mirror of
https://github.com/zkonduit/ezkl.git
synced 2026-01-13 16:27:59 -05:00
Compare commits
7 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
457196f9c1 | ||
|
|
a3c131dac0 | ||
|
|
fd9c2305ac | ||
|
|
a0060f341d | ||
|
|
17f1d42739 | ||
|
|
ebaee9e2b1 | ||
|
|
d51cba589a |
16
Cargo.lock
generated
16
Cargo.lock
generated
@@ -2543,6 +2543,12 @@ dependencies = [
|
||||
"allocator-api2",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "hashbrown"
|
||||
version = "0.15.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "1e087f84d4f86bf4b218b927129862374b72199ae7d8657835f1e89000eea4fb"
|
||||
|
||||
[[package]]
|
||||
name = "heck"
|
||||
version = "0.4.1"
|
||||
@@ -2811,12 +2817,12 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "indexmap"
|
||||
version = "2.2.5"
|
||||
version = "2.6.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "7b0b929d511467233429c45a44ac1dcaa21ba0f5ba11e4879e6ed28ddb4f9df4"
|
||||
checksum = "707907fe3c25f5424cce2cb7e1cbcafee6bdbe735ca90ef77c29e84591e5b9da"
|
||||
dependencies = [
|
||||
"equivalent",
|
||||
"hashbrown 0.14.3",
|
||||
"hashbrown 0.15.0",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -5628,9 +5634,9 @@ checksum = "121c2a6cda46980bb0fcd1647ffaf6cd3fc79a013de288782836f6df9c48780e"
|
||||
|
||||
[[package]]
|
||||
name = "tower-service"
|
||||
version = "0.3.2"
|
||||
version = "0.3.3"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "b6bc1c9ce2b5135ac7f93c72918fc37feb872bdc6a5533a8b85eb4b86bfdae52"
|
||||
checksum = "8df9b6e13f2d32c91b9bd719c00d1958837bc7dec474d94952798cc8e69eeec3"
|
||||
|
||||
[[package]]
|
||||
name = "tracing"
|
||||
|
||||
@@ -56,6 +56,7 @@ alloy = { git = "https://github.com/alloy-rs/alloy", version = "0.1.0", rev = "5
|
||||
"rpc-types-eth",
|
||||
"signer-wallet",
|
||||
"node-bindings",
|
||||
|
||||
], optional = true }
|
||||
foundry-compilers = { version = "0.4.1", features = ["svm-solc"], optional = true }
|
||||
ethabi = { version = "18", optional = true }
|
||||
@@ -168,7 +169,7 @@ harness = false
|
||||
|
||||
|
||||
[[bench]]
|
||||
name = "relu"
|
||||
name = "sigmoid"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
@@ -176,12 +177,12 @@ name = "relu_lookupless"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "accum_matmul_relu"
|
||||
name = "accum_matmul_sigmoid"
|
||||
harness = false
|
||||
|
||||
|
||||
[[bench]]
|
||||
name = "accum_matmul_relu_overflow"
|
||||
name = "accum_matmul_sigmoid_overflow"
|
||||
harness = false
|
||||
|
||||
[[bin]]
|
||||
|
||||
@@ -64,7 +64,7 @@ impl Circuit<Fr> for MyCircuit {
|
||||
&a,
|
||||
BITS,
|
||||
K,
|
||||
&LookupOp::LeakyReLU { slope: 0.0.into() },
|
||||
&LookupOp::Sigmoid { scale: 1.0.into() },
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
@@ -93,7 +93,7 @@ impl Circuit<Fr> for MyCircuit {
|
||||
.layout(
|
||||
&mut region,
|
||||
&[output.unwrap()],
|
||||
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
|
||||
Box::new(LookupOp::Sigmoid { scale: 1.0.into() }),
|
||||
)
|
||||
.unwrap();
|
||||
Ok(())
|
||||
@@ -65,7 +65,7 @@ impl Circuit<Fr> for MyCircuit {
|
||||
&a,
|
||||
BITS,
|
||||
k,
|
||||
&LookupOp::LeakyReLU { slope: 0.0.into() },
|
||||
&LookupOp::Sigmoid { scale: 1.0.into() },
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
@@ -94,7 +94,7 @@ impl Circuit<Fr> for MyCircuit {
|
||||
.layout(
|
||||
&mut region,
|
||||
&[output.unwrap()],
|
||||
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
|
||||
Box::new(LookupOp::Sigmoid { scale: 1.0.into() }),
|
||||
)
|
||||
.unwrap();
|
||||
Ok(())
|
||||
@@ -68,7 +68,14 @@ impl Circuit<Fr> for NLCircuit {
|
||||
|region| {
|
||||
let mut region = RegionCtx::new(region, 0, 1, 1024, 2);
|
||||
config
|
||||
.layout(&mut region, &[self.input.clone()], Box::new(PolyOp::ReLU))
|
||||
.layout(
|
||||
&mut region,
|
||||
&[self.input.clone()],
|
||||
Box::new(PolyOp::LeakyReLU {
|
||||
slope: 0.0.into(),
|
||||
scale: 1,
|
||||
}),
|
||||
)
|
||||
.unwrap();
|
||||
Ok(())
|
||||
},
|
||||
|
||||
@@ -42,7 +42,7 @@ impl Circuit<Fr> for NLCircuit {
|
||||
.map(|_| VarTensor::new_advice(cs, K, 1, LEN))
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let nl = LookupOp::LeakyReLU { slope: 0.0.into() };
|
||||
let nl = LookupOp::Sigmoid { scale: 1.0.into() };
|
||||
|
||||
let mut config = Config::default();
|
||||
|
||||
@@ -68,7 +68,7 @@ impl Circuit<Fr> for NLCircuit {
|
||||
.layout(
|
||||
&mut region,
|
||||
&[self.input.clone()],
|
||||
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
|
||||
Box::new(LookupOp::Sigmoid { scale: 1.0.into() }),
|
||||
)
|
||||
.unwrap();
|
||||
Ok(())
|
||||
@@ -1,4 +1,4 @@
|
||||
ezkl==0.0.0
|
||||
ezkl==15.2.0
|
||||
sphinx
|
||||
sphinx-rtd-theme
|
||||
sphinxcontrib-napoleon
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import ezkl
|
||||
|
||||
project = 'ezkl'
|
||||
release = '0.0.0'
|
||||
release = '15.2.0'
|
||||
version = release
|
||||
|
||||
|
||||
|
||||
@@ -146,6 +146,8 @@ where
|
||||
let params = VarTensor::new_advice(cs, K, NUM_INNER_COLS, LEN);
|
||||
let output = VarTensor::new_advice(cs, K, NUM_INNER_COLS, LEN);
|
||||
|
||||
let _constant = VarTensor::constant_cols(cs, K, LEN, false);
|
||||
|
||||
println!("INPUT COL {:#?}", input);
|
||||
|
||||
let mut layer_config = PolyConfig::configure(
|
||||
@@ -156,15 +158,11 @@ where
|
||||
);
|
||||
|
||||
layer_config
|
||||
.configure_lookup(
|
||||
cs,
|
||||
&input,
|
||||
&output,
|
||||
¶ms,
|
||||
(LOOKUP_MIN, LOOKUP_MAX),
|
||||
K,
|
||||
&LookupOp::LeakyReLU { slope: 0.0.into() },
|
||||
)
|
||||
.configure_range_check(cs, &input, ¶ms, (-1, 1), K)
|
||||
.unwrap();
|
||||
|
||||
layer_config
|
||||
.configure_range_check(cs, &input, ¶ms, (0, 1023), K)
|
||||
.unwrap();
|
||||
|
||||
layer_config
|
||||
@@ -195,6 +193,11 @@ where
|
||||
) -> Result<(), Error> {
|
||||
config.layer_config.layout_tables(&mut layouter).unwrap();
|
||||
|
||||
config
|
||||
.layer_config
|
||||
.layout_range_checks(&mut layouter)
|
||||
.unwrap();
|
||||
|
||||
let x = layouter
|
||||
.assign_region(
|
||||
|| "mlp_4d",
|
||||
@@ -224,7 +227,10 @@ where
|
||||
.layout(
|
||||
&mut region,
|
||||
&[x.unwrap()],
|
||||
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
|
||||
Box::new(PolyOp::LeakyReLU {
|
||||
slope: 0.0.into(),
|
||||
scale: 1,
|
||||
}),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
|
||||
@@ -53,6 +53,10 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
|
||||
let output = VarTensor::new_advice(cs, K, 1, LEN);
|
||||
// tells the config layer to add an affine op to the circuit gate
|
||||
|
||||
let _constant = VarTensor::constant_cols(cs, K, LEN, false);
|
||||
|
||||
println!("INPUT COL {:#?}", input);
|
||||
|
||||
let mut layer_config = PolyConfig::<F>::configure(
|
||||
cs,
|
||||
&[input.clone(), params.clone()],
|
||||
@@ -60,17 +64,12 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
|
||||
CheckMode::SAFE,
|
||||
);
|
||||
|
||||
// sets up a new ReLU table and resuses it for l1 and l3 non linearities
|
||||
layer_config
|
||||
.configure_lookup(
|
||||
cs,
|
||||
&input,
|
||||
&output,
|
||||
¶ms,
|
||||
(LOOKUP_MIN, LOOKUP_MAX),
|
||||
K,
|
||||
&LookupOp::LeakyReLU { slope: 0.0.into() },
|
||||
)
|
||||
.configure_range_check(cs, &input, ¶ms, (-1, 1), K)
|
||||
.unwrap();
|
||||
|
||||
layer_config
|
||||
.configure_range_check(cs, &input, ¶ms, (0, 1023), K)
|
||||
.unwrap();
|
||||
|
||||
// sets up a new ReLU table and resuses it for l1 and l3 non linearities
|
||||
@@ -104,6 +103,11 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
|
||||
) -> Result<(), Error> {
|
||||
config.layer_config.layout_tables(&mut layouter).unwrap();
|
||||
|
||||
config
|
||||
.layer_config
|
||||
.layout_range_checks(&mut layouter)
|
||||
.unwrap();
|
||||
|
||||
let x = layouter
|
||||
.assign_region(
|
||||
|| "mlp_4d",
|
||||
@@ -144,7 +148,10 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
|
||||
.layout(
|
||||
&mut region,
|
||||
&[x],
|
||||
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
|
||||
Box::new(PolyOp::LeakyReLU {
|
||||
scale: 1,
|
||||
slope: 0.0.into(),
|
||||
}),
|
||||
)
|
||||
.unwrap()
|
||||
.unwrap();
|
||||
@@ -184,7 +191,10 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
|
||||
.layout(
|
||||
&mut region,
|
||||
&[x],
|
||||
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
|
||||
Box::new(PolyOp::LeakyReLU {
|
||||
scale: 1,
|
||||
slope: 0.0.into(),
|
||||
}),
|
||||
)
|
||||
.unwrap();
|
||||
println!("6");
|
||||
|
||||
@@ -21,9 +21,9 @@ def main():
|
||||
torch_model = Circuit()
|
||||
# Input to the model
|
||||
shape = [3, 2, 3]
|
||||
w = 0.1*torch.rand(1, *shape, requires_grad=True)
|
||||
x = 0.1*torch.rand(1, *shape, requires_grad=True)
|
||||
y = 0.1*torch.rand(1, *shape, requires_grad=True)
|
||||
w = 2 * torch.rand(1, *shape, requires_grad=True) - 1
|
||||
x = 2 * torch.rand(1, *shape, requires_grad=True) - 1
|
||||
y = 2 * torch.rand(1, *shape, requires_grad=True) - 1
|
||||
torch_out = torch_model(w, x, y)
|
||||
# Export the model
|
||||
torch.onnx.export(torch_model, # model being run
|
||||
|
||||
@@ -1 +1 @@
|
||||
{"input_shapes": [[3, 2, 3], [3, 2, 3], [3, 2, 3], [3, 2, 3]], "input_data": [[0.0025284828152507544, 0.04976580664515495, 0.025840921327471733, 0.0829394981265068, 0.09595223516225815, 0.08764562010765076, 0.06308566778898239, 0.062386948615312576, 0.08090643584728241, 0.09267748892307281, 0.07428313046693802, 0.08987367898225784, 0.005716216750442982, 0.0666426345705986, 0.012837404385209084, 0.05769496038556099, 0.05761152133345604, 0.08006472885608673], [0.007834953255951405, 0.011380612850189209, 0.08560049533843994, 0.022283583879470825, 0.07879520952701569, 0.04422441124916077, 0.030812596902251244, 0.006081616971641779, 0.011045408435165882, 0.08776585012674332, 0.044985152781009674, 0.015603715553879738, 0.07923348993062973, 0.04872611165046692, 0.0036642670165747404, 0.05142095685005188, 0.0963878259062767, 0.03225792199373245], [0.09952805936336517, 0.002214533044025302, 0.011696457862854004, 0.022422820329666138, 0.04151459410786629, 0.027647346258163452, 0.011919880285859108, 0.006539052817970514, 0.06569185107946396, 0.034328874200582504, 0.0032284557819366455, 0.004105025436729193, 0.022395813837647438, 0.07135921716690063, 0.07882415503263474, 0.09764843434095383, 0.05335796996951103, 0.0525360181927681]], "output_data": [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]}
|
||||
{"input_shapes": [[3, 2, 3], [3, 2, 3], [3, 2, 3], [3, 2, 3]], "input_data": [[0.6261028051376343, 0.49872446060180664, -0.04514765739440918, 0.5936200618743896, 0.9271858930587769, 0.6688600778579712, -0.20331168174743652, -0.7016235589981079, 0.025863051414489746, -0.19426143169403076, 0.9827852249145508, 0.4897397756576538, 0.2992602586746216, 0.7011144161224365, 0.9278832674026489, 0.5943725109100342, -0.573331356048584, 0.3675816059112549], [0.7803324460983276, -0.9616303443908691, 0.6070173978805542, -0.028337717056274414, -0.5080242156982422, -0.9280107021331787, 0.6150380373001099, 0.3865993022918701, -0.43668973445892334, 0.17152702808380127, 0.5144252777099609, -0.28881049156188965, 0.8932310342788696, 0.059034109115600586, 0.6865451335906982, 0.009820222854614258, 0.23011493682861328, -0.9492779970169067], [-0.21352827548980713, -0.16015326976776123, -0.38964390754699707, 0.13464701175689697, -0.8814496994018555, 0.5037975311279297, -0.804405927658081, 0.9858957529067993, 0.19567716121673584, 0.9777265787124634, 0.6151977777481079, 0.568595290184021, 0.10584986209869385, -0.8975653648376465, 0.6235959529876709, -0.547879695892334, 0.9289869070053101, 0.7567293643951416]], "output_data": [[1.0, 0.0, -0.0, 1.0, 1.0, 1.0, -0.0, -1.0, 0.0, -0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, -1.0, 0.0], [0.0, -1.0, 0.0, -1.0, -1.0, -1.0, 0.0, 0.0, -1.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [-0.0, -0.0, -0.0, 1.0, -0.0, 1.0, -0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -0.0, 1.0, -0.0, 1.0, 1.0]]}
|
||||
@@ -1,10 +1,11 @@
|
||||
pytorch2.0.1:â
|
||||
pytorch2.2.2:ă
|
||||
|
||||
woutput_w/Round"Round
|
||||
|
||||
xoutput_x/Floor"Floor
|
||||
|
||||
youtput_y/Ceil"Ceil torch_jitZ%
|
||||
youtput_y/Ceil"Ceil
|
||||
main_graphZ%
|
||||
w
|
||||
|
||||
|
||||
|
||||
42
examples/onnx/rsqrt/gen.py
Normal file
42
examples/onnx/rsqrt/gen.py
Normal file
@@ -0,0 +1,42 @@
|
||||
from torch import nn
|
||||
import torch
|
||||
import json
|
||||
import numpy as np
|
||||
|
||||
|
||||
class MyModel(nn.Module):
|
||||
def __init__(self):
|
||||
super(MyModel, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
# reciprocal sqrt
|
||||
m = 1 / torch.sqrt(x)
|
||||
return m
|
||||
|
||||
|
||||
circuit = MyModel()
|
||||
|
||||
x = torch.empty(1, 8).uniform_(0, 1)
|
||||
|
||||
out = circuit(x)
|
||||
|
||||
print(out)
|
||||
|
||||
torch.onnx.export(circuit, x, "network.onnx",
|
||||
export_params=True, # store the trained parameter weights inside the model file
|
||||
opset_version=17, # the ONNX version to export the model to
|
||||
do_constant_folding=True, # whether to execute constant folding for optimization
|
||||
input_names=['input'], # the model's input names
|
||||
output_names=['output'], # the model's output names
|
||||
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
|
||||
'output': {0: 'batch_size'}})
|
||||
|
||||
|
||||
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
|
||||
|
||||
data = dict(
|
||||
input_data=[d1],
|
||||
)
|
||||
|
||||
# Serialize data into file:
|
||||
json.dump(data, open("input.json", 'w'))
|
||||
1
examples/onnx/rsqrt/input.json
Normal file
1
examples/onnx/rsqrt/input.json
Normal file
@@ -0,0 +1 @@
|
||||
{"input_data": [[0.8590779900550842, 0.4029041528701782, 0.6507361531257629, 0.9782488942146301, 0.37392884492874146, 0.6867020726203918, 0.11407750844955444, 0.362740159034729]]}
|
||||
17
examples/onnx/rsqrt/network.onnx
Normal file
17
examples/onnx/rsqrt/network.onnx
Normal file
@@ -0,0 +1,17 @@
|
||||
pytorch2.2.2:Ź
|
||||
$
|
||||
input/Sqrt_output_0/Sqrt"Sqrt
|
||||
1
|
||||
/Sqrt_output_0output/Reciprocal"
|
||||
Reciprocal
|
||||
main_graphZ!
|
||||
input
|
||||
|
||||
|
||||
batch_size
|
||||
b"
|
||||
output
|
||||
|
||||
|
||||
batch_size
|
||||
B
|
||||
@@ -177,7 +177,7 @@ impl<'source> FromPyObject<'source> for Tolerance {
|
||||
#[derive(Clone, Debug, Default)]
|
||||
pub struct DynamicLookups {
|
||||
/// [Selector]s generated when configuring the layer. We use a [BTreeMap] as we expect to configure many dynamic lookup ops.
|
||||
pub lookup_selectors: BTreeMap<(usize, usize), Selector>,
|
||||
pub lookup_selectors: BTreeMap<(usize, (usize, usize)), Selector>,
|
||||
/// Selectors for the dynamic lookup tables
|
||||
pub table_selectors: Vec<Selector>,
|
||||
/// Inputs:
|
||||
@@ -209,7 +209,7 @@ impl DynamicLookups {
|
||||
#[derive(Clone, Debug, Default)]
|
||||
pub struct Shuffles {
|
||||
/// [Selector]s generated when configuring the layer. We use a [BTreeMap] as we expect to configure many dynamic lookup ops.
|
||||
pub input_selectors: BTreeMap<(usize, usize), Selector>,
|
||||
pub input_selectors: BTreeMap<(usize, (usize, usize)), Selector>,
|
||||
/// Selectors for the dynamic lookup tables
|
||||
pub reference_selectors: Vec<Selector>,
|
||||
/// Inputs:
|
||||
@@ -646,57 +646,73 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
|
||||
}
|
||||
|
||||
for t in tables.iter() {
|
||||
if !t.is_advice() || t.num_blocks() > 1 || t.num_inner_cols() > 1 {
|
||||
if !t.is_advice() || t.num_inner_cols() > 1 {
|
||||
return Err(CircuitError::WrongDynamicColumnType(t.name().to_string()));
|
||||
}
|
||||
}
|
||||
|
||||
// assert all tables have the same number of inner columns
|
||||
if tables
|
||||
.iter()
|
||||
.map(|t| t.num_blocks())
|
||||
.collect::<Vec<_>>()
|
||||
.windows(2)
|
||||
.any(|w| w[0] != w[1])
|
||||
{
|
||||
return Err(CircuitError::WrongDynamicColumnType(
|
||||
"tables inner cols".to_string(),
|
||||
));
|
||||
}
|
||||
|
||||
let one = Expression::Constant(F::ONE);
|
||||
|
||||
let s_ltable = cs.complex_selector();
|
||||
for q in 0..tables[0].num_blocks() {
|
||||
let s_ltable = cs.complex_selector();
|
||||
|
||||
for x in 0..lookups[0].num_blocks() {
|
||||
for y in 0..lookups[0].num_inner_cols() {
|
||||
let s_lookup = cs.complex_selector();
|
||||
for x in 0..lookups[0].num_blocks() {
|
||||
for y in 0..lookups[0].num_inner_cols() {
|
||||
let s_lookup = cs.complex_selector();
|
||||
|
||||
cs.lookup_any("lookup", |cs| {
|
||||
let s_lookupq = cs.query_selector(s_lookup);
|
||||
let mut expression = vec![];
|
||||
let s_ltableq = cs.query_selector(s_ltable);
|
||||
let mut lookup_queries = vec![one.clone()];
|
||||
cs.lookup_any("lookup", |cs| {
|
||||
let s_lookupq = cs.query_selector(s_lookup);
|
||||
let mut expression = vec![];
|
||||
let s_ltableq = cs.query_selector(s_ltable);
|
||||
let mut lookup_queries = vec![one.clone()];
|
||||
|
||||
for lookup in lookups {
|
||||
lookup_queries.push(match lookup {
|
||||
VarTensor::Advice { inner: advices, .. } => {
|
||||
cs.query_advice(advices[x][y], Rotation(0))
|
||||
}
|
||||
_ => unreachable!(),
|
||||
});
|
||||
}
|
||||
for lookup in lookups {
|
||||
lookup_queries.push(match lookup {
|
||||
VarTensor::Advice { inner: advices, .. } => {
|
||||
cs.query_advice(advices[x][y], Rotation(0))
|
||||
}
|
||||
_ => unreachable!(),
|
||||
});
|
||||
}
|
||||
|
||||
let mut table_queries = vec![one.clone()];
|
||||
for table in tables {
|
||||
table_queries.push(match table {
|
||||
VarTensor::Advice { inner: advices, .. } => {
|
||||
cs.query_advice(advices[0][0], Rotation(0))
|
||||
}
|
||||
_ => unreachable!(),
|
||||
});
|
||||
}
|
||||
let mut table_queries = vec![one.clone()];
|
||||
for table in tables {
|
||||
table_queries.push(match table {
|
||||
VarTensor::Advice { inner: advices, .. } => {
|
||||
cs.query_advice(advices[q][0], Rotation(0))
|
||||
}
|
||||
_ => unreachable!(),
|
||||
});
|
||||
}
|
||||
|
||||
let lhs = lookup_queries.into_iter().map(|c| c * s_lookupq.clone());
|
||||
let rhs = table_queries.into_iter().map(|c| c * s_ltableq.clone());
|
||||
expression.extend(lhs.zip(rhs));
|
||||
let lhs = lookup_queries.into_iter().map(|c| c * s_lookupq.clone());
|
||||
let rhs = table_queries.into_iter().map(|c| c * s_ltableq.clone());
|
||||
expression.extend(lhs.zip(rhs));
|
||||
|
||||
expression
|
||||
});
|
||||
self.dynamic_lookups
|
||||
.lookup_selectors
|
||||
.entry((x, y))
|
||||
.or_insert(s_lookup);
|
||||
expression
|
||||
});
|
||||
self.dynamic_lookups
|
||||
.lookup_selectors
|
||||
.entry((q, (x, y)))
|
||||
.or_insert(s_lookup);
|
||||
}
|
||||
}
|
||||
|
||||
self.dynamic_lookups.table_selectors.push(s_ltable);
|
||||
}
|
||||
self.dynamic_lookups.table_selectors.push(s_ltable);
|
||||
|
||||
// if we haven't previously initialized the input/output, do so now
|
||||
if self.dynamic_lookups.tables.is_empty() {
|
||||
@@ -729,57 +745,72 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
|
||||
}
|
||||
|
||||
for t in references.iter() {
|
||||
if !t.is_advice() || t.num_blocks() > 1 || t.num_inner_cols() > 1 {
|
||||
if !t.is_advice() || t.num_inner_cols() > 1 {
|
||||
return Err(CircuitError::WrongDynamicColumnType(t.name().to_string()));
|
||||
}
|
||||
}
|
||||
|
||||
// assert all tables have the same number of blocks
|
||||
if references
|
||||
.iter()
|
||||
.map(|t| t.num_blocks())
|
||||
.collect::<Vec<_>>()
|
||||
.windows(2)
|
||||
.any(|w| w[0] != w[1])
|
||||
{
|
||||
return Err(CircuitError::WrongDynamicColumnType(
|
||||
"references inner cols".to_string(),
|
||||
));
|
||||
}
|
||||
|
||||
let one = Expression::Constant(F::ONE);
|
||||
|
||||
let s_reference = cs.complex_selector();
|
||||
for q in 0..references[0].num_blocks() {
|
||||
let s_reference = cs.complex_selector();
|
||||
|
||||
for x in 0..inputs[0].num_blocks() {
|
||||
for y in 0..inputs[0].num_inner_cols() {
|
||||
let s_input = cs.complex_selector();
|
||||
for x in 0..inputs[0].num_blocks() {
|
||||
for y in 0..inputs[0].num_inner_cols() {
|
||||
let s_input = cs.complex_selector();
|
||||
|
||||
cs.lookup_any("lookup", |cs| {
|
||||
let s_inputq = cs.query_selector(s_input);
|
||||
let mut expression = vec![];
|
||||
let s_referenceq = cs.query_selector(s_reference);
|
||||
let mut input_queries = vec![one.clone()];
|
||||
cs.lookup_any("lookup", |cs| {
|
||||
let s_inputq = cs.query_selector(s_input);
|
||||
let mut expression = vec![];
|
||||
let s_referenceq = cs.query_selector(s_reference);
|
||||
let mut input_queries = vec![one.clone()];
|
||||
|
||||
for input in inputs {
|
||||
input_queries.push(match input {
|
||||
VarTensor::Advice { inner: advices, .. } => {
|
||||
cs.query_advice(advices[x][y], Rotation(0))
|
||||
}
|
||||
_ => unreachable!(),
|
||||
});
|
||||
}
|
||||
for input in inputs {
|
||||
input_queries.push(match input {
|
||||
VarTensor::Advice { inner: advices, .. } => {
|
||||
cs.query_advice(advices[x][y], Rotation(0))
|
||||
}
|
||||
_ => unreachable!(),
|
||||
});
|
||||
}
|
||||
|
||||
let mut ref_queries = vec![one.clone()];
|
||||
for reference in references {
|
||||
ref_queries.push(match reference {
|
||||
VarTensor::Advice { inner: advices, .. } => {
|
||||
cs.query_advice(advices[0][0], Rotation(0))
|
||||
}
|
||||
_ => unreachable!(),
|
||||
});
|
||||
}
|
||||
let mut ref_queries = vec![one.clone()];
|
||||
for reference in references {
|
||||
ref_queries.push(match reference {
|
||||
VarTensor::Advice { inner: advices, .. } => {
|
||||
cs.query_advice(advices[q][0], Rotation(0))
|
||||
}
|
||||
_ => unreachable!(),
|
||||
});
|
||||
}
|
||||
|
||||
let lhs = input_queries.into_iter().map(|c| c * s_inputq.clone());
|
||||
let rhs = ref_queries.into_iter().map(|c| c * s_referenceq.clone());
|
||||
expression.extend(lhs.zip(rhs));
|
||||
let lhs = input_queries.into_iter().map(|c| c * s_inputq.clone());
|
||||
let rhs = ref_queries.into_iter().map(|c| c * s_referenceq.clone());
|
||||
expression.extend(lhs.zip(rhs));
|
||||
|
||||
expression
|
||||
});
|
||||
self.shuffles
|
||||
.input_selectors
|
||||
.entry((x, y))
|
||||
.or_insert(s_input);
|
||||
expression
|
||||
});
|
||||
self.shuffles
|
||||
.input_selectors
|
||||
.entry((q, (x, y)))
|
||||
.or_insert(s_input);
|
||||
}
|
||||
}
|
||||
self.shuffles.reference_selectors.push(s_reference);
|
||||
}
|
||||
self.shuffles.reference_selectors.push(s_reference);
|
||||
|
||||
// if we haven't previously initialized the input/output, do so now
|
||||
if self.shuffles.references.is_empty() {
|
||||
|
||||
@@ -94,4 +94,7 @@ pub enum CircuitError {
|
||||
#[error("[io] {0}")]
|
||||
/// IO error
|
||||
IoError(#[from] std::io::Error),
|
||||
/// Invalid scale
|
||||
#[error("negative scale for an op that requires positive inputs {0}")]
|
||||
NegativeScale(String),
|
||||
}
|
||||
|
||||
@@ -13,10 +13,21 @@ use serde::{Deserialize, Serialize};
|
||||
/// An enum representing the operations that consist of both lookups and arithmetic operations.
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
pub enum HybridOp {
|
||||
Ceil {
|
||||
scale: utils::F32,
|
||||
legs: usize,
|
||||
},
|
||||
Floor {
|
||||
scale: utils::F32,
|
||||
legs: usize,
|
||||
},
|
||||
Round {
|
||||
scale: utils::F32,
|
||||
legs: usize,
|
||||
},
|
||||
Recip {
|
||||
input_scale: utils::F32,
|
||||
output_scale: utils::F32,
|
||||
use_range_check_for_int: bool,
|
||||
},
|
||||
Div {
|
||||
denom: utils::F32,
|
||||
@@ -45,6 +56,8 @@ pub enum HybridOp {
|
||||
ReduceArgMin {
|
||||
dim: usize,
|
||||
},
|
||||
Max,
|
||||
Min,
|
||||
Softmax {
|
||||
input_scale: utils::F32,
|
||||
output_scale: utils::F32,
|
||||
@@ -79,6 +92,8 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
|
||||
| HybridOp::Less { .. }
|
||||
| HybridOp::Equals { .. }
|
||||
| HybridOp::GreaterEqual { .. }
|
||||
| HybridOp::Max
|
||||
| HybridOp::Min
|
||||
| HybridOp::LessEqual { .. } => {
|
||||
vec![0, 1]
|
||||
}
|
||||
@@ -93,13 +108,17 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
|
||||
|
||||
fn as_string(&self) -> String {
|
||||
match self {
|
||||
HybridOp::Ceil { scale, legs } => format!("CEIL(scale={}, legs={})", scale, legs),
|
||||
HybridOp::Floor { scale, legs } => format!("FLOOR(scale={}, legs={})", scale, legs),
|
||||
HybridOp::Round { scale, legs } => format!("ROUND(scale={}, legs={})", scale, legs),
|
||||
HybridOp::Max => format!("MAX"),
|
||||
HybridOp::Min => format!("MIN"),
|
||||
HybridOp::Recip {
|
||||
input_scale,
|
||||
output_scale,
|
||||
use_range_check_for_int,
|
||||
} => format!(
|
||||
"RECIP (input_scale={}, output_scale={}, use_range_check_for_int={})",
|
||||
input_scale, output_scale, use_range_check_for_int
|
||||
"RECIP (input_scale={}, output_scale={})",
|
||||
input_scale, output_scale
|
||||
),
|
||||
HybridOp::Div {
|
||||
denom,
|
||||
@@ -162,6 +181,17 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
|
||||
values: &[ValTensor<F>],
|
||||
) -> Result<Option<ValTensor<F>>, CircuitError> {
|
||||
Ok(Some(match self {
|
||||
HybridOp::Ceil { scale, legs } => {
|
||||
layouts::ceil(config, region, values[..].try_into()?, *scale, *legs)?
|
||||
}
|
||||
HybridOp::Floor { scale, legs } => {
|
||||
layouts::floor(config, region, values[..].try_into()?, *scale, *legs)?
|
||||
}
|
||||
HybridOp::Round { scale, legs } => {
|
||||
layouts::round(config, region, values[..].try_into()?, *scale, *legs)?
|
||||
}
|
||||
HybridOp::Max => layouts::max_comp(config, region, values[..].try_into()?)?,
|
||||
HybridOp::Min => layouts::min_comp(config, region, values[..].try_into()?)?,
|
||||
HybridOp::SumPool {
|
||||
padding,
|
||||
stride,
|
||||
@@ -179,31 +209,13 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
|
||||
HybridOp::Recip {
|
||||
input_scale,
|
||||
output_scale,
|
||||
use_range_check_for_int,
|
||||
} => {
|
||||
if input_scale.0.fract() == 0.0
|
||||
&& output_scale.0.fract() == 0.0
|
||||
&& *use_range_check_for_int
|
||||
{
|
||||
layouts::recip(
|
||||
config,
|
||||
region,
|
||||
values[..].try_into()?,
|
||||
integer_rep_to_felt(input_scale.0 as i128),
|
||||
integer_rep_to_felt(output_scale.0 as i128),
|
||||
)?
|
||||
} else {
|
||||
layouts::nonlinearity(
|
||||
config,
|
||||
region,
|
||||
values.try_into()?,
|
||||
&LookupOp::Recip {
|
||||
input_scale: *input_scale,
|
||||
output_scale: *output_scale,
|
||||
},
|
||||
)?
|
||||
}
|
||||
}
|
||||
} => layouts::recip(
|
||||
config,
|
||||
region,
|
||||
values[..].try_into()?,
|
||||
integer_rep_to_felt(input_scale.0 as i128),
|
||||
integer_rep_to_felt(output_scale.0 as i128),
|
||||
)?,
|
||||
HybridOp::Div {
|
||||
denom,
|
||||
use_range_check_for_int,
|
||||
|
||||
@@ -979,8 +979,16 @@ pub(crate) fn dynamic_lookup<F: PrimeField + TensorType + PartialOrd + std::hash
|
||||
let (lookup_0, lookup_1) = (lookups[0].clone(), lookups[1].clone());
|
||||
let (table_0, table_1) = (tables[0].clone(), tables[1].clone());
|
||||
|
||||
let table_0 = region.assign_dynamic_lookup(&config.dynamic_lookups.tables[0], &table_0)?;
|
||||
let _table_1 = region.assign_dynamic_lookup(&config.dynamic_lookups.tables[1], &table_1)?;
|
||||
let (table_0, flush_len_0) =
|
||||
region.assign_dynamic_lookup(&config.dynamic_lookups.tables[0], &table_0)?;
|
||||
let (_table_1, flush_len_1) =
|
||||
region.assign_dynamic_lookup(&config.dynamic_lookups.tables[1], &table_1)?;
|
||||
if flush_len_0 != flush_len_1 {
|
||||
return Err(CircuitError::MismatchedLookupTableLength(
|
||||
flush_len_0,
|
||||
flush_len_1,
|
||||
));
|
||||
}
|
||||
let table_len = table_0.len();
|
||||
|
||||
trace!("assigning tables took: {:?}", start.elapsed());
|
||||
@@ -1005,13 +1013,21 @@ pub(crate) fn dynamic_lookup<F: PrimeField + TensorType + PartialOrd + std::hash
|
||||
|
||||
trace!("assigning lookup index took: {:?}", start.elapsed());
|
||||
|
||||
let mut lookup_block = 0;
|
||||
|
||||
if !region.is_dummy() {
|
||||
(0..table_len)
|
||||
.map(|i| {
|
||||
let table_selector = config.dynamic_lookups.table_selectors[0];
|
||||
let (_, _, z) = config.dynamic_lookups.tables[0]
|
||||
.cartesian_coord(region.combined_dynamic_shuffle_coord() + i);
|
||||
let (x, _, z) = config.dynamic_lookups.tables[0]
|
||||
.cartesian_coord(region.combined_dynamic_shuffle_coord() + i + flush_len_0);
|
||||
|
||||
if lookup_block != x {
|
||||
lookup_block = x;
|
||||
}
|
||||
|
||||
let table_selector = config.dynamic_lookups.table_selectors[lookup_block];
|
||||
region.enable(Some(&table_selector), z)?;
|
||||
|
||||
Ok(())
|
||||
})
|
||||
.collect::<Result<Vec<_>, CircuitError>>()?;
|
||||
@@ -1023,20 +1039,23 @@ pub(crate) fn dynamic_lookup<F: PrimeField + TensorType + PartialOrd + std::hash
|
||||
.map(|i| {
|
||||
let (x, y, z) =
|
||||
config.dynamic_lookups.inputs[0].cartesian_coord(region.linear_coord() + i);
|
||||
|
||||
let lookup_selector = config
|
||||
.dynamic_lookups
|
||||
.lookup_selectors
|
||||
.get(&(x, y))
|
||||
.get(&(lookup_block, (x, y)))
|
||||
.ok_or(CircuitError::MissingSelectors(format!("{:?}", (x, y))))?;
|
||||
|
||||
region.enable(Some(lookup_selector), z)?;
|
||||
|
||||
// region.enable(Some(lookup_selector), z)?;
|
||||
|
||||
Ok(())
|
||||
})
|
||||
.collect::<Result<Vec<_>, CircuitError>>()?;
|
||||
}
|
||||
|
||||
region.increment_dynamic_lookup_col_coord(table_len);
|
||||
region.increment_dynamic_lookup_col_coord(table_len + flush_len_0);
|
||||
region.increment_dynamic_lookup_index(1);
|
||||
region.increment(lookup_len);
|
||||
|
||||
@@ -1064,22 +1083,33 @@ pub(crate) fn shuffles<F: PrimeField + TensorType + PartialOrd + std::hash::Hash
|
||||
));
|
||||
}
|
||||
|
||||
let reference = region.assign_shuffle(&config.shuffles.references[0], &reference)?;
|
||||
let (reference, flush_len_ref) =
|
||||
region.assign_shuffle(&config.shuffles.references[0], &reference)?;
|
||||
let reference_len = reference.len();
|
||||
|
||||
// now create a vartensor of constants for the shuffle index
|
||||
let index = create_constant_tensor(F::from(shuffle_index as u64), reference_len);
|
||||
let index = region.assign_shuffle(&config.shuffles.references[1], &index)?;
|
||||
let (index, flush_len_index) = region.assign_shuffle(&config.shuffles.references[1], &index)?;
|
||||
|
||||
if flush_len_index != flush_len_ref {
|
||||
return Err(CircuitError::MismatchedShuffleLength(
|
||||
flush_len_index,
|
||||
flush_len_ref,
|
||||
));
|
||||
}
|
||||
|
||||
let input = region.assign(&config.shuffles.inputs[0], &input)?;
|
||||
region.assign(&config.shuffles.inputs[1], &index)?;
|
||||
|
||||
let mut shuffle_block = 0;
|
||||
|
||||
if !region.is_dummy() {
|
||||
(0..reference_len)
|
||||
.map(|i| {
|
||||
let ref_selector = config.shuffles.reference_selectors[0];
|
||||
let (_, _, z) = config.shuffles.references[0]
|
||||
.cartesian_coord(region.combined_dynamic_shuffle_coord() + i);
|
||||
let (x, _, z) = config.shuffles.references[0]
|
||||
.cartesian_coord(region.combined_dynamic_shuffle_coord() + i + flush_len_ref);
|
||||
shuffle_block = x;
|
||||
let ref_selector = config.shuffles.reference_selectors[shuffle_block];
|
||||
region.enable(Some(&ref_selector), z)?;
|
||||
Ok(())
|
||||
})
|
||||
@@ -1095,7 +1125,7 @@ pub(crate) fn shuffles<F: PrimeField + TensorType + PartialOrd + std::hash::Hash
|
||||
let input_selector = config
|
||||
.shuffles
|
||||
.input_selectors
|
||||
.get(&(x, y))
|
||||
.get(&(shuffle_block, (x, y)))
|
||||
.ok_or(CircuitError::MissingSelectors(format!("{:?}", (x, y))))?;
|
||||
|
||||
region.enable(Some(input_selector), z)?;
|
||||
@@ -1105,7 +1135,7 @@ pub(crate) fn shuffles<F: PrimeField + TensorType + PartialOrd + std::hash::Hash
|
||||
.collect::<Result<Vec<_>, CircuitError>>()?;
|
||||
}
|
||||
|
||||
region.increment_shuffle_col_coord(reference_len);
|
||||
region.increment_shuffle_col_coord(reference_len + flush_len_ref);
|
||||
region.increment_shuffle_index(1);
|
||||
region.increment(reference_len);
|
||||
|
||||
@@ -4125,6 +4155,110 @@ pub(crate) fn argmin<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
Ok(assigned_argmin)
|
||||
}
|
||||
|
||||
/// Max layout
|
||||
/// # Arguments
|
||||
/// * `config` - BaseConfig
|
||||
/// * `region` - RegionCtx
|
||||
/// * `values` - &[ValTensor<F>; 2]
|
||||
/// # Returns
|
||||
/// * ValTensor<F>
|
||||
/// # Example
|
||||
/// ```
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
/// use ezkl::circuit::ops::layouts::max_comp;
|
||||
/// use ezkl::tensor::val::ValTensor;
|
||||
/// use halo2curves::bn256::Fr as Fp;
|
||||
/// use ezkl::circuit::region::RegionCtx;
|
||||
/// use ezkl::circuit::region::RegionSettings;
|
||||
/// use ezkl::circuit::BaseConfig;
|
||||
/// let dummy_config = BaseConfig::dummy(12, 2);
|
||||
/// let mut dummy_region = RegionCtx::new_dummy(0,2,RegionSettings::all_true(128,2));
|
||||
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
|
||||
/// Some(&[5, 2, 3, 0]),
|
||||
/// &[1, 1, 2, 2],
|
||||
/// ).unwrap());
|
||||
/// let y = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
|
||||
/// Some(&[5, 1, 1, 1]),
|
||||
/// &[1, 1, 2, 2],
|
||||
/// ).unwrap());
|
||||
///
|
||||
/// let result = max_comp::<Fp>(&dummy_config, &mut dummy_region, &[x, y]).unwrap();
|
||||
/// let expected = Tensor::<IntegerRep>::new(Some(&[5, 2, 3, 1]), &[1, 1, 2, 2]).unwrap();
|
||||
/// assert_eq!(result.int_evals().unwrap(), expected);
|
||||
/// ```
|
||||
///
|
||||
pub fn max_comp<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
config: &BaseConfig<F>,
|
||||
region: &mut RegionCtx<F>,
|
||||
values: &[ValTensor<F>; 2],
|
||||
) -> Result<ValTensor<F>, CircuitError> {
|
||||
let is_greater = greater(config, region, values)?;
|
||||
let is_less = not(config, region, &[is_greater.clone()])?;
|
||||
|
||||
let max_val_p1 = pairwise(
|
||||
config,
|
||||
region,
|
||||
&[values[0].clone(), is_greater],
|
||||
BaseOp::Mult,
|
||||
)?;
|
||||
|
||||
let max_val_p2 = pairwise(config, region, &[values[1].clone(), is_less], BaseOp::Mult)?;
|
||||
|
||||
pairwise(config, region, &[max_val_p1, max_val_p2], BaseOp::Add)
|
||||
}
|
||||
|
||||
/// Min comp layout
|
||||
/// # Arguments
|
||||
/// * `config` - BaseConfig
|
||||
/// * `region` - RegionCtx
|
||||
/// * `values` - &[ValTensor<F>; 2]
|
||||
/// # Returns
|
||||
/// * ValTensor<F>
|
||||
/// # Example
|
||||
/// ```
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
/// use ezkl::circuit::ops::layouts::min_comp;
|
||||
/// use ezkl::tensor::val::ValTensor;
|
||||
/// use halo2curves::bn256::Fr as Fp;
|
||||
/// use ezkl::circuit::region::RegionCtx;
|
||||
/// use ezkl::circuit::region::RegionSettings;
|
||||
/// use ezkl::circuit::BaseConfig;
|
||||
/// let dummy_config = BaseConfig::dummy(12, 2);
|
||||
/// let mut dummy_region = RegionCtx::new_dummy(0,2,RegionSettings::all_true(128,2));
|
||||
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
|
||||
/// Some(&[5, 2, 3, 0]),
|
||||
/// &[1, 1, 2, 2],
|
||||
/// ).unwrap());
|
||||
/// let y = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
|
||||
/// Some(&[5, 1, 1, 1]),
|
||||
/// &[1, 1, 2, 2],
|
||||
/// ).unwrap());
|
||||
/// let result = min_comp::<Fp>(&dummy_config, &mut dummy_region, &[x, y]).unwrap();
|
||||
/// let expected = Tensor::<IntegerRep>::new(Some(&[5, 1, 1, 0]), &[1, 1, 2, 2]).unwrap();
|
||||
/// assert_eq!(result.int_evals().unwrap(), expected);
|
||||
/// ```
|
||||
pub fn min_comp<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
config: &BaseConfig<F>,
|
||||
region: &mut RegionCtx<F>,
|
||||
values: &[ValTensor<F>; 2],
|
||||
) -> Result<ValTensor<F>, CircuitError> {
|
||||
let is_greater = greater(config, region, values)?;
|
||||
let is_less = not(config, region, &[is_greater.clone()])?;
|
||||
|
||||
let min_val_p1 = pairwise(config, region, &[values[0].clone(), is_less], BaseOp::Mult)?;
|
||||
|
||||
let min_val_p2 = pairwise(
|
||||
config,
|
||||
region,
|
||||
&[values[1].clone(), is_greater],
|
||||
BaseOp::Mult,
|
||||
)?;
|
||||
|
||||
pairwise(config, region, &[min_val_p1, min_val_p2], BaseOp::Add)
|
||||
}
|
||||
|
||||
/// max layout
|
||||
pub(crate) fn max<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
config: &BaseConfig<F>,
|
||||
@@ -4148,6 +4282,438 @@ pub(crate) fn min<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
.map_err(|e| e.into())
|
||||
}
|
||||
|
||||
/// floor layout
|
||||
/// # Arguments
|
||||
/// * `config` - BaseConfig
|
||||
/// * `region` - RegionCtx
|
||||
/// * `values` - &[ValTensor<F>; 1]
|
||||
/// * `scale` - utils::F32
|
||||
/// * `legs` - usize
|
||||
/// # Returns
|
||||
/// * ValTensor<F>
|
||||
/// # Example
|
||||
/// ```
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
/// use ezkl::circuit::ops::layouts::floor;
|
||||
/// use ezkl::tensor::val::ValTensor;
|
||||
/// use halo2curves::bn256::Fr as Fp;
|
||||
/// use ezkl::circuit::region::RegionCtx;
|
||||
/// use ezkl::circuit::region::RegionSettings;
|
||||
/// use ezkl::circuit::BaseConfig;
|
||||
/// let dummy_config = BaseConfig::dummy(12, 2);
|
||||
/// let mut dummy_region = RegionCtx::new_dummy(0,2,RegionSettings::all_true(128,2));
|
||||
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
|
||||
/// Some(&[3, -2, -3, 1]),
|
||||
/// &[1, 1, 2, 2],
|
||||
/// ).unwrap());
|
||||
/// let result = floor::<Fp>(&dummy_config, &mut dummy_region, &[x], 2.0.into(), 2).unwrap();
|
||||
/// let expected = Tensor::<IntegerRep>::new(Some(&[2, -2, -4, 0]), &[1, 1, 2, 2]).unwrap();
|
||||
/// assert_eq!(result.int_evals().unwrap(), expected);
|
||||
/// ```
|
||||
pub fn floor<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
config: &BaseConfig<F>,
|
||||
region: &mut RegionCtx<F>,
|
||||
values: &[ValTensor<F>; 1],
|
||||
scale: utils::F32,
|
||||
legs: usize,
|
||||
) -> Result<ValTensor<F>, CircuitError> {
|
||||
// decompose with base scale and then set the last element to zero
|
||||
let decomposition = decompose(config, region, values, &(scale.0 as usize), &legs)?;
|
||||
// set the last element to zero and then recompose, we don't actually need to assign here
|
||||
// as this will automatically be assigned in the recompose function and uses the constant caching of RegionCtx
|
||||
let zero = ValType::Constant(F::ZERO);
|
||||
|
||||
let negative_one = create_constant_tensor(integer_rep_to_felt(-1), 1);
|
||||
let assigned_negative_one = region.assign(&config.custom_gates.inputs[1], &negative_one)?;
|
||||
|
||||
region.increment(1);
|
||||
|
||||
let dims = decomposition.dims().to_vec();
|
||||
let first_dims = decomposition.dims().to_vec()[..decomposition.dims().len() - 1].to_vec();
|
||||
|
||||
let mut incremented_tensor = Tensor::new(None, &first_dims)?;
|
||||
|
||||
let cartesian_coord = first_dims
|
||||
.iter()
|
||||
.map(|x| 0..*x)
|
||||
.multi_cartesian_product()
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let inner_loop_function =
|
||||
|i: usize, region: &mut RegionCtx<F>| -> Result<Tensor<ValType<F>>, CircuitError> {
|
||||
let coord = cartesian_coord[i].clone();
|
||||
let slice = coord.iter().map(|x| *x..*x + 1).collect::<Vec<_>>();
|
||||
let mut sliced_input = decomposition.get_slice(&slice)?;
|
||||
sliced_input.flatten();
|
||||
let last_elem = sliced_input.last()?;
|
||||
|
||||
let last_elem_is_zero = equals_zero(config, region, &[last_elem.clone()])?;
|
||||
let last_elem_is_not_zero = not(config, region, &[last_elem_is_zero.clone()])?;
|
||||
|
||||
let sign = sliced_input.first()?;
|
||||
let is_negative = equals(config, region, &[sign, assigned_negative_one.clone()])?;
|
||||
|
||||
let is_negative_and_not_zero = and(
|
||||
config,
|
||||
region,
|
||||
&[last_elem_is_not_zero.clone(), is_negative.clone()],
|
||||
)?;
|
||||
|
||||
// increment the penultimate element
|
||||
let incremented_elem = pairwise(
|
||||
config,
|
||||
region,
|
||||
&[
|
||||
sliced_input.get_slice(&[sliced_input.len() - 2..sliced_input.len() - 1])?,
|
||||
is_negative_and_not_zero.clone(),
|
||||
],
|
||||
BaseOp::Add,
|
||||
)?;
|
||||
|
||||
let mut inner_tensor = sliced_input.get_inner_tensor()?.clone();
|
||||
inner_tensor[sliced_input.len() - 2] =
|
||||
incremented_elem.get_inner_tensor()?.clone()[0].clone();
|
||||
|
||||
// set the last elem to zero
|
||||
inner_tensor[sliced_input.len() - 1] = zero.clone();
|
||||
|
||||
Ok(inner_tensor.clone())
|
||||
};
|
||||
|
||||
region.apply_in_loop(&mut incremented_tensor, inner_loop_function)?;
|
||||
|
||||
let mut incremented_tensor = incremented_tensor.combine()?;
|
||||
incremented_tensor.reshape(&dims)?;
|
||||
|
||||
recompose(
|
||||
config,
|
||||
region,
|
||||
&[incremented_tensor.into()],
|
||||
&(scale.0 as usize),
|
||||
)
|
||||
}
|
||||
|
||||
/// ceil layout
|
||||
/// # Arguments
|
||||
/// * `config` - BaseConfig
|
||||
/// * `region` - RegionCtx
|
||||
/// * `values` - &[ValTensor<F>; 1]
|
||||
/// * `scale` - utils::F32
|
||||
/// * `legs` - usize
|
||||
/// # Returns
|
||||
/// * ValTensor<F>
|
||||
/// # Example
|
||||
/// ```
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
/// use ezkl::circuit::ops::layouts::ceil;
|
||||
/// use ezkl::tensor::val::ValTensor;
|
||||
/// use halo2curves::bn256::Fr as Fp;
|
||||
/// use ezkl::circuit::region::RegionCtx;
|
||||
/// use ezkl::circuit::region::RegionSettings;
|
||||
/// use ezkl::circuit::BaseConfig;
|
||||
/// let dummy_config = BaseConfig::dummy(12, 2);
|
||||
/// let mut dummy_region = RegionCtx::new_dummy(0,2,RegionSettings::all_true(128,2));
|
||||
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
|
||||
/// Some(&[3, -2, 3, 1]),
|
||||
/// &[1, 1, 2, 2],
|
||||
/// ).unwrap());
|
||||
/// let result = ceil::<Fp>(&dummy_config, &mut dummy_region, &[x], 2.0.into(), 2).unwrap();
|
||||
/// let expected = Tensor::<IntegerRep>::new(Some(&[4, -2, 4, 2]), &[1, 1, 2, 2]).unwrap();
|
||||
/// assert_eq!(result.int_evals().unwrap(), expected);
|
||||
/// ```
|
||||
///
|
||||
pub fn ceil<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
config: &BaseConfig<F>,
|
||||
region: &mut RegionCtx<F>,
|
||||
values: &[ValTensor<F>; 1],
|
||||
scale: utils::F32,
|
||||
legs: usize,
|
||||
) -> Result<ValTensor<F>, CircuitError> {
|
||||
// decompose with base scale and then set the last element to zero
|
||||
let decomposition = decompose(config, region, values, &(scale.0 as usize), &legs)?;
|
||||
// set the last element to zero and then recompose, we don't actually need to assign here
|
||||
// as this will automatically be assigned in the recompose function and uses the constant caching of RegionCtx
|
||||
let zero = ValType::Constant(F::ZERO);
|
||||
|
||||
let one = create_constant_tensor(integer_rep_to_felt(1), 1);
|
||||
let assigned_one = region.assign(&config.custom_gates.inputs[1], &one)?;
|
||||
|
||||
region.increment(1);
|
||||
|
||||
let dims = decomposition.dims().to_vec();
|
||||
let first_dims = decomposition.dims().to_vec()[..decomposition.dims().len() - 1].to_vec();
|
||||
|
||||
let mut incremented_tensor = Tensor::new(None, &first_dims)?;
|
||||
|
||||
let cartesian_coord = first_dims
|
||||
.iter()
|
||||
.map(|x| 0..*x)
|
||||
.multi_cartesian_product()
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let inner_loop_function =
|
||||
|i: usize, region: &mut RegionCtx<F>| -> Result<Tensor<ValType<F>>, CircuitError> {
|
||||
let coord = cartesian_coord[i].clone();
|
||||
let slice = coord.iter().map(|x| *x..*x + 1).collect::<Vec<_>>();
|
||||
let mut sliced_input = decomposition.get_slice(&slice)?;
|
||||
sliced_input.flatten();
|
||||
let last_elem = sliced_input.last()?;
|
||||
|
||||
let last_elem_is_zero = equals_zero(config, region, &[last_elem.clone()])?;
|
||||
let last_elem_is_not_zero = not(config, region, &[last_elem_is_zero.clone()])?;
|
||||
|
||||
let sign = sliced_input.first()?;
|
||||
let is_positive = equals(config, region, &[sign, assigned_one.clone()])?;
|
||||
|
||||
let is_positive_and_not_zero = and(
|
||||
config,
|
||||
region,
|
||||
&[last_elem_is_not_zero.clone(), is_positive.clone()],
|
||||
)?;
|
||||
|
||||
// increment the penultimate element
|
||||
let incremented_elem = pairwise(
|
||||
config,
|
||||
region,
|
||||
&[
|
||||
sliced_input.get_slice(&[sliced_input.len() - 2..sliced_input.len() - 1])?,
|
||||
is_positive_and_not_zero.clone(),
|
||||
],
|
||||
BaseOp::Add,
|
||||
)?;
|
||||
|
||||
let mut inner_tensor = sliced_input.get_inner_tensor()?.clone();
|
||||
inner_tensor[sliced_input.len() - 2] =
|
||||
incremented_elem.get_inner_tensor()?.clone()[0].clone();
|
||||
|
||||
// set the last elem to zero
|
||||
inner_tensor[sliced_input.len() - 1] = zero.clone();
|
||||
|
||||
Ok(inner_tensor.clone())
|
||||
};
|
||||
|
||||
region.apply_in_loop(&mut incremented_tensor, inner_loop_function)?;
|
||||
|
||||
let mut incremented_tensor = incremented_tensor.combine()?;
|
||||
incremented_tensor.reshape(&dims)?;
|
||||
|
||||
recompose(
|
||||
config,
|
||||
region,
|
||||
&[incremented_tensor.into()],
|
||||
&(scale.0 as usize),
|
||||
)
|
||||
}
|
||||
|
||||
/// round layout
|
||||
/// # Arguments
|
||||
/// * `config` - BaseConfig
|
||||
/// * `region` - RegionCtx
|
||||
/// * `values` - &[ValTensor<F>; 1]
|
||||
/// * `scale` - utils::F32
|
||||
/// * `legs` - usize
|
||||
/// # Returns
|
||||
/// * ValTensor<F>
|
||||
/// # Example
|
||||
/// ```
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
/// use ezkl::circuit::ops::layouts::round;
|
||||
/// use ezkl::tensor::val::ValTensor;
|
||||
/// use halo2curves::bn256::Fr as Fp;
|
||||
/// use ezkl::circuit::region::RegionCtx;
|
||||
/// use ezkl::circuit::region::RegionSettings;
|
||||
/// use ezkl::circuit::BaseConfig;
|
||||
/// let dummy_config = BaseConfig::dummy(12, 2);
|
||||
/// let mut dummy_region = RegionCtx::new_dummy(0,2,RegionSettings::all_true(128,2));
|
||||
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
|
||||
/// Some(&[3, -2, 3, 1]),
|
||||
/// &[1, 1, 2, 2],
|
||||
/// ).unwrap());
|
||||
/// let result = round::<Fp>(&dummy_config, &mut dummy_region, &[x], 4.0.into(), 2).unwrap();
|
||||
/// let expected = Tensor::<IntegerRep>::new(Some(&[4, -4, 4, 0]), &[1, 1, 2, 2]).unwrap();
|
||||
/// assert_eq!(result.int_evals().unwrap(), expected);
|
||||
/// ```
|
||||
///
|
||||
pub fn round<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
config: &BaseConfig<F>,
|
||||
region: &mut RegionCtx<F>,
|
||||
values: &[ValTensor<F>; 1],
|
||||
scale: utils::F32,
|
||||
legs: usize,
|
||||
) -> Result<ValTensor<F>, CircuitError> {
|
||||
// decompose with base scale and then set the last element to zero
|
||||
let decomposition = decompose(config, region, values, &(scale.0 as usize), &legs)?;
|
||||
// set the last element to zero and then recompose, we don't actually need to assign here
|
||||
// as this will automatically be assigned in the recompose function and uses the constant caching of RegionCtx
|
||||
let zero = ValType::Constant(F::ZERO);
|
||||
|
||||
let one = create_constant_tensor(integer_rep_to_felt(1), 1);
|
||||
let assigned_one = region.assign(&config.custom_gates.inputs[1], &one)?;
|
||||
let negative_one = create_constant_tensor(integer_rep_to_felt(-1), 1);
|
||||
let assigned_negative_one = region.assign(&config.custom_gates.output, &negative_one)?;
|
||||
|
||||
region.increment(1);
|
||||
|
||||
// if scale is not exactly divisible by 2 we warn
|
||||
if scale.0 % 2.0 != 0.0 {
|
||||
log::warn!("Scale is not exactly divisible by 2.0, rounding may not be accurate");
|
||||
}
|
||||
|
||||
let midway_point: ValTensor<F> = create_constant_tensor(
|
||||
integer_rep_to_felt((scale.0 / 2.0).round() as IntegerRep),
|
||||
1,
|
||||
);
|
||||
let assigned_midway_point = region.assign(&config.custom_gates.inputs[1], &midway_point)?;
|
||||
|
||||
let dims = decomposition.dims().to_vec();
|
||||
let first_dims = decomposition.dims().to_vec()[..decomposition.dims().len() - 1].to_vec();
|
||||
|
||||
let mut incremented_tensor = Tensor::new(None, &first_dims)?;
|
||||
|
||||
let cartesian_coord = first_dims
|
||||
.iter()
|
||||
.map(|x| 0..*x)
|
||||
.multi_cartesian_product()
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let inner_loop_function =
|
||||
|i: usize, region: &mut RegionCtx<F>| -> Result<Tensor<ValType<F>>, CircuitError> {
|
||||
let coord = cartesian_coord[i].clone();
|
||||
let slice = coord.iter().map(|x| *x..*x + 1).collect::<Vec<_>>();
|
||||
let mut sliced_input = decomposition.get_slice(&slice)?;
|
||||
sliced_input.flatten();
|
||||
let last_elem = sliced_input.last()?;
|
||||
|
||||
let sign = sliced_input.first()?;
|
||||
let is_positive = equals(config, region, &[sign.clone(), assigned_one.clone()])?;
|
||||
let is_negative = equals(config, region, &[sign, assigned_negative_one.clone()])?;
|
||||
|
||||
let is_greater_than_midway = greater_equal(
|
||||
config,
|
||||
region,
|
||||
&[last_elem.clone(), assigned_midway_point.clone()],
|
||||
)?;
|
||||
|
||||
// if greater than midway point and positive, increment
|
||||
let is_positive_and_more_than_midway = and(
|
||||
config,
|
||||
region,
|
||||
&[is_positive.clone(), is_greater_than_midway.clone()],
|
||||
)?;
|
||||
|
||||
// is less than midway point and negative, decrement
|
||||
let is_negative_and_more_than_midway = and(
|
||||
config,
|
||||
region,
|
||||
&[is_negative.clone(), is_greater_than_midway],
|
||||
)?;
|
||||
|
||||
let conditions_for_increment = or(
|
||||
config,
|
||||
region,
|
||||
&[
|
||||
is_positive_and_more_than_midway.clone(),
|
||||
is_negative_and_more_than_midway.clone(),
|
||||
],
|
||||
)?;
|
||||
|
||||
// increment the penultimate element
|
||||
let incremented_elem = pairwise(
|
||||
config,
|
||||
region,
|
||||
&[
|
||||
sliced_input.get_slice(&[sliced_input.len() - 2..sliced_input.len() - 1])?,
|
||||
conditions_for_increment.clone(),
|
||||
],
|
||||
BaseOp::Add,
|
||||
)?;
|
||||
|
||||
let mut inner_tensor = sliced_input.get_inner_tensor()?.clone();
|
||||
inner_tensor[sliced_input.len() - 2] =
|
||||
incremented_elem.get_inner_tensor()?.clone()[0].clone();
|
||||
|
||||
// set the last elem to zero
|
||||
inner_tensor[sliced_input.len() - 1] = zero.clone();
|
||||
|
||||
Ok(inner_tensor.clone())
|
||||
};
|
||||
|
||||
region.apply_in_loop(&mut incremented_tensor, inner_loop_function)?;
|
||||
|
||||
let mut incremented_tensor = incremented_tensor.combine()?;
|
||||
incremented_tensor.reshape(&dims)?;
|
||||
|
||||
recompose(
|
||||
config,
|
||||
region,
|
||||
&[incremented_tensor.into()],
|
||||
&(scale.0 as usize),
|
||||
)
|
||||
}
|
||||
|
||||
pub(crate) fn recompose<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
config: &BaseConfig<F>,
|
||||
region: &mut RegionCtx<F>,
|
||||
values: &[ValTensor<F>; 1],
|
||||
base: &usize,
|
||||
) -> Result<ValTensor<F>, CircuitError> {
|
||||
let input = values[0].clone();
|
||||
|
||||
let first_dims = input.dims().to_vec()[..input.dims().len() - 1].to_vec();
|
||||
let n = input.dims().last().unwrap() - 1;
|
||||
|
||||
let is_assigned = !input.all_prev_assigned();
|
||||
|
||||
let bases: ValTensor<F> = Tensor::from(
|
||||
(0..n)
|
||||
.rev()
|
||||
.map(|x| ValType::Constant(integer_rep_to_felt(base.pow(x as u32) as IntegerRep))),
|
||||
)
|
||||
.into();
|
||||
|
||||
// multiply and sum the values
|
||||
let mut output: Tensor<Tensor<ValType<F>>> = Tensor::new(None, &first_dims)?;
|
||||
|
||||
let cartesian_coord = first_dims
|
||||
.iter()
|
||||
.map(|x| 0..*x)
|
||||
.multi_cartesian_product()
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let inner_loop_function =
|
||||
|i: usize, region: &mut RegionCtx<F>| -> Result<Tensor<ValType<F>>, CircuitError> {
|
||||
let coord = cartesian_coord[i].clone();
|
||||
let slice = coord.iter().map(|x| *x..*x + 1).collect::<Vec<_>>();
|
||||
let mut sliced_input = input.get_slice(&slice)?;
|
||||
sliced_input.flatten();
|
||||
|
||||
if !is_assigned {
|
||||
sliced_input = region.assign(&config.custom_gates.inputs[0], &sliced_input)?;
|
||||
}
|
||||
|
||||
// get the sign bit and make sure it is valid
|
||||
let sign = sliced_input.first()?;
|
||||
let rest = sliced_input.get_slice(&[1..sliced_input.len()])?;
|
||||
|
||||
let prod_decomp = dot(config, region, &[rest, bases.clone()])?;
|
||||
|
||||
let signed_decomp = pairwise(config, region, &[prod_decomp, sign], BaseOp::Mult)?;
|
||||
|
||||
Ok(signed_decomp.get_inner_tensor()?.clone())
|
||||
};
|
||||
|
||||
region.apply_in_loop(&mut output, inner_loop_function)?;
|
||||
|
||||
let mut combined_output = output.combine()?;
|
||||
|
||||
combined_output.reshape(&first_dims)?;
|
||||
|
||||
Ok(combined_output.into())
|
||||
}
|
||||
|
||||
pub(crate) fn decompose<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
config: &BaseConfig<F>,
|
||||
region: &mut RegionCtx<F>,
|
||||
@@ -4233,7 +4799,6 @@ pub(crate) fn sign<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
) -> Result<ValTensor<F>, CircuitError> {
|
||||
let mut decomp = decompose(config, region, values, ®ion.base(), ®ion.legs())?;
|
||||
// get every n elements now, which correspond to the sign bit
|
||||
|
||||
decomp.get_every_n(region.legs() + 1)?;
|
||||
decomp.reshape(values[0].dims())?;
|
||||
|
||||
@@ -4250,10 +4815,12 @@ pub(crate) fn abs<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
pairwise(config, region, &[values[0].clone(), sign], BaseOp::Mult)
|
||||
}
|
||||
|
||||
pub(crate) fn relu<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
pub(crate) fn leaky_relu<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
config: &BaseConfig<F>,
|
||||
region: &mut RegionCtx<F>,
|
||||
values: &[ValTensor<F>; 1],
|
||||
alpha: &utils::F32,
|
||||
input_scale: &i32,
|
||||
) -> Result<ValTensor<F>, CircuitError> {
|
||||
let sign = sign(config, region, values)?;
|
||||
|
||||
@@ -4262,12 +4829,45 @@ pub(crate) fn relu<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
|
||||
let relu_mask = equals(config, region, &[sign, unit])?;
|
||||
|
||||
pairwise(
|
||||
let positive = pairwise(
|
||||
config,
|
||||
region,
|
||||
&[values[0].clone(), relu_mask],
|
||||
&[values[0].clone(), relu_mask.clone()],
|
||||
BaseOp::Mult,
|
||||
)
|
||||
)?;
|
||||
|
||||
if alpha.0 == 0. {
|
||||
return Ok(positive);
|
||||
}
|
||||
|
||||
if input_scale < &0 {
|
||||
return Err(CircuitError::NegativeScale("leaky_relu".to_string()));
|
||||
}
|
||||
|
||||
let scale_constant = create_constant_tensor(F::from(2_i32.pow(*input_scale as u32) as u64), 1);
|
||||
|
||||
let rescaled_positive = pairwise(config, region, &[positive, scale_constant], BaseOp::Mult)?;
|
||||
|
||||
let neg_mask = not(config, region, &[relu_mask])?;
|
||||
|
||||
let quantized_alpha = quantize_tensor(
|
||||
Tensor::from([alpha.0; 1].into_iter()),
|
||||
*input_scale,
|
||||
&crate::graph::Visibility::Fixed,
|
||||
)?;
|
||||
|
||||
let alpha_tensor = create_constant_tensor(quantized_alpha[0], 1);
|
||||
|
||||
let scaled_neg_mask = pairwise(config, region, &[neg_mask, alpha_tensor], BaseOp::Mult)?;
|
||||
|
||||
let neg_part = pairwise(
|
||||
config,
|
||||
region,
|
||||
&[values[0].clone(), scaled_neg_mask],
|
||||
BaseOp::Mult,
|
||||
)?;
|
||||
|
||||
pairwise(config, region, &[rescaled_positive, neg_part], BaseOp::Add)
|
||||
}
|
||||
|
||||
fn multi_dim_axes_op<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
|
||||
@@ -15,101 +15,29 @@ use halo2curves::ff::PrimeField;
|
||||
/// An enum representing the operations that can be used to express more complex operations via accumulation
|
||||
#[derive(Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, Deserialize, Serialize)]
|
||||
pub enum LookupOp {
|
||||
Div {
|
||||
denom: utils::F32,
|
||||
},
|
||||
Cast {
|
||||
scale: utils::F32,
|
||||
},
|
||||
Max {
|
||||
scale: utils::F32,
|
||||
a: utils::F32,
|
||||
},
|
||||
Min {
|
||||
scale: utils::F32,
|
||||
a: utils::F32,
|
||||
},
|
||||
Ceil {
|
||||
scale: utils::F32,
|
||||
},
|
||||
Floor {
|
||||
scale: utils::F32,
|
||||
},
|
||||
Round {
|
||||
scale: utils::F32,
|
||||
},
|
||||
RoundHalfToEven {
|
||||
scale: utils::F32,
|
||||
},
|
||||
Sqrt {
|
||||
scale: utils::F32,
|
||||
},
|
||||
Rsqrt {
|
||||
scale: utils::F32,
|
||||
},
|
||||
Recip {
|
||||
input_scale: utils::F32,
|
||||
output_scale: utils::F32,
|
||||
},
|
||||
LeakyReLU {
|
||||
slope: utils::F32,
|
||||
},
|
||||
Sigmoid {
|
||||
scale: utils::F32,
|
||||
},
|
||||
Ln {
|
||||
scale: utils::F32,
|
||||
},
|
||||
Exp {
|
||||
scale: utils::F32,
|
||||
},
|
||||
Cos {
|
||||
scale: utils::F32,
|
||||
},
|
||||
ACos {
|
||||
scale: utils::F32,
|
||||
},
|
||||
Cosh {
|
||||
scale: utils::F32,
|
||||
},
|
||||
ACosh {
|
||||
scale: utils::F32,
|
||||
},
|
||||
Sin {
|
||||
scale: utils::F32,
|
||||
},
|
||||
ASin {
|
||||
scale: utils::F32,
|
||||
},
|
||||
Sinh {
|
||||
scale: utils::F32,
|
||||
},
|
||||
ASinh {
|
||||
scale: utils::F32,
|
||||
},
|
||||
Tan {
|
||||
scale: utils::F32,
|
||||
},
|
||||
ATan {
|
||||
scale: utils::F32,
|
||||
},
|
||||
Tanh {
|
||||
scale: utils::F32,
|
||||
},
|
||||
ATanh {
|
||||
scale: utils::F32,
|
||||
},
|
||||
Erf {
|
||||
scale: utils::F32,
|
||||
},
|
||||
KroneckerDelta,
|
||||
Pow {
|
||||
scale: utils::F32,
|
||||
a: utils::F32,
|
||||
},
|
||||
HardSwish {
|
||||
scale: utils::F32,
|
||||
},
|
||||
Div { denom: utils::F32 },
|
||||
Cast { scale: utils::F32 },
|
||||
RoundHalfToEven { scale: utils::F32 },
|
||||
Sqrt { scale: utils::F32 },
|
||||
Rsqrt { scale: utils::F32 },
|
||||
Sigmoid { scale: utils::F32 },
|
||||
Ln { scale: utils::F32 },
|
||||
Exp { scale: utils::F32 },
|
||||
Cos { scale: utils::F32 },
|
||||
ACos { scale: utils::F32 },
|
||||
Cosh { scale: utils::F32 },
|
||||
ACosh { scale: utils::F32 },
|
||||
Sin { scale: utils::F32 },
|
||||
ASin { scale: utils::F32 },
|
||||
Sinh { scale: utils::F32 },
|
||||
ASinh { scale: utils::F32 },
|
||||
Tan { scale: utils::F32 },
|
||||
ATan { scale: utils::F32 },
|
||||
Tanh { scale: utils::F32 },
|
||||
ATanh { scale: utils::F32 },
|
||||
Erf { scale: utils::F32 },
|
||||
Pow { scale: utils::F32, a: utils::F32 },
|
||||
HardSwish { scale: utils::F32 },
|
||||
}
|
||||
|
||||
impl LookupOp {
|
||||
@@ -123,21 +51,10 @@ impl LookupOp {
|
||||
/// as path
|
||||
pub fn as_path(&self) -> String {
|
||||
match self {
|
||||
LookupOp::Ceil { scale } => format!("ceil_{}", scale),
|
||||
LookupOp::Floor { scale } => format!("floor_{}", scale),
|
||||
LookupOp::Round { scale } => format!("round_{}", scale),
|
||||
LookupOp::RoundHalfToEven { scale } => format!("round_half_to_even_{}", scale),
|
||||
LookupOp::Pow { scale, a } => format!("pow_{}_{}", scale, a),
|
||||
LookupOp::KroneckerDelta => "kronecker_delta".into(),
|
||||
LookupOp::Max { scale, a } => format!("max_{}_{}", scale, a),
|
||||
LookupOp::Min { scale, a } => format!("min_{}_{}", scale, a),
|
||||
LookupOp::Div { denom } => format!("div_{}", denom),
|
||||
LookupOp::Cast { scale } => format!("cast_{}", scale),
|
||||
LookupOp::Recip {
|
||||
input_scale,
|
||||
output_scale,
|
||||
} => format!("recip_{}_{}", input_scale, output_scale),
|
||||
LookupOp::LeakyReLU { slope: a } => format!("leaky_relu_{}", a),
|
||||
LookupOp::Sigmoid { scale } => format!("sigmoid_{}", scale),
|
||||
LookupOp::Sqrt { scale } => format!("sqrt_{}", scale),
|
||||
LookupOp::Rsqrt { scale } => format!("rsqrt_{}", scale),
|
||||
@@ -168,47 +85,18 @@ impl LookupOp {
|
||||
let x = x[0].clone().map(|x| felt_to_integer_rep(x));
|
||||
let res =
|
||||
match &self {
|
||||
LookupOp::Ceil { scale } => {
|
||||
Ok::<_, TensorError>(tensor::ops::nonlinearities::ceil(&x, scale.into()))
|
||||
}
|
||||
LookupOp::Floor { scale } => {
|
||||
Ok::<_, TensorError>(tensor::ops::nonlinearities::floor(&x, scale.into()))
|
||||
}
|
||||
LookupOp::Round { scale } => {
|
||||
Ok::<_, TensorError>(tensor::ops::nonlinearities::round(&x, scale.into()))
|
||||
}
|
||||
LookupOp::RoundHalfToEven { scale } => Ok::<_, TensorError>(
|
||||
tensor::ops::nonlinearities::round_half_to_even(&x, scale.into()),
|
||||
),
|
||||
LookupOp::Pow { scale, a } => Ok::<_, TensorError>(
|
||||
tensor::ops::nonlinearities::pow(&x, scale.0.into(), a.0.into()),
|
||||
),
|
||||
LookupOp::KroneckerDelta => {
|
||||
Ok::<_, TensorError>(tensor::ops::nonlinearities::kronecker_delta(&x))
|
||||
}
|
||||
LookupOp::Max { scale, a } => Ok::<_, TensorError>(
|
||||
tensor::ops::nonlinearities::max(&x, scale.0.into(), a.0.into()),
|
||||
),
|
||||
LookupOp::Min { scale, a } => Ok::<_, TensorError>(
|
||||
tensor::ops::nonlinearities::min(&x, scale.0.into(), a.0.into()),
|
||||
),
|
||||
LookupOp::Div { denom } => Ok::<_, TensorError>(
|
||||
tensor::ops::nonlinearities::const_div(&x, f32::from(*denom).into()),
|
||||
),
|
||||
LookupOp::Cast { scale } => Ok::<_, TensorError>(
|
||||
tensor::ops::nonlinearities::const_div(&x, f32::from(*scale).into()),
|
||||
),
|
||||
LookupOp::Recip {
|
||||
input_scale,
|
||||
output_scale,
|
||||
} => Ok::<_, TensorError>(tensor::ops::nonlinearities::recip(
|
||||
&x,
|
||||
input_scale.into(),
|
||||
output_scale.into(),
|
||||
)),
|
||||
LookupOp::LeakyReLU { slope: a } => {
|
||||
Ok::<_, TensorError>(tensor::ops::nonlinearities::leakyrelu(&x, a.0.into()))
|
||||
}
|
||||
LookupOp::Sigmoid { scale } => {
|
||||
Ok::<_, TensorError>(tensor::ops::nonlinearities::sigmoid(&x, scale.into()))
|
||||
}
|
||||
@@ -283,25 +171,11 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Lookup
|
||||
/// Returns the name of the operation
|
||||
fn as_string(&self) -> String {
|
||||
match self {
|
||||
LookupOp::Ceil { scale } => format!("CEIL(scale={})", scale),
|
||||
LookupOp::Floor { scale } => format!("FLOOR(scale={})", scale),
|
||||
LookupOp::Round { scale } => format!("ROUND(scale={})", scale),
|
||||
LookupOp::RoundHalfToEven { scale } => format!("ROUND_HALF_TO_EVEN(scale={})", scale),
|
||||
LookupOp::Pow { a, scale } => format!("POW(scale={}, exponent={})", scale, a),
|
||||
LookupOp::KroneckerDelta => "K_DELTA".into(),
|
||||
LookupOp::Max { scale, a } => format!("MAX(scale={}, a={})", scale, a),
|
||||
LookupOp::Min { scale, a } => format!("MIN(scale={}, a={})", scale, a),
|
||||
LookupOp::Recip {
|
||||
input_scale,
|
||||
output_scale,
|
||||
} => format!(
|
||||
"RECIP(input_scale={}, output_scale={})",
|
||||
input_scale, output_scale
|
||||
),
|
||||
LookupOp::Div { denom, .. } => format!("DIV(denom={})", denom),
|
||||
LookupOp::Cast { scale } => format!("CAST(scale={})", scale),
|
||||
LookupOp::Ln { scale } => format!("LN(scale={})", scale),
|
||||
LookupOp::LeakyReLU { slope: a } => format!("L_RELU(slope={})", a),
|
||||
LookupOp::Sigmoid { scale } => format!("SIGMOID(scale={})", scale),
|
||||
LookupOp::Sqrt { scale } => format!("SQRT(scale={})", scale),
|
||||
LookupOp::Erf { scale } => format!("ERF(scale={})", scale),
|
||||
@@ -344,8 +218,6 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Lookup
|
||||
let in_scale = inputs_scale[0];
|
||||
in_scale + multiplier_to_scale(1. / scale.0 as f64)
|
||||
}
|
||||
LookupOp::Recip { output_scale, .. } => multiplier_to_scale(output_scale.into()),
|
||||
LookupOp::KroneckerDelta => 0,
|
||||
_ => inputs_scale[0],
|
||||
};
|
||||
Ok(scale)
|
||||
|
||||
@@ -255,7 +255,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Constant<F> {
|
||||
self.raw_values = Tensor::new(None, &[0]).unwrap();
|
||||
}
|
||||
|
||||
///
|
||||
/// Pre-assign a value
|
||||
pub fn pre_assign(&mut self, val: ValTensor<F>) {
|
||||
self.pre_assigned_val = Some(val)
|
||||
}
|
||||
|
||||
@@ -1,5 +1,8 @@
|
||||
use crate::{
|
||||
circuit::layouts,
|
||||
circuit::{
|
||||
layouts,
|
||||
utils::{self, F32},
|
||||
},
|
||||
tensor::{self, Tensor, TensorError},
|
||||
};
|
||||
|
||||
@@ -9,9 +12,12 @@ use super::{base::BaseOp, *};
|
||||
/// An enum representing the operations that can be expressed as arithmetic (non lookup) operations.
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
pub enum PolyOp {
|
||||
ReLU,
|
||||
Abs,
|
||||
Sign,
|
||||
LeakyReLU {
|
||||
slope: utils::F32,
|
||||
scale: i32,
|
||||
},
|
||||
GatherElements {
|
||||
dim: usize,
|
||||
constant_idx: Option<Tensor<usize>>,
|
||||
@@ -112,9 +118,9 @@ impl<
|
||||
|
||||
fn as_string(&self) -> String {
|
||||
match &self {
|
||||
PolyOp::LeakyReLU { slope: a, .. } => format!("LEAKYRELU (slope={})", a),
|
||||
PolyOp::Abs => "ABS".to_string(),
|
||||
PolyOp::Sign => "SIGN".to_string(),
|
||||
PolyOp::ReLU => "RELU".to_string(),
|
||||
PolyOp::GatherElements { dim, constant_idx } => format!(
|
||||
"GATHERELEMENTS (dim={}, constant_idx{})",
|
||||
dim,
|
||||
@@ -198,7 +204,9 @@ impl<
|
||||
Ok(Some(match self {
|
||||
PolyOp::Abs => layouts::abs(config, region, values[..].try_into()?)?,
|
||||
PolyOp::Sign => layouts::sign(config, region, values[..].try_into()?)?,
|
||||
PolyOp::ReLU => layouts::relu(config, region, values[..].try_into()?)?,
|
||||
PolyOp::LeakyReLU { slope, scale } => {
|
||||
layouts::leaky_relu(config, region, values[..].try_into()?, slope, scale)?
|
||||
}
|
||||
PolyOp::MultiBroadcastTo { shape } => {
|
||||
layouts::expand(config, region, values[..].try_into()?, shape)?
|
||||
}
|
||||
@@ -329,6 +337,12 @@ impl<
|
||||
|
||||
fn out_scale(&self, in_scales: Vec<crate::Scale>) -> Result<crate::Scale, CircuitError> {
|
||||
let scale = match self {
|
||||
// this corresponds to the relu operation
|
||||
PolyOp::LeakyReLU {
|
||||
slope: F32(0.0), ..
|
||||
} => in_scales[0],
|
||||
// this corresponds to the leaky relu operation with a slope which induces a change in scale
|
||||
PolyOp::LeakyReLU { scale, .. } => in_scales[0] + *scale,
|
||||
PolyOp::MeanOfSquares { .. } => 2 * in_scales[0],
|
||||
PolyOp::Xor | PolyOp::Or | PolyOp::And | PolyOp::Not => 0,
|
||||
PolyOp::Iff => in_scales[1],
|
||||
|
||||
@@ -180,6 +180,7 @@ pub struct RegionCtx<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Ha
|
||||
statistics: RegionStatistics,
|
||||
settings: RegionSettings,
|
||||
assigned_constants: ConstantsMap<F>,
|
||||
max_dynamic_input_len: usize,
|
||||
}
|
||||
|
||||
impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a, F> {
|
||||
@@ -193,11 +194,16 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
|
||||
self.settings.legs
|
||||
}
|
||||
|
||||
/// get the max dynamic input len
|
||||
pub fn max_dynamic_input_len(&self) -> usize {
|
||||
self.max_dynamic_input_len
|
||||
}
|
||||
|
||||
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
|
||||
///
|
||||
pub fn debug_report(&self) {
|
||||
log::debug!(
|
||||
"(rows={}, coord={}, constants={}, max_lookup_inputs={}, min_lookup_inputs={}, max_range_size={}, dynamic_lookup_col_coord={}, shuffle_col_coord={})",
|
||||
"(rows={}, coord={}, constants={}, max_lookup_inputs={}, min_lookup_inputs={}, max_range_size={}, dynamic_lookup_col_coord={}, shuffle_col_coord={}, max_dynamic_input_len={})",
|
||||
self.row().to_string().blue(),
|
||||
self.linear_coord().to_string().yellow(),
|
||||
self.total_constants().to_string().red(),
|
||||
@@ -205,7 +211,9 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
|
||||
self.min_lookup_inputs().to_string().green(),
|
||||
self.max_range_size().to_string().green(),
|
||||
self.dynamic_lookup_col_coord().to_string().green(),
|
||||
self.shuffle_col_coord().to_string().green());
|
||||
self.shuffle_col_coord().to_string().green(),
|
||||
self.max_dynamic_input_len().to_string().green()
|
||||
);
|
||||
}
|
||||
|
||||
///
|
||||
@@ -223,6 +231,11 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
|
||||
self.dynamic_lookup_index.index += n;
|
||||
}
|
||||
|
||||
/// increment the max dynamic input len
|
||||
pub fn update_max_dynamic_input_len(&mut self, n: usize) {
|
||||
self.max_dynamic_input_len = self.max_dynamic_input_len.max(n);
|
||||
}
|
||||
|
||||
///
|
||||
pub fn increment_dynamic_lookup_col_coord(&mut self, n: usize) {
|
||||
self.dynamic_lookup_index.col_coord += n;
|
||||
@@ -274,6 +287,7 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
|
||||
statistics: RegionStatistics::default(),
|
||||
settings: RegionSettings::all_true(decomp_base, decomp_legs),
|
||||
assigned_constants: HashMap::new(),
|
||||
max_dynamic_input_len: 0,
|
||||
}
|
||||
}
|
||||
|
||||
@@ -310,6 +324,7 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
|
||||
statistics: RegionStatistics::default(),
|
||||
settings,
|
||||
assigned_constants: HashMap::new(),
|
||||
max_dynamic_input_len: 0,
|
||||
}
|
||||
}
|
||||
|
||||
@@ -331,6 +346,7 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
|
||||
statistics: RegionStatistics::default(),
|
||||
settings,
|
||||
assigned_constants: HashMap::new(),
|
||||
max_dynamic_input_len: 0,
|
||||
}
|
||||
}
|
||||
|
||||
@@ -583,9 +599,12 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
|
||||
&mut self,
|
||||
var: &VarTensor,
|
||||
values: &ValTensor<F>,
|
||||
) -> Result<ValTensor<F>, CircuitError> {
|
||||
) -> Result<(ValTensor<F>, usize), CircuitError> {
|
||||
|
||||
self.update_max_dynamic_input_len(values.len());
|
||||
|
||||
if let Some(region) = &self.region {
|
||||
Ok(var.assign(
|
||||
Ok(var.assign_exact_column(
|
||||
&mut region.borrow_mut(),
|
||||
self.combined_dynamic_shuffle_coord(),
|
||||
values,
|
||||
@@ -596,7 +615,11 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
|
||||
let values_map = values.create_constants_map_iterator();
|
||||
self.assigned_constants.par_extend(values_map);
|
||||
}
|
||||
Ok(values.clone())
|
||||
|
||||
let flush_len = var.get_column_flush(self.combined_dynamic_shuffle_coord(), values)?;
|
||||
|
||||
// get the diff between the current column and the next row
|
||||
Ok((values.clone(), flush_len))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -605,7 +628,7 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
|
||||
&mut self,
|
||||
var: &VarTensor,
|
||||
values: &ValTensor<F>,
|
||||
) -> Result<ValTensor<F>, CircuitError> {
|
||||
) -> Result<(ValTensor<F>, usize), CircuitError> {
|
||||
self.assign_dynamic_lookup(var, values)
|
||||
}
|
||||
|
||||
|
||||
@@ -1379,7 +1379,10 @@ mod conv_relu_col_ultra_overflow {
|
||||
.layout(
|
||||
&mut region,
|
||||
&[output.unwrap().unwrap()],
|
||||
Box::new(PolyOp::ReLU),
|
||||
Box::new(PolyOp::LeakyReLU {
|
||||
slope: 0.0.into(),
|
||||
scale: 1,
|
||||
}),
|
||||
)
|
||||
.unwrap();
|
||||
Ok(())
|
||||
@@ -1516,7 +1519,7 @@ mod add_w_shape_casting {
|
||||
// parameters
|
||||
let a = Tensor::from((0..LEN).map(|i| Value::known(F::from(i as u64 + 1))));
|
||||
|
||||
let b = Tensor::from((0..1).map(|i| Value::known(F::from(i as u64 + 1))));
|
||||
let b = Tensor::from((0..1).map(|i| Value::known(F::from(i + 1))));
|
||||
|
||||
let circuit = MyCircuit::<F> {
|
||||
inputs: [ValTensor::from(a), ValTensor::from(b)],
|
||||
@@ -2347,7 +2350,14 @@ mod matmul_relu {
|
||||
.unwrap();
|
||||
let _output = config
|
||||
.base_config
|
||||
.layout(&mut region, &[output.unwrap()], Box::new(PolyOp::ReLU))
|
||||
.layout(
|
||||
&mut region,
|
||||
&[output.unwrap()],
|
||||
Box::new(PolyOp::LeakyReLU {
|
||||
slope: 0.0.into(),
|
||||
scale: 1,
|
||||
}),
|
||||
)
|
||||
.unwrap();
|
||||
Ok(())
|
||||
},
|
||||
@@ -2439,7 +2449,14 @@ mod relu {
|
||||
|region| {
|
||||
let mut region = RegionCtx::new(region, 0, 1, 2, 2);
|
||||
Ok(config
|
||||
.layout(&mut region, &[self.input.clone()], Box::new(PolyOp::ReLU))
|
||||
.layout(
|
||||
&mut region,
|
||||
&[self.input.clone()],
|
||||
Box::new(PolyOp::LeakyReLU {
|
||||
slope: 0.0.into(),
|
||||
scale: 1,
|
||||
}),
|
||||
)
|
||||
.unwrap())
|
||||
},
|
||||
)
|
||||
@@ -2482,11 +2499,11 @@ mod lookup_ultra_overflow {
|
||||
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
|
||||
|
||||
#[derive(Clone)]
|
||||
struct ReLUCircuit<F: PrimeField + TensorType + PartialOrd> {
|
||||
struct SigmoidCircuit<F: PrimeField + TensorType + PartialOrd> {
|
||||
pub input: ValTensor<F>,
|
||||
}
|
||||
|
||||
impl Circuit<F> for ReLUCircuit<F> {
|
||||
impl Circuit<F> for SigmoidCircuit<F> {
|
||||
type Config = BaseConfig<F>;
|
||||
type FloorPlanner = SimpleFloorPlanner;
|
||||
type Params = TestParams;
|
||||
@@ -2500,7 +2517,7 @@ mod lookup_ultra_overflow {
|
||||
.map(|_| VarTensor::new_advice(cs, 4, 1, 3))
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let nl = LookupOp::LeakyReLU { slope: 0.0.into() };
|
||||
let nl = LookupOp::Sigmoid { scale: 1.0.into() };
|
||||
|
||||
let mut config = BaseConfig::default();
|
||||
|
||||
@@ -2533,7 +2550,7 @@ mod lookup_ultra_overflow {
|
||||
.layout(
|
||||
&mut region,
|
||||
&[self.input.clone()],
|
||||
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
|
||||
Box::new(LookupOp::Sigmoid { scale: 1.0.into() }),
|
||||
)
|
||||
.map_err(|_| Error::Synthesis)
|
||||
},
|
||||
@@ -2546,13 +2563,13 @@ mod lookup_ultra_overflow {
|
||||
|
||||
#[test]
|
||||
#[ignore]
|
||||
fn relucircuit() {
|
||||
fn sigmoidcircuit() {
|
||||
// get some logs fam
|
||||
crate::logger::init_logger();
|
||||
// parameters
|
||||
let a = Tensor::from((0..4).map(|i| Value::known(F::from(i + 1))));
|
||||
|
||||
let circuit = ReLUCircuit::<F> {
|
||||
let circuit = SigmoidCircuit::<F> {
|
||||
input: ValTensor::from(a),
|
||||
};
|
||||
|
||||
@@ -2562,7 +2579,7 @@ mod lookup_ultra_overflow {
|
||||
|
||||
let pk = crate::pfsys::create_keys::<
|
||||
halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme<halo2curves::bn256::Bn256>,
|
||||
ReLUCircuit<F>,
|
||||
SigmoidCircuit<F>,
|
||||
>(&circuit, ¶ms, true)
|
||||
.unwrap();
|
||||
|
||||
|
||||
@@ -508,7 +508,7 @@ pub enum Commands {
|
||||
/// Gets an SRS from a circuit settings file.
|
||||
#[command(name = "get-srs")]
|
||||
GetSrs {
|
||||
/// The path to output the desired srs file, if set to None will save to $EZKL_REPO_PATH/srs
|
||||
/// The path to output the desired srs file, if set to None will save to ~/.ezkl/srs
|
||||
#[arg(long, default_value = None, value_hint = clap::ValueHint::FilePath)]
|
||||
srs_path: Option<PathBuf>,
|
||||
/// Path to the circuit settings .json file to read in logrows from. Overriden by logrows if specified.
|
||||
@@ -555,7 +555,7 @@ pub enum Commands {
|
||||
/// The path to save the proving key to
|
||||
#[arg(long, default_value = DEFAULT_PK_AGGREGATED, value_hint = clap::ValueHint::FilePath)]
|
||||
pk_path: Option<PathBuf>,
|
||||
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
|
||||
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
|
||||
#[arg(long, value_hint = clap::ValueHint::FilePath)]
|
||||
srs_path: Option<PathBuf>,
|
||||
/// logrows used for aggregation circuit
|
||||
@@ -582,7 +582,7 @@ pub enum Commands {
|
||||
/// The path to output the proof file to
|
||||
#[arg(long, default_value = DEFAULT_PROOF_AGGREGATED, value_hint = clap::ValueHint::FilePath)]
|
||||
proof_path: Option<PathBuf>,
|
||||
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
|
||||
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
|
||||
#[arg(long)]
|
||||
srs_path: Option<PathBuf>,
|
||||
#[arg(
|
||||
@@ -624,7 +624,7 @@ pub enum Commands {
|
||||
/// The path to the compiled model file (generated using the compile-circuit command)
|
||||
#[arg(short = 'M', long, default_value = DEFAULT_COMPILED_CIRCUIT, value_hint = clap::ValueHint::FilePath)]
|
||||
compiled_circuit: Option<PathBuf>,
|
||||
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
|
||||
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
|
||||
#[arg(long, value_hint = clap::ValueHint::FilePath)]
|
||||
srs_path: Option<PathBuf>,
|
||||
/// The path to output the verification key file to
|
||||
@@ -701,7 +701,7 @@ pub enum Commands {
|
||||
/// The path to output the proof file to
|
||||
#[arg(long, default_value = DEFAULT_PROOF, value_hint = clap::ValueHint::FilePath)]
|
||||
proof_path: Option<PathBuf>,
|
||||
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
|
||||
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
|
||||
#[arg(long, value_hint = clap::ValueHint::FilePath)]
|
||||
srs_path: Option<PathBuf>,
|
||||
#[arg(
|
||||
@@ -733,7 +733,7 @@ pub enum Commands {
|
||||
/// Creates an Evm verifier for a single proof
|
||||
#[command(name = "create-evm-verifier")]
|
||||
CreateEvmVerifier {
|
||||
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
|
||||
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
|
||||
#[arg(long, value_hint = clap::ValueHint::FilePath)]
|
||||
srs_path: Option<PathBuf>,
|
||||
/// The path to load circuit settings .json file from (generated using the gen-settings command)
|
||||
@@ -755,7 +755,7 @@ pub enum Commands {
|
||||
/// Creates an Evm verifier artifact for a single proof to be used by the reusable verifier
|
||||
#[command(name = "create-evm-vka")]
|
||||
CreateEvmVKArtifact {
|
||||
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
|
||||
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
|
||||
#[arg(long, value_hint = clap::ValueHint::FilePath)]
|
||||
srs_path: Option<PathBuf>,
|
||||
/// The path to load circuit settings .json file from (generated using the gen-settings command)
|
||||
@@ -798,7 +798,7 @@ pub enum Commands {
|
||||
/// Creates an Evm verifier for an aggregate proof
|
||||
#[command(name = "create-evm-verifier-aggr")]
|
||||
CreateEvmVerifierAggr {
|
||||
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
|
||||
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
|
||||
#[arg(long, value_hint = clap::ValueHint::FilePath)]
|
||||
srs_path: Option<PathBuf>,
|
||||
/// The path to load the desired verification key file
|
||||
@@ -831,7 +831,7 @@ pub enum Commands {
|
||||
/// The path to the verification key file (generated using the setup command)
|
||||
#[arg(long, default_value = DEFAULT_VK, value_hint = clap::ValueHint::FilePath)]
|
||||
vk_path: Option<PathBuf>,
|
||||
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
|
||||
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
|
||||
#[arg(long, value_hint = clap::ValueHint::FilePath)]
|
||||
srs_path: Option<PathBuf>,
|
||||
/// Reduce SRS logrows to the number of instances rather than the number of logrows used for proofs (only works if the srs were generated in the same ceremony)
|
||||
@@ -849,7 +849,7 @@ pub enum Commands {
|
||||
/// reduced srs
|
||||
#[arg(long, default_value = DEFAULT_USE_REDUCED_SRS_FOR_VERIFICATION, action = clap::ArgAction::SetTrue)]
|
||||
reduced_srs: Option<bool>,
|
||||
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
|
||||
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
|
||||
#[arg(long, value_hint = clap::ValueHint::FilePath)]
|
||||
srs_path: Option<PathBuf>,
|
||||
/// logrows used for aggregation circuit
|
||||
|
||||
@@ -677,11 +677,12 @@ pub(crate) async fn get_srs_cmd(
|
||||
pb.finish_with_message("SRS validated.");
|
||||
|
||||
info!("Saving SRS to disk...");
|
||||
let mut file = std::fs::File::create(get_srs_path(k, srs_path.clone(), commitment))?;
|
||||
let computed_srs_path = get_srs_path(k, srs_path.clone(), commitment);
|
||||
let mut file = std::fs::File::create(&computed_srs_path)?;
|
||||
let mut buffer = BufWriter::with_capacity(*EZKL_BUF_CAPACITY, &mut file);
|
||||
params.write(&mut buffer)?;
|
||||
|
||||
info!("Saved SRS to disk.");
|
||||
info!("Saved SRS to {}.", computed_srs_path.as_os_str().to_str().unwrap_or("disk"));
|
||||
|
||||
info!("SRS downloaded");
|
||||
} else {
|
||||
@@ -1203,6 +1204,7 @@ pub(crate) async fn calibrate(
|
||||
num_rows: new_settings.num_rows,
|
||||
total_assignments: new_settings.total_assignments,
|
||||
total_const_size: new_settings.total_const_size,
|
||||
total_dynamic_col_size: new_settings.total_dynamic_col_size,
|
||||
..settings.clone()
|
||||
};
|
||||
|
||||
@@ -1320,7 +1322,9 @@ pub(crate) async fn calibrate(
|
||||
let lookup_log_rows = best_params.lookup_log_rows_with_blinding();
|
||||
let module_log_row = best_params.module_constraint_logrows_with_blinding();
|
||||
let instance_logrows = best_params.log2_total_instances_with_blinding();
|
||||
let dynamic_lookup_logrows = best_params.dynamic_lookup_and_shuffle_logrows_with_blinding();
|
||||
let dynamic_lookup_logrows =
|
||||
best_params.min_dynamic_lookup_and_shuffle_logrows_with_blinding();
|
||||
|
||||
let range_check_logrows = best_params.range_check_log_rows_with_blinding();
|
||||
|
||||
let mut reduction = std::cmp::max(lookup_log_rows, module_log_row);
|
||||
|
||||
@@ -408,6 +408,8 @@ pub struct GraphSettings {
|
||||
pub total_const_size: usize,
|
||||
/// total dynamic column size
|
||||
pub total_dynamic_col_size: usize,
|
||||
/// max dynamic column input length
|
||||
pub max_dynamic_input_len: usize,
|
||||
/// number of dynamic lookups
|
||||
pub num_dynamic_lookups: usize,
|
||||
/// number of shuffles
|
||||
@@ -485,6 +487,13 @@ impl GraphSettings {
|
||||
.ceil() as u32
|
||||
}
|
||||
|
||||
/// calculate the number of rows required for the dynamic lookup and shuffle
|
||||
pub fn min_dynamic_lookup_and_shuffle_logrows_with_blinding(&self) -> u32 {
|
||||
(self.max_dynamic_input_len as f64 + RESERVED_BLINDING_ROWS as f64)
|
||||
.log2()
|
||||
.ceil() as u32
|
||||
}
|
||||
|
||||
fn dynamic_lookup_and_shuffle_col_size(&self) -> usize {
|
||||
self.total_dynamic_col_size + self.total_shuffle_col_size
|
||||
}
|
||||
|
||||
@@ -103,6 +103,8 @@ pub struct DummyPassRes {
|
||||
pub num_rows: usize,
|
||||
/// num dynamic lookups
|
||||
pub num_dynamic_lookups: usize,
|
||||
/// max dynamic lookup input len
|
||||
pub max_dynamic_input_len: usize,
|
||||
/// dynamic lookup col size
|
||||
pub dynamic_lookup_col_coord: usize,
|
||||
/// num shuffles
|
||||
@@ -360,6 +362,14 @@ impl NodeType {
|
||||
NodeType::SubGraph { .. } => SupportedOp::Unknown(Unknown),
|
||||
}
|
||||
}
|
||||
|
||||
/// check if it is a softmax
|
||||
pub fn is_softmax(&self) -> bool {
|
||||
match self {
|
||||
NodeType::Node(n) => n.is_softmax(),
|
||||
NodeType::SubGraph { .. } => false,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Default, Serialize, Deserialize, PartialEq)]
|
||||
@@ -562,6 +572,7 @@ impl Model {
|
||||
num_rows: res.num_rows,
|
||||
total_assignments: res.linear_coord,
|
||||
required_lookups: res.lookup_ops.into_iter().collect(),
|
||||
max_dynamic_input_len: res.max_dynamic_input_len,
|
||||
required_range_checks: res.range_checks.into_iter().collect(),
|
||||
model_output_scales: self.graph.get_output_scales()?,
|
||||
model_input_scales: self.graph.get_input_scales(),
|
||||
@@ -1465,6 +1476,7 @@ impl Model {
|
||||
let res = DummyPassRes {
|
||||
num_rows: region.row(),
|
||||
linear_coord: region.linear_coord(),
|
||||
max_dynamic_input_len: region.max_dynamic_input_len(),
|
||||
total_const_size: region.total_constants(),
|
||||
lookup_ops: region.used_lookups(),
|
||||
range_checks: region.used_range_checks(),
|
||||
|
||||
@@ -623,6 +623,15 @@ impl Node {
|
||||
num_uses,
|
||||
})
|
||||
}
|
||||
|
||||
/// check if it is a softmax node
|
||||
pub fn is_softmax(&self) -> bool {
|
||||
if let SupportedOp::Hybrid(HybridOp::Softmax { .. }) = self.opkind {
|
||||
true
|
||||
} else {
|
||||
false
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
|
||||
|
||||
@@ -763,81 +763,41 @@ pub fn new_op_from_onnx(
|
||||
.map(|(i, _)| i)
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
if const_inputs.len() != 1 {
|
||||
return Err(GraphError::OpMismatch(idx, "Max".to_string()));
|
||||
}
|
||||
|
||||
let const_idx = const_inputs[0];
|
||||
let boxed_op = inputs[const_idx].opkind();
|
||||
let unit = if let Some(c) = extract_const_raw_values(boxed_op) {
|
||||
if c.len() == 1 {
|
||||
c[0]
|
||||
} else {
|
||||
return Err(GraphError::InvalidDims(idx, "max".to_string()));
|
||||
}
|
||||
} else {
|
||||
return Err(GraphError::OpMismatch(idx, "Max".to_string()));
|
||||
};
|
||||
|
||||
if inputs.len() == 2 {
|
||||
if let Some(node) = inputs.get_mut(const_idx) {
|
||||
node.decrement_use();
|
||||
deleted_indices.push(const_idx);
|
||||
}
|
||||
if unit == 0. {
|
||||
SupportedOp::Linear(PolyOp::ReLU)
|
||||
if const_inputs.len() > 0 {
|
||||
let const_idx = const_inputs[0];
|
||||
let boxed_op = inputs[const_idx].opkind();
|
||||
let unit = if let Some(c) = extract_const_raw_values(boxed_op) {
|
||||
if c.len() == 1 {
|
||||
c[0]
|
||||
} else {
|
||||
return Err(GraphError::InvalidDims(idx, "max".to_string()));
|
||||
}
|
||||
} else {
|
||||
return Err(GraphError::OpMismatch(idx, "Max".to_string()));
|
||||
};
|
||||
if unit == 0. {
|
||||
if let Some(node) = inputs.get_mut(const_idx) {
|
||||
node.decrement_use();
|
||||
deleted_indices.push(const_idx);
|
||||
}
|
||||
SupportedOp::Linear(PolyOp::LeakyReLU {
|
||||
slope: 0.0.into(),
|
||||
scale: 1,
|
||||
})
|
||||
} else {
|
||||
SupportedOp::Hybrid(HybridOp::Max)
|
||||
}
|
||||
} else {
|
||||
// get the non-constant index
|
||||
let non_const_idx = if const_idx == 0 { 1 } else { 0 };
|
||||
SupportedOp::Nonlinear(LookupOp::Max {
|
||||
scale: scale_to_multiplier(inputs[non_const_idx].out_scales()[0]).into(),
|
||||
a: crate::circuit::utils::F32(unit),
|
||||
})
|
||||
SupportedOp::Hybrid(HybridOp::Max)
|
||||
}
|
||||
} else {
|
||||
return Err(GraphError::InvalidDims(idx, "max".to_string()));
|
||||
}
|
||||
}
|
||||
"Min" => {
|
||||
// Extract the min value
|
||||
// first find the input that is a constant
|
||||
// and then extract the value
|
||||
let const_inputs = inputs
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter(|(_, n)| n.is_constant())
|
||||
.map(|(i, _)| i)
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
if const_inputs.len() != 1 {
|
||||
return Err(GraphError::OpMismatch(idx, "Min".to_string()));
|
||||
}
|
||||
|
||||
let const_idx = const_inputs[0];
|
||||
let boxed_op = inputs[const_idx].opkind();
|
||||
let unit = if let Some(c) = extract_const_raw_values(boxed_op) {
|
||||
if c.len() == 1 {
|
||||
c[0]
|
||||
} else {
|
||||
return Err(GraphError::InvalidDims(idx, "min".to_string()));
|
||||
}
|
||||
} else {
|
||||
return Err(GraphError::OpMismatch(idx, "Min".to_string()));
|
||||
};
|
||||
|
||||
if inputs.len() == 2 {
|
||||
if let Some(node) = inputs.get_mut(const_idx) {
|
||||
node.decrement_use();
|
||||
deleted_indices.push(const_idx);
|
||||
}
|
||||
|
||||
// get the non-constant index
|
||||
let non_const_idx = if const_idx == 0 { 1 } else { 0 };
|
||||
|
||||
SupportedOp::Nonlinear(LookupOp::Min {
|
||||
scale: scale_to_multiplier(inputs[non_const_idx].out_scales()[0]).into(),
|
||||
a: crate::circuit::utils::F32(unit),
|
||||
})
|
||||
SupportedOp::Hybrid(HybridOp::Min)
|
||||
} else {
|
||||
return Err(GraphError::InvalidDims(idx, "min".to_string()));
|
||||
}
|
||||
@@ -849,7 +809,6 @@ pub fn new_op_from_onnx(
|
||||
SupportedOp::Hybrid(HybridOp::Recip {
|
||||
input_scale: (scale_to_multiplier(in_scale) as f32).into(),
|
||||
output_scale: (scale_to_multiplier(max_scale) as f32).into(),
|
||||
use_range_check_for_int: true,
|
||||
})
|
||||
}
|
||||
|
||||
@@ -864,8 +823,9 @@ pub fn new_op_from_onnx(
|
||||
}
|
||||
};
|
||||
|
||||
SupportedOp::Nonlinear(LookupOp::LeakyReLU {
|
||||
SupportedOp::Linear(PolyOp::LeakyReLU {
|
||||
slope: crate::circuit::utils::F32(leaky_op.alpha),
|
||||
scale: scales.params,
|
||||
})
|
||||
}
|
||||
"Scan" => {
|
||||
@@ -1123,14 +1083,17 @@ pub fn new_op_from_onnx(
|
||||
pool_dims: kernel_shape.to_vec(),
|
||||
})
|
||||
}
|
||||
"Ceil" => SupportedOp::Nonlinear(LookupOp::Ceil {
|
||||
"Ceil" => SupportedOp::Hybrid(HybridOp::Ceil {
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
legs: run_args.decomp_legs,
|
||||
}),
|
||||
"Floor" => SupportedOp::Nonlinear(LookupOp::Floor {
|
||||
"Floor" => SupportedOp::Hybrid(HybridOp::Floor {
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
legs: run_args.decomp_legs,
|
||||
}),
|
||||
"Round" => SupportedOp::Nonlinear(LookupOp::Round {
|
||||
"Round" => SupportedOp::Hybrid(HybridOp::Round {
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
legs: run_args.decomp_legs,
|
||||
}),
|
||||
"RoundHalfToEven" => SupportedOp::Nonlinear(LookupOp::RoundHalfToEven {
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
@@ -1146,10 +1109,17 @@ pub fn new_op_from_onnx(
|
||||
if c.raw_values.len() > 1 {
|
||||
unimplemented!("only support scalar pow")
|
||||
}
|
||||
SupportedOp::Nonlinear(LookupOp::Pow {
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
a: crate::circuit::utils::F32(c.raw_values[0]),
|
||||
})
|
||||
|
||||
let exponent = c.raw_values[0];
|
||||
|
||||
if exponent.fract() == 0.0 {
|
||||
SupportedOp::Linear(PolyOp::Pow(exponent as u32))
|
||||
} else {
|
||||
SupportedOp::Nonlinear(LookupOp::Pow {
|
||||
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
|
||||
a: crate::circuit::utils::F32(exponent),
|
||||
})
|
||||
}
|
||||
} else {
|
||||
unimplemented!("only support constant pow for now")
|
||||
}
|
||||
|
||||
@@ -443,7 +443,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ModelVars<F> {
|
||||
let dynamic_lookup =
|
||||
VarTensor::new_advice(cs, logrows, 1, dynamic_lookup_and_shuffle_size);
|
||||
if dynamic_lookup.num_blocks() > 1 {
|
||||
panic!("dynamic lookup or shuffle should only have one block");
|
||||
warn!("dynamic lookup has {} blocks", dynamic_lookup.num_blocks());
|
||||
};
|
||||
advices.push(dynamic_lookup);
|
||||
}
|
||||
|
||||
@@ -27,7 +27,7 @@ pub fn get_rep(
|
||||
n: usize,
|
||||
) -> Result<Vec<IntegerRep>, DecompositionError> {
|
||||
// check if x is too large
|
||||
if x.abs() > (base.pow(n as u32) as IntegerRep) {
|
||||
if x.abs() > (base.pow(n as u32) as IntegerRep) - 1 {
|
||||
return Err(DecompositionError::TooLarge(*x, base, n));
|
||||
}
|
||||
let mut rep = vec![0; n + 1];
|
||||
@@ -1421,85 +1421,6 @@ pub fn slice<T: TensorType + Send + Sync>(
|
||||
pub mod nonlinearities {
|
||||
use super::*;
|
||||
|
||||
/// Ceiling operator.
|
||||
/// # Arguments
|
||||
/// * `a` - Tensor
|
||||
/// * `scale` - Single value
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
///
|
||||
/// use ezkl::tensor::ops::nonlinearities::ceil;
|
||||
/// let x = Tensor::<IntegerRep>::new(
|
||||
/// Some(&[1, 2, 3, 4, 5, 6]),
|
||||
/// &[3, 2],
|
||||
/// ).unwrap();
|
||||
/// let result = ceil(&x, 2.0);
|
||||
/// let expected = Tensor::<IntegerRep>::new(Some(&[2, 2, 4, 4, 6, 6]), &[3, 2]).unwrap();
|
||||
/// assert_eq!(result, expected);
|
||||
/// ```
|
||||
pub fn ceil(a: &Tensor<IntegerRep>, scale: f64) -> Tensor<IntegerRep> {
|
||||
a.par_enum_map(|_, a_i| {
|
||||
let kix = (a_i as f64) / scale;
|
||||
let rounded = kix.ceil() * scale;
|
||||
Ok::<_, TensorError>(rounded as IntegerRep)
|
||||
})
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Floor operator.
|
||||
/// # Arguments
|
||||
/// * `a` - Tensor
|
||||
/// * `scale` - Single value
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
/// use ezkl::tensor::ops::nonlinearities::floor;
|
||||
/// let x = Tensor::<IntegerRep>::new(
|
||||
/// Some(&[1, 2, 3, 4, 5, 6]),
|
||||
/// &[3, 2],
|
||||
/// ).unwrap();
|
||||
/// let result = floor(&x, 2.0);
|
||||
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, 2, 2, 4, 4, 6]), &[3, 2]).unwrap();
|
||||
/// assert_eq!(result, expected);
|
||||
/// ```
|
||||
pub fn floor(a: &Tensor<IntegerRep>, scale: f64) -> Tensor<IntegerRep> {
|
||||
a.par_enum_map(|_, a_i| {
|
||||
let kix = (a_i as f64) / scale;
|
||||
let rounded = kix.floor() * scale;
|
||||
Ok::<_, TensorError>(rounded as IntegerRep)
|
||||
})
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Round operator.
|
||||
/// # Arguments
|
||||
/// * `a` - Tensor
|
||||
/// * `scale` - Single value
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
/// use ezkl::tensor::ops::nonlinearities::round;
|
||||
/// let x = Tensor::<IntegerRep>::new(
|
||||
/// Some(&[1, 2, 3, 4, 5, 6]),
|
||||
/// &[3, 2],
|
||||
/// ).unwrap();
|
||||
/// let result = round(&x, 2.0);
|
||||
/// let expected = Tensor::<IntegerRep>::new(Some(&[2, 2, 4, 4, 6, 6]), &[3, 2]).unwrap();
|
||||
/// assert_eq!(result, expected);
|
||||
/// ```
|
||||
pub fn round(a: &Tensor<IntegerRep>, scale: f64) -> Tensor<IntegerRep> {
|
||||
a.par_enum_map(|_, a_i| {
|
||||
let kix = (a_i as f64) / scale;
|
||||
let rounded = kix.round() * scale;
|
||||
Ok::<_, TensorError>(rounded as IntegerRep)
|
||||
})
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Round half to even operator.
|
||||
/// # Arguments
|
||||
/// * `a` - Tensor
|
||||
@@ -1553,35 +1474,6 @@ pub mod nonlinearities {
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Applies Kronecker delta to a tensor of integers.
|
||||
/// # Arguments
|
||||
/// * `a` - Tensor
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
/// use ezkl::tensor::ops::nonlinearities::kronecker_delta;
|
||||
/// let x = Tensor::<IntegerRep>::new(
|
||||
/// Some(&[2, 15, 2, 1, 1, 0]),
|
||||
/// &[2, 3],
|
||||
/// ).unwrap();
|
||||
/// let result = kronecker_delta(&x);
|
||||
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, 0, 0, 0, 0, 1]), &[2, 3]).unwrap();
|
||||
/// assert_eq!(result, expected);
|
||||
/// ```
|
||||
pub fn kronecker_delta<T: TensorType + std::cmp::PartialEq + Send + Sync>(
|
||||
a: &Tensor<T>,
|
||||
) -> Tensor<T> {
|
||||
a.par_enum_map(|_, a_i| {
|
||||
if a_i == T::zero().unwrap() {
|
||||
Ok::<_, TensorError>(T::one().unwrap())
|
||||
} else {
|
||||
Ok::<_, TensorError>(T::zero().unwrap())
|
||||
}
|
||||
})
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Elementwise applies sigmoid to a tensor of integers.
|
||||
/// # Arguments
|
||||
///
|
||||
@@ -1750,27 +1642,6 @@ pub mod nonlinearities {
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Elementwise applies sign to a tensor of integers.
|
||||
/// # Arguments
|
||||
/// * `a` - Tensor
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
/// use ezkl::tensor::ops::nonlinearities::sign;
|
||||
/// let x = Tensor::<IntegerRep>::new(
|
||||
/// Some(&[-2, 15, 2, 1, 1, 0]),
|
||||
/// &[2, 3],
|
||||
/// ).unwrap();
|
||||
/// let result = sign(&x);
|
||||
/// let expected = Tensor::<IntegerRep>::new(Some(&[-1, 1, 1, 1, 1, 0]), &[2, 3]).unwrap();
|
||||
/// assert_eq!(result, expected);
|
||||
/// ```
|
||||
pub fn sign(a: &Tensor<IntegerRep>) -> Tensor<IntegerRep> {
|
||||
a.par_enum_map(|_, a_i| Ok::<_, TensorError>(a_i.signum()))
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Elementwise applies square root to a tensor of integers.
|
||||
/// # Arguments
|
||||
///
|
||||
@@ -2254,101 +2125,6 @@ pub mod nonlinearities {
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Elementwise applies leaky relu to a tensor of integers.
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `a` - Tensor
|
||||
/// * `scale` - Single value
|
||||
/// * `slope` - Single value
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
/// use ezkl::tensor::ops::nonlinearities::leakyrelu;
|
||||
/// let x = Tensor::<IntegerRep>::new(
|
||||
/// Some(&[2, 15, 2, 1, 1, -5]),
|
||||
/// &[2, 3],
|
||||
/// ).unwrap();
|
||||
/// let result = leakyrelu(&x, 0.1);
|
||||
/// let expected = Tensor::<IntegerRep>::new(Some(&[2, 15, 2, 1, 1, -1]), &[2, 3]).unwrap();
|
||||
/// assert_eq!(result, expected);
|
||||
/// ```
|
||||
pub fn leakyrelu(a: &Tensor<IntegerRep>, slope: f64) -> Tensor<IntegerRep> {
|
||||
a.par_enum_map(|_, a_i| {
|
||||
let rounded = if a_i < 0 {
|
||||
let d_inv_x = (slope) * (a_i as f64);
|
||||
d_inv_x.round() as IntegerRep
|
||||
} else {
|
||||
let d_inv_x = a_i as f64;
|
||||
d_inv_x.round() as IntegerRep
|
||||
};
|
||||
Ok::<_, TensorError>(rounded)
|
||||
})
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Elementwise applies max to a tensor of integers.
|
||||
/// # Arguments
|
||||
/// * `a` - Tensor
|
||||
/// * `b` - scalar
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
/// use ezkl::tensor::ops::nonlinearities::max;
|
||||
/// let x = Tensor::<IntegerRep>::new(
|
||||
/// Some(&[2, 15, 2, 1, 1, -5]),
|
||||
/// &[2, 3],
|
||||
/// ).unwrap();
|
||||
/// let result = max(&x, 1.0, 1.0);
|
||||
/// let expected = Tensor::<IntegerRep>::new(Some(&[2, 15, 2, 1, 1, 1]), &[2, 3]).unwrap();
|
||||
/// assert_eq!(result, expected);
|
||||
/// ```
|
||||
pub fn max(a: &Tensor<IntegerRep>, scale_input: f64, threshold: f64) -> Tensor<IntegerRep> {
|
||||
// calculate value of output
|
||||
a.par_enum_map(|_, a_i| {
|
||||
let d_inv_x = (a_i as f64) / scale_input;
|
||||
let rounded = if d_inv_x <= threshold {
|
||||
(threshold * scale_input).round() as IntegerRep
|
||||
} else {
|
||||
(d_inv_x * scale_input).round() as IntegerRep
|
||||
};
|
||||
Ok::<_, TensorError>(rounded)
|
||||
})
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Elementwise applies min to a tensor of integers.
|
||||
/// # Arguments
|
||||
/// * `a` - Tensor
|
||||
/// * `b` - scalar
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
/// use ezkl::tensor::ops::nonlinearities::min;
|
||||
/// let x = Tensor::<IntegerRep>::new(
|
||||
/// Some(&[2, 15, 2, 1, 1, -5]),
|
||||
/// &[2, 3],
|
||||
/// ).unwrap();
|
||||
/// let result = min(&x, 1.0, 2.0);
|
||||
/// let expected = Tensor::<IntegerRep>::new(Some(&[2, 2, 2, 1, 1, -5]), &[2, 3]).unwrap();
|
||||
/// assert_eq!(result, expected);
|
||||
/// ```
|
||||
pub fn min(a: &Tensor<IntegerRep>, scale_input: f64, threshold: f64) -> Tensor<IntegerRep> {
|
||||
// calculate value of output
|
||||
a.par_enum_map(|_, a_i| {
|
||||
let d_inv_x = (a_i as f64) / scale_input;
|
||||
let rounded = if d_inv_x >= threshold {
|
||||
(threshold * scale_input).round() as IntegerRep
|
||||
} else {
|
||||
(d_inv_x * scale_input).round() as IntegerRep
|
||||
};
|
||||
Ok::<_, TensorError>(rounded)
|
||||
})
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Elementwise divides a tensor with a const integer element.
|
||||
/// # Arguments
|
||||
///
|
||||
@@ -2429,104 +2205,6 @@ pub mod nonlinearities {
|
||||
})
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Elementwise greater than
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `a` - Tensor
|
||||
/// * `b` - Single value
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
/// use ezkl::tensor::ops::nonlinearities::greater_than;
|
||||
/// let x = Tensor::<IntegerRep>::new(
|
||||
/// Some(&[2, 1, 2, 7, 1, 1]),
|
||||
/// &[2, 3],
|
||||
/// ).unwrap();
|
||||
/// let k = 2.0;
|
||||
/// let result = greater_than(&x, k);
|
||||
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, 0, 0, 1, 0, 0]), &[2, 3]).unwrap();
|
||||
/// assert_eq!(result, expected);
|
||||
/// ```
|
||||
pub fn greater_than(a: &Tensor<IntegerRep>, b: f64) -> Tensor<IntegerRep> {
|
||||
a.par_enum_map(|_, a_i| Ok::<_, TensorError>(IntegerRep::from((a_i as f64 - b) > 0_f64)))
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Elementwise greater than
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `a` - Tensor
|
||||
/// * `b` - Single value
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
/// use ezkl::tensor::ops::nonlinearities::greater_than_equal;
|
||||
/// let x = Tensor::<IntegerRep>::new(
|
||||
/// Some(&[2, 1, 2, 7, 1, 1]),
|
||||
/// &[2, 3],
|
||||
/// ).unwrap();
|
||||
/// let k = 2.0;
|
||||
/// let result = greater_than_equal(&x, k);
|
||||
/// let expected = Tensor::<IntegerRep>::new(Some(&[1, 0, 1, 1, 0, 0]), &[2, 3]).unwrap();
|
||||
/// assert_eq!(result, expected);
|
||||
/// ```
|
||||
pub fn greater_than_equal(a: &Tensor<IntegerRep>, b: f64) -> Tensor<IntegerRep> {
|
||||
a.par_enum_map(|_, a_i| Ok::<_, TensorError>(IntegerRep::from((a_i as f64 - b) >= 0_f64)))
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Elementwise less than
|
||||
/// # Arguments
|
||||
/// * `a` - Tensor
|
||||
/// * `b` - Single value
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
/// use ezkl::tensor::ops::nonlinearities::less_than;
|
||||
///
|
||||
/// let x = Tensor::<IntegerRep>::new(
|
||||
/// Some(&[2, 1, 2, 7, 1, 1]),
|
||||
/// &[2, 3],
|
||||
/// ).unwrap();
|
||||
/// let k = 2.0;
|
||||
///
|
||||
/// let result = less_than(&x, k);
|
||||
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, 1, 0, 0, 1, 1]), &[2, 3]).unwrap();
|
||||
/// assert_eq!(result, expected);
|
||||
/// ```
|
||||
pub fn less_than(a: &Tensor<IntegerRep>, b: f64) -> Tensor<IntegerRep> {
|
||||
a.par_enum_map(|_, a_i| Ok::<_, TensorError>(IntegerRep::from((a_i as f64 - b) < 0_f64)))
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Elementwise less than
|
||||
/// # Arguments
|
||||
/// * `a` - Tensor
|
||||
/// * `b` - Single value
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
/// use ezkl::tensor::ops::nonlinearities::less_than_equal;
|
||||
///
|
||||
/// let x = Tensor::<IntegerRep>::new(
|
||||
/// Some(&[2, 1, 2, 7, 1, 1]),
|
||||
/// &[2, 3],
|
||||
/// ).unwrap();
|
||||
/// let k = 2.0;
|
||||
///
|
||||
/// let result = less_than_equal(&x, k);
|
||||
/// let expected = Tensor::<IntegerRep>::new(Some(&[1, 1, 1, 0, 1, 1]), &[2, 3]).unwrap();
|
||||
/// assert_eq!(result, expected);
|
||||
/// ```
|
||||
pub fn less_than_equal(a: &Tensor<IntegerRep>, b: f64) -> Tensor<IntegerRep> {
|
||||
a.par_enum_map(|_, a_i| Ok::<_, TensorError>(IntegerRep::from((a_i as f64 - b) <= 0_f64)))
|
||||
.unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
/// Ops that return the transcript i.e intermediate calcs of an op
|
||||
|
||||
@@ -541,7 +541,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ValTensor<F> {
|
||||
let mut is_empty = true;
|
||||
x.map(|_| is_empty = false);
|
||||
if is_empty {
|
||||
return Ok::<_, TensorError>(vec![Value::<F>::unknown(); n + 1]);
|
||||
Ok::<_, TensorError>(vec![Value::<F>::unknown(); n + 1])
|
||||
} else {
|
||||
let mut res = vec![Value::unknown(); n + 1];
|
||||
let mut int_rep = 0;
|
||||
|
||||
@@ -396,6 +396,53 @@ impl VarTensor {
|
||||
Ok(res)
|
||||
}
|
||||
|
||||
/// Helper function to get the remaining size of the column
|
||||
pub fn get_column_flush<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
&self,
|
||||
offset: usize,
|
||||
values: &ValTensor<F>,
|
||||
) -> Result<usize, halo2_proofs::plonk::Error> {
|
||||
if values.len() > self.col_size() {
|
||||
error!("Values are too large for the column");
|
||||
return Err(halo2_proofs::plonk::Error::Synthesis);
|
||||
}
|
||||
|
||||
// this can only be called on columns that have a single inner column
|
||||
if self.num_inner_cols() != 1 {
|
||||
error!("This function can only be called on columns with a single inner column");
|
||||
return Err(halo2_proofs::plonk::Error::Synthesis);
|
||||
}
|
||||
|
||||
// check if the values fit in the remaining space of the column
|
||||
let current_cartesian = self.cartesian_coord(offset);
|
||||
let final_cartesian = self.cartesian_coord(offset + values.len());
|
||||
|
||||
let mut flush_len = 0;
|
||||
if current_cartesian.0 != final_cartesian.0 {
|
||||
debug!("Values overflow the column, flushing to next column");
|
||||
// diff is the number of values that overflow the column
|
||||
flush_len += self.col_size() - current_cartesian.2;
|
||||
}
|
||||
|
||||
Ok(flush_len)
|
||||
}
|
||||
|
||||
/// Assigns [ValTensor] to the columns of the inner tensor. Whereby the values are assigned to a single column, without overflowing.
|
||||
/// So for instance if we are assigning 10 values and we are at index 18 of the column, and the columns are of length 20, we skip the last 2 values of current column and start from the beginning of the next column.
|
||||
pub fn assign_exact_column<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
&self,
|
||||
region: &mut Region<F>,
|
||||
offset: usize,
|
||||
values: &ValTensor<F>,
|
||||
constants: &mut ConstantsMap<F>,
|
||||
) -> Result<(ValTensor<F>, usize), halo2_proofs::plonk::Error> {
|
||||
let flush_len = self.get_column_flush(offset, values)?;
|
||||
|
||||
let assigned_vals = self.assign(region, offset + flush_len, values, constants)?;
|
||||
|
||||
Ok((assigned_vals, flush_len))
|
||||
}
|
||||
|
||||
/// Assigns specific values (`ValTensor`) to the columns of the inner tensor but allows for column wrapping for accumulated operations.
|
||||
/// Duplication occurs by copying the last cell of the column to the first cell next column and creating a copy constraint between the two.
|
||||
pub fn dummy_assign_with_duplication<
|
||||
|
||||
Binary file not shown.
File diff suppressed because one or more lines are too long
@@ -33,6 +33,7 @@
|
||||
"total_assignments": 92,
|
||||
"total_const_size": 3,
|
||||
"total_dynamic_col_size": 0,
|
||||
"max_dynamic_input_len": 0,
|
||||
"num_dynamic_lookups": 0,
|
||||
"num_shuffles": 0,
|
||||
"total_shuffle_col_size": 0,
|
||||
|
||||
@@ -205,7 +205,7 @@ mod native_tests {
|
||||
"1l_tiny_div",
|
||||
];
|
||||
|
||||
const TESTS: [&str; 94] = [
|
||||
const TESTS: [&str; 95] = [
|
||||
"1l_mlp", //0
|
||||
"1l_slice",
|
||||
"1l_concat",
|
||||
@@ -304,6 +304,7 @@ mod native_tests {
|
||||
"lstm_large", // 91
|
||||
"lstm_medium", // 92
|
||||
"lenet_5", // 93
|
||||
"rsqrt", // 94
|
||||
];
|
||||
|
||||
const WASM_TESTS: [&str; 46] = [
|
||||
@@ -542,7 +543,7 @@ mod native_tests {
|
||||
}
|
||||
});
|
||||
|
||||
seq!(N in 0..=93 {
|
||||
seq!(N in 0..=94 {
|
||||
|
||||
#(#[test_case(TESTS[N])])*
|
||||
#[ignore]
|
||||
@@ -851,9 +852,11 @@ mod native_tests {
|
||||
fn kzg_prove_and_verify_tight_lookup_(test: &str) {
|
||||
crate::native_tests::init_binary();
|
||||
let test_dir = TempDir::new(test).unwrap();
|
||||
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
|
||||
let path = test_dir.into_path();
|
||||
let path = path.to_str().unwrap();
|
||||
crate::native_tests::mv_test_(path, test);
|
||||
prove_and_verify(path, test.to_string(), "safe", "private", "private", "public", 1, None, false, "single", Commitments::KZG, 1);
|
||||
test_dir.close().unwrap();
|
||||
// test_dir.close().unwrap();
|
||||
}
|
||||
|
||||
#(#[test_case(TESTS[N])])*
|
||||
@@ -1118,7 +1121,7 @@ mod native_tests {
|
||||
|
||||
});
|
||||
|
||||
seq!(N in 0..=93 {
|
||||
seq!(N in 0..4 {
|
||||
#(#[test_case(TESTS[N])])*
|
||||
fn kzg_evm_prove_and_verify_reusable_verifier_(test: &str) {
|
||||
crate::native_tests::init_binary();
|
||||
@@ -1631,7 +1634,6 @@ mod native_tests {
|
||||
|
||||
let status = Command::new(format!("{}/release/ezkl", *CARGO_TARGET_DIR))
|
||||
.args(args)
|
||||
.stdout(std::process::Stdio::null())
|
||||
.status()
|
||||
.expect("failed to execute process");
|
||||
assert!(status.success());
|
||||
|
||||
@@ -124,41 +124,40 @@ mod py_tests {
|
||||
}
|
||||
|
||||
const TESTS: [&str; 34] = [
|
||||
"ezkl_demo_batch.ipynb",
|
||||
"proof_splitting.ipynb", // 0
|
||||
"variance.ipynb",
|
||||
"mnist_gan.ipynb",
|
||||
// "mnist_vae.ipynb",
|
||||
"keras_simple_demo.ipynb",
|
||||
"mnist_gan_proof_splitting.ipynb", // 4
|
||||
"hashed_vis.ipynb", // 5
|
||||
"simple_demo_all_public.ipynb",
|
||||
"data_attest.ipynb",
|
||||
"little_transformer.ipynb",
|
||||
"simple_demo_aggregated_proofs.ipynb",
|
||||
"ezkl_demo.ipynb", // 10
|
||||
"lstm.ipynb",
|
||||
"set_membership.ipynb", // 12
|
||||
"decision_tree.ipynb",
|
||||
"random_forest.ipynb",
|
||||
"gradient_boosted_trees.ipynb", // 15
|
||||
"xgboost.ipynb",
|
||||
"lightgbm.ipynb",
|
||||
"svm.ipynb",
|
||||
"simple_demo_public_input_output.ipynb",
|
||||
"simple_demo_public_network_output.ipynb", // 20
|
||||
"gcn.ipynb",
|
||||
"linear_regression.ipynb",
|
||||
"stacked_regression.ipynb",
|
||||
"data_attest_hashed.ipynb",
|
||||
"kzg_vis.ipynb", // 25
|
||||
"kmeans.ipynb",
|
||||
"solvency.ipynb",
|
||||
"sklearn_mlp.ipynb",
|
||||
"generalized_inverse.ipynb",
|
||||
"mnist_classifier.ipynb", // 30
|
||||
"world_rotation.ipynb",
|
||||
"logistic_regression.ipynb",
|
||||
"ezkl_demo_batch.ipynb", // 0
|
||||
"proof_splitting.ipynb", // 1
|
||||
"variance.ipynb", // 2
|
||||
"mnist_gan.ipynb", // 3
|
||||
"keras_simple_demo.ipynb", // 4
|
||||
"mnist_gan_proof_splitting.ipynb", // 5
|
||||
"hashed_vis.ipynb", // 6
|
||||
"simple_demo_all_public.ipynb", // 7
|
||||
"data_attest.ipynb", // 8
|
||||
"little_transformer.ipynb", // 9
|
||||
"simple_demo_aggregated_proofs.ipynb", // 10
|
||||
"ezkl_demo.ipynb", // 11
|
||||
"lstm.ipynb", // 12
|
||||
"set_membership.ipynb", // 13
|
||||
"decision_tree.ipynb", // 14
|
||||
"random_forest.ipynb", // 15
|
||||
"gradient_boosted_trees.ipynb", // 16
|
||||
"xgboost.ipynb", // 17
|
||||
"lightgbm.ipynb", // 18
|
||||
"svm.ipynb", // 19
|
||||
"simple_demo_public_input_output.ipynb", // 20
|
||||
"simple_demo_public_network_output.ipynb", // 21
|
||||
"gcn.ipynb", // 22
|
||||
"linear_regression.ipynb", // 23
|
||||
"stacked_regression.ipynb", // 24
|
||||
"data_attest_hashed.ipynb", // 25
|
||||
"kzg_vis.ipynb", // 26
|
||||
"kmeans.ipynb", // 27
|
||||
"solvency.ipynb", // 28
|
||||
"sklearn_mlp.ipynb", // 29
|
||||
"generalized_inverse.ipynb", // 30
|
||||
"mnist_classifier.ipynb", // 31
|
||||
"world_rotation.ipynb", // 32
|
||||
"logistic_regression.ipynb", // 33
|
||||
];
|
||||
|
||||
macro_rules! test_func {
|
||||
|
||||
Reference in New Issue
Block a user