Compare commits

...

7 Commits

Author SHA1 Message Date
github-actions[bot]
457196f9c1 ci: update version string in docs 2024-10-31 15:30:06 +00:00
dante
a3c131dac0 feat: lookupless rounding ops (#862) 2024-10-31 11:29:46 -04:00
sebastiandanconia
fd9c2305ac docs: improve cli friendliness (#861)
* Improve clarity of an info!() message

* Replace references to EZKL_REPO_PATH in `--help' output

Command `--help' messages aren't meant to be unduly verbose; we can
write them for common/simple use cases. We continue to support
EZKL_REPO_PATH for users who need it, for example to support
containerized server use cases.

To be clear, by default, EZKL_REPO_PATH = $HOME/.ezkl
2024-10-30 17:25:47 -04:00
dante
a0060f341d chore: rm lookup recip (#859) 2024-10-29 15:57:38 -04:00
dante
17f1d42739 chore: unify leakyrelu and relu (#858) 2024-10-29 10:43:40 -04:00
dante
ebaee9e2b1 feat: lookupless min/max ops (#854) 2024-10-26 08:00:27 -04:00
dante
d51cba589a feat: dynamic lookup overflow (#853) 2024-10-23 23:12:00 -04:00
40 changed files with 1191 additions and 797 deletions

16
Cargo.lock generated
View File

@@ -2543,6 +2543,12 @@ dependencies = [
"allocator-api2",
]
[[package]]
name = "hashbrown"
version = "0.15.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1e087f84d4f86bf4b218b927129862374b72199ae7d8657835f1e89000eea4fb"
[[package]]
name = "heck"
version = "0.4.1"
@@ -2811,12 +2817,12 @@ dependencies = [
[[package]]
name = "indexmap"
version = "2.2.5"
version = "2.6.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7b0b929d511467233429c45a44ac1dcaa21ba0f5ba11e4879e6ed28ddb4f9df4"
checksum = "707907fe3c25f5424cce2cb7e1cbcafee6bdbe735ca90ef77c29e84591e5b9da"
dependencies = [
"equivalent",
"hashbrown 0.14.3",
"hashbrown 0.15.0",
]
[[package]]
@@ -5628,9 +5634,9 @@ checksum = "121c2a6cda46980bb0fcd1647ffaf6cd3fc79a013de288782836f6df9c48780e"
[[package]]
name = "tower-service"
version = "0.3.2"
version = "0.3.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b6bc1c9ce2b5135ac7f93c72918fc37feb872bdc6a5533a8b85eb4b86bfdae52"
checksum = "8df9b6e13f2d32c91b9bd719c00d1958837bc7dec474d94952798cc8e69eeec3"
[[package]]
name = "tracing"

View File

@@ -56,6 +56,7 @@ alloy = { git = "https://github.com/alloy-rs/alloy", version = "0.1.0", rev = "5
"rpc-types-eth",
"signer-wallet",
"node-bindings",
], optional = true }
foundry-compilers = { version = "0.4.1", features = ["svm-solc"], optional = true }
ethabi = { version = "18", optional = true }
@@ -168,7 +169,7 @@ harness = false
[[bench]]
name = "relu"
name = "sigmoid"
harness = false
[[bench]]
@@ -176,12 +177,12 @@ name = "relu_lookupless"
harness = false
[[bench]]
name = "accum_matmul_relu"
name = "accum_matmul_sigmoid"
harness = false
[[bench]]
name = "accum_matmul_relu_overflow"
name = "accum_matmul_sigmoid_overflow"
harness = false
[[bin]]

View File

@@ -64,7 +64,7 @@ impl Circuit<Fr> for MyCircuit {
&a,
BITS,
K,
&LookupOp::LeakyReLU { slope: 0.0.into() },
&LookupOp::Sigmoid { scale: 1.0.into() },
)
.unwrap();
@@ -93,7 +93,7 @@ impl Circuit<Fr> for MyCircuit {
.layout(
&mut region,
&[output.unwrap()],
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
Box::new(LookupOp::Sigmoid { scale: 1.0.into() }),
)
.unwrap();
Ok(())

View File

@@ -65,7 +65,7 @@ impl Circuit<Fr> for MyCircuit {
&a,
BITS,
k,
&LookupOp::LeakyReLU { slope: 0.0.into() },
&LookupOp::Sigmoid { scale: 1.0.into() },
)
.unwrap();
@@ -94,7 +94,7 @@ impl Circuit<Fr> for MyCircuit {
.layout(
&mut region,
&[output.unwrap()],
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
Box::new(LookupOp::Sigmoid { scale: 1.0.into() }),
)
.unwrap();
Ok(())

View File

@@ -68,7 +68,14 @@ impl Circuit<Fr> for NLCircuit {
|region| {
let mut region = RegionCtx::new(region, 0, 1, 1024, 2);
config
.layout(&mut region, &[self.input.clone()], Box::new(PolyOp::ReLU))
.layout(
&mut region,
&[self.input.clone()],
Box::new(PolyOp::LeakyReLU {
slope: 0.0.into(),
scale: 1,
}),
)
.unwrap();
Ok(())
},

View File

@@ -42,7 +42,7 @@ impl Circuit<Fr> for NLCircuit {
.map(|_| VarTensor::new_advice(cs, K, 1, LEN))
.collect::<Vec<_>>();
let nl = LookupOp::LeakyReLU { slope: 0.0.into() };
let nl = LookupOp::Sigmoid { scale: 1.0.into() };
let mut config = Config::default();
@@ -68,7 +68,7 @@ impl Circuit<Fr> for NLCircuit {
.layout(
&mut region,
&[self.input.clone()],
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
Box::new(LookupOp::Sigmoid { scale: 1.0.into() }),
)
.unwrap();
Ok(())

View File

@@ -1,4 +1,4 @@
ezkl==0.0.0
ezkl==15.2.0
sphinx
sphinx-rtd-theme
sphinxcontrib-napoleon

View File

@@ -1,7 +1,7 @@
import ezkl
project = 'ezkl'
release = '0.0.0'
release = '15.2.0'
version = release

View File

@@ -146,6 +146,8 @@ where
let params = VarTensor::new_advice(cs, K, NUM_INNER_COLS, LEN);
let output = VarTensor::new_advice(cs, K, NUM_INNER_COLS, LEN);
let _constant = VarTensor::constant_cols(cs, K, LEN, false);
println!("INPUT COL {:#?}", input);
let mut layer_config = PolyConfig::configure(
@@ -156,15 +158,11 @@ where
);
layer_config
.configure_lookup(
cs,
&input,
&output,
&params,
(LOOKUP_MIN, LOOKUP_MAX),
K,
&LookupOp::LeakyReLU { slope: 0.0.into() },
)
.configure_range_check(cs, &input, &params, (-1, 1), K)
.unwrap();
layer_config
.configure_range_check(cs, &input, &params, (0, 1023), K)
.unwrap();
layer_config
@@ -195,6 +193,11 @@ where
) -> Result<(), Error> {
config.layer_config.layout_tables(&mut layouter).unwrap();
config
.layer_config
.layout_range_checks(&mut layouter)
.unwrap();
let x = layouter
.assign_region(
|| "mlp_4d",
@@ -224,7 +227,10 @@ where
.layout(
&mut region,
&[x.unwrap()],
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
Box::new(PolyOp::LeakyReLU {
slope: 0.0.into(),
scale: 1,
}),
)
.unwrap();

View File

@@ -53,6 +53,10 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
let output = VarTensor::new_advice(cs, K, 1, LEN);
// tells the config layer to add an affine op to the circuit gate
let _constant = VarTensor::constant_cols(cs, K, LEN, false);
println!("INPUT COL {:#?}", input);
let mut layer_config = PolyConfig::<F>::configure(
cs,
&[input.clone(), params.clone()],
@@ -60,17 +64,12 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
CheckMode::SAFE,
);
// sets up a new ReLU table and resuses it for l1 and l3 non linearities
layer_config
.configure_lookup(
cs,
&input,
&output,
&params,
(LOOKUP_MIN, LOOKUP_MAX),
K,
&LookupOp::LeakyReLU { slope: 0.0.into() },
)
.configure_range_check(cs, &input, &params, (-1, 1), K)
.unwrap();
layer_config
.configure_range_check(cs, &input, &params, (0, 1023), K)
.unwrap();
// sets up a new ReLU table and resuses it for l1 and l3 non linearities
@@ -104,6 +103,11 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
) -> Result<(), Error> {
config.layer_config.layout_tables(&mut layouter).unwrap();
config
.layer_config
.layout_range_checks(&mut layouter)
.unwrap();
let x = layouter
.assign_region(
|| "mlp_4d",
@@ -144,7 +148,10 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
.layout(
&mut region,
&[x],
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
Box::new(PolyOp::LeakyReLU {
scale: 1,
slope: 0.0.into(),
}),
)
.unwrap()
.unwrap();
@@ -184,7 +191,10 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
.layout(
&mut region,
&[x],
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
Box::new(PolyOp::LeakyReLU {
scale: 1,
slope: 0.0.into(),
}),
)
.unwrap();
println!("6");

View File

@@ -21,9 +21,9 @@ def main():
torch_model = Circuit()
# Input to the model
shape = [3, 2, 3]
w = 0.1*torch.rand(1, *shape, requires_grad=True)
x = 0.1*torch.rand(1, *shape, requires_grad=True)
y = 0.1*torch.rand(1, *shape, requires_grad=True)
w = 2 * torch.rand(1, *shape, requires_grad=True) - 1
x = 2 * torch.rand(1, *shape, requires_grad=True) - 1
y = 2 * torch.rand(1, *shape, requires_grad=True) - 1
torch_out = torch_model(w, x, y)
# Export the model
torch.onnx.export(torch_model, # model being run

View File

@@ -1 +1 @@
{"input_shapes": [[3, 2, 3], [3, 2, 3], [3, 2, 3], [3, 2, 3]], "input_data": [[0.0025284828152507544, 0.04976580664515495, 0.025840921327471733, 0.0829394981265068, 0.09595223516225815, 0.08764562010765076, 0.06308566778898239, 0.062386948615312576, 0.08090643584728241, 0.09267748892307281, 0.07428313046693802, 0.08987367898225784, 0.005716216750442982, 0.0666426345705986, 0.012837404385209084, 0.05769496038556099, 0.05761152133345604, 0.08006472885608673], [0.007834953255951405, 0.011380612850189209, 0.08560049533843994, 0.022283583879470825, 0.07879520952701569, 0.04422441124916077, 0.030812596902251244, 0.006081616971641779, 0.011045408435165882, 0.08776585012674332, 0.044985152781009674, 0.015603715553879738, 0.07923348993062973, 0.04872611165046692, 0.0036642670165747404, 0.05142095685005188, 0.0963878259062767, 0.03225792199373245], [0.09952805936336517, 0.002214533044025302, 0.011696457862854004, 0.022422820329666138, 0.04151459410786629, 0.027647346258163452, 0.011919880285859108, 0.006539052817970514, 0.06569185107946396, 0.034328874200582504, 0.0032284557819366455, 0.004105025436729193, 0.022395813837647438, 0.07135921716690063, 0.07882415503263474, 0.09764843434095383, 0.05335796996951103, 0.0525360181927681]], "output_data": [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]}
{"input_shapes": [[3, 2, 3], [3, 2, 3], [3, 2, 3], [3, 2, 3]], "input_data": [[0.6261028051376343, 0.49872446060180664, -0.04514765739440918, 0.5936200618743896, 0.9271858930587769, 0.6688600778579712, -0.20331168174743652, -0.7016235589981079, 0.025863051414489746, -0.19426143169403076, 0.9827852249145508, 0.4897397756576538, 0.2992602586746216, 0.7011144161224365, 0.9278832674026489, 0.5943725109100342, -0.573331356048584, 0.3675816059112549], [0.7803324460983276, -0.9616303443908691, 0.6070173978805542, -0.028337717056274414, -0.5080242156982422, -0.9280107021331787, 0.6150380373001099, 0.3865993022918701, -0.43668973445892334, 0.17152702808380127, 0.5144252777099609, -0.28881049156188965, 0.8932310342788696, 0.059034109115600586, 0.6865451335906982, 0.009820222854614258, 0.23011493682861328, -0.9492779970169067], [-0.21352827548980713, -0.16015326976776123, -0.38964390754699707, 0.13464701175689697, -0.8814496994018555, 0.5037975311279297, -0.804405927658081, 0.9858957529067993, 0.19567716121673584, 0.9777265787124634, 0.6151977777481079, 0.568595290184021, 0.10584986209869385, -0.8975653648376465, 0.6235959529876709, -0.547879695892334, 0.9289869070053101, 0.7567293643951416]], "output_data": [[1.0, 0.0, -0.0, 1.0, 1.0, 1.0, -0.0, -1.0, 0.0, -0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, -1.0, 0.0], [0.0, -1.0, 0.0, -1.0, -1.0, -1.0, 0.0, 0.0, -1.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [-0.0, -0.0, -0.0, 1.0, -0.0, 1.0, -0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -0.0, 1.0, -0.0, 1.0, 1.0]]}

View File

@@ -1,10 +1,11 @@
pytorch2.0.1:â
pytorch2.2.2:ă

woutput_w/Round"Round

xoutput_x/Floor"Floor

youtput_y/Ceil"Ceil torch_jitZ%
youtput_y/Ceil"Ceil
main_graphZ%
w



View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
# reciprocal sqrt
m = 1 / torch.sqrt(x)
return m
circuit = MyModel()
x = torch.empty(1, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.8590779900550842, 0.4029041528701782, 0.6507361531257629, 0.9782488942146301, 0.37392884492874146, 0.6867020726203918, 0.11407750844955444, 0.362740159034729]]}

View File

@@ -0,0 +1,17 @@
pytorch2.2.2:Ź
$
input/Sqrt_output_0/Sqrt"Sqrt
1
/Sqrt_output_0output /Reciprocal"
Reciprocal
main_graphZ!
input


batch_size
b"
output


batch_size
B

View File

@@ -177,7 +177,7 @@ impl<'source> FromPyObject<'source> for Tolerance {
#[derive(Clone, Debug, Default)]
pub struct DynamicLookups {
/// [Selector]s generated when configuring the layer. We use a [BTreeMap] as we expect to configure many dynamic lookup ops.
pub lookup_selectors: BTreeMap<(usize, usize), Selector>,
pub lookup_selectors: BTreeMap<(usize, (usize, usize)), Selector>,
/// Selectors for the dynamic lookup tables
pub table_selectors: Vec<Selector>,
/// Inputs:
@@ -209,7 +209,7 @@ impl DynamicLookups {
#[derive(Clone, Debug, Default)]
pub struct Shuffles {
/// [Selector]s generated when configuring the layer. We use a [BTreeMap] as we expect to configure many dynamic lookup ops.
pub input_selectors: BTreeMap<(usize, usize), Selector>,
pub input_selectors: BTreeMap<(usize, (usize, usize)), Selector>,
/// Selectors for the dynamic lookup tables
pub reference_selectors: Vec<Selector>,
/// Inputs:
@@ -646,57 +646,73 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
}
for t in tables.iter() {
if !t.is_advice() || t.num_blocks() > 1 || t.num_inner_cols() > 1 {
if !t.is_advice() || t.num_inner_cols() > 1 {
return Err(CircuitError::WrongDynamicColumnType(t.name().to_string()));
}
}
// assert all tables have the same number of inner columns
if tables
.iter()
.map(|t| t.num_blocks())
.collect::<Vec<_>>()
.windows(2)
.any(|w| w[0] != w[1])
{
return Err(CircuitError::WrongDynamicColumnType(
"tables inner cols".to_string(),
));
}
let one = Expression::Constant(F::ONE);
let s_ltable = cs.complex_selector();
for q in 0..tables[0].num_blocks() {
let s_ltable = cs.complex_selector();
for x in 0..lookups[0].num_blocks() {
for y in 0..lookups[0].num_inner_cols() {
let s_lookup = cs.complex_selector();
for x in 0..lookups[0].num_blocks() {
for y in 0..lookups[0].num_inner_cols() {
let s_lookup = cs.complex_selector();
cs.lookup_any("lookup", |cs| {
let s_lookupq = cs.query_selector(s_lookup);
let mut expression = vec![];
let s_ltableq = cs.query_selector(s_ltable);
let mut lookup_queries = vec![one.clone()];
cs.lookup_any("lookup", |cs| {
let s_lookupq = cs.query_selector(s_lookup);
let mut expression = vec![];
let s_ltableq = cs.query_selector(s_ltable);
let mut lookup_queries = vec![one.clone()];
for lookup in lookups {
lookup_queries.push(match lookup {
VarTensor::Advice { inner: advices, .. } => {
cs.query_advice(advices[x][y], Rotation(0))
}
_ => unreachable!(),
});
}
for lookup in lookups {
lookup_queries.push(match lookup {
VarTensor::Advice { inner: advices, .. } => {
cs.query_advice(advices[x][y], Rotation(0))
}
_ => unreachable!(),
});
}
let mut table_queries = vec![one.clone()];
for table in tables {
table_queries.push(match table {
VarTensor::Advice { inner: advices, .. } => {
cs.query_advice(advices[0][0], Rotation(0))
}
_ => unreachable!(),
});
}
let mut table_queries = vec![one.clone()];
for table in tables {
table_queries.push(match table {
VarTensor::Advice { inner: advices, .. } => {
cs.query_advice(advices[q][0], Rotation(0))
}
_ => unreachable!(),
});
}
let lhs = lookup_queries.into_iter().map(|c| c * s_lookupq.clone());
let rhs = table_queries.into_iter().map(|c| c * s_ltableq.clone());
expression.extend(lhs.zip(rhs));
let lhs = lookup_queries.into_iter().map(|c| c * s_lookupq.clone());
let rhs = table_queries.into_iter().map(|c| c * s_ltableq.clone());
expression.extend(lhs.zip(rhs));
expression
});
self.dynamic_lookups
.lookup_selectors
.entry((x, y))
.or_insert(s_lookup);
expression
});
self.dynamic_lookups
.lookup_selectors
.entry((q, (x, y)))
.or_insert(s_lookup);
}
}
self.dynamic_lookups.table_selectors.push(s_ltable);
}
self.dynamic_lookups.table_selectors.push(s_ltable);
// if we haven't previously initialized the input/output, do so now
if self.dynamic_lookups.tables.is_empty() {
@@ -729,57 +745,72 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
}
for t in references.iter() {
if !t.is_advice() || t.num_blocks() > 1 || t.num_inner_cols() > 1 {
if !t.is_advice() || t.num_inner_cols() > 1 {
return Err(CircuitError::WrongDynamicColumnType(t.name().to_string()));
}
}
// assert all tables have the same number of blocks
if references
.iter()
.map(|t| t.num_blocks())
.collect::<Vec<_>>()
.windows(2)
.any(|w| w[0] != w[1])
{
return Err(CircuitError::WrongDynamicColumnType(
"references inner cols".to_string(),
));
}
let one = Expression::Constant(F::ONE);
let s_reference = cs.complex_selector();
for q in 0..references[0].num_blocks() {
let s_reference = cs.complex_selector();
for x in 0..inputs[0].num_blocks() {
for y in 0..inputs[0].num_inner_cols() {
let s_input = cs.complex_selector();
for x in 0..inputs[0].num_blocks() {
for y in 0..inputs[0].num_inner_cols() {
let s_input = cs.complex_selector();
cs.lookup_any("lookup", |cs| {
let s_inputq = cs.query_selector(s_input);
let mut expression = vec![];
let s_referenceq = cs.query_selector(s_reference);
let mut input_queries = vec![one.clone()];
cs.lookup_any("lookup", |cs| {
let s_inputq = cs.query_selector(s_input);
let mut expression = vec![];
let s_referenceq = cs.query_selector(s_reference);
let mut input_queries = vec![one.clone()];
for input in inputs {
input_queries.push(match input {
VarTensor::Advice { inner: advices, .. } => {
cs.query_advice(advices[x][y], Rotation(0))
}
_ => unreachable!(),
});
}
for input in inputs {
input_queries.push(match input {
VarTensor::Advice { inner: advices, .. } => {
cs.query_advice(advices[x][y], Rotation(0))
}
_ => unreachable!(),
});
}
let mut ref_queries = vec![one.clone()];
for reference in references {
ref_queries.push(match reference {
VarTensor::Advice { inner: advices, .. } => {
cs.query_advice(advices[0][0], Rotation(0))
}
_ => unreachable!(),
});
}
let mut ref_queries = vec![one.clone()];
for reference in references {
ref_queries.push(match reference {
VarTensor::Advice { inner: advices, .. } => {
cs.query_advice(advices[q][0], Rotation(0))
}
_ => unreachable!(),
});
}
let lhs = input_queries.into_iter().map(|c| c * s_inputq.clone());
let rhs = ref_queries.into_iter().map(|c| c * s_referenceq.clone());
expression.extend(lhs.zip(rhs));
let lhs = input_queries.into_iter().map(|c| c * s_inputq.clone());
let rhs = ref_queries.into_iter().map(|c| c * s_referenceq.clone());
expression.extend(lhs.zip(rhs));
expression
});
self.shuffles
.input_selectors
.entry((x, y))
.or_insert(s_input);
expression
});
self.shuffles
.input_selectors
.entry((q, (x, y)))
.or_insert(s_input);
}
}
self.shuffles.reference_selectors.push(s_reference);
}
self.shuffles.reference_selectors.push(s_reference);
// if we haven't previously initialized the input/output, do so now
if self.shuffles.references.is_empty() {

View File

@@ -94,4 +94,7 @@ pub enum CircuitError {
#[error("[io] {0}")]
/// IO error
IoError(#[from] std::io::Error),
/// Invalid scale
#[error("negative scale for an op that requires positive inputs {0}")]
NegativeScale(String),
}

View File

@@ -13,10 +13,21 @@ use serde::{Deserialize, Serialize};
/// An enum representing the operations that consist of both lookups and arithmetic operations.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum HybridOp {
Ceil {
scale: utils::F32,
legs: usize,
},
Floor {
scale: utils::F32,
legs: usize,
},
Round {
scale: utils::F32,
legs: usize,
},
Recip {
input_scale: utils::F32,
output_scale: utils::F32,
use_range_check_for_int: bool,
},
Div {
denom: utils::F32,
@@ -45,6 +56,8 @@ pub enum HybridOp {
ReduceArgMin {
dim: usize,
},
Max,
Min,
Softmax {
input_scale: utils::F32,
output_scale: utils::F32,
@@ -79,6 +92,8 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
| HybridOp::Less { .. }
| HybridOp::Equals { .. }
| HybridOp::GreaterEqual { .. }
| HybridOp::Max
| HybridOp::Min
| HybridOp::LessEqual { .. } => {
vec![0, 1]
}
@@ -93,13 +108,17 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
fn as_string(&self) -> String {
match self {
HybridOp::Ceil { scale, legs } => format!("CEIL(scale={}, legs={})", scale, legs),
HybridOp::Floor { scale, legs } => format!("FLOOR(scale={}, legs={})", scale, legs),
HybridOp::Round { scale, legs } => format!("ROUND(scale={}, legs={})", scale, legs),
HybridOp::Max => format!("MAX"),
HybridOp::Min => format!("MIN"),
HybridOp::Recip {
input_scale,
output_scale,
use_range_check_for_int,
} => format!(
"RECIP (input_scale={}, output_scale={}, use_range_check_for_int={})",
input_scale, output_scale, use_range_check_for_int
"RECIP (input_scale={}, output_scale={})",
input_scale, output_scale
),
HybridOp::Div {
denom,
@@ -162,6 +181,17 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
values: &[ValTensor<F>],
) -> Result<Option<ValTensor<F>>, CircuitError> {
Ok(Some(match self {
HybridOp::Ceil { scale, legs } => {
layouts::ceil(config, region, values[..].try_into()?, *scale, *legs)?
}
HybridOp::Floor { scale, legs } => {
layouts::floor(config, region, values[..].try_into()?, *scale, *legs)?
}
HybridOp::Round { scale, legs } => {
layouts::round(config, region, values[..].try_into()?, *scale, *legs)?
}
HybridOp::Max => layouts::max_comp(config, region, values[..].try_into()?)?,
HybridOp::Min => layouts::min_comp(config, region, values[..].try_into()?)?,
HybridOp::SumPool {
padding,
stride,
@@ -179,31 +209,13 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
HybridOp::Recip {
input_scale,
output_scale,
use_range_check_for_int,
} => {
if input_scale.0.fract() == 0.0
&& output_scale.0.fract() == 0.0
&& *use_range_check_for_int
{
layouts::recip(
config,
region,
values[..].try_into()?,
integer_rep_to_felt(input_scale.0 as i128),
integer_rep_to_felt(output_scale.0 as i128),
)?
} else {
layouts::nonlinearity(
config,
region,
values.try_into()?,
&LookupOp::Recip {
input_scale: *input_scale,
output_scale: *output_scale,
},
)?
}
}
} => layouts::recip(
config,
region,
values[..].try_into()?,
integer_rep_to_felt(input_scale.0 as i128),
integer_rep_to_felt(output_scale.0 as i128),
)?,
HybridOp::Div {
denom,
use_range_check_for_int,

View File

@@ -979,8 +979,16 @@ pub(crate) fn dynamic_lookup<F: PrimeField + TensorType + PartialOrd + std::hash
let (lookup_0, lookup_1) = (lookups[0].clone(), lookups[1].clone());
let (table_0, table_1) = (tables[0].clone(), tables[1].clone());
let table_0 = region.assign_dynamic_lookup(&config.dynamic_lookups.tables[0], &table_0)?;
let _table_1 = region.assign_dynamic_lookup(&config.dynamic_lookups.tables[1], &table_1)?;
let (table_0, flush_len_0) =
region.assign_dynamic_lookup(&config.dynamic_lookups.tables[0], &table_0)?;
let (_table_1, flush_len_1) =
region.assign_dynamic_lookup(&config.dynamic_lookups.tables[1], &table_1)?;
if flush_len_0 != flush_len_1 {
return Err(CircuitError::MismatchedLookupTableLength(
flush_len_0,
flush_len_1,
));
}
let table_len = table_0.len();
trace!("assigning tables took: {:?}", start.elapsed());
@@ -1005,13 +1013,21 @@ pub(crate) fn dynamic_lookup<F: PrimeField + TensorType + PartialOrd + std::hash
trace!("assigning lookup index took: {:?}", start.elapsed());
let mut lookup_block = 0;
if !region.is_dummy() {
(0..table_len)
.map(|i| {
let table_selector = config.dynamic_lookups.table_selectors[0];
let (_, _, z) = config.dynamic_lookups.tables[0]
.cartesian_coord(region.combined_dynamic_shuffle_coord() + i);
let (x, _, z) = config.dynamic_lookups.tables[0]
.cartesian_coord(region.combined_dynamic_shuffle_coord() + i + flush_len_0);
if lookup_block != x {
lookup_block = x;
}
let table_selector = config.dynamic_lookups.table_selectors[lookup_block];
region.enable(Some(&table_selector), z)?;
Ok(())
})
.collect::<Result<Vec<_>, CircuitError>>()?;
@@ -1023,20 +1039,23 @@ pub(crate) fn dynamic_lookup<F: PrimeField + TensorType + PartialOrd + std::hash
.map(|i| {
let (x, y, z) =
config.dynamic_lookups.inputs[0].cartesian_coord(region.linear_coord() + i);
let lookup_selector = config
.dynamic_lookups
.lookup_selectors
.get(&(x, y))
.get(&(lookup_block, (x, y)))
.ok_or(CircuitError::MissingSelectors(format!("{:?}", (x, y))))?;
region.enable(Some(lookup_selector), z)?;
// region.enable(Some(lookup_selector), z)?;
Ok(())
})
.collect::<Result<Vec<_>, CircuitError>>()?;
}
region.increment_dynamic_lookup_col_coord(table_len);
region.increment_dynamic_lookup_col_coord(table_len + flush_len_0);
region.increment_dynamic_lookup_index(1);
region.increment(lookup_len);
@@ -1064,22 +1083,33 @@ pub(crate) fn shuffles<F: PrimeField + TensorType + PartialOrd + std::hash::Hash
));
}
let reference = region.assign_shuffle(&config.shuffles.references[0], &reference)?;
let (reference, flush_len_ref) =
region.assign_shuffle(&config.shuffles.references[0], &reference)?;
let reference_len = reference.len();
// now create a vartensor of constants for the shuffle index
let index = create_constant_tensor(F::from(shuffle_index as u64), reference_len);
let index = region.assign_shuffle(&config.shuffles.references[1], &index)?;
let (index, flush_len_index) = region.assign_shuffle(&config.shuffles.references[1], &index)?;
if flush_len_index != flush_len_ref {
return Err(CircuitError::MismatchedShuffleLength(
flush_len_index,
flush_len_ref,
));
}
let input = region.assign(&config.shuffles.inputs[0], &input)?;
region.assign(&config.shuffles.inputs[1], &index)?;
let mut shuffle_block = 0;
if !region.is_dummy() {
(0..reference_len)
.map(|i| {
let ref_selector = config.shuffles.reference_selectors[0];
let (_, _, z) = config.shuffles.references[0]
.cartesian_coord(region.combined_dynamic_shuffle_coord() + i);
let (x, _, z) = config.shuffles.references[0]
.cartesian_coord(region.combined_dynamic_shuffle_coord() + i + flush_len_ref);
shuffle_block = x;
let ref_selector = config.shuffles.reference_selectors[shuffle_block];
region.enable(Some(&ref_selector), z)?;
Ok(())
})
@@ -1095,7 +1125,7 @@ pub(crate) fn shuffles<F: PrimeField + TensorType + PartialOrd + std::hash::Hash
let input_selector = config
.shuffles
.input_selectors
.get(&(x, y))
.get(&(shuffle_block, (x, y)))
.ok_or(CircuitError::MissingSelectors(format!("{:?}", (x, y))))?;
region.enable(Some(input_selector), z)?;
@@ -1105,7 +1135,7 @@ pub(crate) fn shuffles<F: PrimeField + TensorType + PartialOrd + std::hash::Hash
.collect::<Result<Vec<_>, CircuitError>>()?;
}
region.increment_shuffle_col_coord(reference_len);
region.increment_shuffle_col_coord(reference_len + flush_len_ref);
region.increment_shuffle_index(1);
region.increment(reference_len);
@@ -4125,6 +4155,110 @@ pub(crate) fn argmin<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
Ok(assigned_argmin)
}
/// Max layout
/// # Arguments
/// * `config` - BaseConfig
/// * `region` - RegionCtx
/// * `values` - &[ValTensor<F>; 2]
/// # Returns
/// * ValTensor<F>
/// # Example
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::circuit::ops::layouts::max_comp;
/// use ezkl::tensor::val::ValTensor;
/// use halo2curves::bn256::Fr as Fp;
/// use ezkl::circuit::region::RegionCtx;
/// use ezkl::circuit::region::RegionSettings;
/// use ezkl::circuit::BaseConfig;
/// let dummy_config = BaseConfig::dummy(12, 2);
/// let mut dummy_region = RegionCtx::new_dummy(0,2,RegionSettings::all_true(128,2));
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[5, 2, 3, 0]),
/// &[1, 1, 2, 2],
/// ).unwrap());
/// let y = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[5, 1, 1, 1]),
/// &[1, 1, 2, 2],
/// ).unwrap());
///
/// let result = max_comp::<Fp>(&dummy_config, &mut dummy_region, &[x, y]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[5, 2, 3, 1]), &[1, 1, 2, 2]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
/// ```
///
pub fn max_comp<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
) -> Result<ValTensor<F>, CircuitError> {
let is_greater = greater(config, region, values)?;
let is_less = not(config, region, &[is_greater.clone()])?;
let max_val_p1 = pairwise(
config,
region,
&[values[0].clone(), is_greater],
BaseOp::Mult,
)?;
let max_val_p2 = pairwise(config, region, &[values[1].clone(), is_less], BaseOp::Mult)?;
pairwise(config, region, &[max_val_p1, max_val_p2], BaseOp::Add)
}
/// Min comp layout
/// # Arguments
/// * `config` - BaseConfig
/// * `region` - RegionCtx
/// * `values` - &[ValTensor<F>; 2]
/// # Returns
/// * ValTensor<F>
/// # Example
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::circuit::ops::layouts::min_comp;
/// use ezkl::tensor::val::ValTensor;
/// use halo2curves::bn256::Fr as Fp;
/// use ezkl::circuit::region::RegionCtx;
/// use ezkl::circuit::region::RegionSettings;
/// use ezkl::circuit::BaseConfig;
/// let dummy_config = BaseConfig::dummy(12, 2);
/// let mut dummy_region = RegionCtx::new_dummy(0,2,RegionSettings::all_true(128,2));
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[5, 2, 3, 0]),
/// &[1, 1, 2, 2],
/// ).unwrap());
/// let y = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[5, 1, 1, 1]),
/// &[1, 1, 2, 2],
/// ).unwrap());
/// let result = min_comp::<Fp>(&dummy_config, &mut dummy_region, &[x, y]).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[5, 1, 1, 0]), &[1, 1, 2, 2]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
/// ```
pub fn min_comp<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
) -> Result<ValTensor<F>, CircuitError> {
let is_greater = greater(config, region, values)?;
let is_less = not(config, region, &[is_greater.clone()])?;
let min_val_p1 = pairwise(config, region, &[values[0].clone(), is_less], BaseOp::Mult)?;
let min_val_p2 = pairwise(
config,
region,
&[values[1].clone(), is_greater],
BaseOp::Mult,
)?;
pairwise(config, region, &[min_val_p1, min_val_p2], BaseOp::Add)
}
/// max layout
pub(crate) fn max<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
@@ -4148,6 +4282,438 @@ pub(crate) fn min<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
.map_err(|e| e.into())
}
/// floor layout
/// # Arguments
/// * `config` - BaseConfig
/// * `region` - RegionCtx
/// * `values` - &[ValTensor<F>; 1]
/// * `scale` - utils::F32
/// * `legs` - usize
/// # Returns
/// * ValTensor<F>
/// # Example
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::circuit::ops::layouts::floor;
/// use ezkl::tensor::val::ValTensor;
/// use halo2curves::bn256::Fr as Fp;
/// use ezkl::circuit::region::RegionCtx;
/// use ezkl::circuit::region::RegionSettings;
/// use ezkl::circuit::BaseConfig;
/// let dummy_config = BaseConfig::dummy(12, 2);
/// let mut dummy_region = RegionCtx::new_dummy(0,2,RegionSettings::all_true(128,2));
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[3, -2, -3, 1]),
/// &[1, 1, 2, 2],
/// ).unwrap());
/// let result = floor::<Fp>(&dummy_config, &mut dummy_region, &[x], 2.0.into(), 2).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[2, -2, -4, 0]), &[1, 1, 2, 2]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
/// ```
pub fn floor<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
scale: utils::F32,
legs: usize,
) -> Result<ValTensor<F>, CircuitError> {
// decompose with base scale and then set the last element to zero
let decomposition = decompose(config, region, values, &(scale.0 as usize), &legs)?;
// set the last element to zero and then recompose, we don't actually need to assign here
// as this will automatically be assigned in the recompose function and uses the constant caching of RegionCtx
let zero = ValType::Constant(F::ZERO);
let negative_one = create_constant_tensor(integer_rep_to_felt(-1), 1);
let assigned_negative_one = region.assign(&config.custom_gates.inputs[1], &negative_one)?;
region.increment(1);
let dims = decomposition.dims().to_vec();
let first_dims = decomposition.dims().to_vec()[..decomposition.dims().len() - 1].to_vec();
let mut incremented_tensor = Tensor::new(None, &first_dims)?;
let cartesian_coord = first_dims
.iter()
.map(|x| 0..*x)
.multi_cartesian_product()
.collect::<Vec<_>>();
let inner_loop_function =
|i: usize, region: &mut RegionCtx<F>| -> Result<Tensor<ValType<F>>, CircuitError> {
let coord = cartesian_coord[i].clone();
let slice = coord.iter().map(|x| *x..*x + 1).collect::<Vec<_>>();
let mut sliced_input = decomposition.get_slice(&slice)?;
sliced_input.flatten();
let last_elem = sliced_input.last()?;
let last_elem_is_zero = equals_zero(config, region, &[last_elem.clone()])?;
let last_elem_is_not_zero = not(config, region, &[last_elem_is_zero.clone()])?;
let sign = sliced_input.first()?;
let is_negative = equals(config, region, &[sign, assigned_negative_one.clone()])?;
let is_negative_and_not_zero = and(
config,
region,
&[last_elem_is_not_zero.clone(), is_negative.clone()],
)?;
// increment the penultimate element
let incremented_elem = pairwise(
config,
region,
&[
sliced_input.get_slice(&[sliced_input.len() - 2..sliced_input.len() - 1])?,
is_negative_and_not_zero.clone(),
],
BaseOp::Add,
)?;
let mut inner_tensor = sliced_input.get_inner_tensor()?.clone();
inner_tensor[sliced_input.len() - 2] =
incremented_elem.get_inner_tensor()?.clone()[0].clone();
// set the last elem to zero
inner_tensor[sliced_input.len() - 1] = zero.clone();
Ok(inner_tensor.clone())
};
region.apply_in_loop(&mut incremented_tensor, inner_loop_function)?;
let mut incremented_tensor = incremented_tensor.combine()?;
incremented_tensor.reshape(&dims)?;
recompose(
config,
region,
&[incremented_tensor.into()],
&(scale.0 as usize),
)
}
/// ceil layout
/// # Arguments
/// * `config` - BaseConfig
/// * `region` - RegionCtx
/// * `values` - &[ValTensor<F>; 1]
/// * `scale` - utils::F32
/// * `legs` - usize
/// # Returns
/// * ValTensor<F>
/// # Example
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::circuit::ops::layouts::ceil;
/// use ezkl::tensor::val::ValTensor;
/// use halo2curves::bn256::Fr as Fp;
/// use ezkl::circuit::region::RegionCtx;
/// use ezkl::circuit::region::RegionSettings;
/// use ezkl::circuit::BaseConfig;
/// let dummy_config = BaseConfig::dummy(12, 2);
/// let mut dummy_region = RegionCtx::new_dummy(0,2,RegionSettings::all_true(128,2));
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[3, -2, 3, 1]),
/// &[1, 1, 2, 2],
/// ).unwrap());
/// let result = ceil::<Fp>(&dummy_config, &mut dummy_region, &[x], 2.0.into(), 2).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[4, -2, 4, 2]), &[1, 1, 2, 2]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
/// ```
///
pub fn ceil<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
scale: utils::F32,
legs: usize,
) -> Result<ValTensor<F>, CircuitError> {
// decompose with base scale and then set the last element to zero
let decomposition = decompose(config, region, values, &(scale.0 as usize), &legs)?;
// set the last element to zero and then recompose, we don't actually need to assign here
// as this will automatically be assigned in the recompose function and uses the constant caching of RegionCtx
let zero = ValType::Constant(F::ZERO);
let one = create_constant_tensor(integer_rep_to_felt(1), 1);
let assigned_one = region.assign(&config.custom_gates.inputs[1], &one)?;
region.increment(1);
let dims = decomposition.dims().to_vec();
let first_dims = decomposition.dims().to_vec()[..decomposition.dims().len() - 1].to_vec();
let mut incremented_tensor = Tensor::new(None, &first_dims)?;
let cartesian_coord = first_dims
.iter()
.map(|x| 0..*x)
.multi_cartesian_product()
.collect::<Vec<_>>();
let inner_loop_function =
|i: usize, region: &mut RegionCtx<F>| -> Result<Tensor<ValType<F>>, CircuitError> {
let coord = cartesian_coord[i].clone();
let slice = coord.iter().map(|x| *x..*x + 1).collect::<Vec<_>>();
let mut sliced_input = decomposition.get_slice(&slice)?;
sliced_input.flatten();
let last_elem = sliced_input.last()?;
let last_elem_is_zero = equals_zero(config, region, &[last_elem.clone()])?;
let last_elem_is_not_zero = not(config, region, &[last_elem_is_zero.clone()])?;
let sign = sliced_input.first()?;
let is_positive = equals(config, region, &[sign, assigned_one.clone()])?;
let is_positive_and_not_zero = and(
config,
region,
&[last_elem_is_not_zero.clone(), is_positive.clone()],
)?;
// increment the penultimate element
let incremented_elem = pairwise(
config,
region,
&[
sliced_input.get_slice(&[sliced_input.len() - 2..sliced_input.len() - 1])?,
is_positive_and_not_zero.clone(),
],
BaseOp::Add,
)?;
let mut inner_tensor = sliced_input.get_inner_tensor()?.clone();
inner_tensor[sliced_input.len() - 2] =
incremented_elem.get_inner_tensor()?.clone()[0].clone();
// set the last elem to zero
inner_tensor[sliced_input.len() - 1] = zero.clone();
Ok(inner_tensor.clone())
};
region.apply_in_loop(&mut incremented_tensor, inner_loop_function)?;
let mut incremented_tensor = incremented_tensor.combine()?;
incremented_tensor.reshape(&dims)?;
recompose(
config,
region,
&[incremented_tensor.into()],
&(scale.0 as usize),
)
}
/// round layout
/// # Arguments
/// * `config` - BaseConfig
/// * `region` - RegionCtx
/// * `values` - &[ValTensor<F>; 1]
/// * `scale` - utils::F32
/// * `legs` - usize
/// # Returns
/// * ValTensor<F>
/// # Example
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::circuit::ops::layouts::round;
/// use ezkl::tensor::val::ValTensor;
/// use halo2curves::bn256::Fr as Fp;
/// use ezkl::circuit::region::RegionCtx;
/// use ezkl::circuit::region::RegionSettings;
/// use ezkl::circuit::BaseConfig;
/// let dummy_config = BaseConfig::dummy(12, 2);
/// let mut dummy_region = RegionCtx::new_dummy(0,2,RegionSettings::all_true(128,2));
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[3, -2, 3, 1]),
/// &[1, 1, 2, 2],
/// ).unwrap());
/// let result = round::<Fp>(&dummy_config, &mut dummy_region, &[x], 4.0.into(), 2).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[4, -4, 4, 0]), &[1, 1, 2, 2]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
/// ```
///
pub fn round<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
scale: utils::F32,
legs: usize,
) -> Result<ValTensor<F>, CircuitError> {
// decompose with base scale and then set the last element to zero
let decomposition = decompose(config, region, values, &(scale.0 as usize), &legs)?;
// set the last element to zero and then recompose, we don't actually need to assign here
// as this will automatically be assigned in the recompose function and uses the constant caching of RegionCtx
let zero = ValType::Constant(F::ZERO);
let one = create_constant_tensor(integer_rep_to_felt(1), 1);
let assigned_one = region.assign(&config.custom_gates.inputs[1], &one)?;
let negative_one = create_constant_tensor(integer_rep_to_felt(-1), 1);
let assigned_negative_one = region.assign(&config.custom_gates.output, &negative_one)?;
region.increment(1);
// if scale is not exactly divisible by 2 we warn
if scale.0 % 2.0 != 0.0 {
log::warn!("Scale is not exactly divisible by 2.0, rounding may not be accurate");
}
let midway_point: ValTensor<F> = create_constant_tensor(
integer_rep_to_felt((scale.0 / 2.0).round() as IntegerRep),
1,
);
let assigned_midway_point = region.assign(&config.custom_gates.inputs[1], &midway_point)?;
let dims = decomposition.dims().to_vec();
let first_dims = decomposition.dims().to_vec()[..decomposition.dims().len() - 1].to_vec();
let mut incremented_tensor = Tensor::new(None, &first_dims)?;
let cartesian_coord = first_dims
.iter()
.map(|x| 0..*x)
.multi_cartesian_product()
.collect::<Vec<_>>();
let inner_loop_function =
|i: usize, region: &mut RegionCtx<F>| -> Result<Tensor<ValType<F>>, CircuitError> {
let coord = cartesian_coord[i].clone();
let slice = coord.iter().map(|x| *x..*x + 1).collect::<Vec<_>>();
let mut sliced_input = decomposition.get_slice(&slice)?;
sliced_input.flatten();
let last_elem = sliced_input.last()?;
let sign = sliced_input.first()?;
let is_positive = equals(config, region, &[sign.clone(), assigned_one.clone()])?;
let is_negative = equals(config, region, &[sign, assigned_negative_one.clone()])?;
let is_greater_than_midway = greater_equal(
config,
region,
&[last_elem.clone(), assigned_midway_point.clone()],
)?;
// if greater than midway point and positive, increment
let is_positive_and_more_than_midway = and(
config,
region,
&[is_positive.clone(), is_greater_than_midway.clone()],
)?;
// is less than midway point and negative, decrement
let is_negative_and_more_than_midway = and(
config,
region,
&[is_negative.clone(), is_greater_than_midway],
)?;
let conditions_for_increment = or(
config,
region,
&[
is_positive_and_more_than_midway.clone(),
is_negative_and_more_than_midway.clone(),
],
)?;
// increment the penultimate element
let incremented_elem = pairwise(
config,
region,
&[
sliced_input.get_slice(&[sliced_input.len() - 2..sliced_input.len() - 1])?,
conditions_for_increment.clone(),
],
BaseOp::Add,
)?;
let mut inner_tensor = sliced_input.get_inner_tensor()?.clone();
inner_tensor[sliced_input.len() - 2] =
incremented_elem.get_inner_tensor()?.clone()[0].clone();
// set the last elem to zero
inner_tensor[sliced_input.len() - 1] = zero.clone();
Ok(inner_tensor.clone())
};
region.apply_in_loop(&mut incremented_tensor, inner_loop_function)?;
let mut incremented_tensor = incremented_tensor.combine()?;
incremented_tensor.reshape(&dims)?;
recompose(
config,
region,
&[incremented_tensor.into()],
&(scale.0 as usize),
)
}
pub(crate) fn recompose<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
base: &usize,
) -> Result<ValTensor<F>, CircuitError> {
let input = values[0].clone();
let first_dims = input.dims().to_vec()[..input.dims().len() - 1].to_vec();
let n = input.dims().last().unwrap() - 1;
let is_assigned = !input.all_prev_assigned();
let bases: ValTensor<F> = Tensor::from(
(0..n)
.rev()
.map(|x| ValType::Constant(integer_rep_to_felt(base.pow(x as u32) as IntegerRep))),
)
.into();
// multiply and sum the values
let mut output: Tensor<Tensor<ValType<F>>> = Tensor::new(None, &first_dims)?;
let cartesian_coord = first_dims
.iter()
.map(|x| 0..*x)
.multi_cartesian_product()
.collect::<Vec<_>>();
let inner_loop_function =
|i: usize, region: &mut RegionCtx<F>| -> Result<Tensor<ValType<F>>, CircuitError> {
let coord = cartesian_coord[i].clone();
let slice = coord.iter().map(|x| *x..*x + 1).collect::<Vec<_>>();
let mut sliced_input = input.get_slice(&slice)?;
sliced_input.flatten();
if !is_assigned {
sliced_input = region.assign(&config.custom_gates.inputs[0], &sliced_input)?;
}
// get the sign bit and make sure it is valid
let sign = sliced_input.first()?;
let rest = sliced_input.get_slice(&[1..sliced_input.len()])?;
let prod_decomp = dot(config, region, &[rest, bases.clone()])?;
let signed_decomp = pairwise(config, region, &[prod_decomp, sign], BaseOp::Mult)?;
Ok(signed_decomp.get_inner_tensor()?.clone())
};
region.apply_in_loop(&mut output, inner_loop_function)?;
let mut combined_output = output.combine()?;
combined_output.reshape(&first_dims)?;
Ok(combined_output.into())
}
pub(crate) fn decompose<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
@@ -4233,7 +4799,6 @@ pub(crate) fn sign<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
) -> Result<ValTensor<F>, CircuitError> {
let mut decomp = decompose(config, region, values, &region.base(), &region.legs())?;
// get every n elements now, which correspond to the sign bit
decomp.get_every_n(region.legs() + 1)?;
decomp.reshape(values[0].dims())?;
@@ -4250,10 +4815,12 @@ pub(crate) fn abs<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
pairwise(config, region, &[values[0].clone(), sign], BaseOp::Mult)
}
pub(crate) fn relu<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
pub(crate) fn leaky_relu<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 1],
alpha: &utils::F32,
input_scale: &i32,
) -> Result<ValTensor<F>, CircuitError> {
let sign = sign(config, region, values)?;
@@ -4262,12 +4829,45 @@ pub(crate) fn relu<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
let relu_mask = equals(config, region, &[sign, unit])?;
pairwise(
let positive = pairwise(
config,
region,
&[values[0].clone(), relu_mask],
&[values[0].clone(), relu_mask.clone()],
BaseOp::Mult,
)
)?;
if alpha.0 == 0. {
return Ok(positive);
}
if input_scale < &0 {
return Err(CircuitError::NegativeScale("leaky_relu".to_string()));
}
let scale_constant = create_constant_tensor(F::from(2_i32.pow(*input_scale as u32) as u64), 1);
let rescaled_positive = pairwise(config, region, &[positive, scale_constant], BaseOp::Mult)?;
let neg_mask = not(config, region, &[relu_mask])?;
let quantized_alpha = quantize_tensor(
Tensor::from([alpha.0; 1].into_iter()),
*input_scale,
&crate::graph::Visibility::Fixed,
)?;
let alpha_tensor = create_constant_tensor(quantized_alpha[0], 1);
let scaled_neg_mask = pairwise(config, region, &[neg_mask, alpha_tensor], BaseOp::Mult)?;
let neg_part = pairwise(
config,
region,
&[values[0].clone(), scaled_neg_mask],
BaseOp::Mult,
)?;
pairwise(config, region, &[rescaled_positive, neg_part], BaseOp::Add)
}
fn multi_dim_axes_op<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(

View File

@@ -15,101 +15,29 @@ use halo2curves::ff::PrimeField;
/// An enum representing the operations that can be used to express more complex operations via accumulation
#[derive(Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, Deserialize, Serialize)]
pub enum LookupOp {
Div {
denom: utils::F32,
},
Cast {
scale: utils::F32,
},
Max {
scale: utils::F32,
a: utils::F32,
},
Min {
scale: utils::F32,
a: utils::F32,
},
Ceil {
scale: utils::F32,
},
Floor {
scale: utils::F32,
},
Round {
scale: utils::F32,
},
RoundHalfToEven {
scale: utils::F32,
},
Sqrt {
scale: utils::F32,
},
Rsqrt {
scale: utils::F32,
},
Recip {
input_scale: utils::F32,
output_scale: utils::F32,
},
LeakyReLU {
slope: utils::F32,
},
Sigmoid {
scale: utils::F32,
},
Ln {
scale: utils::F32,
},
Exp {
scale: utils::F32,
},
Cos {
scale: utils::F32,
},
ACos {
scale: utils::F32,
},
Cosh {
scale: utils::F32,
},
ACosh {
scale: utils::F32,
},
Sin {
scale: utils::F32,
},
ASin {
scale: utils::F32,
},
Sinh {
scale: utils::F32,
},
ASinh {
scale: utils::F32,
},
Tan {
scale: utils::F32,
},
ATan {
scale: utils::F32,
},
Tanh {
scale: utils::F32,
},
ATanh {
scale: utils::F32,
},
Erf {
scale: utils::F32,
},
KroneckerDelta,
Pow {
scale: utils::F32,
a: utils::F32,
},
HardSwish {
scale: utils::F32,
},
Div { denom: utils::F32 },
Cast { scale: utils::F32 },
RoundHalfToEven { scale: utils::F32 },
Sqrt { scale: utils::F32 },
Rsqrt { scale: utils::F32 },
Sigmoid { scale: utils::F32 },
Ln { scale: utils::F32 },
Exp { scale: utils::F32 },
Cos { scale: utils::F32 },
ACos { scale: utils::F32 },
Cosh { scale: utils::F32 },
ACosh { scale: utils::F32 },
Sin { scale: utils::F32 },
ASin { scale: utils::F32 },
Sinh { scale: utils::F32 },
ASinh { scale: utils::F32 },
Tan { scale: utils::F32 },
ATan { scale: utils::F32 },
Tanh { scale: utils::F32 },
ATanh { scale: utils::F32 },
Erf { scale: utils::F32 },
Pow { scale: utils::F32, a: utils::F32 },
HardSwish { scale: utils::F32 },
}
impl LookupOp {
@@ -123,21 +51,10 @@ impl LookupOp {
/// as path
pub fn as_path(&self) -> String {
match self {
LookupOp::Ceil { scale } => format!("ceil_{}", scale),
LookupOp::Floor { scale } => format!("floor_{}", scale),
LookupOp::Round { scale } => format!("round_{}", scale),
LookupOp::RoundHalfToEven { scale } => format!("round_half_to_even_{}", scale),
LookupOp::Pow { scale, a } => format!("pow_{}_{}", scale, a),
LookupOp::KroneckerDelta => "kronecker_delta".into(),
LookupOp::Max { scale, a } => format!("max_{}_{}", scale, a),
LookupOp::Min { scale, a } => format!("min_{}_{}", scale, a),
LookupOp::Div { denom } => format!("div_{}", denom),
LookupOp::Cast { scale } => format!("cast_{}", scale),
LookupOp::Recip {
input_scale,
output_scale,
} => format!("recip_{}_{}", input_scale, output_scale),
LookupOp::LeakyReLU { slope: a } => format!("leaky_relu_{}", a),
LookupOp::Sigmoid { scale } => format!("sigmoid_{}", scale),
LookupOp::Sqrt { scale } => format!("sqrt_{}", scale),
LookupOp::Rsqrt { scale } => format!("rsqrt_{}", scale),
@@ -168,47 +85,18 @@ impl LookupOp {
let x = x[0].clone().map(|x| felt_to_integer_rep(x));
let res =
match &self {
LookupOp::Ceil { scale } => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::ceil(&x, scale.into()))
}
LookupOp::Floor { scale } => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::floor(&x, scale.into()))
}
LookupOp::Round { scale } => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::round(&x, scale.into()))
}
LookupOp::RoundHalfToEven { scale } => Ok::<_, TensorError>(
tensor::ops::nonlinearities::round_half_to_even(&x, scale.into()),
),
LookupOp::Pow { scale, a } => Ok::<_, TensorError>(
tensor::ops::nonlinearities::pow(&x, scale.0.into(), a.0.into()),
),
LookupOp::KroneckerDelta => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::kronecker_delta(&x))
}
LookupOp::Max { scale, a } => Ok::<_, TensorError>(
tensor::ops::nonlinearities::max(&x, scale.0.into(), a.0.into()),
),
LookupOp::Min { scale, a } => Ok::<_, TensorError>(
tensor::ops::nonlinearities::min(&x, scale.0.into(), a.0.into()),
),
LookupOp::Div { denom } => Ok::<_, TensorError>(
tensor::ops::nonlinearities::const_div(&x, f32::from(*denom).into()),
),
LookupOp::Cast { scale } => Ok::<_, TensorError>(
tensor::ops::nonlinearities::const_div(&x, f32::from(*scale).into()),
),
LookupOp::Recip {
input_scale,
output_scale,
} => Ok::<_, TensorError>(tensor::ops::nonlinearities::recip(
&x,
input_scale.into(),
output_scale.into(),
)),
LookupOp::LeakyReLU { slope: a } => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::leakyrelu(&x, a.0.into()))
}
LookupOp::Sigmoid { scale } => {
Ok::<_, TensorError>(tensor::ops::nonlinearities::sigmoid(&x, scale.into()))
}
@@ -283,25 +171,11 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Lookup
/// Returns the name of the operation
fn as_string(&self) -> String {
match self {
LookupOp::Ceil { scale } => format!("CEIL(scale={})", scale),
LookupOp::Floor { scale } => format!("FLOOR(scale={})", scale),
LookupOp::Round { scale } => format!("ROUND(scale={})", scale),
LookupOp::RoundHalfToEven { scale } => format!("ROUND_HALF_TO_EVEN(scale={})", scale),
LookupOp::Pow { a, scale } => format!("POW(scale={}, exponent={})", scale, a),
LookupOp::KroneckerDelta => "K_DELTA".into(),
LookupOp::Max { scale, a } => format!("MAX(scale={}, a={})", scale, a),
LookupOp::Min { scale, a } => format!("MIN(scale={}, a={})", scale, a),
LookupOp::Recip {
input_scale,
output_scale,
} => format!(
"RECIP(input_scale={}, output_scale={})",
input_scale, output_scale
),
LookupOp::Div { denom, .. } => format!("DIV(denom={})", denom),
LookupOp::Cast { scale } => format!("CAST(scale={})", scale),
LookupOp::Ln { scale } => format!("LN(scale={})", scale),
LookupOp::LeakyReLU { slope: a } => format!("L_RELU(slope={})", a),
LookupOp::Sigmoid { scale } => format!("SIGMOID(scale={})", scale),
LookupOp::Sqrt { scale } => format!("SQRT(scale={})", scale),
LookupOp::Erf { scale } => format!("ERF(scale={})", scale),
@@ -344,8 +218,6 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Lookup
let in_scale = inputs_scale[0];
in_scale + multiplier_to_scale(1. / scale.0 as f64)
}
LookupOp::Recip { output_scale, .. } => multiplier_to_scale(output_scale.into()),
LookupOp::KroneckerDelta => 0,
_ => inputs_scale[0],
};
Ok(scale)

View File

@@ -255,7 +255,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Constant<F> {
self.raw_values = Tensor::new(None, &[0]).unwrap();
}
///
/// Pre-assign a value
pub fn pre_assign(&mut self, val: ValTensor<F>) {
self.pre_assigned_val = Some(val)
}

View File

@@ -1,5 +1,8 @@
use crate::{
circuit::layouts,
circuit::{
layouts,
utils::{self, F32},
},
tensor::{self, Tensor, TensorError},
};
@@ -9,9 +12,12 @@ use super::{base::BaseOp, *};
/// An enum representing the operations that can be expressed as arithmetic (non lookup) operations.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum PolyOp {
ReLU,
Abs,
Sign,
LeakyReLU {
slope: utils::F32,
scale: i32,
},
GatherElements {
dim: usize,
constant_idx: Option<Tensor<usize>>,
@@ -112,9 +118,9 @@ impl<
fn as_string(&self) -> String {
match &self {
PolyOp::LeakyReLU { slope: a, .. } => format!("LEAKYRELU (slope={})", a),
PolyOp::Abs => "ABS".to_string(),
PolyOp::Sign => "SIGN".to_string(),
PolyOp::ReLU => "RELU".to_string(),
PolyOp::GatherElements { dim, constant_idx } => format!(
"GATHERELEMENTS (dim={}, constant_idx{})",
dim,
@@ -198,7 +204,9 @@ impl<
Ok(Some(match self {
PolyOp::Abs => layouts::abs(config, region, values[..].try_into()?)?,
PolyOp::Sign => layouts::sign(config, region, values[..].try_into()?)?,
PolyOp::ReLU => layouts::relu(config, region, values[..].try_into()?)?,
PolyOp::LeakyReLU { slope, scale } => {
layouts::leaky_relu(config, region, values[..].try_into()?, slope, scale)?
}
PolyOp::MultiBroadcastTo { shape } => {
layouts::expand(config, region, values[..].try_into()?, shape)?
}
@@ -329,6 +337,12 @@ impl<
fn out_scale(&self, in_scales: Vec<crate::Scale>) -> Result<crate::Scale, CircuitError> {
let scale = match self {
// this corresponds to the relu operation
PolyOp::LeakyReLU {
slope: F32(0.0), ..
} => in_scales[0],
// this corresponds to the leaky relu operation with a slope which induces a change in scale
PolyOp::LeakyReLU { scale, .. } => in_scales[0] + *scale,
PolyOp::MeanOfSquares { .. } => 2 * in_scales[0],
PolyOp::Xor | PolyOp::Or | PolyOp::And | PolyOp::Not => 0,
PolyOp::Iff => in_scales[1],

View File

@@ -180,6 +180,7 @@ pub struct RegionCtx<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Ha
statistics: RegionStatistics,
settings: RegionSettings,
assigned_constants: ConstantsMap<F>,
max_dynamic_input_len: usize,
}
impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a, F> {
@@ -193,11 +194,16 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
self.settings.legs
}
/// get the max dynamic input len
pub fn max_dynamic_input_len(&self) -> usize {
self.max_dynamic_input_len
}
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
///
pub fn debug_report(&self) {
log::debug!(
"(rows={}, coord={}, constants={}, max_lookup_inputs={}, min_lookup_inputs={}, max_range_size={}, dynamic_lookup_col_coord={}, shuffle_col_coord={})",
"(rows={}, coord={}, constants={}, max_lookup_inputs={}, min_lookup_inputs={}, max_range_size={}, dynamic_lookup_col_coord={}, shuffle_col_coord={}, max_dynamic_input_len={})",
self.row().to_string().blue(),
self.linear_coord().to_string().yellow(),
self.total_constants().to_string().red(),
@@ -205,7 +211,9 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
self.min_lookup_inputs().to_string().green(),
self.max_range_size().to_string().green(),
self.dynamic_lookup_col_coord().to_string().green(),
self.shuffle_col_coord().to_string().green());
self.shuffle_col_coord().to_string().green(),
self.max_dynamic_input_len().to_string().green()
);
}
///
@@ -223,6 +231,11 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
self.dynamic_lookup_index.index += n;
}
/// increment the max dynamic input len
pub fn update_max_dynamic_input_len(&mut self, n: usize) {
self.max_dynamic_input_len = self.max_dynamic_input_len.max(n);
}
///
pub fn increment_dynamic_lookup_col_coord(&mut self, n: usize) {
self.dynamic_lookup_index.col_coord += n;
@@ -274,6 +287,7 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
statistics: RegionStatistics::default(),
settings: RegionSettings::all_true(decomp_base, decomp_legs),
assigned_constants: HashMap::new(),
max_dynamic_input_len: 0,
}
}
@@ -310,6 +324,7 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
statistics: RegionStatistics::default(),
settings,
assigned_constants: HashMap::new(),
max_dynamic_input_len: 0,
}
}
@@ -331,6 +346,7 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
statistics: RegionStatistics::default(),
settings,
assigned_constants: HashMap::new(),
max_dynamic_input_len: 0,
}
}
@@ -583,9 +599,12 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
&mut self,
var: &VarTensor,
values: &ValTensor<F>,
) -> Result<ValTensor<F>, CircuitError> {
) -> Result<(ValTensor<F>, usize), CircuitError> {
self.update_max_dynamic_input_len(values.len());
if let Some(region) = &self.region {
Ok(var.assign(
Ok(var.assign_exact_column(
&mut region.borrow_mut(),
self.combined_dynamic_shuffle_coord(),
values,
@@ -596,7 +615,11 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
let values_map = values.create_constants_map_iterator();
self.assigned_constants.par_extend(values_map);
}
Ok(values.clone())
let flush_len = var.get_column_flush(self.combined_dynamic_shuffle_coord(), values)?;
// get the diff between the current column and the next row
Ok((values.clone(), flush_len))
}
}
@@ -605,7 +628,7 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
&mut self,
var: &VarTensor,
values: &ValTensor<F>,
) -> Result<ValTensor<F>, CircuitError> {
) -> Result<(ValTensor<F>, usize), CircuitError> {
self.assign_dynamic_lookup(var, values)
}

View File

@@ -1379,7 +1379,10 @@ mod conv_relu_col_ultra_overflow {
.layout(
&mut region,
&[output.unwrap().unwrap()],
Box::new(PolyOp::ReLU),
Box::new(PolyOp::LeakyReLU {
slope: 0.0.into(),
scale: 1,
}),
)
.unwrap();
Ok(())
@@ -1516,7 +1519,7 @@ mod add_w_shape_casting {
// parameters
let a = Tensor::from((0..LEN).map(|i| Value::known(F::from(i as u64 + 1))));
let b = Tensor::from((0..1).map(|i| Value::known(F::from(i as u64 + 1))));
let b = Tensor::from((0..1).map(|i| Value::known(F::from(i + 1))));
let circuit = MyCircuit::<F> {
inputs: [ValTensor::from(a), ValTensor::from(b)],
@@ -2347,7 +2350,14 @@ mod matmul_relu {
.unwrap();
let _output = config
.base_config
.layout(&mut region, &[output.unwrap()], Box::new(PolyOp::ReLU))
.layout(
&mut region,
&[output.unwrap()],
Box::new(PolyOp::LeakyReLU {
slope: 0.0.into(),
scale: 1,
}),
)
.unwrap();
Ok(())
},
@@ -2439,7 +2449,14 @@ mod relu {
|region| {
let mut region = RegionCtx::new(region, 0, 1, 2, 2);
Ok(config
.layout(&mut region, &[self.input.clone()], Box::new(PolyOp::ReLU))
.layout(
&mut region,
&[self.input.clone()],
Box::new(PolyOp::LeakyReLU {
slope: 0.0.into(),
scale: 1,
}),
)
.unwrap())
},
)
@@ -2482,11 +2499,11 @@ mod lookup_ultra_overflow {
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
#[derive(Clone)]
struct ReLUCircuit<F: PrimeField + TensorType + PartialOrd> {
struct SigmoidCircuit<F: PrimeField + TensorType + PartialOrd> {
pub input: ValTensor<F>,
}
impl Circuit<F> for ReLUCircuit<F> {
impl Circuit<F> for SigmoidCircuit<F> {
type Config = BaseConfig<F>;
type FloorPlanner = SimpleFloorPlanner;
type Params = TestParams;
@@ -2500,7 +2517,7 @@ mod lookup_ultra_overflow {
.map(|_| VarTensor::new_advice(cs, 4, 1, 3))
.collect::<Vec<_>>();
let nl = LookupOp::LeakyReLU { slope: 0.0.into() };
let nl = LookupOp::Sigmoid { scale: 1.0.into() };
let mut config = BaseConfig::default();
@@ -2533,7 +2550,7 @@ mod lookup_ultra_overflow {
.layout(
&mut region,
&[self.input.clone()],
Box::new(LookupOp::LeakyReLU { slope: 0.0.into() }),
Box::new(LookupOp::Sigmoid { scale: 1.0.into() }),
)
.map_err(|_| Error::Synthesis)
},
@@ -2546,13 +2563,13 @@ mod lookup_ultra_overflow {
#[test]
#[ignore]
fn relucircuit() {
fn sigmoidcircuit() {
// get some logs fam
crate::logger::init_logger();
// parameters
let a = Tensor::from((0..4).map(|i| Value::known(F::from(i + 1))));
let circuit = ReLUCircuit::<F> {
let circuit = SigmoidCircuit::<F> {
input: ValTensor::from(a),
};
@@ -2562,7 +2579,7 @@ mod lookup_ultra_overflow {
let pk = crate::pfsys::create_keys::<
halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme<halo2curves::bn256::Bn256>,
ReLUCircuit<F>,
SigmoidCircuit<F>,
>(&circuit, &params, true)
.unwrap();

View File

@@ -508,7 +508,7 @@ pub enum Commands {
/// Gets an SRS from a circuit settings file.
#[command(name = "get-srs")]
GetSrs {
/// The path to output the desired srs file, if set to None will save to $EZKL_REPO_PATH/srs
/// The path to output the desired srs file, if set to None will save to ~/.ezkl/srs
#[arg(long, default_value = None, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
/// Path to the circuit settings .json file to read in logrows from. Overriden by logrows if specified.
@@ -555,7 +555,7 @@ pub enum Commands {
/// The path to save the proving key to
#[arg(long, default_value = DEFAULT_PK_AGGREGATED, value_hint = clap::ValueHint::FilePath)]
pk_path: Option<PathBuf>,
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
/// logrows used for aggregation circuit
@@ -582,7 +582,7 @@ pub enum Commands {
/// The path to output the proof file to
#[arg(long, default_value = DEFAULT_PROOF_AGGREGATED, value_hint = clap::ValueHint::FilePath)]
proof_path: Option<PathBuf>,
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long)]
srs_path: Option<PathBuf>,
#[arg(
@@ -624,7 +624,7 @@ pub enum Commands {
/// The path to the compiled model file (generated using the compile-circuit command)
#[arg(short = 'M', long, default_value = DEFAULT_COMPILED_CIRCUIT, value_hint = clap::ValueHint::FilePath)]
compiled_circuit: Option<PathBuf>,
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
/// The path to output the verification key file to
@@ -701,7 +701,7 @@ pub enum Commands {
/// The path to output the proof file to
#[arg(long, default_value = DEFAULT_PROOF, value_hint = clap::ValueHint::FilePath)]
proof_path: Option<PathBuf>,
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
#[arg(
@@ -733,7 +733,7 @@ pub enum Commands {
/// Creates an Evm verifier for a single proof
#[command(name = "create-evm-verifier")]
CreateEvmVerifier {
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
/// The path to load circuit settings .json file from (generated using the gen-settings command)
@@ -755,7 +755,7 @@ pub enum Commands {
/// Creates an Evm verifier artifact for a single proof to be used by the reusable verifier
#[command(name = "create-evm-vka")]
CreateEvmVKArtifact {
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
/// The path to load circuit settings .json file from (generated using the gen-settings command)
@@ -798,7 +798,7 @@ pub enum Commands {
/// Creates an Evm verifier for an aggregate proof
#[command(name = "create-evm-verifier-aggr")]
CreateEvmVerifierAggr {
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
/// The path to load the desired verification key file
@@ -831,7 +831,7 @@ pub enum Commands {
/// The path to the verification key file (generated using the setup command)
#[arg(long, default_value = DEFAULT_VK, value_hint = clap::ValueHint::FilePath)]
vk_path: Option<PathBuf>,
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
/// Reduce SRS logrows to the number of instances rather than the number of logrows used for proofs (only works if the srs were generated in the same ceremony)
@@ -849,7 +849,7 @@ pub enum Commands {
/// reduced srs
#[arg(long, default_value = DEFAULT_USE_REDUCED_SRS_FOR_VERIFICATION, action = clap::ArgAction::SetTrue)]
reduced_srs: Option<bool>,
/// The path to SRS, if None will use $EZKL_REPO_PATH/srs/kzg{logrows}.srs
/// The path to SRS, if None will use ~/.ezkl/srs/kzg{logrows}.srs
#[arg(long, value_hint = clap::ValueHint::FilePath)]
srs_path: Option<PathBuf>,
/// logrows used for aggregation circuit

View File

@@ -677,11 +677,12 @@ pub(crate) async fn get_srs_cmd(
pb.finish_with_message("SRS validated.");
info!("Saving SRS to disk...");
let mut file = std::fs::File::create(get_srs_path(k, srs_path.clone(), commitment))?;
let computed_srs_path = get_srs_path(k, srs_path.clone(), commitment);
let mut file = std::fs::File::create(&computed_srs_path)?;
let mut buffer = BufWriter::with_capacity(*EZKL_BUF_CAPACITY, &mut file);
params.write(&mut buffer)?;
info!("Saved SRS to disk.");
info!("Saved SRS to {}.", computed_srs_path.as_os_str().to_str().unwrap_or("disk"));
info!("SRS downloaded");
} else {
@@ -1203,6 +1204,7 @@ pub(crate) async fn calibrate(
num_rows: new_settings.num_rows,
total_assignments: new_settings.total_assignments,
total_const_size: new_settings.total_const_size,
total_dynamic_col_size: new_settings.total_dynamic_col_size,
..settings.clone()
};
@@ -1320,7 +1322,9 @@ pub(crate) async fn calibrate(
let lookup_log_rows = best_params.lookup_log_rows_with_blinding();
let module_log_row = best_params.module_constraint_logrows_with_blinding();
let instance_logrows = best_params.log2_total_instances_with_blinding();
let dynamic_lookup_logrows = best_params.dynamic_lookup_and_shuffle_logrows_with_blinding();
let dynamic_lookup_logrows =
best_params.min_dynamic_lookup_and_shuffle_logrows_with_blinding();
let range_check_logrows = best_params.range_check_log_rows_with_blinding();
let mut reduction = std::cmp::max(lookup_log_rows, module_log_row);

View File

@@ -408,6 +408,8 @@ pub struct GraphSettings {
pub total_const_size: usize,
/// total dynamic column size
pub total_dynamic_col_size: usize,
/// max dynamic column input length
pub max_dynamic_input_len: usize,
/// number of dynamic lookups
pub num_dynamic_lookups: usize,
/// number of shuffles
@@ -485,6 +487,13 @@ impl GraphSettings {
.ceil() as u32
}
/// calculate the number of rows required for the dynamic lookup and shuffle
pub fn min_dynamic_lookup_and_shuffle_logrows_with_blinding(&self) -> u32 {
(self.max_dynamic_input_len as f64 + RESERVED_BLINDING_ROWS as f64)
.log2()
.ceil() as u32
}
fn dynamic_lookup_and_shuffle_col_size(&self) -> usize {
self.total_dynamic_col_size + self.total_shuffle_col_size
}

View File

@@ -103,6 +103,8 @@ pub struct DummyPassRes {
pub num_rows: usize,
/// num dynamic lookups
pub num_dynamic_lookups: usize,
/// max dynamic lookup input len
pub max_dynamic_input_len: usize,
/// dynamic lookup col size
pub dynamic_lookup_col_coord: usize,
/// num shuffles
@@ -360,6 +362,14 @@ impl NodeType {
NodeType::SubGraph { .. } => SupportedOp::Unknown(Unknown),
}
}
/// check if it is a softmax
pub fn is_softmax(&self) -> bool {
match self {
NodeType::Node(n) => n.is_softmax(),
NodeType::SubGraph { .. } => false,
}
}
}
#[derive(Clone, Debug, Default, Serialize, Deserialize, PartialEq)]
@@ -562,6 +572,7 @@ impl Model {
num_rows: res.num_rows,
total_assignments: res.linear_coord,
required_lookups: res.lookup_ops.into_iter().collect(),
max_dynamic_input_len: res.max_dynamic_input_len,
required_range_checks: res.range_checks.into_iter().collect(),
model_output_scales: self.graph.get_output_scales()?,
model_input_scales: self.graph.get_input_scales(),
@@ -1465,6 +1476,7 @@ impl Model {
let res = DummyPassRes {
num_rows: region.row(),
linear_coord: region.linear_coord(),
max_dynamic_input_len: region.max_dynamic_input_len(),
total_const_size: region.total_constants(),
lookup_ops: region.used_lookups(),
range_checks: region.used_range_checks(),

View File

@@ -623,6 +623,15 @@ impl Node {
num_uses,
})
}
/// check if it is a softmax node
pub fn is_softmax(&self) -> bool {
if let SupportedOp::Hybrid(HybridOp::Softmax { .. }) = self.opkind {
true
} else {
false
}
}
}
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]

View File

@@ -763,81 +763,41 @@ pub fn new_op_from_onnx(
.map(|(i, _)| i)
.collect::<Vec<_>>();
if const_inputs.len() != 1 {
return Err(GraphError::OpMismatch(idx, "Max".to_string()));
}
let const_idx = const_inputs[0];
let boxed_op = inputs[const_idx].opkind();
let unit = if let Some(c) = extract_const_raw_values(boxed_op) {
if c.len() == 1 {
c[0]
} else {
return Err(GraphError::InvalidDims(idx, "max".to_string()));
}
} else {
return Err(GraphError::OpMismatch(idx, "Max".to_string()));
};
if inputs.len() == 2 {
if let Some(node) = inputs.get_mut(const_idx) {
node.decrement_use();
deleted_indices.push(const_idx);
}
if unit == 0. {
SupportedOp::Linear(PolyOp::ReLU)
if const_inputs.len() > 0 {
let const_idx = const_inputs[0];
let boxed_op = inputs[const_idx].opkind();
let unit = if let Some(c) = extract_const_raw_values(boxed_op) {
if c.len() == 1 {
c[0]
} else {
return Err(GraphError::InvalidDims(idx, "max".to_string()));
}
} else {
return Err(GraphError::OpMismatch(idx, "Max".to_string()));
};
if unit == 0. {
if let Some(node) = inputs.get_mut(const_idx) {
node.decrement_use();
deleted_indices.push(const_idx);
}
SupportedOp::Linear(PolyOp::LeakyReLU {
slope: 0.0.into(),
scale: 1,
})
} else {
SupportedOp::Hybrid(HybridOp::Max)
}
} else {
// get the non-constant index
let non_const_idx = if const_idx == 0 { 1 } else { 0 };
SupportedOp::Nonlinear(LookupOp::Max {
scale: scale_to_multiplier(inputs[non_const_idx].out_scales()[0]).into(),
a: crate::circuit::utils::F32(unit),
})
SupportedOp::Hybrid(HybridOp::Max)
}
} else {
return Err(GraphError::InvalidDims(idx, "max".to_string()));
}
}
"Min" => {
// Extract the min value
// first find the input that is a constant
// and then extract the value
let const_inputs = inputs
.iter()
.enumerate()
.filter(|(_, n)| n.is_constant())
.map(|(i, _)| i)
.collect::<Vec<_>>();
if const_inputs.len() != 1 {
return Err(GraphError::OpMismatch(idx, "Min".to_string()));
}
let const_idx = const_inputs[0];
let boxed_op = inputs[const_idx].opkind();
let unit = if let Some(c) = extract_const_raw_values(boxed_op) {
if c.len() == 1 {
c[0]
} else {
return Err(GraphError::InvalidDims(idx, "min".to_string()));
}
} else {
return Err(GraphError::OpMismatch(idx, "Min".to_string()));
};
if inputs.len() == 2 {
if let Some(node) = inputs.get_mut(const_idx) {
node.decrement_use();
deleted_indices.push(const_idx);
}
// get the non-constant index
let non_const_idx = if const_idx == 0 { 1 } else { 0 };
SupportedOp::Nonlinear(LookupOp::Min {
scale: scale_to_multiplier(inputs[non_const_idx].out_scales()[0]).into(),
a: crate::circuit::utils::F32(unit),
})
SupportedOp::Hybrid(HybridOp::Min)
} else {
return Err(GraphError::InvalidDims(idx, "min".to_string()));
}
@@ -849,7 +809,6 @@ pub fn new_op_from_onnx(
SupportedOp::Hybrid(HybridOp::Recip {
input_scale: (scale_to_multiplier(in_scale) as f32).into(),
output_scale: (scale_to_multiplier(max_scale) as f32).into(),
use_range_check_for_int: true,
})
}
@@ -864,8 +823,9 @@ pub fn new_op_from_onnx(
}
};
SupportedOp::Nonlinear(LookupOp::LeakyReLU {
SupportedOp::Linear(PolyOp::LeakyReLU {
slope: crate::circuit::utils::F32(leaky_op.alpha),
scale: scales.params,
})
}
"Scan" => {
@@ -1123,14 +1083,17 @@ pub fn new_op_from_onnx(
pool_dims: kernel_shape.to_vec(),
})
}
"Ceil" => SupportedOp::Nonlinear(LookupOp::Ceil {
"Ceil" => SupportedOp::Hybrid(HybridOp::Ceil {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
legs: run_args.decomp_legs,
}),
"Floor" => SupportedOp::Nonlinear(LookupOp::Floor {
"Floor" => SupportedOp::Hybrid(HybridOp::Floor {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
legs: run_args.decomp_legs,
}),
"Round" => SupportedOp::Nonlinear(LookupOp::Round {
"Round" => SupportedOp::Hybrid(HybridOp::Round {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
legs: run_args.decomp_legs,
}),
"RoundHalfToEven" => SupportedOp::Nonlinear(LookupOp::RoundHalfToEven {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
@@ -1146,10 +1109,17 @@ pub fn new_op_from_onnx(
if c.raw_values.len() > 1 {
unimplemented!("only support scalar pow")
}
SupportedOp::Nonlinear(LookupOp::Pow {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
a: crate::circuit::utils::F32(c.raw_values[0]),
})
let exponent = c.raw_values[0];
if exponent.fract() == 0.0 {
SupportedOp::Linear(PolyOp::Pow(exponent as u32))
} else {
SupportedOp::Nonlinear(LookupOp::Pow {
scale: scale_to_multiplier(inputs[0].out_scales()[0]).into(),
a: crate::circuit::utils::F32(exponent),
})
}
} else {
unimplemented!("only support constant pow for now")
}

View File

@@ -443,7 +443,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ModelVars<F> {
let dynamic_lookup =
VarTensor::new_advice(cs, logrows, 1, dynamic_lookup_and_shuffle_size);
if dynamic_lookup.num_blocks() > 1 {
panic!("dynamic lookup or shuffle should only have one block");
warn!("dynamic lookup has {} blocks", dynamic_lookup.num_blocks());
};
advices.push(dynamic_lookup);
}

View File

@@ -27,7 +27,7 @@ pub fn get_rep(
n: usize,
) -> Result<Vec<IntegerRep>, DecompositionError> {
// check if x is too large
if x.abs() > (base.pow(n as u32) as IntegerRep) {
if x.abs() > (base.pow(n as u32) as IntegerRep) - 1 {
return Err(DecompositionError::TooLarge(*x, base, n));
}
let mut rep = vec![0; n + 1];
@@ -1421,85 +1421,6 @@ pub fn slice<T: TensorType + Send + Sync>(
pub mod nonlinearities {
use super::*;
/// Ceiling operator.
/// # Arguments
/// * `a` - Tensor
/// * `scale` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
///
/// use ezkl::tensor::ops::nonlinearities::ceil;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3, 4, 5, 6]),
/// &[3, 2],
/// ).unwrap();
/// let result = ceil(&x, 2.0);
/// let expected = Tensor::<IntegerRep>::new(Some(&[2, 2, 4, 4, 6, 6]), &[3, 2]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn ceil(a: &Tensor<IntegerRep>, scale: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| {
let kix = (a_i as f64) / scale;
let rounded = kix.ceil() * scale;
Ok::<_, TensorError>(rounded as IntegerRep)
})
.unwrap()
}
/// Floor operator.
/// # Arguments
/// * `a` - Tensor
/// * `scale` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::floor;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3, 4, 5, 6]),
/// &[3, 2],
/// ).unwrap();
/// let result = floor(&x, 2.0);
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, 2, 2, 4, 4, 6]), &[3, 2]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn floor(a: &Tensor<IntegerRep>, scale: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| {
let kix = (a_i as f64) / scale;
let rounded = kix.floor() * scale;
Ok::<_, TensorError>(rounded as IntegerRep)
})
.unwrap()
}
/// Round operator.
/// # Arguments
/// * `a` - Tensor
/// * `scale` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::round;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3, 4, 5, 6]),
/// &[3, 2],
/// ).unwrap();
/// let result = round(&x, 2.0);
/// let expected = Tensor::<IntegerRep>::new(Some(&[2, 2, 4, 4, 6, 6]), &[3, 2]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn round(a: &Tensor<IntegerRep>, scale: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| {
let kix = (a_i as f64) / scale;
let rounded = kix.round() * scale;
Ok::<_, TensorError>(rounded as IntegerRep)
})
.unwrap()
}
/// Round half to even operator.
/// # Arguments
/// * `a` - Tensor
@@ -1553,35 +1474,6 @@ pub mod nonlinearities {
.unwrap()
}
/// Applies Kronecker delta to a tensor of integers.
/// # Arguments
/// * `a` - Tensor
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::kronecker_delta;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 15, 2, 1, 1, 0]),
/// &[2, 3],
/// ).unwrap();
/// let result = kronecker_delta(&x);
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, 0, 0, 0, 0, 1]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn kronecker_delta<T: TensorType + std::cmp::PartialEq + Send + Sync>(
a: &Tensor<T>,
) -> Tensor<T> {
a.par_enum_map(|_, a_i| {
if a_i == T::zero().unwrap() {
Ok::<_, TensorError>(T::one().unwrap())
} else {
Ok::<_, TensorError>(T::zero().unwrap())
}
})
.unwrap()
}
/// Elementwise applies sigmoid to a tensor of integers.
/// # Arguments
///
@@ -1750,27 +1642,6 @@ pub mod nonlinearities {
.unwrap()
}
/// Elementwise applies sign to a tensor of integers.
/// # Arguments
/// * `a` - Tensor
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::sign;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[-2, 15, 2, 1, 1, 0]),
/// &[2, 3],
/// ).unwrap();
/// let result = sign(&x);
/// let expected = Tensor::<IntegerRep>::new(Some(&[-1, 1, 1, 1, 1, 0]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn sign(a: &Tensor<IntegerRep>) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| Ok::<_, TensorError>(a_i.signum()))
.unwrap()
}
/// Elementwise applies square root to a tensor of integers.
/// # Arguments
///
@@ -2254,101 +2125,6 @@ pub mod nonlinearities {
.unwrap()
}
/// Elementwise applies leaky relu to a tensor of integers.
/// # Arguments
///
/// * `a` - Tensor
/// * `scale` - Single value
/// * `slope` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::leakyrelu;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 15, 2, 1, 1, -5]),
/// &[2, 3],
/// ).unwrap();
/// let result = leakyrelu(&x, 0.1);
/// let expected = Tensor::<IntegerRep>::new(Some(&[2, 15, 2, 1, 1, -1]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn leakyrelu(a: &Tensor<IntegerRep>, slope: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| {
let rounded = if a_i < 0 {
let d_inv_x = (slope) * (a_i as f64);
d_inv_x.round() as IntegerRep
} else {
let d_inv_x = a_i as f64;
d_inv_x.round() as IntegerRep
};
Ok::<_, TensorError>(rounded)
})
.unwrap()
}
/// Elementwise applies max to a tensor of integers.
/// # Arguments
/// * `a` - Tensor
/// * `b` - scalar
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::max;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 15, 2, 1, 1, -5]),
/// &[2, 3],
/// ).unwrap();
/// let result = max(&x, 1.0, 1.0);
/// let expected = Tensor::<IntegerRep>::new(Some(&[2, 15, 2, 1, 1, 1]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn max(a: &Tensor<IntegerRep>, scale_input: f64, threshold: f64) -> Tensor<IntegerRep> {
// calculate value of output
a.par_enum_map(|_, a_i| {
let d_inv_x = (a_i as f64) / scale_input;
let rounded = if d_inv_x <= threshold {
(threshold * scale_input).round() as IntegerRep
} else {
(d_inv_x * scale_input).round() as IntegerRep
};
Ok::<_, TensorError>(rounded)
})
.unwrap()
}
/// Elementwise applies min to a tensor of integers.
/// # Arguments
/// * `a` - Tensor
/// * `b` - scalar
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::min;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 15, 2, 1, 1, -5]),
/// &[2, 3],
/// ).unwrap();
/// let result = min(&x, 1.0, 2.0);
/// let expected = Tensor::<IntegerRep>::new(Some(&[2, 2, 2, 1, 1, -5]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn min(a: &Tensor<IntegerRep>, scale_input: f64, threshold: f64) -> Tensor<IntegerRep> {
// calculate value of output
a.par_enum_map(|_, a_i| {
let d_inv_x = (a_i as f64) / scale_input;
let rounded = if d_inv_x >= threshold {
(threshold * scale_input).round() as IntegerRep
} else {
(d_inv_x * scale_input).round() as IntegerRep
};
Ok::<_, TensorError>(rounded)
})
.unwrap()
}
/// Elementwise divides a tensor with a const integer element.
/// # Arguments
///
@@ -2429,104 +2205,6 @@ pub mod nonlinearities {
})
.unwrap()
}
/// Elementwise greater than
/// # Arguments
///
/// * `a` - Tensor
/// * `b` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::greater_than;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 1, 2, 7, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let k = 2.0;
/// let result = greater_than(&x, k);
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, 0, 0, 1, 0, 0]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn greater_than(a: &Tensor<IntegerRep>, b: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| Ok::<_, TensorError>(IntegerRep::from((a_i as f64 - b) > 0_f64)))
.unwrap()
}
/// Elementwise greater than
/// # Arguments
///
/// * `a` - Tensor
/// * `b` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::greater_than_equal;
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 1, 2, 7, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let k = 2.0;
/// let result = greater_than_equal(&x, k);
/// let expected = Tensor::<IntegerRep>::new(Some(&[1, 0, 1, 1, 0, 0]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn greater_than_equal(a: &Tensor<IntegerRep>, b: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| Ok::<_, TensorError>(IntegerRep::from((a_i as f64 - b) >= 0_f64)))
.unwrap()
}
/// Elementwise less than
/// # Arguments
/// * `a` - Tensor
/// * `b` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::less_than;
///
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 1, 2, 7, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let k = 2.0;
///
/// let result = less_than(&x, k);
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, 1, 0, 0, 1, 1]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn less_than(a: &Tensor<IntegerRep>, b: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| Ok::<_, TensorError>(IntegerRep::from((a_i as f64 - b) < 0_f64)))
.unwrap()
}
/// Elementwise less than
/// # Arguments
/// * `a` - Tensor
/// * `b` - Single value
/// # Examples
/// ```
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::tensor::ops::nonlinearities::less_than_equal;
///
/// let x = Tensor::<IntegerRep>::new(
/// Some(&[2, 1, 2, 7, 1, 1]),
/// &[2, 3],
/// ).unwrap();
/// let k = 2.0;
///
/// let result = less_than_equal(&x, k);
/// let expected = Tensor::<IntegerRep>::new(Some(&[1, 1, 1, 0, 1, 1]), &[2, 3]).unwrap();
/// assert_eq!(result, expected);
/// ```
pub fn less_than_equal(a: &Tensor<IntegerRep>, b: f64) -> Tensor<IntegerRep> {
a.par_enum_map(|_, a_i| Ok::<_, TensorError>(IntegerRep::from((a_i as f64 - b) <= 0_f64)))
.unwrap()
}
}
/// Ops that return the transcript i.e intermediate calcs of an op

View File

@@ -541,7 +541,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ValTensor<F> {
let mut is_empty = true;
x.map(|_| is_empty = false);
if is_empty {
return Ok::<_, TensorError>(vec![Value::<F>::unknown(); n + 1]);
Ok::<_, TensorError>(vec![Value::<F>::unknown(); n + 1])
} else {
let mut res = vec![Value::unknown(); n + 1];
let mut int_rep = 0;

View File

@@ -396,6 +396,53 @@ impl VarTensor {
Ok(res)
}
/// Helper function to get the remaining size of the column
pub fn get_column_flush<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
&self,
offset: usize,
values: &ValTensor<F>,
) -> Result<usize, halo2_proofs::plonk::Error> {
if values.len() > self.col_size() {
error!("Values are too large for the column");
return Err(halo2_proofs::plonk::Error::Synthesis);
}
// this can only be called on columns that have a single inner column
if self.num_inner_cols() != 1 {
error!("This function can only be called on columns with a single inner column");
return Err(halo2_proofs::plonk::Error::Synthesis);
}
// check if the values fit in the remaining space of the column
let current_cartesian = self.cartesian_coord(offset);
let final_cartesian = self.cartesian_coord(offset + values.len());
let mut flush_len = 0;
if current_cartesian.0 != final_cartesian.0 {
debug!("Values overflow the column, flushing to next column");
// diff is the number of values that overflow the column
flush_len += self.col_size() - current_cartesian.2;
}
Ok(flush_len)
}
/// Assigns [ValTensor] to the columns of the inner tensor. Whereby the values are assigned to a single column, without overflowing.
/// So for instance if we are assigning 10 values and we are at index 18 of the column, and the columns are of length 20, we skip the last 2 values of current column and start from the beginning of the next column.
pub fn assign_exact_column<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
&self,
region: &mut Region<F>,
offset: usize,
values: &ValTensor<F>,
constants: &mut ConstantsMap<F>,
) -> Result<(ValTensor<F>, usize), halo2_proofs::plonk::Error> {
let flush_len = self.get_column_flush(offset, values)?;
let assigned_vals = self.assign(region, offset + flush_len, values, constants)?;
Ok((assigned_vals, flush_len))
}
/// Assigns specific values (`ValTensor`) to the columns of the inner tensor but allows for column wrapping for accumulated operations.
/// Duplication occurs by copying the last cell of the column to the first cell next column and creating a copy constraint between the two.
pub fn dummy_assign_with_duplication<

Binary file not shown.

File diff suppressed because one or more lines are too long

View File

@@ -33,6 +33,7 @@
"total_assignments": 92,
"total_const_size": 3,
"total_dynamic_col_size": 0,
"max_dynamic_input_len": 0,
"num_dynamic_lookups": 0,
"num_shuffles": 0,
"total_shuffle_col_size": 0,

View File

@@ -205,7 +205,7 @@ mod native_tests {
"1l_tiny_div",
];
const TESTS: [&str; 94] = [
const TESTS: [&str; 95] = [
"1l_mlp", //0
"1l_slice",
"1l_concat",
@@ -304,6 +304,7 @@ mod native_tests {
"lstm_large", // 91
"lstm_medium", // 92
"lenet_5", // 93
"rsqrt", // 94
];
const WASM_TESTS: [&str; 46] = [
@@ -542,7 +543,7 @@ mod native_tests {
}
});
seq!(N in 0..=93 {
seq!(N in 0..=94 {
#(#[test_case(TESTS[N])])*
#[ignore]
@@ -851,9 +852,11 @@ mod native_tests {
fn kzg_prove_and_verify_tight_lookup_(test: &str) {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
let path = test_dir.into_path();
let path = path.to_str().unwrap();
crate::native_tests::mv_test_(path, test);
prove_and_verify(path, test.to_string(), "safe", "private", "private", "public", 1, None, false, "single", Commitments::KZG, 1);
test_dir.close().unwrap();
// test_dir.close().unwrap();
}
#(#[test_case(TESTS[N])])*
@@ -1118,7 +1121,7 @@ mod native_tests {
});
seq!(N in 0..=93 {
seq!(N in 0..4 {
#(#[test_case(TESTS[N])])*
fn kzg_evm_prove_and_verify_reusable_verifier_(test: &str) {
crate::native_tests::init_binary();
@@ -1631,7 +1634,6 @@ mod native_tests {
let status = Command::new(format!("{}/release/ezkl", *CARGO_TARGET_DIR))
.args(args)
.stdout(std::process::Stdio::null())
.status()
.expect("failed to execute process");
assert!(status.success());

View File

@@ -124,41 +124,40 @@ mod py_tests {
}
const TESTS: [&str; 34] = [
"ezkl_demo_batch.ipynb",
"proof_splitting.ipynb", // 0
"variance.ipynb",
"mnist_gan.ipynb",
// "mnist_vae.ipynb",
"keras_simple_demo.ipynb",
"mnist_gan_proof_splitting.ipynb", // 4
"hashed_vis.ipynb", // 5
"simple_demo_all_public.ipynb",
"data_attest.ipynb",
"little_transformer.ipynb",
"simple_demo_aggregated_proofs.ipynb",
"ezkl_demo.ipynb", // 10
"lstm.ipynb",
"set_membership.ipynb", // 12
"decision_tree.ipynb",
"random_forest.ipynb",
"gradient_boosted_trees.ipynb", // 15
"xgboost.ipynb",
"lightgbm.ipynb",
"svm.ipynb",
"simple_demo_public_input_output.ipynb",
"simple_demo_public_network_output.ipynb", // 20
"gcn.ipynb",
"linear_regression.ipynb",
"stacked_regression.ipynb",
"data_attest_hashed.ipynb",
"kzg_vis.ipynb", // 25
"kmeans.ipynb",
"solvency.ipynb",
"sklearn_mlp.ipynb",
"generalized_inverse.ipynb",
"mnist_classifier.ipynb", // 30
"world_rotation.ipynb",
"logistic_regression.ipynb",
"ezkl_demo_batch.ipynb", // 0
"proof_splitting.ipynb", // 1
"variance.ipynb", // 2
"mnist_gan.ipynb", // 3
"keras_simple_demo.ipynb", // 4
"mnist_gan_proof_splitting.ipynb", // 5
"hashed_vis.ipynb", // 6
"simple_demo_all_public.ipynb", // 7
"data_attest.ipynb", // 8
"little_transformer.ipynb", // 9
"simple_demo_aggregated_proofs.ipynb", // 10
"ezkl_demo.ipynb", // 11
"lstm.ipynb", // 12
"set_membership.ipynb", // 13
"decision_tree.ipynb", // 14
"random_forest.ipynb", // 15
"gradient_boosted_trees.ipynb", // 16
"xgboost.ipynb", // 17
"lightgbm.ipynb", // 18
"svm.ipynb", // 19
"simple_demo_public_input_output.ipynb", // 20
"simple_demo_public_network_output.ipynb", // 21
"gcn.ipynb", // 22
"linear_regression.ipynb", // 23
"stacked_regression.ipynb", // 24
"data_attest_hashed.ipynb", // 25
"kzg_vis.ipynb", // 26
"kmeans.ipynb", // 27
"solvency.ipynb", // 28
"sklearn_mlp.ipynb", // 29
"generalized_inverse.ipynb", // 30
"mnist_classifier.ipynb", // 31
"world_rotation.ipynb", // 32
"logistic_regression.ipynb", // 33
];
macro_rules! test_func {