor::<i32>::new(
/// let y = Tensor::<IntegerRep>::new(
/// Some(&[2, 1, 2, 1, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let result = x.rem(y).unwrap();
/// let expected = Tensor::<i32>::new(Some(&[0, 0, 0, 0, 0, 0]), &[2, 3]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, 0, 0, 0, 0, 0]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
fn rem(self, rhs: Self) -> Self::Output {
@@ -1859,25 +1664,25 @@ mod tests {
#[test]
fn tensor_clone() {
let x = Tensor::<i32>::new(Some(&[1, 2, 3]), &[3]).unwrap();
let x = Tensor::<IntegerRep>::new(Some(&[1, 2, 3]), &[3]).unwrap();
assert_eq!(x, x.clone());
}
#[test]
fn tensor_eq() {
let a = Tensor::<i32>::new(Some(&[1, 2, 3]), &[3]).unwrap();
let mut b = Tensor::<i32>::new(Some(&[1, 2, 3]), &[3, 1]).unwrap();
let a = Tensor::<IntegerRep>::new(Some(&[1, 2, 3]), &[3]).unwrap();
let mut b = Tensor::<IntegerRep>::new(Some(&[1, 2, 3]), &[3, 1]).unwrap();
b.reshape(&[3]).unwrap();
let c = Tensor::<i32>::new(Some(&[1, 2, 4]), &[3]).unwrap();
let d = Tensor::<i32>::new(Some(&[1, 2, 4]), &[3, 1]).unwrap();
let c = Tensor::<IntegerRep>::new(Some(&[1, 2, 4]), &[3]).unwrap();
let d = Tensor::<IntegerRep>::new(Some(&[1, 2, 4]), &[3, 1]).unwrap();
assert_eq!(a, b);
assert_ne!(a, c);
assert_ne!(a, d);
}
#[test]
fn tensor_slice() {
let a = Tensor::<i32>::new(Some(&[1, 2, 3, 4, 5, 6]), &[2, 3]).unwrap();
let b = Tensor::<i32>::new(Some(&[1, 4]), &[2, 1]).unwrap();
let a = Tensor::<IntegerRep>::new(Some(&[1, 2, 3, 4, 5, 6]), &[2, 3]).unwrap();
let b = Tensor::<IntegerRep>::new(Some(&[1, 4]), &[2, 1]).unwrap();
assert_eq!(a.get_slice(&[0..2, 0..1]).unwrap(), b);
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,12 +1,12 @@
use core::{iter::FilterMap, slice::Iter};
use crate::circuit::region::ConstantsMap;
use crate::{circuit::region::ConstantsMap, fieldutils::felt_to_integer_rep};
use maybe_rayon::slice::Iter;
use super::{
ops::{intercalate_values, pad, resize},
*,
};
use halo2_proofs::{arithmetic::Field, circuit::Cell, plonk::Instance};
use maybe_rayon::iter::{FilterMap, IntoParallelIterator, ParallelIterator};
pub(crate) fn create_constant_tensor<
F: PrimeField + TensorType + std::marker::Send + std::marker::Sync + PartialOrd,
@@ -54,6 +54,44 @@ pub enum ValType<F: PrimeField + TensorType + std::marker::Send + std::marker::S
AssignedConstant(AssignedCell<F, F>, F),
}
impl<F: PrimeField + TensorType + PartialOrd> From<ValType<F>> for IntegerRep {
fn from(val: ValType<F>) -> Self {
match val {
ValType::Value(v) => {
let mut output = 0;
let mut i = 0;
v.map(|y| {
let e = felt_to_integer_rep(y);
output = e;
i += 1;
});
output
}
ValType::AssignedValue(v) => {
let mut output = 0;
let mut i = 0;
v.evaluate().map(|y| {
let e = felt_to_integer_rep(y);
output = e;
i += 1;
});
output
}
ValType::PrevAssigned(v) | ValType::AssignedConstant(v, ..) => {
let mut output = 0;
let mut i = 0;
v.value().map(|y| {
let e = felt_to_integer_rep(*y);
output = e;
i += 1;
});
output
}
ValType::Constant(v) => felt_to_integer_rep(v),
}
}
}
impl<F: PrimeField + TensorType + std::marker::Send + std::marker::Sync + PartialOrd> ValType<F> {
/// Returns the inner cell of the [ValType].
pub fn cell(&self) -> Option<Cell> {
@@ -121,44 +159,6 @@ impl<F: PrimeField + TensorType + std::marker::Send + std::marker::Sync + Partia
}
}
impl<F: PrimeField + TensorType + PartialOrd> From<ValType<F>> for i32 {
fn from(val: ValType<F>) -> Self {
match val {
ValType::Value(v) => {
let mut output = 0_i32;
let mut i = 0;
v.map(|y| {
let e = felt_to_i32(y);
output = e;
i += 1;
});
output
}
ValType::AssignedValue(v) => {
let mut output = 0_i32;
let mut i = 0;
v.evaluate().map(|y| {
let e = felt_to_i32(y);
output = e;
i += 1;
});
output
}
ValType::PrevAssigned(v) | ValType::AssignedConstant(v, ..) => {
let mut output = 0_i32;
let mut i = 0;
v.value().map(|y| {
let e = felt_to_i32(*y);
output = e;
i += 1;
});
output
}
ValType::Constant(v) => felt_to_i32(v),
}
}
}
impl<F: PrimeField + TensorType + PartialOrd> From<F> for ValType<F> {
fn from(t: F) -> ValType<F> {
ValType::Constant(t)
@@ -317,8 +317,8 @@ impl<F: PrimeField + TensorType + PartialOrd> From<Tensor<AssignedCell<F, F>>> f
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ValTensor<F> {
/// Allocate a new [ValTensor::Value] from the given [Tensor] of [i64].
pub fn from_i64_tensor(t: Tensor<i64>) -> ValTensor<F> {
let inner = t.map(|x| ValType::Value(Value::known(i64_to_felt(x))));
pub fn from_integer_rep_tensor(t: Tensor<IntegerRep>) -> ValTensor<F> {
let inner = t.map(|x| ValType::Value(Value::known(integer_rep_to_felt(x))));
inner.into()
}
@@ -460,7 +460,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ValTensor<F> {
&self,
) -> FilterMap<Iter<'_, ValType<F>>, fn(&ValType<F>) -> Option<(F, ValType<F>)>> {
match self {
ValTensor::Value { inner, .. } => inner.iter().filter_map(|x| {
ValTensor::Value { inner, .. } => inner.par_iter().filter_map(|x| {
if let ValType::Constant(v) = x {
Some((*v, x.clone()))
} else {
@@ -521,9 +521,9 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ValTensor<F> {
}
/// Calls `int_evals` on the inner tensor.
pub fn get_int_evals(&self) -> Result<Tensor<i64>, TensorError> {
pub fn int_evals(&self) -> Result<Tensor<IntegerRep>, TensorError> {
// finally convert to vector of integers
let mut integer_evals: Vec<i64> = vec![];
let mut integer_evals: Vec<IntegerRep> = vec![];
match self {
ValTensor::Value {
inner: v, dims: _, ..
@@ -531,25 +531,26 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ValTensor<F> {
// we have to push to an externally created vector or else vaf.map() returns an evaluation wrapped in Value<> (which we don't want)
let _ = v.map(|vaf| match vaf {
ValType::Value(v) => v.map(|f| {
integer_evals.push(crate::fieldutils::felt_to_i64(f));
integer_evals.push(crate::fieldutils::felt_to_integer_rep(f));
}),
ValType::AssignedValue(v) => v.map(|f| {
integer_evals.push(crate::fieldutils::felt_to_i64(f.evaluate()));
integer_evals.push(crate::fieldutils::felt_to_integer_rep(f.evaluate()));
}),
ValType::PrevAssigned(v) | ValType::AssignedConstant(v, ..) => {
v.value_field().map(|f| {
integer_evals.push(crate::fieldutils::felt_to_i64(f.evaluate()));
integer_evals
.push(crate::fieldutils::felt_to_integer_rep(f.evaluate()));
})
}
ValType::Constant(v) => {
integer_evals.push(crate::fieldutils::felt_to_i64(v));
integer_evals.push(crate::fieldutils::felt_to_integer_rep(v));
Value::unknown()
}
});
}
_ => return Err(TensorError::WrongMethod),
};
let mut tensor: Tensor<i64> = integer_evals.into_iter().into();
let mut tensor: Tensor<IntegerRep> = integer_evals.into_iter().into();
match tensor.reshape(self.dims()) {
_ => {}
};
@@ -573,6 +574,27 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ValTensor<F> {
Ok(())
}
/// Calls `get_slice` on the inner tensor.
pub fn last(&self) -> Result<ValTensor<F>, TensorError> {
let slice = match self {
ValTensor::Value {
inner: v,
dims: _,
scale,
} => {
let inner = v.last()?;
let dims = inner.dims().to_vec();
ValTensor::Value {
inner,
dims,
scale: *scale,
}
}
_ => return Err(TensorError::WrongMethod),
};
Ok(slice)
}
/// Calls `get_slice` on the inner tensor.
pub fn get_slice(&self, indices: &[Range<usize>]) -> Result<ValTensor<F>, TensorError> {
if indices.iter().map(|x| x.end - x.start).collect::<Vec<_>>() == self.dims() {
@@ -753,43 +775,72 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ValTensor<F> {
Ok(())
}
/// gets constants
pub fn get_const_zero_indices(&self) -> Result<Vec<usize>, TensorError> {
/// remove constant zero values constants
pub fn remove_const_zero_values(&mut self) {
match self {
ValTensor::Value { inner: v, .. } => {
let mut indices = vec![];
for (i, e) in v.iter().enumerate() {
if let ValType::Constant(r) = e {
if *r == F::ZERO {
indices.push(i);
ValTensor::Value { inner: v, dims, .. } => {
*v = v
.clone()
.into_par_iter()
.filter_map(|e| {
if let ValType::Constant(r) = e {
if r == F::ZERO {
return None;
}
} else if let ValType::AssignedConstant(_, r) = e {
if r == F::ZERO {
return None;
}
}
} else if let ValType::AssignedConstant(_, r) = e {
if *r == F::ZERO {
indices.push(i);
}
}
}
Ok(indices)
Some(e)
})
.collect();
*dims = v.dims().to_vec();
}
ValTensor::Instance { .. } => Ok(vec![]),
ValTensor::Instance { .. } => {}
}
}
/// gets constants
pub fn get_const_indices(&self) -> Result<Vec<usize>, TensorError> {
pub fn get_const_zero_indices(&self) -> Vec<usize> {
match self {
ValTensor::Value { inner: v, .. } => {
let mut indices = vec![];
for (i, e) in v.iter().enumerate() {
if let ValType::Constant(_) = e {
indices.push(i);
} else if let ValType::AssignedConstant(_, _) = e {
indices.push(i);
ValTensor::Value { inner: v, .. } => v
.par_iter()
.enumerate()
.filter_map(|(i, e)| {
if let ValType::Constant(r) = e {
if *r == F::ZERO {
return Some(i);
}
} else if let ValType::AssignedConstant(_, r) = e {
if *r == F::ZERO {
return Some(i);
}
}
}
Ok(indices)
}
ValTensor::Instance { .. } => Ok(vec![]),
None
})
.collect(),
ValTensor::Instance { .. } => vec![],
}
}
/// gets constants
pub fn get_const_indices(&self) -> Vec<usize> {
match self {
ValTensor::Value { inner: v, .. } => v
.par_iter()
.enumerate()
.filter_map(|(i, e)| {
if let ValType::Constant(_) = e {
Some(i)
} else if let ValType::AssignedConstant(_, _) = e {
Some(i)
} else {
None
}
})
.collect(),
ValTensor::Instance { .. } => vec![],
}
}
@@ -952,25 +1003,22 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ValTensor<F> {
}
/// A [String] representation of the [ValTensor] for display, for example in showing intermediate values in a computational graph.
pub fn show(&self) -> String {
match self.clone() {
ValTensor::Value {
inner: v, dims: _, ..
} => {
let r: Tensor<i32> = v.map(|x| x.into());
if r.len() > 10 {
let start = r[..5].to_vec();
let end = r[r.len() - 5..].to_vec();
// print the two split by ... in the middle
format!(
"[{} ... {}]",
start.iter().map(|x| format!("{}", x)).join(", "),
end.iter().map(|x| format!("{}", x)).join(", ")
)
} else {
format!("{:?}", r)
}
}
_ => "ValTensor not PrevAssigned".into(),
let r = match self.int_evals() {
Ok(v) => v,
Err(_) => return "ValTensor not PrevAssigned".into(),
};
if r.len() > 10 {
let start = r[..5].to_vec();
let end = r[r.len() - 5..].to_vec();
// print the two split by ... in the middle
format!(
"[{} ... {}]",
start.iter().map(|x| format!("{}", x)).join(", "),
end.iter().map(|x| format!("{}", x)).join(", ")
)
} else {
format!("{:?}", r)
}
}
}

View File

@@ -319,7 +319,7 @@ impl VarTensor {
region: &mut Region<F>,
offset: usize,
values: &ValTensor<F>,
omissions: &HashSet<&usize>,
omissions: &HashSet<usize>,
constants: &mut ConstantsMap<F>,
) -> Result<ValTensor<F>, halo2_proofs::plonk::Error> {
let mut assigned_coord = 0;
@@ -368,7 +368,7 @@ impl VarTensor {
.sum::<usize>();
let dims = &dims[*idx];
// this should never ever fail
let t: Tensor<i32> = Tensor::new(None, dims).unwrap();
let t: Tensor<IntegerRep> = Tensor::new(None, dims).unwrap();
Ok(t.enum_map(|coord, _| {
let (x, y, z) = self.cartesian_coord(offset + coord);
region.assign_advice_from_instance(
@@ -497,7 +497,7 @@ impl VarTensor {
let (x, y, z) = self.cartesian_coord(offset + coord * step);
if matches!(check_mode, CheckMode::SAFE) && coord > 0 && z == 0 && y == 0 {
// assert that duplication occurred correctly
assert_eq!(Into::<i32>::into(k.clone()), Into::<i32>::into(v[coord - 1].clone()));
assert_eq!(Into::<IntegerRep>::into(k.clone()), Into::<IntegerRep>::into(v[coord - 1].clone()));
};
let cell = self.assign_value(region, offset, k.clone(), coord * step, constants)?;
@@ -533,13 +533,14 @@ impl VarTensor {
if matches!(check_mode, CheckMode::SAFE) {
// during key generation this will be 0 so we use this as a flag to check
// TODO: this isn't very safe and would be better to get the phase directly
let is_assigned = !Into::<Tensor<i32>>::into(res.clone().get_inner().unwrap())
let res_evals = res.int_evals().unwrap();
let is_assigned = res_evals
.iter()
.all(|&x| x == 0);
if is_assigned {
if !is_assigned {
assert_eq!(
Into::<Tensor<i32>>::into(values.get_inner().unwrap()),
Into::<Tensor<i32>>::into(res.get_inner().unwrap())
values.int_evals().unwrap(),
res_evals
)};
}

View File

@@ -1,41 +1,52 @@
use crate::circuit::modules::polycommit::PolyCommitChip;
use crate::circuit::modules::poseidon::spec::{PoseidonSpec, POSEIDON_RATE, POSEIDON_WIDTH};
use crate::circuit::modules::poseidon::PoseidonChip;
use crate::circuit::modules::Module;
use crate::fieldutils::felt_to_i64;
use crate::fieldutils::i64_to_felt;
use crate::graph::modules::POSEIDON_LEN_GRAPH;
use crate::graph::quantize_float;
use crate::graph::scale_to_multiplier;
use crate::graph::{GraphCircuit, GraphSettings};
use crate::pfsys::create_proof_circuit;
use crate::pfsys::evm::aggregation_kzg::AggregationCircuit;
use crate::pfsys::evm::aggregation_kzg::PoseidonTranscript;
use crate::pfsys::verify_proof_circuit;
use crate::pfsys::TranscriptType;
use crate::tensor::TensorType;
use crate::CheckMode;
use crate::Commitments;
use crate::{
circuit::{
modules::{
polycommit::PolyCommitChip,
poseidon::{
spec::{PoseidonSpec, POSEIDON_RATE, POSEIDON_WIDTH},
PoseidonChip,
},
Module,
},
region::RegionSettings,
},
fieldutils::{felt_to_integer_rep, integer_rep_to_felt},
graph::{
modules::POSEIDON_LEN_GRAPH, quantize_float, scale_to_multiplier, GraphCircuit,
GraphSettings,
},
pfsys::{
create_proof_circuit,
evm::aggregation_kzg::{AggregationCircuit, PoseidonTranscript},
verify_proof_circuit, TranscriptType,
},
tensor::TensorType,
CheckMode, Commitments,
};
use console_error_panic_hook;
use halo2_proofs::plonk::*;
use halo2_proofs::poly::commitment::{CommitmentScheme, ParamsProver};
use halo2_proofs::poly::ipa::multiopen::{ProverIPA, VerifierIPA};
use halo2_proofs::poly::ipa::{
commitment::{IPACommitmentScheme, ParamsIPA},
strategy::SingleStrategy as IPASingleStrategy,
use halo2_proofs::{
plonk::*,
poly::{
commitment::{CommitmentScheme, ParamsProver},
ipa::{
commitment::{IPACommitmentScheme, ParamsIPA},
multiopen::{ProverIPA, VerifierIPA},
strategy::SingleStrategy as IPASingleStrategy,
},
kzg::{
commitment::{KZGCommitmentScheme, ParamsKZG},
multiopen::{ProverSHPLONK, VerifierSHPLONK},
strategy::SingleStrategy as KZGSingleStrategy,
},
VerificationStrategy,
},
};
use halo2_proofs::poly::kzg::multiopen::ProverSHPLONK;
use halo2_proofs::poly::kzg::multiopen::VerifierSHPLONK;
use halo2_proofs::poly::kzg::{
commitment::{KZGCommitmentScheme, ParamsKZG},
strategy::SingleStrategy as KZGSingleStrategy,
};
use halo2_proofs::poly::VerificationStrategy;
use halo2_solidity_verifier::encode_calldata;
use halo2curves::bn256::{Bn256, Fr, G1Affine};
use halo2curves::ff::{FromUniformBytes, PrimeField};
use snark_verifier::loader::native::NativeLoader;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use halo2curves::{
bn256::{Bn256, Fr, G1Affine},
ff::{FromUniformBytes, PrimeField},
};
use snark_verifier::{loader::native::NativeLoader, system::halo2::transcript::evm::EvmTranscript};
use std::str::FromStr;
use wasm_bindgen::prelude::*;
use wasm_bindgen_console_logger::DEFAULT_LOGGER;
@@ -113,7 +124,7 @@ pub fn feltToInt(
let felt: Fr = serde_json::from_slice(&array[..])
.map_err(|e| JsError::new(&format!("Failed to deserialize field element: {}", e)))?;
Ok(wasm_bindgen::Clamped(
serde_json::to_vec(&felt_to_i64(felt))
serde_json::to_vec(&felt_to_integer_rep(felt))
.map_err(|e| JsError::new(&format!("Failed to serialize integer: {}", e)))?,
))
}
@@ -127,7 +138,7 @@ pub fn feltToFloat(
) -> Result<f64, JsError> {
let felt: Fr = serde_json::from_slice(&array[..])
.map_err(|e| JsError::new(&format!("Failed to deserialize field element: {}", e)))?;
let int_rep = felt_to_i64(felt);
let int_rep = felt_to_integer_rep(felt);
let multiplier = scale_to_multiplier(scale);
Ok(int_rep as f64 / multiplier)
}
@@ -141,7 +152,7 @@ pub fn floatToFelt(
) -> Result<wasm_bindgen::Clamped<Vec<u8>>, JsError> {
let int_rep =
quantize_float(&input, 0.0, scale).map_err(|e| JsError::new(&format!("{}", e)))?;
let felt = i64_to_felt(int_rep);
let felt = integer_rep_to_felt(int_rep);
let vec = crate::pfsys::field_to_string::<halo2curves::bn256::Fr>(&felt);
Ok(wasm_bindgen::Clamped(serde_json::to_vec(&vec).map_err(
|e| JsError::new(&format!("Failed to serialize a float to felt{}", e)),
@@ -275,7 +286,7 @@ pub fn genWitness(
.map_err(|e| JsError::new(&format!("{}", e)))?;
let witness = circuit
.forward::<KZGCommitmentScheme<Bn256>>(&mut input, None, None, false, false)
.forward::<KZGCommitmentScheme<Bn256>>(&mut input, None, None, RegionSettings::all_false())
.map_err(|e| JsError::new(&format!("{}", e)))?;
serde_json::to_vec(&witness)

View File

@@ -3,7 +3,7 @@
mod native_tests {
use ezkl::circuit::Tolerance;
use ezkl::fieldutils::{felt_to_i64, i64_to_felt};
use ezkl::fieldutils::{felt_to_integer_rep, integer_rep_to_felt, IntegerRep};
// use ezkl::circuit::table::RESERVED_BLINDING_ROWS_PAD;
use ezkl::graph::input::{FileSource, FileSourceInner, GraphData};
use ezkl::graph::{DataSource, GraphSettings, GraphWitness};
@@ -183,12 +183,13 @@ mod native_tests {
const PF_FAILURE_AGGR: &str = "examples/test_failure_aggr_proof.json";
const LARGE_TESTS: [&str; 5] = [
const LARGE_TESTS: [&str; 6] = [
"self_attention",
"nanoGPT",
"multihead_attention",
"mobilenet",
"mnist_gan",
"smallworm",
];
const ACCURACY_CAL_TESTS: [&str; 6] = [
@@ -200,7 +201,7 @@ mod native_tests {
"1l_tiny_div",
];
const TESTS: [&str; 93] = [
const TESTS: [&str; 94] = [
"1l_mlp", //0
"1l_slice",
"1l_concat",
@@ -298,6 +299,7 @@ mod native_tests {
"1l_lppool",
"lstm_large", // 91
"lstm_medium", // 92
"lenet_5", // 93
];
const WASM_TESTS: [&str; 46] = [
@@ -536,7 +538,7 @@ mod native_tests {
}
});
seq!(N in 0..=92 {
seq!(N in 0..=93 {
#(#[test_case(TESTS[N])])*
#[ignore]
@@ -644,6 +646,15 @@ mod native_tests {
test_dir.close().unwrap();
}
#(#[test_case(TESTS[N])])*
fn mock_hashed_params_public_inputs_(test: &str) {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "public", "hashed", "private", 1, "resources", None, 0.0);
test_dir.close().unwrap();
}
#(#[test_case(TESTS[N])])*
fn mock_fixed_inputs_(test: &str) {
crate::native_tests::init_binary();
@@ -940,7 +951,7 @@ mod native_tests {
});
seq!(N in 0..=4 {
seq!(N in 0..=5 {
#(#[test_case(LARGE_TESTS[N])])*
#[ignore]
@@ -1411,10 +1422,10 @@ mod native_tests {
let perturbation = if v == &halo2curves::bn256::Fr::zero() {
halo2curves::bn256::Fr::zero()
} else {
i64_to_felt(
(felt_to_i64(*v) as f32
integer_rep_to_felt(
(felt_to_integer_rep(*v) as f32
* (rand::thread_rng().gen_range(-0.01..0.01) * tolerance))
as i64,
as IntegerRep,
)
};
@@ -1434,10 +1445,10 @@ mod native_tests {
let perturbation = if v == &halo2curves::bn256::Fr::zero() {
halo2curves::bn256::Fr::from(2)
} else {
i64_to_felt(
(felt_to_i64(*v) as f32
integer_rep_to_felt(
(felt_to_integer_rep(*v) as f32
* (rand::thread_rng().gen_range(0.02..0.1) * tolerance))
as i64,
as IntegerRep,
)
};
*v + perturbation

View File

@@ -870,6 +870,7 @@ def get_examples():
'accuracy',
'linear_regression',
"mnist_gan",
"smallworm",
]
examples = []
for subdir, _, _ in os.walk(os.path.join(examples_path, "onnx")):

Binary file not shown.

Binary file not shown.

Binary file not shown.