Compare commits

...

27 Commits

Author SHA1 Message Date
github-actions[bot]
ddce63684a ci: update version string in docs 2025-01-28 04:21:20 +00:00
dante
83c4afce3b fix: version interpolation in npm publishing (#917) 2025-01-27 23:20:58 -05:00
dante
50740a22df fix: patch pypi whl version labels (#916) 2025-01-27 20:25:03 -05:00
dante
a2624f6303 fix: strict cvx opt bounds to stop prover non-det (#914) 2025-01-24 08:48:50 -05:00
dante
fc5be4f949 fix: syn-sel should be range-checked when overflow (#913) 2025-01-23 12:26:31 -05:00
dante
d0ba505baa fix: node parsing should not panic (#912) 2025-01-22 08:02:29 -05:00
dante
f35688917d fix: rm macos metal bindings from python (#911) 2025-01-21 00:36:57 -05:00
Artem
7ae541ed35 feat: metal acceleration for MSM solving (#909)
---------

Co-authored-by: dante <45801863+alexander-camuto@users.noreply.github.com>
2025-01-20 22:17:24 -05:00
dante
675628cd08 fix!: shuffle argument should include an incrementing index (#904)
BREAKING CHANGE: pk and vk will not be backwards compatible
2025-01-17 09:19:10 -05:00
Artem
4fe7290240 fix: rust ci issue with updating swift pm testing files (#908) 2025-01-14 12:00:55 -05:00
dante
3e027db9b6 fix: apply zizmor suggestions to CI (#906)
---------

Co-authored-by: Jseam <hello.jseam@gmail.com>
2025-01-14 12:00:31 -05:00
Artem
e566acc22a fix: swift pm ci issue with updating testing files (#905) 2025-01-13 18:08:04 -05:00
dante
75ea99e81d fix: eager exec of ok_or error prints (#903) 2025-01-11 13:50:57 -05:00
dante
c5354c382d refactor: range check sanity toggled by CHECKMODE (#902) 2025-01-10 22:58:52 +00:00
dante
bdcba5ca61 feat: add gen-random-data helpers func (#901) 2025-01-09 00:14:27 +00:00
dante
6752a05f19 refactor: pregen mv-lookup blinds (#900) 2025-01-08 17:18:46 +00:00
dante
03aefb85eb chore: version mismatch warnings for artifacts (#899) 2025-01-06 16:01:34 +00:00
dante
e86caca8b6 refactor: batched poly reads (#897) 2025-01-06 15:49:47 +00:00
dante
c839a30ae6 fix: clearer duplication functions (#895) 2024-12-31 07:28:02 -05:00
dante
352812b9ac refactor!: simplified decompose op (#892) 2024-12-30 13:44:03 -05:00
dante
d48d0b0b3e fix: get_slice should not use intermediate Vec (#894) 2024-12-27 23:26:22 -05:00
Jseam
8b223354cc fix: add version string and sed (#893) 2024-12-27 14:24:28 -05:00
dante
caa6ef8e16 fix: const filtering strat is size dependent (#891) 2024-12-27 09:43:59 -05:00
Artem
c4354c10a5 fix: ios bindings update action (#886) 2024-12-16 10:49:13 -05:00
dante
c1ce8c88d0 chore: rm wasm serialization checks (#890) 2024-12-12 22:20:29 -05:00
dante
876a9584a1 chore: optimize wasm bundle for speed over size (#889) 2024-12-12 15:35:17 -05:00
dante
7d7f049cc4 chore: neural bag of words example (#888) 2024-12-12 14:20:21 -05:00
55 changed files with 3525 additions and 1770 deletions

View File

@@ -6,22 +6,15 @@ on:
description: "Test scenario tags"
jobs:
bench_elgamal:
runs-on: self-hosted
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-06-27
override: true
components: rustfmt, clippy
- name: Bench elgamal
run: cargo bench --verbose --bench elgamal
bench_poseidon:
permissions:
contents: read
runs-on: self-hosted
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-06-27
@@ -31,10 +24,14 @@ jobs:
run: cargo bench --verbose --bench poseidon
bench_einsum_accum_matmul:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-06-27
@@ -44,10 +41,14 @@ jobs:
run: cargo bench --verbose --bench accum_einsum_matmul
bench_accum_matmul_relu:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-06-27
@@ -57,10 +58,14 @@ jobs:
run: cargo bench --verbose --bench accum_matmul_relu
bench_accum_matmul_relu_overflow:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-06-27
@@ -70,10 +75,14 @@ jobs:
run: cargo bench --verbose --bench accum_matmul_relu_overflow
bench_relu:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-06-27
@@ -83,10 +92,14 @@ jobs:
run: cargo bench --verbose --bench relu
bench_accum_dot:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-06-27
@@ -96,10 +109,14 @@ jobs:
run: cargo bench --verbose --bench accum_dot
bench_accum_conv:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-06-27
@@ -109,10 +126,14 @@ jobs:
run: cargo bench --verbose --bench accum_conv
bench_accum_sumpool:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-06-27
@@ -122,10 +143,14 @@ jobs:
run: cargo bench --verbose --bench accum_sumpool
bench_pairwise_add:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-06-27
@@ -135,10 +160,14 @@ jobs:
run: cargo bench --verbose --bench pairwise_add
bench_accum_sum:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-06-27
@@ -148,10 +177,14 @@ jobs:
run: cargo bench --verbose --bench accum_sum
bench_pairwise_pow:
permissions:
contents: read
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-06-27

View File

@@ -15,11 +15,18 @@ defaults:
working-directory: .
jobs:
publish-wasm-bindings:
permissions:
contents: read
packages: write
name: publish-wasm-bindings
env:
RELEASE_TAG: ${{ github.ref_name }}
runs-on: ubuntu-latest
if: startsWith(github.ref, 'refs/tags/')
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-07-18
@@ -40,43 +47,39 @@ jobs:
curl -L https://github.com/WebAssembly/binaryen/releases/download/version_116/binaryen-version_116-x86_64-linux.tar.gz | tar xzf -
export PATH=$PATH:$PWD/binaryen-version_116/bin
wasm-opt --version
- name: Build wasm files for both web and nodejs compilation targets
run: |
wasm-pack build --release --target nodejs --out-dir ./pkg/nodejs . -- -Z build-std="panic_abort,std"
wasm-pack build --release --target web --out-dir ./pkg/web . -- -Z build-std="panic_abort,std" --features web
- name: Create package.json in pkg folder
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
run: |
echo '{
"name": "@ezkljs/engine",
"version": "${{ github.ref_name }}",
"dependencies": {
"@types/json-bigint": "^1.0.1",
"json-bigint": "^1.0.0"
},
"files": [
"nodejs/ezkl_bg.wasm",
"nodejs/ezkl.js",
"nodejs/ezkl.d.ts",
"nodejs/package.json",
"nodejs/utils.js",
"web/ezkl_bg.wasm",
"web/ezkl.js",
"web/ezkl.d.ts",
"web/snippets/**/*",
"web/package.json",
"web/utils.js",
"ezkl.d.ts"
],
"main": "nodejs/ezkl.js",
"module": "web/ezkl.js",
"types": "nodejs/ezkl.d.ts",
"sideEffects": [
"web/snippets/*"
]
}' > pkg/package.json
cat > pkg/package.json << EOF
{
"name": "@ezkljs/engine",
"version": "$RELEASE_TAG",
"dependencies": {
"@types/json-bigint": "^1.0.1",
"json-bigint": "^1.0.0"
},
"files": [
"nodejs/ezkl_bg.wasm",
"nodejs/ezkl.js",
"nodejs/ezkl.d.ts",
"nodejs/package.json",
"nodejs/utils.js",
"web/ezkl_bg.wasm",
"web/ezkl.js",
"web/ezkl.d.ts",
"web/snippets/**/*",
"web/package.json",
"web/utils.js",
"ezkl.d.ts"
],
"main": "nodejs/ezkl.js",
"module": "web/ezkl.js",
"types": "nodejs/ezkl.d.ts",
"sideEffects": [
"web/snippets/*"
]
}
EOF
- name: Replace memory definition in nodejs
run: |
@@ -184,21 +187,26 @@ jobs:
in-browser-evm-ver-publish:
permissions:
contents: read
packages: write
name: publish-in-browser-evm-verifier-package
needs: [publish-wasm-bindings]
runs-on: ubuntu-latest
env:
RELEASE_TAG: ${{ github.ref_name }}
if: startsWith(github.ref, 'refs/tags/')
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- name: Update version in package.json
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
run: |
sed -i "s|\"version\": \".*\"|\"version\": \"${{ github.ref_name }}\"|" in-browser-evm-verifier/package.json
sed -i "s|\"version\": \".*\"|\"version\": \"$RELEASE_TAG\"|" in-browser-evm-verifier/package.json
- name: Prepare tag and fetch package integrity
run: |
CLEANED_TAG=${{ github.ref_name }} # Get the tag from ref_name
CLEANED_TAG=${RELEASE_TAG} # Get the tag from ref_name
CLEANED_TAG="${CLEANED_TAG#v}" # Remove leading 'v'
echo "CLEANED_TAG=${CLEANED_TAG}" >> $GITHUB_ENV # Set it as an environment variable for later steps
ENGINE_INTEGRITY=$(npm view @ezkljs/engine@$CLEANED_TAG dist.integrity)

View File

@@ -6,9 +6,13 @@ on:
description: "Test scenario tags"
jobs:
large-tests:
permissions:
contents: read
runs-on: kaiju
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-07-18

View File

@@ -18,12 +18,19 @@ defaults:
jobs:
linux:
permissions:
contents: read
packages: write
runs-on: GPU
strategy:
matrix:
target: [x86_64]
env:
RELEASE_TAG: ${{ github.ref_name }}
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions/setup-python@v4
with:
python-version: 3.12
@@ -34,6 +41,7 @@ jobs:
run: |
mv pyproject.toml pyproject.toml.orig
sed "s/ezkl/ezkl-gpu/" pyproject.toml.orig >pyproject.toml
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" pyproject.toml.orig >pyproject.toml
- uses: actions-rs/toolchain@v1
with:
@@ -43,8 +51,6 @@ jobs:
- name: Set Cargo.toml version to match github tag
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
run: |
mv Cargo.toml Cargo.toml.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.toml.orig >Cargo.toml

View File

@@ -16,22 +16,32 @@ defaults:
jobs:
macos:
permissions:
contents: read
runs-on: macos-latest
if: startsWith(github.ref, 'refs/tags/')
strategy:
matrix:
target: [x86_64, universal2-apple-darwin]
env:
RELEASE_TAG: ${{ github.ref_name }}
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions/setup-python@v4
with:
python-version: 3.12
architecture: x64
- name: Set pyproject.toml version to match github tag
shell: bash
run: |
mv pyproject.toml pyproject.toml.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" pyproject.toml.orig >pyproject.toml
- name: Set Cargo.toml version to match github tag
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
run: |
mv Cargo.toml Cargo.toml.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.toml.orig >Cargo.toml
@@ -45,6 +55,13 @@ jobs:
components: rustfmt, clippy
- name: Build wheels
if: matrix.target == 'universal2-apple-darwin'
uses: PyO3/maturin-action@v1
with:
target: ${{ matrix.target }}
args: --release --out dist --features python-bindings
- name: Build wheels
if: matrix.target == 'x86_64'
uses: PyO3/maturin-action@v1
with:
target: ${{ matrix.target }}
@@ -62,6 +79,8 @@ jobs:
path: dist
windows:
permissions:
contents: read
runs-on: windows-latest
if: startsWith(github.ref, 'refs/tags/')
strategy:
@@ -69,11 +88,21 @@ jobs:
target: [x64, x86]
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions/setup-python@v4
with:
python-version: 3.12
architecture: ${{ matrix.target }}
- name: Set pyproject.toml version to match github tag
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
run: |
mv pyproject.toml pyproject.toml.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" pyproject.toml.orig >pyproject.toml
- name: Set Cargo.toml version to match github tag
shell: bash
env:
@@ -107,6 +136,8 @@ jobs:
path: dist
linux:
permissions:
contents: read
runs-on: ubuntu-latest
if: startsWith(github.ref, 'refs/tags/')
strategy:
@@ -114,11 +145,21 @@ jobs:
target: [x86_64]
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions/setup-python@v4
with:
python-version: 3.12
architecture: x64
- name: Set pyproject.toml version to match github tag
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
run: |
mv pyproject.toml pyproject.toml.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" pyproject.toml.orig >pyproject.toml
- name: Set Cargo.toml version to match github tag
shell: bash
env:
@@ -129,7 +170,6 @@ jobs:
mv Cargo.lock Cargo.lock.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.lock.orig >Cargo.lock
- name: Install required libraries
shell: bash
run: |
@@ -168,58 +208,9 @@ jobs:
name: wheels
path: dist
# There's a problem with the maturin-action toolchain for arm arch leading to failed builds
# linux-cross:
# runs-on: ubuntu-latest
# strategy:
# matrix:
# target: [aarch64, armv7]
# steps:
# - uses: actions/checkout@v4
# - uses: actions/setup-python@v4
# with:
# python-version: 3.12
# - name: Install cross-compilation tools for aarch64
# if: matrix.target == 'aarch64'
# run: |
# sudo apt-get update
# sudo apt-get install -y gcc make gcc-aarch64-linux-gnu binutils-aarch64-linux-gnu libc6-dev-arm64-cross libusb-1.0-0-dev libatomic1-arm64-cross
# - name: Install cross-compilation tools for armv7
# if: matrix.target == 'armv7'
# run: |
# sudo apt-get update
# sudo apt-get install -y gcc make gcc-arm-linux-gnueabihf binutils-arm-linux-gnueabihf libc6-dev-armhf-cross libusb-1.0-0-dev libatomic1-armhf-cross
# - name: Build wheels
# uses: PyO3/maturin-action@v1
# with:
# target: ${{ matrix.target }}
# manylinux: auto
# args: --release --out dist --features python-bindings
# - uses: uraimo/run-on-arch-action@v2.5.0
# name: Install built wheel
# with:
# arch: ${{ matrix.target }}
# distro: ubuntu20.04
# githubToken: ${{ github.token }}
# install: |
# apt-get update
# apt-get install -y --no-install-recommends python3 python3-pip
# pip3 install -U pip
# run: |
# pip3 install ezkl --no-index --find-links dist/ --force-reinstall
# python3 -c "import ezkl"
# - name: Upload wheels
# uses: actions/upload-artifact@v3
# with:
# name: wheels
# path: dist
musllinux:
permissions:
contents: read
runs-on: ubuntu-latest
if: startsWith(github.ref, 'refs/tags/')
strategy:
@@ -228,11 +219,21 @@ jobs:
- x86_64-unknown-linux-musl
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions/setup-python@v4
with:
python-version: 3.12
architecture: x64
- name: Set pyproject.toml version to match github tag
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
run: |
mv pyproject.toml pyproject.toml.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" pyproject.toml.orig >pyproject.toml
- name: Set Cargo.toml version to match github tag
shell: bash
env:
@@ -276,6 +277,8 @@ jobs:
path: dist
musllinux-cross:
permissions:
contents: read
runs-on: ubuntu-latest
if: startsWith(github.ref, 'refs/tags/')
strategy:
@@ -285,10 +288,20 @@ jobs:
arch: aarch64
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions/setup-python@v4
with:
python-version: 3.12
- name: Set pyproject.toml version to match github tag
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
run: |
mv pyproject.toml pyproject.toml.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" pyproject.toml.orig >pyproject.toml
- name: Set Cargo.toml version to match github tag
shell: bash
env:
@@ -332,8 +345,6 @@ jobs:
permissions:
id-token: write
if: "startsWith(github.ref, 'refs/tags/')"
# TODO: Uncomment if linux-cross is working
# needs: [ macos, windows, linux, linux-cross, musllinux, musllinux-cross ]
needs: [macos, windows, linux, musllinux, musllinux-cross]
steps:
- uses: actions/download-artifact@v3
@@ -341,35 +352,34 @@ jobs:
name: wheels
- name: List Files
run: ls -R
# Both publish steps will fail if there is no trusted publisher setup
# On failure the publish step will then simply continue to the next one
# # publishes to TestPyPI
# - name: Publish package distribution to TestPyPI
# uses: pypa/gh-action-pypi-publish@unstable/v1
# with:
# repository-url: https://test.pypi.org/legacy/
# packages-dir: ./
# publishes to PyPI
- name: Publish package distributions to PyPI
continue-on-error: true
uses: pypa/gh-action-pypi-publish@unstable/v1
with:
packages-dir: ./
# publishes to TestPyPI
- name: Publish package distribution to TestPyPI
continue-on-error: true
uses: pypa/gh-action-pypi-publish@unstable/v1
with:
repository-url: https://test.pypi.org/legacy/
packages-dir: ./
doc-publish:
permissions:
contents: read
name: Trigger ReadTheDocs Build
runs-on: ubuntu-latest
needs: pypi-publish
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- name: Trigger RTDs build
uses: dfm/rtds-action@v1
with:
webhook_url: ${{ secrets.RTDS_WEBHOOK_URL }}
webhook_token: ${{ secrets.RTDS_WEBHOOK_TOKEN }}
commit_ref: ${{ github.ref_name }}
commit_ref: ${{ github.ref_name }}

View File

@@ -10,6 +10,9 @@ on:
- "*"
jobs:
create-release:
permissions:
contents: read
packages: write
name: create-release
runs-on: ubuntu-22.04
if: startsWith(github.ref, 'refs/tags/')
@@ -33,6 +36,9 @@ jobs:
tag_name: ${{ env.EZKL_VERSION }}
build-release-gpu:
permissions:
contents: read
packages: write
name: build-release-gpu
needs: ["create-release"]
runs-on: GPU
@@ -50,6 +56,9 @@ jobs:
components: rustfmt, clippy
- name: Checkout repo
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Get release version from tag
shell: bash
@@ -91,6 +100,10 @@ jobs:
asset_content_type: application/octet-stream
build-release:
permissions:
contents: read
packages: write
issues: write
name: build-release
needs: ["create-release"]
runs-on: ${{ matrix.os }}
@@ -132,6 +145,8 @@ jobs:
steps:
- name: Checkout repo
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Get release version from tag
shell: bash
@@ -181,14 +196,18 @@ jobs:
echo "target flag is: ${{ env.TARGET_FLAGS }}"
echo "target dir is: ${{ env.TARGET_DIR }}"
- name: Build release binary (no asm)
if: matrix.build != 'linux-gnu'
- name: Build release binary (no asm or metal)
if: matrix.build != 'linux-gnu' && matrix.build != 'macos-aarch64'
run: ${{ env.CARGO }} build --release ${{ env.TARGET_FLAGS }} -Z sparse-registry
- name: Build release binary (asm)
if: matrix.build == 'linux-gnu'
run: ${{ env.CARGO }} build --release ${{ env.TARGET_FLAGS }} -Z sparse-registry --features asm
- name: Build release binary (metal)
if: matrix.build == 'macos-aarch64'
run: ${{ env.CARGO }} build --release ${{ env.TARGET_FLAGS }} -Z sparse-registry --features macos-metal
- name: Strip release binary
if: matrix.build != 'windows-msvc' && matrix.build != 'linux-aarch64'
run: strip "target/${{ matrix.target }}/release/ezkl"

View File

@@ -19,11 +19,31 @@ env:
CARGO_TERM_COLOR: always
jobs:
build:
runs-on: ubuntu-latest
fr-age-test:
permissions:
contents: read
runs-on: large-self-hosted
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
- name: fr age Mock
run: cargo test --release --verbose tests::large_mock_::large_tests_6_expects -- --include-ignored
build:
permissions:
contents: read
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-07-18
@@ -33,9 +53,13 @@ jobs:
run: cargo build --verbose
docs:
permissions:
contents: read
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-07-18
@@ -45,9 +69,13 @@ jobs:
run: cargo doc --verbose
library-tests:
permissions:
contents: read
runs-on: ubuntu-latest-32-cores
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-07-18
@@ -71,6 +99,8 @@ jobs:
# ENABLE_ICICLE_GPU: true
# steps:
# - uses: actions/checkout@v4
# with:
# persist-credentials: false
# - uses: actions-rs/toolchain@v1
# with:
# toolchain: nightly-2024-07-18
@@ -101,9 +131,13 @@ jobs:
# run: cargo nextest run conv_relu_col_ultra_overflow --no-capture --features icicle -- --include-ignored
ultra-overflow-tests_og-lookup:
permissions:
contents: read
runs-on: non-gpu
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-07-18
@@ -134,9 +168,13 @@ jobs:
run: cargo nextest run --release conv_relu_col_ultra_overflow --no-capture --no-default-features --features ezkl -- --include-ignored
ultra-overflow-tests:
permissions:
contents: read
runs-on: non-gpu
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-07-18
@@ -167,9 +205,13 @@ jobs:
run: cargo nextest run --release conv_relu_col_ultra_overflow --no-capture -- --include-ignored
model-serialization:
permissions:
contents: read
runs-on: ubuntu-latest-16-cores
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-07-18
@@ -183,9 +225,13 @@ jobs:
run: cargo nextest run native_tests::tests::model_serialization_different_binaries_ --test-threads 1
wasm32-tests:
permissions:
contents: read
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-07-18
@@ -208,10 +254,14 @@ jobs:
run: wasm-pack test --chrome --headless -- -Z build-std="panic_abort,std" --features web
mock-proving-tests:
permissions:
contents: read
runs-on: non-gpu
needs: [build, library-tests, docs, python-tests, python-integration-tests]
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-07-18
@@ -271,10 +321,14 @@ jobs:
run: cargo nextest run --release --verbose tests::mock_fixed_params_ --test-threads 32
prove-and-verify-evm-tests:
permissions:
contents: read
runs-on: non-gpu
needs: [build, library-tests, docs, python-tests, python-integration-tests]
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-07-18
@@ -285,6 +339,8 @@ jobs:
crate: cargo-nextest
locked: true
- uses: actions/checkout@v3
with:
persist-credentials: false
- name: Use pnpm 8
uses: pnpm/action-setup@v2
with:
@@ -349,11 +405,50 @@ jobs:
- name: KZG prove and verify tests (EVM + hashed outputs)
run: cargo nextest run --release --verbose tests_evm::kzg_evm_hashed_output_prove_and_verify --test-threads 1
# prove-and-verify-tests-metal:
# permissions:
# contents: read
# runs-on: macos-13
# # needs: [build, library-tests, docs]
# steps:
# - uses: actions/checkout@v4
# with:
# persist-credentials: false
# - uses: actions-rs/toolchain@v1
# with:
# toolchain: nightly-2024-07-18
# override: true
# components: rustfmt, clippy
# - uses: jetli/wasm-pack-action@v0.4.0
# with:
# # Pin to version 0.12.1
# version: 'v0.12.1'
# - name: Add rust-src
# run: rustup component add rust-src --toolchain nightly-2024-07-18
# - uses: actions/checkout@v3
# with:
# persist-credentials: false
# - name: Use pnpm 8
# uses: pnpm/action-setup@v2
# with:
# version: 8
# - uses: baptiste0928/cargo-install@v1
# with:
# crate: cargo-nextest
# locked: true
# - name: KZG prove and verify tests (public outputs)
# run: cargo nextest run --release --features macos-metal --verbose tests::kzg_prove_and_verify_::t --no-capture
prove-and-verify-tests:
permissions:
contents: read
runs-on: non-gpu
needs: [build, library-tests, docs]
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-07-18
@@ -369,6 +464,8 @@ jobs:
- name: Add rust-src
run: rustup component add rust-src --toolchain nightly-2024-07-18-x86_64-unknown-linux-gnu
- uses: actions/checkout@v3
with:
persist-credentials: false
- name: Use pnpm 8
uses: pnpm/action-setup@v2
with:
@@ -431,6 +528,8 @@ jobs:
# ENABLE_ICICLE_GPU: true
# steps:
# - uses: actions/checkout@v4
# with:
# persist-credentials: false
# - uses: actions-rs/toolchain@v1
# with:
# toolchain: nightly-2024-07-18
@@ -461,10 +560,14 @@ jobs:
# run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_hashed --features icicle --test-threads 1
prove-and-verify-mock-aggr-tests:
permissions:
contents: read
runs-on: self-hosted
needs: [build, library-tests, docs, python-tests, python-integration-tests]
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-07-18
@@ -483,6 +586,8 @@ jobs:
# ENABLE_ICICLE_GPU: true
# steps:
# - uses: actions/checkout@v4
# with:
# persist-credentials: false
# - uses: actions-rs/toolchain@v1
# with:
# toolchain: nightly-2024-07-18
@@ -496,10 +601,14 @@ jobs:
# run: cargo nextest run --verbose tests_aggr::kzg_aggr_prove_and_verify_ --features icicle --test-threads 1 -- --include-ignored
prove-and-verify-aggr-tests:
permissions:
contents: read
runs-on: large-self-hosted
needs: [build, library-tests, docs, python-tests, python-integration-tests]
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-07-18
@@ -513,10 +622,14 @@ jobs:
run: cargo nextest run --release --verbose tests_aggr::kzg_aggr_prove_and_verify_ --test-threads 4 -- --include-ignored
prove-and-verify-aggr-evm-tests:
permissions:
contents: read
runs-on: large-self-hosted
needs: [build, library-tests, docs, python-tests, python-integration-tests]
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-07-18
@@ -534,10 +647,14 @@ jobs:
run: cargo nextest run --release --verbose tests_evm::kzg_evm_aggr_prove_and_verify_::t --test-threads 4 -- --include-ignored
examples:
permissions:
contents: read
runs-on: ubuntu-latest-32-cores
needs: [build, library-tests, docs]
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-07-18
@@ -551,10 +668,14 @@ jobs:
run: cargo nextest run --release tests_examples
python-tests:
permissions:
contents: read
runs-on: non-gpu
needs: [build, library-tests, docs]
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions/setup-python@v4
with:
python-version: "3.12"
@@ -577,10 +698,14 @@ jobs:
run: source .env/bin/activate; pip install pytest-asyncio; pytest -vv
accuracy-measurement-tests:
runs-on: ubuntu-latest-32-cores
permissions:
contents: read
runs-on: non-gpu
needs: [build, library-tests, docs, python-tests, python-integration-tests]
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions/setup-python@v4
with:
python-version: "3.12"
@@ -607,6 +732,8 @@ jobs:
run: source .env/bin/activate; cargo nextest run --release --verbose tests::resources_accuracy_measurement_public_outputs_
python-integration-tests:
permissions:
contents: read
runs-on: large-self-hosted
services:
# Label used to access the service container
@@ -628,6 +755,8 @@ jobs:
- 5432:5432
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions/setup-python@v4
with:
python-version: "3.11"
@@ -650,7 +779,11 @@ jobs:
run: python -m venv .env --clear; source .env/bin/activate; pip install -r requirements.txt; python -m ensurepip --upgrade
- name: Build python ezkl
run: source .env/bin/activate; unset CONDA_PREFIX; maturin develop --features python-bindings --release
- name: Postgres tutorials
- name: Voice tutorial
run: source .env/bin/activate; cargo nextest run py_tests::tests::voice_
- name: Neural bow
run: source .env/bin/activate; cargo nextest run py_tests::tests::neural_bag_of_words_ --no-capture
- name: Felt conversion
run: source .env/bin/activate; cargo nextest run py_tests::tests::felt_conversion_test_ --no-capture
- name: Postgres tutorials
run: source .env/bin/activate; cargo nextest run py_tests::tests::postgres_ --no-capture
@@ -667,17 +800,19 @@ jobs:
# chmod 600 /home/ubuntu/.kaggle/kaggle.json
- name: All notebooks
run: source .env/bin/activate; cargo nextest run py_tests::tests::run_notebook_ --test-threads 1
- name: Voice tutorial
run: source .env/bin/activate; cargo nextest run py_tests::tests::voice_
- name: NBEATS tutorial
run: source .env/bin/activate; cargo nextest run py_tests::tests::nbeats_
# - name: Reusable verifier tutorial
# run: source .env/bin/activate; cargo nextest run py_tests::tests::reusable_
ios-integration-tests:
permissions:
contents: read
runs-on: macos-latest
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-07-18
@@ -691,11 +826,15 @@ jobs:
run: CARGO_BUILD_TARGET=aarch64-apple-darwin RUSTUP_TOOLCHAIN=nightly-2024-07-18-aarch64-apple-darwin cargo test --test ios_integration_tests --features ios-bindings-test --no-default-features
swift-package-tests:
permissions:
contents: read
runs-on: macos-latest
needs: [ios-integration-tests]
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-07-18
@@ -713,6 +852,15 @@ jobs:
rm -rf ezkl-swift-package/Sources/EzklCoreBindings
cp -r build/EzklCoreBindings ezkl-swift-package/Sources/
- name: Copy Test Files
run: |
rm -rf ezkl-swift-package/Tests/EzklAssets/
mkdir -p ezkl-swift-package/Tests/EzklAssets/
cp tests/assets/kzg ezkl-swift-package/Tests/EzklAssets/kzg.srs
cp tests/assets/input.json ezkl-swift-package/Tests/EzklAssets/input.json
cp tests/assets/model.compiled ezkl-swift-package/Tests/EzklAssets/network.ezkl
cp tests/assets/settings.json ezkl-swift-package/Tests/EzklAssets/settings.json
- name: Set up Xcode environment
run: |
sudo xcode-select -s /Applications/Xcode.app/Contents/Developer

33
.github/workflows/static-analysis.yml vendored Normal file
View File

@@ -0,0 +1,33 @@
name: Static Analysis
on:
push:
branches: [ main ]
pull_request:
branches: [ main ]
jobs:
analyze:
permissions:
contents: read
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2024-07-18
override: true
components: rustfmt, clippy
# Run Zizmor static analysis
- name: Install Zizmor
run: cargo install --locked zizmor
- name: Run Zizmor Analysis
run: zizmor .

134
.github/workflows/swift-pm.yml vendored Normal file
View File

@@ -0,0 +1,134 @@
name: Build and Publish EZKL iOS SPM package
on:
push:
tags:
# Only support SemVer versioning tags
- 'v[0-9]+.[0-9]+.[0-9]+'
- '[0-9]+.[0-9]+.[0-9]+'
jobs:
build-and-update:
permissions:
contents: read
packages: write
runs-on: macos-latest
env:
EZKL_SWIFT_PACKAGE_REPO: github.com/zkonduit/ezkl-swift-package.git
RELEASE_TAG: ${{ github.ref_name }}
steps:
- name: Checkout EZKL
uses: actions/checkout@v3
with:
persist-credentials: false
- name: Extract TAG from github.ref_name
run: |
# github.ref_name is provided by GitHub Actions and contains the tag name directly.
TAG="${RELEASE_TAG}"
echo "Original TAG: $TAG"
# Remove leading 'v' if present to match the Swift Package Manager version format.
NEW_TAG=${TAG#v}
echo "Stripped TAG: $NEW_TAG"
echo "TAG=$NEW_TAG" >> $GITHUB_ENV
- name: Install Rust (nightly)
uses: actions-rs/toolchain@v1
with:
toolchain: nightly
override: true
- name: Build EzklCoreBindings
run: CONFIGURATION=release cargo run --bin ios_gen_bindings --features "ios-bindings uuid camino uniffi_bindgen" --no-default-features
- name: Clone ezkl-swift-package repository
run: |
git clone https://${{ env.EZKL_SWIFT_PACKAGE_REPO }}
- name: Copy EzklCoreBindings
run: |
rm -rf ezkl-swift-package/Sources/EzklCoreBindings
cp -r build/EzklCoreBindings ezkl-swift-package/Sources/
- name: Copy Test Files
run: |
rm -rf ezkl-swift-package/Tests/EzklAssets/
mkdir -p ezkl-swift-package/Tests/EzklAssets/
cp tests/assets/kzg ezkl-swift-package/Tests/EzklAssets/kzg.srs
cp tests/assets/input.json ezkl-swift-package/Tests/EzklAssets/input.json
cp tests/assets/model.compiled ezkl-swift-package/Tests/EzklAssets/network.ezkl
cp tests/assets/settings.json ezkl-swift-package/Tests/EzklAssets/settings.json
- name: Check for changes
id: check_changes
run: |
cd ezkl-swift-package
if git diff --quiet Sources/EzklCoreBindings Tests/EzklAssets; then
echo "no_changes=true" >> $GITHUB_OUTPUT
else
echo "no_changes=false" >> $GITHUB_OUTPUT
fi
- name: Set up Xcode environment
if: steps.check_changes.outputs.no_changes == 'false'
run: |
sudo xcode-select -s /Applications/Xcode.app/Contents/Developer
sudo xcodebuild -license accept
- name: Run Package Tests
if: steps.check_changes.outputs.no_changes == 'false'
run: |
cd ezkl-swift-package
xcodebuild test \
-scheme EzklPackage \
-destination 'platform=iOS Simulator,name=iPhone 15 Pro,OS=17.5' \
-resultBundlePath ../testResults
- name: Run Example App Tests
if: steps.check_changes.outputs.no_changes == 'false'
run: |
cd ezkl-swift-package/Example
xcodebuild test \
-project Example.xcodeproj \
-scheme EzklApp \
-destination 'platform=iOS Simulator,name=iPhone 15 Pro,OS=17.5' \
-parallel-testing-enabled NO \
-resultBundlePath ../../exampleTestResults \
-skip-testing:EzklAppUITests/EzklAppUITests/testButtonClicksInOrder
- name: Setup Git
run: |
cd ezkl-swift-package
git config user.name "GitHub Action"
git config user.email "action@github.com"
git remote set-url origin https://zkonduit:${EZKL_SWIFT_PACKAGE_REPO_TOKEN}@${{ env.EZKL_SWIFT_PACKAGE_REPO }}
env:
EZKL_SWIFT_PACKAGE_REPO_TOKEN: ${{ secrets.EZKL_PORTER_TOKEN }}
- name: Commit and Push Changes
if: steps.check_changes.outputs.no_changes == 'false'
run: |
cd ezkl-swift-package
git add Sources/EzklCoreBindings Tests/EzklAssets
git commit -m "Automatically updated EzklCoreBindings for EZKL"
if ! git push origin; then
echo "::error::Failed to push changes to ${{ env.EZKL_SWIFT_PACKAGE_REPO }}. Please ensure that EZKL_PORTER_TOKEN has the correct permissions."
exit 1
fi
- name: Tag the latest commit
run: |
cd ezkl-swift-package
source $GITHUB_ENV
# Tag the latest commit on the current branch
if git rev-parse "$TAG" >/dev/null 2>&1; then
echo "Tag $TAG already exists locally. Skipping tag creation."
else
git tag "$TAG"
fi
if ! git push origin "$TAG"; then
echo "::error::Failed to push tag '$TAG' to ${{ env.EZKL_SWIFT_PACKAGE_REPO }}. Please ensure EZKL_PORTER_TOKEN has correct permissions."
exit 1
fi

View File

@@ -12,6 +12,8 @@ jobs:
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- name: Bump version and push tag
id: tag_version
uses: mathieudutour/github-tag-action@v6.2

View File

@@ -1,85 +0,0 @@
name: Build and Publish EZKL iOS SPM package
on:
workflow_dispatch:
inputs:
tag:
description: "The tag to release"
required: true
push:
tags:
- "*"
jobs:
build-and-update:
runs-on: macos-latest
steps:
- name: Checkout EZKL
uses: actions/checkout@v3
- name: Install Rust
uses: actions-rs/toolchain@v1
with:
toolchain: nightly
override: true
- name: Build EzklCoreBindings
run: CONFIGURATION=release cargo run --bin ios_gen_bindings --features "ios-bindings uuid camino uniffi_bindgen" --no-default-features
- name: Clone ezkl-swift-package repository
run: |
git clone https://github.com/zkonduit/ezkl-swift-package.git
- name: Copy EzklCoreBindings
run: |
rm -rf ezkl-swift-package/Sources/EzklCoreBindings
cp -r build/EzklCoreBindings ezkl-swift-package/Sources/
- name: Copy Test Files
run: |
rm -rf ezkl-swift-package/Tests/EzklAssets/*
cp tests/assets/kzg ezkl-swift-package/Tests/EzklAssets/kzg.srs
cp tests/assets/input.json ezkl-swift-package/Tests/EzklAssets/input.json
cp tests/assets/model.compiled ezkl-swift-package/Tests/EzklAssets/network.ezkl
cp tests/assets/settings.json ezkl-swift-package/Tests/EzklAssets/settings.json
- name: Set up Xcode environment
run: |
sudo xcode-select -s /Applications/Xcode.app/Contents/Developer
sudo xcodebuild -license accept
- name: Run Package Tests
run: |
cd ezkl-swift-package
xcodebuild test \
-scheme EzklPackage \
-destination 'platform=iOS Simulator,name=iPhone 15 Pro,OS=17.5' \
-resultBundlePath ../testResults
- name: Run Example App Tests
run: |
cd ezkl-swift-package/Example
xcodebuild test \
-project Example.xcodeproj \
-scheme EzklApp \
-destination 'platform=iOS Simulator,name=iPhone 15 Pro,OS=17.5' \
-parallel-testing-enabled NO \
-resultBundlePath ../../exampleTestResults \
-skip-testing:EzklAppUITests/EzklAppUITests/testButtonClicksInOrder
- name: Commit and Push Changes to feat/ezkl-direct-integration
run: |
cd ezkl-swift-package
git config user.name "GitHub Action"
git config user.email "action@github.com"
git add Sources/EzklCoreBindings
git add Tests/EzklAssets
git commit -m "Automatically updated EzklCoreBindings for EZKL"
git tag ${{ github.event.inputs.tag }}
git remote set-url origin https://zkonduit:${EZKL_PORTER_TOKEN}@github.com/zkonduit/ezkl-swift-package.git
git push origin
git push origin tag ${{ github.event.inputs.tag }}
env:
EZKL_PORTER_TOKEN: ${{ secrets.EZKL_PORTER_TOKEN }}

110
Cargo.lock generated
View File

@@ -1835,6 +1835,16 @@ dependencies = [
"syn 2.0.90",
]
[[package]]
name = "env_filter"
version = "0.1.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "186e05a59d4c50738528153b83b0b0194d3a29507dfec16eccd4b342903397d0"
dependencies = [
"log",
"regex",
]
[[package]]
name = "env_logger"
version = "0.10.2"
@@ -1848,6 +1858,19 @@ dependencies = [
"termcolor",
]
[[package]]
name = "env_logger"
version = "0.11.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "dcaee3d8e3cfc3fd92428d477bc97fc29ec8716d180c0d74c643bb26166660e0"
dependencies = [
"anstream",
"anstyle",
"env_filter",
"humantime",
"log",
]
[[package]]
name = "equivalent"
version = "1.0.1"
@@ -1923,7 +1946,7 @@ dependencies = [
"console_error_panic_hook",
"criterion 0.5.1",
"ecc",
"env_logger",
"env_logger 0.10.2",
"ethabi",
"foundry-compilers",
"gag",
@@ -1931,7 +1954,7 @@ dependencies = [
"halo2_gadgets",
"halo2_proofs",
"halo2_solidity_verifier",
"halo2curves 0.7.0",
"halo2curves 0.7.0 (git+https://github.com/privacy-scaling-explorations/halo2curves?rev=b753a832e92d5c86c5c997327a9cf9de86a18851)",
"hex",
"indicatif",
"instant",
@@ -1939,7 +1962,6 @@ dependencies = [
"lazy_static",
"log",
"maybe-rayon",
"metal",
"mimalloc",
"mnist",
"num",
@@ -2377,7 +2399,7 @@ dependencies = [
[[package]]
name = "halo2_gadgets"
version = "0.2.0"
source = "git+https://github.com/zkonduit/halo2#0654e92bdf725fd44d849bfef3643870a8c7d50b"
source = "git+https://github.com/zkonduit/halo2#d7ecad83c7439fa1cb450ee4a89c2d0b45604ceb"
dependencies = [
"arrayvec 0.7.4",
"bitvec",
@@ -2394,14 +2416,14 @@ dependencies = [
[[package]]
name = "halo2_proofs"
version = "0.3.0"
source = "git+https://github.com/zkonduit/halo2#0654e92bdf725fd44d849bfef3643870a8c7d50b#0654e92bdf725fd44d849bfef3643870a8c7d50b"
source = "git+https://github.com/zkonduit/halo2#bf9d0057a82443be48c4779bbe14961c18fb5996#bf9d0057a82443be48c4779bbe14961c18fb5996"
dependencies = [
"bincode",
"blake2b_simd",
"env_logger",
"env_logger 0.10.2",
"ff",
"group",
"halo2curves 0.7.0",
"halo2curves 0.7.0 (git+https://github.com/privacy-scaling-explorations/halo2curves?rev=b753a832e92d5c86c5c997327a9cf9de86a18851)",
"icicle-bn254",
"icicle-core",
"icicle-cuda-runtime",
@@ -2409,6 +2431,7 @@ dependencies = [
"lazy_static",
"log",
"maybe-rayon",
"mopro-msm",
"rand_chacha",
"rand_core 0.6.4",
"rustc-hash 2.0.0",
@@ -2497,13 +2520,14 @@ dependencies = [
[[package]]
name = "halo2curves"
version = "0.7.0"
source = "git+https://github.com/privacy-scaling-explorations/halo2curves?rev=b753a832e92d5c86c5c997327a9cf9de86a18851#b753a832e92d5c86c5c997327a9cf9de86a18851"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d380afeef3f1d4d3245b76895172018cfb087d9976a7cabcd5597775b2933e07"
dependencies = [
"blake2",
"digest 0.10.7",
"ff",
"group",
"halo2derive",
"halo2derive 0.1.0 (registry+https://github.com/rust-lang/crates.io-index)",
"hex",
"lazy_static",
"num-bigint",
@@ -2523,6 +2547,49 @@ dependencies = [
"unroll",
]
[[package]]
name = "halo2curves"
version = "0.7.0"
source = "git+https://github.com/privacy-scaling-explorations/halo2curves?rev=b753a832e92d5c86c5c997327a9cf9de86a18851#b753a832e92d5c86c5c997327a9cf9de86a18851"
dependencies = [
"blake2",
"digest 0.10.7",
"ff",
"group",
"halo2derive 0.1.0 (git+https://github.com/privacy-scaling-explorations/halo2curves?rev=b753a832e92d5c86c5c997327a9cf9de86a18851)",
"hex",
"lazy_static",
"num-bigint",
"num-integer",
"num-traits",
"pairing",
"pasta_curves",
"paste",
"rand 0.8.5",
"rand_core 0.6.4",
"rayon",
"serde",
"serde_arrays",
"sha2",
"static_assertions",
"subtle",
"unroll",
]
[[package]]
name = "halo2derive"
version = "0.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bdb99e7492b4f5ff469d238db464131b86c2eaac814a78715acba369f64d2c76"
dependencies = [
"num-bigint",
"num-integer",
"num-traits",
"proc-macro2",
"quote",
"syn 1.0.109",
]
[[package]]
name = "halo2derive"
version = "0.1.0"
@@ -3283,7 +3350,8 @@ dependencies = [
[[package]]
name = "metal"
version = "0.29.0"
source = "git+https://github.com/gfx-rs/metal-rs#0e1918b34689c4b8cd13a43372f9898680547ee9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7ecfd3296f8c56b7c1f6fbac3c71cefa9d78ce009850c45000015f206dc7fa21"
dependencies = [
"bitflags 2.5.0",
"block",
@@ -3354,6 +3422,28 @@ dependencies = [
"byteorder",
]
[[package]]
name = "mopro-msm"
version = "0.1.0"
source = "git+https://github.com/zkonduit/metal-msm-gpu-acceleration.git#be5f647b1a6c1a6ea9024390744a2b4d87f5d002"
dependencies = [
"bincode",
"env_logger 0.11.6",
"halo2curves 0.7.0 (registry+https://github.com/rust-lang/crates.io-index)",
"instant",
"itertools 0.13.0",
"lazy_static",
"log",
"metal",
"objc",
"once_cell",
"rand 0.8.5",
"rayon",
"serde",
"thiserror",
"walkdir",
]
[[package]]
name = "native-tls"
version = "0.2.11"

View File

@@ -91,7 +91,6 @@ pyo3-async-runtimes = { git = "https://github.com/PyO3/pyo3-async-runtimes", ver
pyo3-log = { version = "0.12.0", default-features = false, optional = true }
tract-onnx = { git = "https://github.com/sonos/tract/", rev = "37132e0397d0a73e5bd3a8615d932dabe44f6736", default-features = false, optional = true }
tabled = { version = "0.12.0", optional = true }
metal = { git = "https://github.com/gfx-rs/metal-rs", optional = true }
objc = { version = "0.2.4", optional = true }
mimalloc = { version = "0.1", optional = true }
pyo3-stub-gen = { version = "0.6.0", optional = true }
@@ -147,6 +146,10 @@ shellexpand = "3.1.0"
runner = 'wasm-bindgen-test-runner'
[[bench]]
name = "zero_finder"
harness = false
[[bench]]
name = "accum_dot"
harness = false
@@ -273,10 +276,14 @@ icicle = ["halo2_proofs/icicle_gpu"]
empty-cmd = []
no-banner = []
no-update = []
macos-metal = ["halo2_proofs/macos"]
ios-metal = ["halo2_proofs/ios"]
[patch.'https://github.com/zkonduit/halo2']
halo2_proofs = { git = "https://github.com/zkonduit/halo2#0654e92bdf725fd44d849bfef3643870a8c7d50b", package = "halo2_proofs" }
halo2_proofs = { git = "https://github.com/zkonduit/halo2#bf9d0057a82443be48c4779bbe14961c18fb5996", package = "halo2_proofs" }
[patch.'https://github.com/zkonduit/halo2#0654e92bdf725fd44d849bfef3643870a8c7d50b']
halo2_proofs = { git = "https://github.com/zkonduit/halo2#bf9d0057a82443be48c4779bbe14961c18fb5996", package = "halo2_proofs" }
[patch.crates-io]
uniffi_testing = { git = "https://github.com/ElusAegis/uniffi-rs", branch = "feat/testing-feature-build-fix" }
@@ -286,3 +293,11 @@ rustflags = ["-C", "relocation-model=pic"]
lto = "fat"
codegen-units = 1
# panic = "abort"
[package.metadata.wasm-pack.profile.release]
wasm-opt = [
"-O4",
"--flexible-inline-max-function-size",
"4294967295",
]

116
benches/zero_finder.rs Normal file
View File

@@ -0,0 +1,116 @@
use std::thread;
use criterion::{black_box, criterion_group, criterion_main, Criterion};
use halo2curves::{bn256::Fr as F, ff::Field};
use maybe_rayon::{
iter::{IndexedParallelIterator, IntoParallelRefIterator, ParallelIterator},
slice::ParallelSlice,
};
use rand::Rng;
// Assuming these are your types
#[derive(Clone)]
enum ValType {
Constant(F),
AssignedConstant(usize, F),
Other,
}
// Helper to generate test data
fn generate_test_data(size: usize, zero_probability: f64) -> Vec<ValType> {
let mut rng = rand::thread_rng();
(0..size)
.map(|_i| {
if rng.gen::<f64>() < zero_probability {
ValType::Constant(F::ZERO)
} else {
ValType::Constant(F::ONE) // Or some other non-zero value
}
})
.collect()
}
fn bench_zero_finding(c: &mut Criterion) {
let sizes = [
1_000, // 1K
10_000, // 10K
100_000, // 100K
256 * 256 * 2, // Our specific case
1_000_000, // 1M
10_000_000, // 10M
];
let zero_probability = 0.1; // 10% zeros
let mut group = c.benchmark_group("zero_finding");
group.sample_size(10); // Adjust based on your needs
for &size in &sizes {
let data = generate_test_data(size, zero_probability);
// Benchmark sequential version
group.bench_function(format!("sequential_{}", size), |b| {
b.iter(|| {
let result = data
.iter()
.enumerate()
.filter_map(|(i, e)| match e {
ValType::Constant(r) | ValType::AssignedConstant(_, r) => {
(*r == F::ZERO).then_some(i)
}
_ => None,
})
.collect::<Vec<_>>();
black_box(result)
})
});
// Benchmark parallel version
group.bench_function(format!("parallel_{}", size), |b| {
b.iter(|| {
let result = data
.par_iter()
.enumerate()
.filter_map(|(i, e)| match e {
ValType::Constant(r) | ValType::AssignedConstant(_, r) => {
(*r == F::ZERO).then_some(i)
}
_ => None,
})
.collect::<Vec<_>>();
black_box(result)
})
});
// Benchmark chunked parallel version
group.bench_function(format!("chunked_parallel_{}", size), |b| {
b.iter(|| {
let num_cores = thread::available_parallelism()
.map(|n| n.get())
.unwrap_or(1);
let chunk_size = (size / num_cores).max(100);
let result = data
.par_chunks(chunk_size)
.enumerate()
.flat_map(|(chunk_idx, chunk)| {
chunk
.par_iter() // Make sure we use par_iter() here
.enumerate()
.filter_map(move |(i, e)| match e {
ValType::Constant(r) | ValType::AssignedConstant(_, r) => {
(*r == F::ZERO).then_some(chunk_idx * chunk_size + i)
}
_ => None,
})
})
.collect::<Vec<_>>();
black_box(result)
})
});
}
group.finish();
}
criterion_group!(benches, bench_zero_finding);
criterion_main!(benches);

View File

@@ -1,7 +1,7 @@
import ezkl
project = 'ezkl'
release = '0.0.0'
release = '18.1.6'
version = release

View File

@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"metadata": {},
"outputs": [
{
@@ -54,7 +54,7 @@
" gip_run_args.param_scale = 19\n",
" gip_run_args.logrows = 8\n",
" run_args = ezkl.gen_settings(py_run_args=gip_run_args)\n",
" ezkl.get_srs(commitment=ezkl.PyCommitments.KZG)\n",
" await ezkl.get_srs(commitment=ezkl.PyCommitments.KZG)\n",
" ezkl.compile_circuit()\n",
" res = await ezkl.gen_witness()\n",
" print(res)\n",

View File

@@ -1,279 +1,284 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "cf69bb3f-94e6-4dba-92cd-ce08df117d67",
"metadata": {},
"source": [
"## Linear Regression\n",
"\n",
"\n",
"Sklearn based models are slightly finicky to get into a suitable onnx format. \n",
"This notebook showcases how to do so using the `hummingbird-ml` python package ! "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "95613ee9",
"metadata": {},
"outputs": [],
"source": [
"# check if notebook is in colab\n",
"try:\n",
" # install ezkl\n",
" import google.colab\n",
" import subprocess\n",
" import sys\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"hummingbird-ml\"])\n",
"\n",
"# rely on local installation of ezkl if the notebook is not in colab\n",
"except:\n",
" pass\n",
"\n",
"import os\n",
"import torch\n",
"import ezkl\n",
"import json\n",
"from hummingbird.ml import convert\n",
"\n",
"\n",
"# here we create and (potentially train a model)\n",
"\n",
"# make sure you have the dependencies required here already installed\n",
"import numpy as np\n",
"from sklearn.linear_model import LinearRegression\n",
"X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])\n",
"# y = 1 * x_0 + 2 * x_1 + 3\n",
"y = np.dot(X, np.array([1, 2])) + 3\n",
"reg = LinearRegression().fit(X, y)\n",
"reg.score(X, y)\n",
"\n",
"circuit = convert(reg, \"torch\", X[:1]).model\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b37637c4",
"metadata": {},
"outputs": [],
"source": [
"model_path = os.path.join('network.onnx')\n",
"compiled_model_path = os.path.join('network.compiled')\n",
"pk_path = os.path.join('test.pk')\n",
"vk_path = os.path.join('test.vk')\n",
"settings_path = os.path.join('settings.json')\n",
"\n",
"witness_path = os.path.join('witness.json')\n",
"data_path = os.path.join('input.json')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "82db373a",
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"# export to onnx format\n",
"# !!!!!!!!!!!!!!!!! This will flash a warning but it is fine !!!!!!!!!!!!!!!!!!!!!\n",
"\n",
"# Input to the model\n",
"shape = X.shape[1:]\n",
"x = torch.rand(1, *shape, requires_grad=True)\n",
"torch_out = circuit(x)\n",
"# Export the model\n",
"torch.onnx.export(circuit, # model being run\n",
" # model input (or a tuple for multiple inputs)\n",
" x,\n",
" # where to save the model (can be a file or file-like object)\n",
" \"network.onnx\",\n",
" export_params=True, # store the trained parameter weights inside the model file\n",
" opset_version=10, # the ONNX version to export the model to\n",
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
" input_names=['input'], # the model's input names\n",
" output_names=['output'], # the model's output names\n",
" dynamic_axes={'input': {0: 'batch_size'}, # variable length axes\n",
" 'output': {0: 'batch_size'}})\n",
"\n",
"d = ((x).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data = dict(input_shapes=[shape],\n",
" input_data=[d],\n",
" output_data=[((o).detach().numpy()).reshape([-1]).tolist() for o in torch_out])\n",
"\n",
"# Serialize data into file:\n",
"json.dump(data, open(\"input.json\", 'w'))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d5e374a2",
"metadata": {},
"outputs": [],
"source": [
"!RUST_LOG=trace\n",
"# TODO: Dictionary outputs\n",
"res = ezkl.gen_settings(model_path, settings_path)\n",
"assert res == True\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cal_path = os.path.join(\"calibration.json\")\n",
"\n",
"data_array = (torch.randn(20, *shape).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data = dict(input_data = [data_array])\n",
"\n",
"# Serialize data into file:\n",
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"res = await ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"assert res == True\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3aa4f090",
"metadata": {},
"outputs": [],
"source": [
"res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8b74dcee",
"metadata": {},
"outputs": [],
"source": [
"# srs path\n",
"res = await ezkl.get_srs( settings_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "18c8b7c7",
"metadata": {},
"outputs": [],
"source": [
"# now generate the witness file \n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b1c561a8",
"metadata": {},
"outputs": [],
"source": [
"\n",
"# HERE WE SETUP THE CIRCUIT PARAMS\n",
"# WE GOT KEYS\n",
"# WE GOT CIRCUIT PARAMETERS\n",
"# EVERYTHING ANYONE HAS EVER NEEDED FOR ZK\n",
"\n",
"\n",
"\n",
"res = ezkl.setup(\n",
" compiled_model_path,\n",
" vk_path,\n",
" pk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
"assert os.path.isfile(vk_path)\n",
"assert os.path.isfile(pk_path)\n",
"assert os.path.isfile(settings_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c384cbc8",
"metadata": {},
"outputs": [],
"source": [
"# GENERATE A PROOF\n",
"\n",
"\n",
"proof_path = os.path.join('test.pf')\n",
"\n",
"res = ezkl.prove(\n",
" witness_path,\n",
" compiled_model_path,\n",
" pk_path,\n",
" proof_path,\n",
" \n",
" \"single\",\n",
" )\n",
"\n",
"print(res)\n",
"assert os.path.isfile(proof_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "76f00d41",
"metadata": {},
"outputs": [],
"source": [
"# VERIFY IT\n",
"\n",
"res = ezkl.verify(\n",
" proof_path,\n",
" settings_path,\n",
" vk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
"print(\"verified\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
"cells": [
{
"cell_type": "markdown",
"id": "cf69bb3f-94e6-4dba-92cd-ce08df117d67",
"metadata": {},
"source": [
"## Linear Regression\n",
"\n",
"\n",
"Sklearn based models are slightly finicky to get into a suitable onnx format. \n",
"This notebook showcases how to do so using the `hummingbird-ml` python package ! "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "95613ee9",
"metadata": {},
"outputs": [],
"source": [
"# check if notebook is in colab\n",
"try:\n",
" # install ezkl\n",
" import google.colab\n",
" import subprocess\n",
" import sys\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"hummingbird-ml\"])\n",
"\n",
"# rely on local installation of ezkl if the notebook is not in colab\n",
"except:\n",
" pass\n",
"\n",
"import os\n",
"import torch\n",
"import ezkl\n",
"import json\n",
"from hummingbird.ml import convert\n",
"\n",
"\n",
"# here we create and (potentially train a model)\n",
"\n",
"# make sure you have the dependencies required here already installed\n",
"import numpy as np\n",
"from sklearn.linear_model import LinearRegression\n",
"X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])\n",
"# y = 1 * x_0 + 2 * x_1 + 3\n",
"y = np.dot(X, np.array([1, 2])) + 3\n",
"reg = LinearRegression().fit(X, y)\n",
"reg.score(X, y)\n",
"\n",
"circuit = convert(reg, \"torch\", X[:1]).model\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b37637c4",
"metadata": {},
"outputs": [],
"source": [
"model_path = os.path.join('network.onnx')\n",
"compiled_model_path = os.path.join('network.compiled')\n",
"pk_path = os.path.join('test.pk')\n",
"vk_path = os.path.join('test.vk')\n",
"settings_path = os.path.join('settings.json')\n",
"\n",
"witness_path = os.path.join('witness.json')\n",
"data_path = os.path.join('input.json')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "82db373a",
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"# export to onnx format\n",
"# !!!!!!!!!!!!!!!!! This will flash a warning but it is fine !!!!!!!!!!!!!!!!!!!!!\n",
"\n",
"# Input to the model\n",
"shape = X.shape[1:]\n",
"x = torch.rand(1, *shape, requires_grad=True)\n",
"torch_out = circuit(x)\n",
"# Export the model\n",
"torch.onnx.export(circuit, # model being run\n",
" # model input (or a tuple for multiple inputs)\n",
" x,\n",
" # where to save the model (can be a file or file-like object)\n",
" \"network.onnx\",\n",
" export_params=True, # store the trained parameter weights inside the model file\n",
" opset_version=10, # the ONNX version to export the model to\n",
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
" input_names=['input'], # the model's input names\n",
" output_names=['output'], # the model's output names\n",
" dynamic_axes={'input': {0: 'batch_size'}, # variable length axes\n",
" 'output': {0: 'batch_size'}})\n",
"\n",
"d = ((x).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data = dict(input_shapes=[shape],\n",
" input_data=[d],\n",
" output_data=[((o).detach().numpy()).reshape([-1]).tolist() for o in torch_out])\n",
"\n",
"# Serialize data into file:\n",
"json.dump(data, open(\"input.json\", 'w'))\n",
"\n",
"\n",
"# note that you can also call the following function to generate random data for the model\n",
"# it is functionally equivalent to the code above\n",
"ezkl.gen_random_data()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d5e374a2",
"metadata": {},
"outputs": [],
"source": [
"!RUST_LOG=trace\n",
"# TODO: Dictionary outputs\n",
"res = ezkl.gen_settings(model_path, settings_path)\n",
"assert res == True\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cal_path = os.path.join(\"calibration.json\")\n",
"\n",
"data_array = (torch.randn(20, *shape).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data = dict(input_data = [data_array])\n",
"\n",
"# Serialize data into file:\n",
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"res = await ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"assert res == True\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3aa4f090",
"metadata": {},
"outputs": [],
"source": [
"res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8b74dcee",
"metadata": {},
"outputs": [],
"source": [
"# srs path\n",
"res = await ezkl.get_srs( settings_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "18c8b7c7",
"metadata": {},
"outputs": [],
"source": [
"# now generate the witness file \n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b1c561a8",
"metadata": {},
"outputs": [],
"source": [
"\n",
"# HERE WE SETUP THE CIRCUIT PARAMS\n",
"# WE GOT KEYS\n",
"# WE GOT CIRCUIT PARAMETERS\n",
"# EVERYTHING ANYONE HAS EVER NEEDED FOR ZK\n",
"\n",
"\n",
"\n",
"res = ezkl.setup(\n",
" compiled_model_path,\n",
" vk_path,\n",
" pk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
"assert os.path.isfile(vk_path)\n",
"assert os.path.isfile(pk_path)\n",
"assert os.path.isfile(settings_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c384cbc8",
"metadata": {},
"outputs": [],
"source": [
"# GENERATE A PROOF\n",
"\n",
"\n",
"proof_path = os.path.join('test.pf')\n",
"\n",
"res = ezkl.prove(\n",
" witness_path,\n",
" compiled_model_path,\n",
" pk_path,\n",
" proof_path,\n",
" \n",
" \"single\",\n",
" )\n",
"\n",
"print(res)\n",
"assert os.path.isfile(proof_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "76f00d41",
"metadata": {},
"outputs": [],
"source": [
"# VERIFY IT\n",
"\n",
"res = ezkl.verify(\n",
" proof_path,\n",
" settings_path,\n",
" vk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
"print(\"verified\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -1,456 +1,459 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Mean of ERC20 transfer amounts\n",
"\n",
"This notebook shows how to calculate the mean of ERC20 transfer amounts, pulling data in from a Postgres database. First we install and get the necessary libraries running. \n",
"The first of which is [shovel](https://indexsupply.com/shovel/docs/#getting-started), which is a library that allows us to pull data from the Ethereum blockchain into a Postgres database.\n",
"\n",
"Make sure you install postgres if needed https://indexsupply.com/shovel/docs/#getting-started. \n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import getpass\n",
"import json\n",
"import time\n",
"import subprocess\n",
"\n",
"# swap out for the relevant linux/amd64, darwin/arm64, darwin/amd64, windows/amd64\n",
"os.system(\"curl -LO https://indexsupply.net/bin/1.0/linux/amd64/shovel\")\n",
"os.system(\"chmod +x shovel\")\n",
"\n",
"\n",
"os.environ[\"PG_URL\"] = \"postgres://\" + getpass.getuser() + \":@localhost:5432/shovel\"\n",
"\n",
"# create a config.json file with the following contents\n",
"config = {\n",
" \"pg_url\": \"$PG_URL\",\n",
" \"eth_sources\": [\n",
" {\"name\": \"mainnet\", \"chain_id\": 1, \"url\": \"https://ethereum-rpc.publicnode.com\"},\n",
" {\"name\": \"base\", \"chain_id\": 8453, \"url\": \"https://base-rpc.publicnode.com\"}\n",
" ],\n",
" \"integrations\": [{\n",
" \"name\": \"usdc_transfer\",\n",
" \"enabled\": True,\n",
" \"sources\": [{\"name\": \"mainnet\"}, {\"name\": \"base\"}],\n",
" \"table\": {\n",
" \"name\": \"usdc\",\n",
" \"columns\": [\n",
" {\"name\": \"log_addr\", \"type\": \"bytea\"},\n",
" {\"name\": \"block_num\", \"type\": \"numeric\"},\n",
" {\"name\": \"f\", \"type\": \"bytea\"},\n",
" {\"name\": \"t\", \"type\": \"bytea\"},\n",
" {\"name\": \"v\", \"type\": \"numeric\"}\n",
" ]\n",
" },\n",
" \"block\": [\n",
" {\"name\": \"block_num\", \"column\": \"block_num\"},\n",
" {\n",
" \"name\": \"log_addr\",\n",
" \"column\": \"log_addr\",\n",
" \"filter_op\": \"contains\",\n",
" \"filter_arg\": [\n",
" \"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48\",\n",
" \"833589fCD6eDb6E08f4c7C32D4f71b54bdA02913\"\n",
" ]\n",
" }\n",
" ],\n",
" \"event\": {\n",
" \"name\": \"Transfer\",\n",
" \"type\": \"event\",\n",
" \"anonymous\": False,\n",
" \"inputs\": [\n",
" {\"indexed\": True, \"name\": \"from\", \"type\": \"address\", \"column\": \"f\"},\n",
" {\"indexed\": True, \"name\": \"to\", \"type\": \"address\", \"column\": \"t\"},\n",
" {\"indexed\": False, \"name\": \"value\", \"type\": \"uint256\", \"column\": \"v\"}\n",
" ]\n",
" }\n",
" }]\n",
"}\n",
"\n",
"# write the config to a file\n",
"with open(\"config.json\", \"w\") as f:\n",
" f.write(json.dumps(config))\n",
"\n",
"\n",
"# print the two env variables\n",
"os.system(\"echo $PG_URL\")\n",
"\n",
"os.system(\"createdb -h localhost -p 5432 shovel\")\n",
"\n",
"os.system(\"echo shovel is now installed. starting:\")\n",
"\n",
"command = [\"./shovel\", \"-config\", \"config.json\"]\n",
"proc = subprocess.Popen(command)\n",
"\n",
"os.system(\"echo shovel started.\")\n",
"\n",
"time.sleep(10)\n",
"\n",
"# after we've fetched some data -- kill the process\n",
"proc.terminate()\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "2wIAHwqH2_mo"
},
"source": [
"**Import Dependencies**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "9Byiv2Nc2MsK"
},
"outputs": [],
"source": [
"# check if notebook is in colab\n",
"try:\n",
" # install ezkl\n",
" import google.colab\n",
" import subprocess\n",
" import sys\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n",
"\n",
"# rely on local installation of ezkl if the notebook is not in colab\n",
"except:\n",
" pass\n",
"\n",
"import ezkl\n",
"import torch\n",
"import datetime\n",
"import pandas as pd\n",
"import requests\n",
"import json\n",
"import os\n",
"\n",
"import logging\n",
"# # uncomment for more descriptive logging \n",
"FORMAT = '%(levelname)s %(name)s %(asctime)-15s %(filename)s:%(lineno)d %(message)s'\n",
"logging.basicConfig(format=FORMAT)\n",
"logging.getLogger().setLevel(logging.DEBUG)\n",
"\n",
"print(\"ezkl version: \", ezkl.__version__)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "osjj-0Ta3E8O"
},
"source": [
"**Create Computational Graph**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "x1vl9ZXF3EEW",
"outputId": "bda21d02-fe5f-4fb2-8106-f51a8e2e67aa"
},
"outputs": [],
"source": [
"from torch import nn\n",
"import torch\n",
"\n",
"\n",
"class Model(nn.Module):\n",
" def __init__(self):\n",
" super(Model, self).__init__()\n",
"\n",
" # x is a time series \n",
" def forward(self, x):\n",
" return [torch.mean(x)]\n",
"\n",
"\n",
"\n",
"\n",
"circuit = Model()\n",
"\n",
"\n",
"\n",
"\n",
"x = 0.1*torch.rand(1,*[1,5], requires_grad=True)\n",
"\n",
"# # print(torch.__version__)\n",
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
"\n",
"print(device)\n",
"\n",
"circuit.to(device)\n",
"\n",
"# Flips the neural net into inference mode\n",
"circuit.eval()\n",
"\n",
"# Export the model\n",
"torch.onnx.export(circuit, # model being run\n",
" x, # model input (or a tuple for multiple inputs)\n",
" \"lol.onnx\", # where to save the model (can be a file or file-like object)\n",
" export_params=True, # store the trained parameter weights inside the model file\n",
" opset_version=11, # the ONNX version to export the model to\n",
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
" input_names = ['input'], # the model's input names\n",
" output_names = ['output'], # the model's output names\n",
" dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes\n",
" 'output' : {0 : 'batch_size'}})\n",
"\n",
"# export(circuit, input_shape=[1, 20])\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "E3qCeX-X5xqd"
},
"source": [
"**Set Data Source and Get Data**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "6RAMplxk5xPk",
"outputId": "bd2158fe-0c00-44fd-e632-6a3f70cdb7c9"
},
"outputs": [],
"source": [
"import getpass\n",
"# make an input.json file from the df above\n",
"input_filename = os.path.join('input.json')\n",
"\n",
"pg_input_file = dict(input_data = {\n",
" \"host\": \"localhost\",\n",
" # make sure you replace this with your own username\n",
" \"user\": getpass.getuser(),\n",
" \"dbname\": \"shovel\",\n",
" \"password\": \"\",\n",
" \"query\": \"SELECT v FROM usdc ORDER BY block_num DESC LIMIT 5\",\n",
" \"port\": \"5432\",\n",
"})\n",
"\n",
"json_formatted_str = json.dumps(pg_input_file, indent=2)\n",
"print(json_formatted_str)\n",
"\n",
"\n",
" # Serialize data into file:\n",
"json.dump(pg_input_file, open(input_filename, 'w' ))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# this corresponds to 4 batches\n",
"calibration_filename = os.path.join('calibration.json')\n",
"\n",
"pg_cal_file = dict(input_data = {\n",
" \"host\": \"localhost\",\n",
" # make sure you replace this with your own username\n",
" \"user\": getpass.getuser(),\n",
" \"dbname\": \"shovel\",\n",
" \"password\": \"\",\n",
" \"query\": \"SELECT v FROM usdc ORDER BY block_num DESC LIMIT 20\",\n",
" \"port\": \"5432\",\n",
"})\n",
"\n",
" # Serialize data into file:\n",
"json.dump( pg_cal_file, open(calibration_filename, 'w' ))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eLJ7oirQ_HQR"
},
"source": [
"**EZKL Workflow**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "rNw0C9QL6W88"
},
"outputs": [],
"source": [
"import subprocess\n",
"import os\n",
"\n",
"onnx_filename = os.path.join('lol.onnx')\n",
"compiled_filename = os.path.join('lol.compiled')\n",
"settings_filename = os.path.join('settings.json')\n",
"\n",
"# Generate settings using ezkl\n",
"res = ezkl.gen_settings(onnx_filename, settings_filename)\n",
"\n",
"assert res == True\n",
"\n",
"res = await ezkl.calibrate_settings(input_filename, onnx_filename, settings_filename, \"resources\")\n",
"\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"ezkl.compile_circuit(onnx_filename, compiled_filename, settings_filename)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "4MmE9SX66_Il",
"outputId": "16403639-66a4-4280-ac7f-6966b75de5a3"
},
"outputs": [],
"source": [
"# generate settings\n",
"\n",
"\n",
"# show the settings.json\n",
"with open(\"settings.json\") as f:\n",
" data = json.load(f)\n",
" json_formatted_str = json.dumps(data, indent=2)\n",
"\n",
" print(json_formatted_str)\n",
"\n",
"assert os.path.exists(\"settings.json\")\n",
"assert os.path.exists(\"input.json\")\n",
"assert os.path.exists(\"lol.onnx\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "fULvvnK7_CMb"
},
"outputs": [],
"source": [
"pk_path = os.path.join('test.pk')\n",
"vk_path = os.path.join('test.vk')\n",
"\n",
"\n",
"# setup the proof\n",
"res = ezkl.setup(\n",
" compiled_filename,\n",
" vk_path,\n",
" pk_path\n",
" )\n",
"\n",
"assert res == True\n",
"assert os.path.isfile(vk_path)\n",
"assert os.path.isfile(pk_path)\n",
"assert os.path.isfile(settings_filename)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"witness_path = \"witness.json\"\n",
"\n",
"# generate the witness\n",
"res = await ezkl.gen_witness(\n",
" input_filename,\n",
" compiled_filename,\n",
" witness_path\n",
" )\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Oog3j6Kd-Wed",
"outputId": "5839d0c1-5b43-476e-c2f8-6707de562260"
},
"outputs": [],
"source": [
"# prove the zk circuit\n",
"# GENERATE A PROOF\n",
"proof_path = os.path.join('test.pf')\n",
"\n",
"\n",
"proof = ezkl.prove(\n",
" witness_path,\n",
" compiled_filename,\n",
" pk_path,\n",
" proof_path,\n",
" \"single\"\n",
" )\n",
"\n",
"\n",
"print(\"proved\")\n",
"\n",
"assert os.path.isfile(proof_path)\n",
"\n"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Mean of ERC20 transfer amounts\n",
"\n",
"This notebook shows how to calculate the mean of ERC20 transfer amounts, pulling data in from a Postgres database. First we install and get the necessary libraries running. \n",
"The first of which is [shovel](https://indexsupply.com/shovel/docs/#getting-started), which is a library that allows us to pull data from the Ethereum blockchain into a Postgres database.\n",
"\n",
"Make sure you install postgres if needed https://indexsupply.com/shovel/docs/#getting-started. \n",
"\n"
]
},
"nbformat": 4,
"nbformat_minor": 0
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import getpass\n",
"import json\n",
"import time\n",
"import subprocess\n",
"\n",
"# swap out for the relevant linux/amd64, darwin/arm64, darwin/amd64, windows/amd64\n",
"os.system(\"curl -LO https://indexsupply.net/bin/1.0/linux/amd64/shovel\")\n",
"os.system(\"chmod +x shovel\")\n",
"\n",
"\n",
"os.environ[\"PG_URL\"] = \"postgres://\" + getpass.getuser() + \":@localhost:5432/shovel\"\n",
"\n",
"# create a config.json file with the following contents\n",
"config = {\n",
" \"pg_url\": \"$PG_URL\",\n",
" \"eth_sources\": [\n",
" {\"name\": \"mainnet\", \"chain_id\": 1, \"url\": \"https://ethereum-rpc.publicnode.com\"},\n",
" {\"name\": \"base\", \"chain_id\": 8453, \"url\": \"https://base-rpc.publicnode.com\"}\n",
" ],\n",
" \"integrations\": [{\n",
" \"name\": \"usdc_transfer\",\n",
" \"enabled\": True,\n",
" \"sources\": [{\"name\": \"mainnet\"}, {\"name\": \"base\"}],\n",
" \"table\": {\n",
" \"name\": \"usdc\",\n",
" \"columns\": [\n",
" {\"name\": \"log_addr\", \"type\": \"bytea\"},\n",
" {\"name\": \"block_num\", \"type\": \"numeric\"},\n",
" {\"name\": \"f\", \"type\": \"bytea\"},\n",
" {\"name\": \"t\", \"type\": \"bytea\"},\n",
" {\"name\": \"v\", \"type\": \"numeric\"}\n",
" ]\n",
" },\n",
" \"block\": [\n",
" {\"name\": \"block_num\", \"column\": \"block_num\"},\n",
" {\n",
" \"name\": \"log_addr\",\n",
" \"column\": \"log_addr\",\n",
" \"filter_op\": \"contains\",\n",
" \"filter_arg\": [\n",
" \"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48\",\n",
" \"833589fCD6eDb6E08f4c7C32D4f71b54bdA02913\"\n",
" ]\n",
" }\n",
" ],\n",
" \"event\": {\n",
" \"name\": \"Transfer\",\n",
" \"type\": \"event\",\n",
" \"anonymous\": False,\n",
" \"inputs\": [\n",
" {\"indexed\": True, \"name\": \"from\", \"type\": \"address\", \"column\": \"f\"},\n",
" {\"indexed\": True, \"name\": \"to\", \"type\": \"address\", \"column\": \"t\"},\n",
" {\"indexed\": False, \"name\": \"value\", \"type\": \"uint256\", \"column\": \"v\"}\n",
" ]\n",
" }\n",
" }]\n",
"}\n",
"\n",
"# write the config to a file\n",
"with open(\"config.json\", \"w\") as f:\n",
" f.write(json.dumps(config))\n",
"\n",
"\n",
"# print the two env variables\n",
"os.system(\"echo $PG_URL\")\n",
"\n",
"os.system(\"createdb -h localhost -p 5432 shovel\")\n",
"\n",
"os.system(\"echo shovel is now installed. starting:\")\n",
"\n",
"command = [\"./shovel\", \"-config\", \"config.json\"]\n",
"proc = subprocess.Popen(command)\n",
"\n",
"os.system(\"echo shovel started.\")\n",
"\n",
"time.sleep(10)\n",
"\n",
"# after we've fetched some data -- kill the process\n",
"proc.terminate()\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "2wIAHwqH2_mo"
},
"source": [
"**Import Dependencies**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "9Byiv2Nc2MsK"
},
"outputs": [],
"source": [
"# check if notebook is in colab\n",
"try:\n",
" # install ezkl\n",
" import google.colab\n",
" import subprocess\n",
" import sys\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n",
"\n",
"# rely on local installation of ezkl if the notebook is not in colab\n",
"except:\n",
" pass\n",
"\n",
"import ezkl\n",
"import torch\n",
"import datetime\n",
"import pandas as pd\n",
"import requests\n",
"import json\n",
"import os\n",
"\n",
"import logging\n",
"# # uncomment for more descriptive logging \n",
"FORMAT = '%(levelname)s %(name)s %(asctime)-15s %(filename)s:%(lineno)d %(message)s'\n",
"logging.basicConfig(format=FORMAT)\n",
"logging.getLogger().setLevel(logging.DEBUG)\n",
"\n",
"print(\"ezkl version: \", ezkl.__version__)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "osjj-0Ta3E8O"
},
"source": [
"**Create Computational Graph**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "x1vl9ZXF3EEW",
"outputId": "bda21d02-fe5f-4fb2-8106-f51a8e2e67aa"
},
"outputs": [],
"source": [
"from torch import nn\n",
"import torch\n",
"\n",
"\n",
"class Model(nn.Module):\n",
" def __init__(self):\n",
" super(Model, self).__init__()\n",
"\n",
" # x is a time series \n",
" def forward(self, x):\n",
" return [torch.mean(x)]\n",
"\n",
"\n",
"\n",
"\n",
"circuit = Model()\n",
"\n",
"\n",
"\n",
"\n",
"x = 0.1*torch.rand(1,*[1,5], requires_grad=True)\n",
"\n",
"# # print(torch.__version__)\n",
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
"\n",
"print(device)\n",
"\n",
"circuit.to(device)\n",
"\n",
"# Flips the neural net into inference mode\n",
"circuit.eval()\n",
"\n",
"# Export the model\n",
"torch.onnx.export(circuit, # model being run\n",
" x, # model input (or a tuple for multiple inputs)\n",
" \"lol.onnx\", # where to save the model (can be a file or file-like object)\n",
" export_params=True, # store the trained parameter weights inside the model file\n",
" opset_version=11, # the ONNX version to export the model to\n",
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
" input_names = ['input'], # the model's input names\n",
" output_names = ['output'], # the model's output names\n",
" dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes\n",
" 'output' : {0 : 'batch_size'}})\n",
"\n",
"# export(circuit, input_shape=[1, 20])\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "E3qCeX-X5xqd"
},
"source": [
"**Set Data Source and Get Data**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "6RAMplxk5xPk",
"outputId": "bd2158fe-0c00-44fd-e632-6a3f70cdb7c9"
},
"outputs": [],
"source": [
"import getpass\n",
"# make an input.json file from the df above\n",
"input_filename = os.path.join('input.json')\n",
"\n",
"pg_input_file = dict(input_data = {\n",
" \"host\": \"localhost\",\n",
" # make sure you replace this with your own username\n",
" \"user\": getpass.getuser(),\n",
" \"dbname\": \"shovel\",\n",
" \"password\": \"\",\n",
" \"query\": \"SELECT v FROM usdc ORDER BY block_num DESC LIMIT 5\",\n",
" \"port\": \"5432\",\n",
"})\n",
"\n",
"json_formatted_str = json.dumps(pg_input_file, indent=2)\n",
"print(json_formatted_str)\n",
"\n",
"\n",
" # Serialize data into file:\n",
"json.dump(pg_input_file, open(input_filename, 'w' ))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# this corresponds to 4 batches\n",
"calibration_filename = os.path.join('calibration.json')\n",
"\n",
"pg_cal_file = dict(input_data = {\n",
" \"host\": \"localhost\",\n",
" # make sure you replace this with your own username\n",
" \"user\": getpass.getuser(),\n",
" \"dbname\": \"shovel\",\n",
" \"password\": \"\",\n",
" \"query\": \"SELECT v FROM usdc ORDER BY block_num DESC LIMIT 20\",\n",
" \"port\": \"5432\",\n",
"})\n",
"\n",
" # Serialize data into file:\n",
"json.dump( pg_cal_file, open(calibration_filename, 'w' ))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eLJ7oirQ_HQR"
},
"source": [
"**EZKL Workflow**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "rNw0C9QL6W88"
},
"outputs": [],
"source": [
"import subprocess\n",
"import os\n",
"\n",
"onnx_filename = os.path.join('lol.onnx')\n",
"compiled_filename = os.path.join('lol.compiled')\n",
"settings_filename = os.path.join('settings.json')\n",
"\n",
"# Generate settings using ezkl\n",
"res = ezkl.gen_settings(onnx_filename, settings_filename)\n",
"\n",
"assert res == True\n",
"\n",
"res = await ezkl.calibrate_settings(input_filename, onnx_filename, settings_filename, \"resources\")\n",
"\n",
"assert res == True\n",
"\n",
"await ezkl.get_srs(settings_filename)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"ezkl.compile_circuit(onnx_filename, compiled_filename, settings_filename)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "4MmE9SX66_Il",
"outputId": "16403639-66a4-4280-ac7f-6966b75de5a3"
},
"outputs": [],
"source": [
"# generate settings\n",
"\n",
"\n",
"# show the settings.json\n",
"with open(\"settings.json\") as f:\n",
" data = json.load(f)\n",
" json_formatted_str = json.dumps(data, indent=2)\n",
"\n",
" print(json_formatted_str)\n",
"\n",
"assert os.path.exists(\"settings.json\")\n",
"assert os.path.exists(\"input.json\")\n",
"assert os.path.exists(\"lol.onnx\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "fULvvnK7_CMb"
},
"outputs": [],
"source": [
"pk_path = os.path.join('test.pk')\n",
"vk_path = os.path.join('test.vk')\n",
"\n",
"\n",
"# setup the proof\n",
"res = ezkl.setup(\n",
" compiled_filename,\n",
" vk_path,\n",
" pk_path\n",
" )\n",
"\n",
"assert res == True\n",
"assert os.path.isfile(vk_path)\n",
"assert os.path.isfile(pk_path)\n",
"assert os.path.isfile(settings_filename)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"witness_path = \"witness.json\"\n",
"\n",
"# generate the witness\n",
"res = await ezkl.gen_witness(\n",
" input_filename,\n",
" compiled_filename,\n",
" witness_path\n",
" )\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Oog3j6Kd-Wed",
"outputId": "5839d0c1-5b43-476e-c2f8-6707de562260"
},
"outputs": [],
"source": [
"# prove the zk circuit\n",
"# GENERATE A PROOF\n",
"proof_path = os.path.join('test.pf')\n",
"\n",
"\n",
"proof = ezkl.prove(\n",
" witness_path,\n",
" compiled_filename,\n",
" pk_path,\n",
" proof_path,\n",
" \"single\"\n",
" )\n",
"\n",
"\n",
"print(\"proved\")\n",
"\n",
"assert os.path.isfile(proof_path)\n",
"\n"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": ".env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -453,18 +453,18 @@
"outputs": [],
"source": [
"# now mock aggregate the proofs\n",
"proofs = []\n",
"for i in range(3):\n",
" proof_path = os.path.join('proof_split_'+str(i)+'.json')\n",
" proofs.append(proof_path)\n",
"# proofs = []\n",
"# for i in range(3):\n",
"# proof_path = os.path.join('proof_split_'+str(i)+'.json')\n",
"# proofs.append(proof_path)\n",
"\n",
"ezkl.mock_aggregate(proofs, logrows=23, split_proofs = True)"
"# ezkl.mock_aggregate(proofs, logrows=26, split_proofs = True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "ezkl",
"display_name": ".env",
"language": "python",
"name": "python3"
},
@@ -478,7 +478,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.5"
"version": "3.12.7"
},
"orig_nbformat": 4
},

View File

@@ -0,0 +1,766 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"This is a zk version of the tutorial found [here](https://github.com/bentrevett/pytorch-sentiment-analysis/blob/main/1%20-%20Neural%20Bag%20of%20Words.ipynb). The original tutorial is part of the PyTorch Sentiment Analysis series by Ben Trevett.\n",
"\n",
"1 - NBoW\n",
"\n",
"In this series we'll be building a machine learning model to perform sentiment analysis -- a subset of text classification where the task is to detect if a given sentence is positive or negative -- using PyTorch and torchtext. The dataset used will be movie reviews from the IMDb dataset, which we'll obtain using the datasets library.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"Preparing Data\n",
"\n",
"Before we can implement our NBoW model, we first have to perform quite a few steps to get our data ready to use. NLP usually requires quite a lot of data wrangling beforehand, though libraries such as datasets and torchtext handle most of this for us.\n",
"\n",
"The steps to take are:\n",
"\n",
" 1. importing modules\n",
" 2. loading data\n",
" 3. tokenizing data\n",
" 4. creating data splits\n",
" 5. creating a vocabulary\n",
" 6. numericalizing data\n",
" 7. creating the data loaders\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"! pip install torchtex"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import collections\n",
"\n",
"import datasets\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import torch\n",
"import torch.nn as nn\n",
"import torch.optim as optim\n",
"import torchtext\n",
"import tqdm\n",
"\n",
"# It is usually good practice to run your experiments multiple times with different random seeds -- both to measure the variance of your model and also to avoid having results only calculated with either \"good\" or \"bad\" seeds, i.e. being very lucky or unlucky with the randomness in the training process.\n",
"\n",
"seed = 1234\n",
"\n",
"np.random.seed(seed)\n",
"torch.manual_seed(seed)\n",
"torch.cuda.manual_seed(seed)\n",
"torch.backends.cudnn.deterministic = True\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_data, test_data = datasets.load_dataset(\"imdb\", split=[\"train\", \"test\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can check the features attribute of a split to get more information about the features. We can see that text is a Value of dtype=string -- in other words, it's a string -- and that label is a ClassLabel. A ClassLabel means the feature is an integer representation of which class the example belongs to. num_classes=2 means that our labels are one of two values, 0 or 1, and names=['neg', 'pos'] gives us the human-readable versions of those values. Thus, a label of 0 means the example is a negative review and a label of 1 means the example is a positive review."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_data.features\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_data[0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"One of the first things we need to do to our data is tokenize it. Machine learning models aren't designed to handle strings, they're design to handle numbers. So what we need to do is break down our string into individual tokens, and then convert these tokens to numbers. We'll get to the conversion later, but first we'll look at tokenization.\n",
"\n",
"Tokenization involves using a tokenizer to process the strings in our dataset. A tokenizer is a function that goes from a string to a list of strings. There are many types of tokenizers available, but we're going to use a relatively simple one provided by torchtext called the basic_english tokenizer. We load our tokenizer as such:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenizer = torchtext.data.utils.get_tokenizer(\"basic_english\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def tokenize_example(example, tokenizer, max_length):\n",
" tokens = tokenizer(example[\"text\"])[:max_length]\n",
" return {\"tokens\": tokens}\n",
"\n",
"\n",
"max_length = 256\n",
"\n",
"train_data = train_data.map(\n",
" tokenize_example, fn_kwargs={\"tokenizer\": tokenizer, \"max_length\": max_length}\n",
")\n",
"test_data = test_data.map(\n",
" tokenize_example, fn_kwargs={\"tokenizer\": tokenizer, \"max_length\": max_length}\n",
")\n",
"\n",
"\n",
"# create validation data \n",
"# Why have both a validation set and a test set? Your test set respresents the real world data that you'd see if you actually deployed this model. You won't be able to see what data your model will be fed once deployed, and your test set is supposed to reflect that. Every time we tune our model hyperparameters or training set-up to make it do a bit better on the test set, we are leak information from the test set into the training process. If we do this too often then we begin to overfit on the test set. Hence, we need some data which can act as a \"proxy\" test set which we can look at more frequently in order to evaluate how well our model actually does on unseen data -- this is the validation set.\n",
"\n",
"test_size = 0.25\n",
"\n",
"train_valid_data = train_data.train_test_split(test_size=test_size)\n",
"train_data = train_valid_data[\"train\"]\n",
"valid_data = train_valid_data[\"test\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, we have to build a vocabulary. This is look-up table where every unique token in your dataset has a corresponding index (an integer).\n",
"\n",
"We do this as machine learning models cannot operate on strings, only numerical vaslues. Each index is used to construct a one-hot vector for each token. A one-hot vector is a vector where all the elements are 0, except one, which is 1, and the dimensionality is the total number of unique tokens in your vocabulary, commonly denoted by V."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"min_freq = 5\n",
"special_tokens = [\"<unk>\", \"<pad>\"]\n",
"\n",
"vocab = torchtext.vocab.build_vocab_from_iterator(\n",
" train_data[\"tokens\"],\n",
" min_freq=min_freq,\n",
" specials=special_tokens,\n",
")\n",
"\n",
"# We store the indices of the unknown and padding tokens (zero and one, respectively) in variables, as we'll use these further on in this notebook.\n",
"\n",
"unk_index = vocab[\"<unk>\"]\n",
"pad_index = vocab[\"<pad>\"]\n",
"\n",
"\n",
"vocab.set_default_index(unk_index)\n",
"\n",
"# To look-up a list of tokens, we can use the vocabulary's lookup_indices method.\n",
"vocab.lookup_indices([\"hello\", \"world\", \"some_token\", \"<pad>\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we have our vocabulary, we can numericalize our data. This involves converting the tokens within our dataset into indices. Similar to how we tokenized our data using the Dataset.map method, we'll define a function that takes an example and our vocabulary, gets the index for each token in each example and then creates an ids field which containes the numericalized tokens."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def numericalize_example(example, vocab):\n",
" ids = vocab.lookup_indices(example[\"tokens\"])\n",
" return {\"ids\": ids}\n",
"\n",
"train_data = train_data.map(numericalize_example, fn_kwargs={\"vocab\": vocab})\n",
"valid_data = valid_data.map(numericalize_example, fn_kwargs={\"vocab\": vocab})\n",
"test_data = test_data.map(numericalize_example, fn_kwargs={\"vocab\": vocab})\n",
"\n",
"train_data = train_data.with_format(type=\"torch\", columns=[\"ids\", \"label\"])\n",
"valid_data = valid_data.with_format(type=\"torch\", columns=[\"ids\", \"label\"])\n",
"test_data = test_data.with_format(type=\"torch\", columns=[\"ids\", \"label\"])\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The final step of preparing the data is creating the data loaders. We can iterate over a data loader to retrieve batches of examples. This is also where we will perform any padding that is necessary.\n",
"\n",
"We first need to define a function to collate a batch, consisting of a list of examples, into what we want our data loader to output.\n",
"\n",
"Here, our desired output from the data loader is a dictionary with keys of \"ids\" and \"label\".\n",
"\n",
"The value of batch[\"ids\"] should be a tensor of shape [batch size, length], where length is the length of the longest sentence (in terms of tokens) within the batch, and all sentences shorter than this should be padded to that length.\n",
"\n",
"The value of batch[\"label\"] should be a tensor of shape [batch size] consisting of the label for each sentence in the batch.\n",
"\n",
"We define a function, get_collate_fn, which is passed the pad token index and returns the actual collate function. Within the actual collate function, collate_fn, we get a list of \"ids\" tensors for each example in the batch, and then use the pad_sequence function, which converts the list of tensors into the desired [batch size, length] shaped tensor and performs padding using the specified pad_index. By default, pad_sequence will return a [length, batch size] shaped tensor, but by setting batch_first=True, these two dimensions are switched. We get a list of \"label\" tensors and convert the list of tensors into a single [batch size] shaped tensor."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def get_collate_fn(pad_index):\n",
" def collate_fn(batch):\n",
" batch_ids = [i[\"ids\"] for i in batch]\n",
" batch_ids = nn.utils.rnn.pad_sequence(\n",
" batch_ids, padding_value=pad_index, batch_first=True\n",
" )\n",
" batch_label = [i[\"label\"] for i in batch]\n",
" batch_label = torch.stack(batch_label)\n",
" batch = {\"ids\": batch_ids, \"label\": batch_label}\n",
" return batch\n",
"\n",
" return collate_fn\n",
"\n",
"def get_data_loader(dataset, batch_size, pad_index, shuffle=False):\n",
" collate_fn = get_collate_fn(pad_index)\n",
" data_loader = torch.utils.data.DataLoader(\n",
" dataset=dataset,\n",
" batch_size=batch_size,\n",
" collate_fn=collate_fn,\n",
" shuffle=shuffle,\n",
" )\n",
" return data_loader\n",
"\n",
"\n",
"batch_size = 512\n",
"\n",
"train_data_loader = get_data_loader(train_data, batch_size, pad_index, shuffle=True)\n",
"valid_data_loader = get_data_loader(valid_data, batch_size, pad_index)\n",
"test_data_loader = get_data_loader(test_data, batch_size, pad_index)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"class NBoW(nn.Module):\n",
" def __init__(self, vocab_size, embedding_dim, output_dim, pad_index):\n",
" super().__init__()\n",
" self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=pad_index)\n",
" self.fc = nn.Linear(embedding_dim, output_dim)\n",
"\n",
" def forward(self, ids):\n",
" # ids = [batch size, seq len]\n",
" embedded = self.embedding(ids)\n",
" # embedded = [batch size, seq len, embedding dim]\n",
" pooled = embedded.mean(dim=1)\n",
" # pooled = [batch size, embedding dim]\n",
" prediction = self.fc(pooled)\n",
" # prediction = [batch size, output dim]\n",
" return prediction\n",
"\n",
"\n",
"vocab_size = len(vocab)\n",
"embedding_dim = 300\n",
"output_dim = len(train_data.unique(\"label\"))\n",
"\n",
"model = NBoW(vocab_size, embedding_dim, output_dim, pad_index)\n",
"\n",
"def count_parameters(model):\n",
" return sum(p.numel() for p in model.parameters() if p.requires_grad)\n",
"\n",
"\n",
"print(f\"The model has {count_parameters(model):,} trainable parameters\")\n",
"\n",
"vectors = torchtext.vocab.GloVe()\n",
"\n",
"pretrained_embedding = vectors.get_vecs_by_tokens(vocab.get_itos())\n",
"\n",
"optimizer = optim.Adam(model.parameters())\n",
"\n",
"criterion = nn.CrossEntropyLoss()\n",
"\n",
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
"\n",
"model = model.to(device)\n",
"criterion = criterion.to(device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def train(data_loader, model, criterion, optimizer, device):\n",
" model.train()\n",
" epoch_losses = []\n",
" epoch_accs = []\n",
" for batch in tqdm.tqdm(data_loader, desc=\"training...\"):\n",
" ids = batch[\"ids\"].to(device)\n",
" label = batch[\"label\"].to(device)\n",
" prediction = model(ids)\n",
" loss = criterion(prediction, label)\n",
" accuracy = get_accuracy(prediction, label)\n",
" optimizer.zero_grad()\n",
" loss.backward()\n",
" optimizer.step()\n",
" epoch_losses.append(loss.item())\n",
" epoch_accs.append(accuracy.item())\n",
" return np.mean(epoch_losses), np.mean(epoch_accs)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def evaluate(data_loader, model, criterion, device):\n",
" model.eval()\n",
" epoch_losses = []\n",
" epoch_accs = []\n",
" with torch.no_grad():\n",
" for batch in tqdm.tqdm(data_loader, desc=\"evaluating...\"):\n",
" ids = batch[\"ids\"].to(device)\n",
" label = batch[\"label\"].to(device)\n",
" prediction = model(ids)\n",
" loss = criterion(prediction, label)\n",
" accuracy = get_accuracy(prediction, label)\n",
" epoch_losses.append(loss.item())\n",
" epoch_accs.append(accuracy.item())\n",
" return np.mean(epoch_losses), np.mean(epoch_accs)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def get_accuracy(prediction, label):\n",
" batch_size, _ = prediction.shape\n",
" predicted_classes = prediction.argmax(dim=-1)\n",
" correct_predictions = predicted_classes.eq(label).sum()\n",
" accuracy = correct_predictions / batch_size\n",
" return accuracy"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"n_epochs = 10\n",
"best_valid_loss = float(\"inf\")\n",
"\n",
"metrics = collections.defaultdict(list)\n",
"\n",
"for epoch in range(n_epochs):\n",
" train_loss, train_acc = train(\n",
" train_data_loader, model, criterion, optimizer, device\n",
" )\n",
" valid_loss, valid_acc = evaluate(valid_data_loader, model, criterion, device)\n",
" metrics[\"train_losses\"].append(train_loss)\n",
" metrics[\"train_accs\"].append(train_acc)\n",
" metrics[\"valid_losses\"].append(valid_loss)\n",
" metrics[\"valid_accs\"].append(valid_acc)\n",
" if valid_loss < best_valid_loss:\n",
" best_valid_loss = valid_loss\n",
" torch.save(model.state_dict(), \"nbow.pt\")\n",
" print(f\"epoch: {epoch}\")\n",
" print(f\"train_loss: {train_loss:.3f}, train_acc: {train_acc:.3f}\")\n",
" print(f\"valid_loss: {valid_loss:.3f}, valid_acc: {valid_acc:.3f}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fig = plt.figure(figsize=(10, 6))\n",
"ax = fig.add_subplot(1, 1, 1)\n",
"ax.plot(metrics[\"train_losses\"], label=\"train loss\")\n",
"ax.plot(metrics[\"valid_losses\"], label=\"valid loss\")\n",
"ax.set_xlabel(\"epoch\")\n",
"ax.set_ylabel(\"loss\")\n",
"ax.set_xticks(range(n_epochs))\n",
"ax.legend()\n",
"ax.grid()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fig = plt.figure(figsize=(10, 6))\n",
"ax = fig.add_subplot(1, 1, 1)\n",
"ax.plot(metrics[\"train_accs\"], label=\"train accuracy\")\n",
"ax.plot(metrics[\"valid_accs\"], label=\"valid accuracy\")\n",
"ax.set_xlabel(\"epoch\")\n",
"ax.set_ylabel(\"loss\")\n",
"ax.set_xticks(range(n_epochs))\n",
"ax.legend()\n",
"ax.grid()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model.load_state_dict(torch.load(\"nbow.pt\"))\n",
"\n",
"test_loss, test_acc = evaluate(test_data_loader, model, criterion, device)\n",
"\n",
"print(f\"test_loss: {test_loss:.3f}, test_acc: {test_acc:.3f}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def predict_sentiment(text, model, tokenizer, vocab, device):\n",
" tokens = tokenizer(text)\n",
" ids = vocab.lookup_indices(tokens)\n",
" tensor = torch.LongTensor(ids).unsqueeze(dim=0).to(device)\n",
" prediction = model(tensor).squeeze(dim=0)\n",
" probability = torch.softmax(prediction, dim=-1)\n",
" predicted_class = prediction.argmax(dim=-1).item()\n",
" predicted_probability = probability[predicted_class].item()\n",
" return predicted_class, predicted_probability"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text = \"This film is terrible!\"\n",
"\n",
"predict_sentiment(text, model, tokenizer, vocab, device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text = \"This film is great!\"\n",
"\n",
"predict_sentiment(text, model, tokenizer, vocab, device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text = \"This film is not terrible, it's great!\"\n",
"\n",
"predict_sentiment(text, model, tokenizer, vocab, device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text = \"This film is not great, it's terrible!\"\n",
"\n",
"predict_sentiment(text, model, tokenizer, vocab, device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def text_to_tensor(text, tokenizer, vocab, device):\n",
" tokens = tokenizer(text)\n",
" ids = vocab.lookup_indices(tokens)\n",
" tensor = torch.LongTensor(ids).unsqueeze(dim=0).to(device)\n",
" return tensor\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we do onnx stuff to get the data ready for the zk-circuit."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"import json\n",
"\n",
"text = \"This film is terrible!\"\n",
"x = text_to_tensor(text, tokenizer, vocab, device)\n",
"\n",
"# Flips the neural net into inference mode\n",
"model.eval()\n",
"model.to('cpu')\n",
"\n",
"model_path = \"network.onnx\"\n",
"data_path = \"input.json\"\n",
"\n",
" # Export the model\n",
"torch.onnx.export(model, # model being run\n",
" x, # model input (or a tuple for multiple inputs)\n",
" model_path, # where to save the model (can be a file or file-like object)\n",
" export_params=True, # store the trained parameter weights inside the model file\n",
" opset_version=10, # the ONNX version to export the model to\n",
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
" input_names = ['input'], # the model's input names\n",
" output_names = ['output'], # the model's output names\n",
" dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes\n",
" 'output' : {0 : 'batch_size'}})\n",
"\n",
"\n",
"\n",
"data_array = ((x).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data_json = dict(input_data = [data_array])\n",
"\n",
"print(data_json)\n",
"\n",
" # Serialize data into file:\n",
"json.dump(data_json, open(data_path, 'w'))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import ezkl\n",
"\n",
"run_args = ezkl.PyRunArgs()\n",
"run_args.logrows = 23\n",
"run_args.scale_rebase_multiplier = 10\n",
"# inputs should be auditable by all\n",
"run_args.input_visibility = \"public\"\n",
"# same with outputs\n",
"run_args.output_visibility = \"public\"\n",
"# for simplicity, we'll just use the fixed model visibility: i.e it is public and can't be changed by the prover\n",
"run_args.param_visibility = \"fixed\"\n",
"\n",
"\n",
"# TODO: Dictionary outputs\n",
"res = ezkl.gen_settings(py_run_args=run_args)\n",
"assert res == True\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"res = ezkl.compile_circuit()\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# srs path\n",
"res = await ezkl.get_srs()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# now generate the witness file\n",
"res = await ezkl.gen_witness()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"res = ezkl.mock()\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"# HERE WE SETUP THE CIRCUIT PARAMS\n",
"# WE GOT KEYS\n",
"# WE GOT CIRCUIT PARAMETERS\n",
"# EVERYTHING ANYONE HAS EVER NEEDED FOR ZK\n",
"\n",
"res = ezkl.setup()\n",
"\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# GENERATE A PROOF\n",
"res = ezkl.prove(proof_path=\"proof.json\")\n",
"\n",
"print(res)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# VERIFY IT\n",
"res = ezkl.verify()\n",
"\n",
"assert res == True\n",
"print(\"verified\")\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can also verify it on chain by creating an onchain verifier"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# check if notebook is in colab\n",
"try:\n",
" import google.colab\n",
" import subprocess\n",
" import sys\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"solc-select\"])\n",
" !solc-select install 0.8.20\n",
" !solc-select use 0.8.20\n",
" !solc --version\n",
" import os\n",
"\n",
"# rely on local installation if the notebook is not in colab\n",
"except:\n",
" import os\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"res = await ezkl.create_evm_verifier()\n",
"assert res == True\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You should see a `Verifier.sol`. Right-click and save it locally.\n",
"\n",
"Now go to [https://remix.ethereum.org](https://remix.ethereum.org).\n",
"\n",
"Create a new file within remix and copy the verifier code over.\n",
"\n",
"Finally, compile the code and deploy. For the demo you can deploy to the test environment within remix.\n",
"\n",
"If everything works, you would have deployed your verifer onchain! Copy the values in the cell above to the respective fields to test if the verifier is working."
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

File diff suppressed because one or more lines are too long

Binary file not shown.

View File

@@ -12,6 +12,7 @@ asyncio_mode = "auto"
[project]
name = "ezkl"
version = "0.0.0"
requires-python = ">=3.7"
classifiers = [
"Programming Language :: Rust",

View File

@@ -938,6 +938,45 @@ fn gen_settings(
Ok(true)
}
/// Generates random data for the model
///
/// Arguments
/// ---------
/// model: str
/// Path to the onnx file
///
/// output: str
/// Path to create the data file
///
/// seed: int
/// Random seed to use for generated data
///
/// variables
/// Returns
/// -------
/// bool
///
#[pyfunction(signature = (
model=PathBuf::from(DEFAULT_MODEL),
output=PathBuf::from(DEFAULT_SETTINGS),
variables=Vec::from([("batch_size".to_string(), 1)]),
seed=DEFAULT_SEED.parse().unwrap(),
))]
#[gen_stub_pyfunction]
fn gen_random_data(
model: PathBuf,
output: PathBuf,
variables: Vec<(String, usize)>,
seed: u64,
) -> Result<bool, PyErr> {
crate::execute::gen_random_data(model, output, variables, seed).map_err(|e| {
let err_str = format!("Failed to generate settings: {}", e);
PyRuntimeError::new_err(err_str)
})?;
Ok(true)
}
/// Calibrates the circuit settings
///
/// Arguments
@@ -2055,6 +2094,7 @@ fn ezkl(m: &Bound<'_, PyModule>) -> PyResult<()> {
m.add_function(wrap_pyfunction!(get_srs, m)?)?;
m.add_function(wrap_pyfunction!(gen_witness, m)?)?;
m.add_function(wrap_pyfunction!(gen_settings, m)?)?;
m.add_function(wrap_pyfunction!(gen_random_data, m)?)?;
m.add_function(wrap_pyfunction!(calibrate_settings, m)?)?;
m.add_function(wrap_pyfunction!(aggregate, m)?)?;
m.add_function(wrap_pyfunction!(mock_aggregate, m)?)?;

View File

@@ -141,10 +141,11 @@ pub(crate) fn gen_vk(
.map_err(|e| EZKLError::InternalError(format!("Failed to create verifying key: {}", e)))?;
let mut serialized_vk = Vec::new();
vk.write(&mut serialized_vk, halo2_proofs::SerdeFormat::RawBytes)
.map_err(|e| {
EZKLError::InternalError(format!("Failed to serialize verifying key: {}", e))
})?;
vk.write(
&mut serialized_vk,
halo2_proofs::SerdeFormat::RawBytesUnchecked,
)
.map_err(|e| EZKLError::InternalError(format!("Failed to serialize verifying key: {}", e)))?;
Ok(serialized_vk)
}
@@ -165,7 +166,7 @@ pub(crate) fn gen_pk(
let mut reader = BufReader::new(&vk[..]);
let vk = VerifyingKey::<G1Affine>::read::<_, GraphCircuit>(
&mut reader,
halo2_proofs::SerdeFormat::RawBytes,
halo2_proofs::SerdeFormat::RawBytesUnchecked,
circuit.settings().clone(),
)
.map_err(|e| EZKLError::InternalError(format!("Failed to deserialize verifying key: {}", e)))?;
@@ -197,7 +198,7 @@ pub(crate) fn verify(
let mut reader = BufReader::new(&vk[..]);
let vk = VerifyingKey::<G1Affine>::read::<_, GraphCircuit>(
&mut reader,
halo2_proofs::SerdeFormat::RawBytes,
halo2_proofs::SerdeFormat::RawBytesUnchecked,
circuit_settings.clone(),
)
.map_err(|e| EZKLError::InternalError(format!("Failed to deserialize vk: {}", e)))?;
@@ -277,7 +278,7 @@ pub(crate) fn verify_aggr(
let mut reader = BufReader::new(&vk[..]);
let vk = VerifyingKey::<G1Affine>::read::<_, AggregationCircuit>(
&mut reader,
halo2_proofs::SerdeFormat::RawBytes,
halo2_proofs::SerdeFormat::RawBytesUnchecked,
(),
)
.map_err(|e| EZKLError::InternalError(format!("Failed to deserialize vk: {}", e)))?;
@@ -365,7 +366,7 @@ pub(crate) fn prove(
let mut reader = BufReader::new(&pk[..]);
let pk = ProvingKey::<G1Affine>::read::<_, GraphCircuit>(
&mut reader,
halo2_proofs::SerdeFormat::RawBytes,
halo2_proofs::SerdeFormat::RawBytesUnchecked,
circuit.settings().clone(),
)
.map_err(|e| EZKLError::InternalError(format!("Failed to deserialize proving key: {}", e)))?;
@@ -487,7 +488,7 @@ pub(crate) fn vk_validation(vk: Vec<u8>, settings: Vec<u8>) -> Result<bool, EZKL
let mut reader = BufReader::new(&vk[..]);
let _ = VerifyingKey::<G1Affine>::read::<_, GraphCircuit>(
&mut reader,
halo2_proofs::SerdeFormat::RawBytes,
halo2_proofs::SerdeFormat::RawBytesUnchecked,
circuit_settings,
)
.map_err(|e| EZKLError::InternalError(format!("Failed to deserialize verifying key: {}", e)))?;
@@ -504,7 +505,7 @@ pub(crate) fn pk_validation(pk: Vec<u8>, settings: Vec<u8>) -> Result<bool, EZKL
let mut reader = BufReader::new(&pk[..]);
let _ = ProvingKey::<G1Affine>::read::<_, GraphCircuit>(
&mut reader,
halo2_proofs::SerdeFormat::RawBytes,
halo2_proofs::SerdeFormat::RawBytesUnchecked,
circuit_settings,
)
.map_err(|e| EZKLError::InternalError(format!("Failed to deserialize proving key: {}", e)))?;

View File

@@ -100,9 +100,6 @@ impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, con
let rc_a = (0..WIDTH).map(|_| meta.fixed_column()).collect::<Vec<_>>();
let rc_b = (0..WIDTH).map(|_| meta.fixed_column()).collect::<Vec<_>>();
for input in hash_inputs.iter().take(WIDTH) {
meta.enable_equality(*input);
}
meta.enable_constant(rc_b[0]);
Self::configure_with_cols(
@@ -152,9 +149,6 @@ impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, con
let rc_a = (0..WIDTH).map(|_| meta.fixed_column()).collect::<Vec<_>>();
let rc_b = (0..WIDTH).map(|_| meta.fixed_column()).collect::<Vec<_>>();
for input in hash_inputs.iter().take(WIDTH) {
meta.enable_equality(*input);
}
meta.enable_constant(rc_b[0]);
let instance = meta.instance_column();

View File

@@ -75,6 +75,16 @@ impl FromStr for CheckMode {
}
}
impl CheckMode {
/// Returns the value of the check mode
pub fn is_safe(&self) -> bool {
match self {
CheckMode::SAFE => true,
CheckMode::UNSAFE => false,
}
}
}
#[allow(missing_docs)]
/// An enum representing the tolerance we can accept for the accumulated arguments, either absolute or percentage
#[derive(Clone, Default, Debug, PartialEq, PartialOrd, Serialize, Deserialize, Copy)]
@@ -205,15 +215,16 @@ impl DynamicLookups {
/// A struct representing the selectors for the dynamic lookup tables
#[derive(Clone, Debug, Default)]
pub struct Shuffles {
/// [Selector]s generated when configuring the layer. We use a [BTreeMap] as we expect to configure many dynamic lookup ops.
pub input_selectors: BTreeMap<(usize, (usize, usize)), Selector>,
/// Selectors for the dynamic lookup tables
pub reference_selectors: Vec<Selector>,
pub output_selectors: Vec<Selector>,
/// Inputs:
pub inputs: Vec<VarTensor>,
/// tables
pub references: Vec<VarTensor>,
pub outputs: Vec<VarTensor>,
}
impl Shuffles {
@@ -224,9 +235,13 @@ impl Shuffles {
Self {
input_selectors: BTreeMap::new(),
reference_selectors: vec![],
inputs: vec![dummy_var.clone(), dummy_var.clone()],
references: vec![single_col_dummy_var.clone(), single_col_dummy_var.clone()],
output_selectors: vec![],
inputs: vec![dummy_var.clone(), dummy_var.clone(), dummy_var.clone()],
outputs: vec![
single_col_dummy_var.clone(),
single_col_dummy_var.clone(),
single_col_dummy_var.clone(),
],
}
}
}
@@ -364,6 +379,12 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
if inputs[0].num_cols() != output.num_cols() {
log::warn!("input and output shapes do not match");
}
if inputs[0].num_inner_cols() != inputs[1].num_inner_cols() {
log::warn!("input number of inner columns do not match");
}
if inputs[0].num_inner_cols() != output.num_inner_cols() {
log::warn!("input and output number of inner columns do not match");
}
for i in 0..output.num_blocks() {
for j in 0..output.num_inner_cols() {
@@ -571,9 +592,9 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
// this is 0 if the index is the same as the column index (starting from 1)
let col_expr = sel.clone()
* table
* (table
.selector_constructor
.get_expr_at_idx(col_idx, synthetic_sel);
.get_expr_at_idx(col_idx, synthetic_sel));
let multiplier =
table.selector_constructor.get_selector_val_at_idx(col_idx);
@@ -605,6 +626,40 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
res
});
}
// add a degree-k custom constraint of the following form to the range check and
// static lookup configuration.
// 𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑙 · ∏ (𝑠𝑒𝑙 𝑖) = 0 where 𝑠𝑒𝑙 is the synthetic_sel, and the product is over the set of overflowed columns
// and 𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑙 is the selector value at the column index
cs.create_gate("range_check_on_sel", |cs| {
let synthetic_sel = match len {
1 => Expression::Constant(F::from(1)),
_ => match index {
VarTensor::Advice { inner: advices, .. } => {
cs.query_advice(advices[x][y], Rotation(0))
}
_ => unreachable!(),
},
};
let range_check_on_synthetic_sel = match len {
1 => Expression::Constant(F::from(0)),
_ => {
let mut initial_expr = Expression::Constant(F::from(1));
for i in 0..len {
initial_expr = initial_expr
* (synthetic_sel.clone()
- Expression::Constant(F::from(i as u64)))
}
initial_expr
}
};
let sel = cs.query_selector(multi_col_selector);
Constraints::with_selector(sel, vec![range_check_on_synthetic_sel])
});
self.static_lookups
.selectors
.insert((nl.clone(), x, y), multi_col_selector);
@@ -730,8 +785,8 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
pub fn configure_shuffles(
&mut self,
cs: &mut ConstraintSystem<F>,
inputs: &[VarTensor; 2],
references: &[VarTensor; 2],
inputs: &[VarTensor; 3],
outputs: &[VarTensor; 3],
) -> Result<(), CircuitError>
where
F: Field,
@@ -742,14 +797,14 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
}
}
for t in references.iter() {
for t in outputs.iter() {
if !t.is_advice() || t.num_inner_cols() > 1 {
return Err(CircuitError::WrongDynamicColumnType(t.name().to_string()));
}
}
// assert all tables have the same number of blocks
if references
if outputs
.iter()
.map(|t| t.num_blocks())
.collect::<Vec<_>>()
@@ -757,23 +812,23 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
.any(|w| w[0] != w[1])
{
return Err(CircuitError::WrongDynamicColumnType(
"references inner cols".to_string(),
"outputs inner cols".to_string(),
));
}
let one = Expression::Constant(F::ONE);
for q in 0..references[0].num_blocks() {
let s_reference = cs.complex_selector();
for q in 0..outputs[0].num_blocks() {
let s_output = cs.complex_selector();
for x in 0..inputs[0].num_blocks() {
for y in 0..inputs[0].num_inner_cols() {
let s_input = cs.complex_selector();
cs.lookup_any("lookup", |cs| {
cs.lookup_any("shuffle", |cs| {
let s_inputq = cs.query_selector(s_input);
let mut expression = vec![];
let s_referenceq = cs.query_selector(s_reference);
let s_outputq = cs.query_selector(s_output);
let mut input_queries = vec![one.clone()];
for input in inputs {
@@ -785,9 +840,9 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
});
}
let mut ref_queries = vec![one.clone()];
for reference in references {
ref_queries.push(match reference {
let mut output_queries = vec![one.clone()];
for output in outputs {
output_queries.push(match output {
VarTensor::Advice { inner: advices, .. } => {
cs.query_advice(advices[q][0], Rotation(0))
}
@@ -796,7 +851,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
}
let lhs = input_queries.into_iter().map(|c| c * s_inputq.clone());
let rhs = ref_queries.into_iter().map(|c| c * s_referenceq.clone());
let rhs = output_queries.into_iter().map(|c| c * s_outputq.clone());
expression.extend(lhs.zip(rhs));
expression
@@ -807,13 +862,13 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
.or_insert(s_input);
}
}
self.shuffles.reference_selectors.push(s_reference);
self.shuffles.output_selectors.push(s_output);
}
// if we haven't previously initialized the input/output, do so now
if self.shuffles.references.is_empty() {
debug!("assigning shuffles reference");
self.shuffles.references = references.to_vec();
if self.shuffles.outputs.is_empty() {
debug!("assigning shuffles output");
self.shuffles.outputs = outputs.to_vec();
}
if self.shuffles.inputs.is_empty() {
debug!("assigning shuffles input");
@@ -883,9 +938,9 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
let default_x = range_check.get_first_element(col_idx);
let col_expr = sel.clone()
* range_check
* (range_check
.selector_constructor
.get_expr_at_idx(col_idx, synthetic_sel);
.get_expr_at_idx(col_idx, synthetic_sel));
let multiplier = range_check
.selector_constructor
@@ -908,6 +963,40 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
res
});
}
// add a degree-k custom constraint of the following form to the range check and
// static lookup configuration.
// 𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑙 · ∏ (𝑠𝑒𝑙 𝑖) = 0 where 𝑠𝑒𝑙 is the synthetic_sel, and the product is over the set of overflowed columns
// and 𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑙 is the selector value at the column index
cs.create_gate("range_check_on_sel", |cs| {
let synthetic_sel = match len {
1 => Expression::Constant(F::from(1)),
_ => match index {
VarTensor::Advice { inner: advices, .. } => {
cs.query_advice(advices[x][y], Rotation(0))
}
_ => unreachable!(),
},
};
let range_check_on_synthetic_sel = match len {
1 => Expression::Constant(F::from(0)),
_ => {
let mut initial_expr = Expression::Constant(F::from(1));
for i in 0..len {
initial_expr = initial_expr
* (synthetic_sel.clone()
- Expression::Constant(F::from(i as u64)))
}
initial_expr
}
};
let sel = cs.query_selector(multi_col_selector);
Constraints::with_selector(sel, vec![range_check_on_synthetic_sel])
});
self.range_checks
.selectors
.insert((range, x, y), multi_col_selector);

View File

@@ -100,4 +100,7 @@ pub enum CircuitError {
#[error("invalid input type {0}")]
/// Invalid input type
InvalidInputType(String),
#[error("an element is missing from the shuffled version of the tensor")]
/// An element is missing from the shuffled version of the tensor
MissingShuffleElement,
}

View File

@@ -1,7 +1,7 @@
use super::*;
use crate::{
circuit::{layouts, utils, Tolerance},
fieldutils::integer_rep_to_felt,
fieldutils::{integer_rep_to_felt, IntegerRep},
graph::multiplier_to_scale,
tensor::{self, Tensor, TensorType, ValTensor},
};
@@ -250,8 +250,8 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
config,
region,
values[..].try_into()?,
integer_rep_to_felt(input_scale.0 as i128),
integer_rep_to_felt(output_scale.0 as i128),
integer_rep_to_felt(input_scale.0 as IntegerRep),
integer_rep_to_felt(output_scale.0 as IntegerRep),
)?,
HybridOp::Div { denom, .. } => {
if denom.0.fract() == 0.0 {
@@ -259,7 +259,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
config,
region,
values[..].try_into()?,
integer_rep_to_felt(denom.0 as i128),
integer_rep_to_felt(denom.0 as IntegerRep),
)?
} else {
layouts::nonlinearity(

File diff suppressed because it is too large Load Diff

View File

@@ -671,22 +671,17 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
}
/// Assign a valtensor to a vartensor with duplication
pub fn assign_with_duplication(
pub fn assign_with_duplication_unconstrained(
&mut self,
var: &VarTensor,
values: &ValTensor<F>,
check_mode: &crate::circuit::CheckMode,
single_inner_col: bool,
) -> Result<(ValTensor<F>, usize), Error> {
if let Some(region) = &self.region {
// duplicates every nth element to adjust for column overflow
let (res, len) = var.assign_with_duplication(
let (res, len) = var.assign_with_duplication_unconstrained(
&mut region.borrow_mut(),
self.row,
self.linear_coord,
values,
check_mode,
single_inner_col,
&mut self.assigned_constants,
)?;
Ok((res, len))
@@ -695,7 +690,37 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
self.row,
self.linear_coord,
values,
single_inner_col,
false,
&mut self.assigned_constants,
)?;
Ok((values.clone(), len))
}
}
/// Assign a valtensor to a vartensor with duplication
pub fn assign_with_duplication_constrained(
&mut self,
var: &VarTensor,
values: &ValTensor<F>,
check_mode: &crate::circuit::CheckMode,
) -> Result<(ValTensor<F>, usize), Error> {
if let Some(region) = &self.region {
// duplicates every nth element to adjust for column overflow
let (res, len) = var.assign_with_duplication_constrained(
&mut region.borrow_mut(),
self.row,
self.linear_coord,
values,
check_mode,
&mut self.assigned_constants,
)?;
Ok((res, len))
} else {
let (_, len) = var.dummy_assign_with_duplication(
self.row,
self.linear_coord,
values,
true,
&mut self.assigned_constants,
)?;
Ok((values.clone(), len))

View File

@@ -132,21 +132,16 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Table<F> {
(first_element, op_f.output[0])
}
///
/// calculates the column size given the number of rows and reserved blinding rows
pub fn cal_col_size(logrows: usize, reserved_blinding_rows: usize) -> usize {
2usize.pow(logrows as u32) - reserved_blinding_rows
}
///
pub fn cal_bit_range(bits: usize, reserved_blinding_rows: usize) -> usize {
2usize.pow(bits as u32) - reserved_blinding_rows
}
}
///
pub fn num_cols_required(range_len: IntegerRep, col_size: usize) -> usize {
// number of cols needed to store the range
(range_len / (col_size as IntegerRep)) as usize + 1
(range_len / col_size as IntegerRep) as usize + 1
}
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Table<F> {
@@ -355,16 +350,11 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RangeCheck<F> {
integer_rep_to_felt(chunk * (self.col_size as IntegerRep) + self.range.0)
}
///
/// calculates the column size
pub fn cal_col_size(logrows: usize, reserved_blinding_rows: usize) -> usize {
2usize.pow(logrows as u32) - reserved_blinding_rows
}
///
pub fn cal_bit_range(bits: usize, reserved_blinding_rows: usize) -> usize {
2usize.pow(bits as u32) - reserved_blinding_rows
}
/// get column index given input
pub fn get_col_index(&self, input: F) -> F {
// range is split up into chunks of size col_size, find the chunk that input is in

View File

@@ -1040,6 +1040,10 @@ mod conv {
let a = VarTensor::new_advice(cs, K, 1, (LEN + 1) * LEN);
let b = VarTensor::new_advice(cs, K, 1, (LEN + 1) * LEN);
let output = VarTensor::new_advice(cs, K, 1, (LEN + 1) * LEN);
// column for constants
let _constant = VarTensor::constant_cols(cs, K, 8, false);
Self::Config::configure(cs, &[a, b], &output, CheckMode::SAFE)
}
@@ -1171,7 +1175,7 @@ mod conv_col_ultra_overflow {
use super::*;
const K: usize = 4;
const K: usize = 6;
const LEN: usize = 10;
#[derive(Clone)]
@@ -1191,9 +1195,10 @@ mod conv_col_ultra_overflow {
}
fn configure(cs: &mut ConstraintSystem<F>) -> Self::Config {
let a = VarTensor::new_advice(cs, K, 1, LEN * LEN * LEN);
let b = VarTensor::new_advice(cs, K, 1, LEN * LEN * LEN);
let output = VarTensor::new_advice(cs, K, 1, LEN * LEN * LEN);
let a = VarTensor::new_advice(cs, K, 1, LEN * LEN * LEN * LEN);
let b = VarTensor::new_advice(cs, K, 1, LEN * LEN * LEN * LEN);
let output = VarTensor::new_advice(cs, K, 1, LEN * LEN * LEN * LEN);
let _constant = VarTensor::constant_cols(cs, K, LEN * LEN * LEN * LEN, false);
Self::Config::configure(cs, &[a, b], &output, CheckMode::SAFE)
}
@@ -1776,13 +1781,18 @@ mod shuffle {
let d = VarTensor::new_advice(cs, K, 1, LEN);
let e = VarTensor::new_advice(cs, K, 1, LEN);
let f: VarTensor = VarTensor::new_advice(cs, K, 1, LEN);
let _constant = VarTensor::constant_cols(cs, K, LEN * NUM_LOOP, false);
let mut config =
Self::Config::configure(cs, &[a.clone(), b.clone()], &c, CheckMode::SAFE);
config
.configure_shuffles(cs, &[a.clone(), b.clone()], &[d.clone(), e.clone()])
.configure_shuffles(
cs,
&[a.clone(), b.clone(), c.clone()],
&[d.clone(), e.clone(), f.clone()],
)
.unwrap();
config
}

View File

@@ -83,13 +83,15 @@ pub const DEFAULT_VK_SOL: &str = "vk.sol";
/// Default VK abi path
pub const DEFAULT_VK_ABI: &str = "vk.abi";
/// Default scale rebase multipliers for calibration
pub const DEFAULT_SCALE_REBASE_MULTIPLIERS: &str = "1,2,10";
pub const DEFAULT_SCALE_REBASE_MULTIPLIERS: &str = "1,10";
/// Default use reduced srs for verification
pub const DEFAULT_USE_REDUCED_SRS_FOR_VERIFICATION: &str = "false";
/// Default only check for range check rebase
pub const DEFAULT_ONLY_RANGE_CHECK_REBASE: &str = "false";
/// Default commitment
pub const DEFAULT_COMMITMENT: &str = "kzg";
/// Default seed used to generate random data
pub const DEFAULT_SEED: &str = "21242";
#[cfg(feature = "python-bindings")]
/// Converts TranscriptType into a PyObject (Required for TranscriptType to be compatible with Python)
@@ -422,7 +424,21 @@ pub enum Commands {
#[clap(flatten)]
args: RunArgs,
},
/// Generate random data for a model
GenRandomData {
/// The path to the .onnx model file
#[arg(short = 'M', long, default_value = DEFAULT_MODEL, value_hint = clap::ValueHint::FilePath)]
model: Option<PathBuf>,
/// The path to the .json data file
#[arg(short = 'D', long, default_value = DEFAULT_DATA, value_hint = clap::ValueHint::FilePath)]
data: Option<PathBuf>,
/// Hand-written parser for graph variables, eg. batch_size=1
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(short = 'V', long, value_parser = crate::parse_key_val::<String, usize>, default_value = "batch_size->1", value_delimiter = ',', value_hint = clap::ValueHint::Other))]
variables: Vec<(String, usize)>,
/// random seed for reproducibility (optional)
#[arg(long, value_hint = clap::ValueHint::Other, default_value = DEFAULT_SEED)]
seed: u64,
},
/// Calibrates the proving scale, lookup bits and logrows from a circuit settings file.
CalibrateSettings {
/// The path to the .json calibration data file.

View File

@@ -488,7 +488,7 @@ pub async fn deploy_da_verifier_via_solidity(
}
}
let contract = match call_to_account {
match call_to_account {
Some(call) => {
deploy_single_da_contract(
client,
@@ -514,8 +514,7 @@ pub async fn deploy_da_verifier_via_solidity(
)
.await
}
};
return contract;
}
}
async fn deploy_multi_da_contract(
@@ -630,7 +629,7 @@ async fn deploy_single_da_contract(
// bytes memory _callData,
PackedSeqToken(call_data.as_ref()),
// uint256 _decimals,
WordToken(B256::from(decimals).into()),
WordToken(B256::from(decimals)),
// uint[] memory _scales,
DynSeqToken(
scales

View File

@@ -65,6 +65,8 @@ use std::str::FromStr;
use std::time::Duration;
use tabled::Tabled;
use thiserror::Error;
use tract_onnx::prelude::IntoTensor;
use tract_onnx::prelude::Tensor as TractTensor;
use lazy_static::lazy_static;
@@ -134,6 +136,17 @@ pub async fn run(command: Commands) -> Result<String, EZKLError> {
settings_path.unwrap_or(DEFAULT_SETTINGS.into()),
args,
),
Commands::GenRandomData {
model,
data,
variables,
seed,
} => gen_random_data(
model.unwrap_or(DEFAULT_MODEL.into()),
data.unwrap_or(DEFAULT_DATA.into()),
variables,
seed,
),
Commands::CalibrateSettings {
model,
settings_path,
@@ -828,6 +841,71 @@ pub(crate) fn gen_circuit_settings(
Ok(String::new())
}
/// Generate a circuit settings file
pub(crate) fn gen_random_data(
model_path: PathBuf,
data_path: PathBuf,
variables: Vec<(String, usize)>,
seed: u64,
) -> Result<String, EZKLError> {
let mut file = std::fs::File::open(&model_path).map_err(|e| {
crate::graph::errors::GraphError::ReadWriteFileError(
model_path.display().to_string(),
e.to_string(),
)
})?;
let (tract_model, _symbol_values) = Model::load_onnx_using_tract(&mut file, &variables)?;
let input_facts = tract_model
.input_outlets()
.map_err(|e| EZKLError::from(e.to_string()))?
.iter()
.map(|&i| tract_model.outlet_fact(i))
.collect::<tract_onnx::prelude::TractResult<Vec<_>>>()
.map_err(|e| EZKLError::from(e.to_string()))?;
/// Generates a random tensor of a given size and type.
fn random(
sizes: &[usize],
datum_type: tract_onnx::prelude::DatumType,
seed: u64,
) -> TractTensor {
use rand::{Rng, SeedableRng};
let mut rng = rand::rngs::StdRng::seed_from_u64(seed);
let mut tensor = TractTensor::zero::<f32>(sizes).unwrap();
let slice = tensor.as_slice_mut::<f32>().unwrap();
slice.iter_mut().for_each(|x| *x = rng.gen());
tensor.cast_to_dt(datum_type).unwrap().into_owned()
}
fn tensor_for_fact(fact: &tract_onnx::prelude::TypedFact, seed: u64) -> TractTensor {
if let Some(value) = &fact.konst {
return value.clone().into_tensor();
}
random(
fact.shape
.as_concrete()
.expect("Expected concrete shape, found: {fact:?}"),
fact.datum_type,
seed,
)
}
let generated = input_facts
.iter()
.map(|v| tensor_for_fact(v, seed))
.collect_vec();
let data = GraphData::from_tract_data(&generated)?;
data.save(data_path)?;
Ok(String::new())
}
// not for wasm targets
pub(crate) fn init_spinner() -> ProgressBar {
let pb = indicatif::ProgressBar::new_spinner();

View File

@@ -5,7 +5,7 @@ use halo2curves::ff::PrimeField;
/// Integer representation of a PrimeField element.
pub type IntegerRep = i128;
/// Converts an i64 to a PrimeField element.
/// Converts an integer rep to a PrimeField element.
pub fn integer_rep_to_felt<F: PrimeField>(x: IntegerRep) -> F {
if x >= 0 {
F::from_u128(x as u128)
@@ -69,7 +69,7 @@ mod test {
fn felttointegerrep() {
for x in -(2_i128.pow(16))..(2_i128.pow(16)) {
let fieldx: F = integer_rep_to_felt::<F>(x);
let xf: i128 = felt_to_integer_rep::<F>(fieldx);
let xf: IntegerRep = felt_to_integer_rep::<F>(fieldx);
assert_eq!(x, xf);
}
}

View File

@@ -11,6 +11,12 @@ pub enum GraphError {
/// Shape mismatch in circuit construction
#[error("invalid dimensions used for node {0} ({1})")]
InvalidDims(usize, String),
/// Non scalar power
#[error("we only support scalar powers")]
NonScalarPower,
/// Non scalar base for exponentiation
#[error("we only support scalar bases for exponentiation")]
NonScalarBase,
/// Wrong method was called to configure an op
#[error("wrong method was called to configure node {0} ({1})")]
WrongMethod(usize, String),
@@ -143,4 +149,7 @@ pub enum GraphError {
/// Invalid RunArg
#[error("invalid RunArgs: {0}")]
InvalidRunArgs(String),
/// Only nearest neighbor interpolation is supported
#[error("only nearest neighbor interpolation is supported")]
InvalidInterpolation,
}

View File

@@ -14,7 +14,6 @@ use pyo3::prelude::*;
use pyo3::types::PyDict;
#[cfg(feature = "python-bindings")]
use pyo3::ToPyObject;
use serde::ser::SerializeStruct;
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use std::io::BufReader;
use std::io::BufWriter;
@@ -515,7 +514,7 @@ impl<'de> Deserialize<'de> for DataSource {
/// Input to graph as a datasource
/// Always use JSON serialization for GraphData. Seriously.
#[derive(Clone, Debug, Deserialize, Default, PartialEq)]
#[derive(Clone, Debug, Deserialize, Default, PartialEq, Serialize)]
pub struct GraphData {
/// Inputs to the model / computational graph (can be empty vectors if inputs are coming from on-chain).
pub input_data: DataSource,
@@ -557,6 +556,34 @@ impl GraphData {
Ok(inputs)
}
// not wasm
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
/// Convert the tract data to tract data
pub fn from_tract_data(tensors: &[TractTensor]) -> Result<Self, GraphError> {
use tract_onnx::prelude::DatumType;
let mut input_data = vec![];
for tensor in tensors {
match tensor.datum_type() {
tract_onnx::prelude::DatumType::Bool => {
let tensor = tensor.to_array_view::<bool>()?;
let tensor = tensor.iter().map(|e| FileSourceInner::Bool(*e)).collect();
input_data.push(tensor);
}
_ => {
let cast_tensor = tensor.cast_to_dt(DatumType::F64)?;
let tensor = cast_tensor.to_array_view::<f64>()?;
let tensor = tensor.iter().map(|e| FileSourceInner::Float(*e)).collect();
input_data.push(tensor);
}
}
}
Ok(GraphData {
input_data: DataSource::File(input_data),
output_data: None,
})
}
///
pub fn new(input_data: DataSource) -> Self {
GraphData {
@@ -741,18 +768,6 @@ impl ToPyObject for FileSourceInner {
}
}
impl Serialize for GraphData {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let mut state = serializer.serialize_struct("GraphData", 4)?;
state.serialize_field("input_data", &self.input_data)?;
state.serialize_field("output_data", &self.output_data)?;
state.end()
}
}
#[cfg(test)]
mod tests {
use super::*;

View File

@@ -280,7 +280,13 @@ impl GraphWitness {
})?;
let reader = std::io::BufReader::with_capacity(*EZKL_BUF_CAPACITY, file);
serde_json::from_reader(reader).map_err(|e| e.into())
let witness: GraphWitness =
serde_json::from_reader(reader).map_err(Into::<GraphError>::into)?;
// check versions match
crate::check_version_string_matches(witness.version.as_deref().unwrap_or(""));
Ok(witness)
}
/// Save the model input to a file
@@ -572,10 +578,14 @@ impl GraphSettings {
// buf reader
let reader =
std::io::BufReader::with_capacity(*EZKL_BUF_CAPACITY, std::fs::File::open(path)?);
serde_json::from_reader(reader).map_err(|e| {
let settings: GraphSettings = serde_json::from_reader(reader).map_err(|e| {
error!("failed to load settings file at {}", e);
std::io::Error::new(std::io::ErrorKind::Other, e)
})
})?;
crate::check_version_string_matches(&settings.version);
Ok(settings)
}
/// Export the ezkl configuration as json
@@ -697,6 +707,9 @@ impl GraphCircuit {
let reader = std::io::BufReader::with_capacity(*EZKL_BUF_CAPACITY, f);
let result: GraphCircuit = bincode::deserialize_from(reader)?;
// check the versions matche
crate::check_version_string_matches(&result.core.settings.version);
Ok(result)
}
}

View File

@@ -621,16 +621,16 @@ impl Model {
/// * `scale` - The scale to use for quantization.
/// * `public_params` - Whether to make the params public.
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
fn load_onnx_using_tract(
pub(crate) fn load_onnx_using_tract(
reader: &mut dyn std::io::Read,
run_args: &RunArgs,
variables: &[(String, usize)],
) -> Result<TractResult, GraphError> {
use tract_onnx::tract_hir::internal::GenericFactoid;
let mut model = tract_onnx::onnx().model_for_read(reader)?;
let variables: std::collections::HashMap<String, usize> =
std::collections::HashMap::from_iter(run_args.variables.clone());
std::collections::HashMap::from_iter(variables.iter().map(|(k, v)| (k.clone(), *v)));
for (i, id) in model.clone().inputs.iter().enumerate() {
let input = model.node_mut(id.node);
@@ -655,7 +655,7 @@ impl Model {
}
let mut symbol_values = SymbolValues::default();
for (symbol, value) in run_args.variables.iter() {
for (symbol, value) in variables.iter() {
let symbol = model.symbols.sym(symbol);
symbol_values = symbol_values.with(&symbol, *value as i64);
debug!("set {} to {}", symbol, value);
@@ -683,7 +683,7 @@ impl Model {
) -> Result<ParsedNodes, GraphError> {
let start_time = instant::Instant::now();
let (model, symbol_values) = Self::load_onnx_using_tract(reader, run_args)?;
let (model, symbol_values) = Self::load_onnx_using_tract(reader, &run_args.variables)?;
let scales = VarScales::from_args(run_args);
let nodes = Self::nodes_from_graph(
@@ -964,7 +964,7 @@ impl Model {
GraphError::ReadWriteFileError(model_path.display().to_string(), e.to_string())
})?;
let (model, _) = Model::load_onnx_using_tract(&mut file, run_args)?;
let (model, _) = Model::load_onnx_using_tract(&mut file, &run_args.variables)?;
let datum_types: Vec<DatumType> = model
.input_outlets()?
@@ -1045,8 +1045,8 @@ impl Model {
if settings.requires_shuffle() {
base_gate.configure_shuffles(
meta,
vars.advices[0..2].try_into()?,
vars.advices[3..5].try_into()?,
vars.advices[0..3].try_into()?,
vars.advices[3..6].try_into()?,
)?;
}
@@ -1226,6 +1226,7 @@ impl Model {
values.iter().map(|v| v.dims()).collect_vec()
);
let start = instant::Instant::now();
match &node {
NodeType::Node(n) => {
let res = if node.is_constant() && node.num_uses() == 1 {
@@ -1363,6 +1364,7 @@ impl Model {
results.insert(*idx, full_results);
}
}
debug!("------------ layout of {} took {:?}", idx, start.elapsed());
}
// we do this so we can support multiple passes of the same model and have deterministic results (Non-assigned inputs etc... etc...)

View File

@@ -44,11 +44,10 @@ use tract_onnx::tract_hir::{
tract_core::ops::cnn::{conv::KernelFormat, MaxPool, SumPool},
};
/// Quantizes an iterable of f32s to a [Tensor] of i32s using a fixed point representation.
/// Quantizes an iterable of f64 to a [Tensor] of IntegerRep using a fixed point representation.
/// Arguments
///
/// * `vec` - the vector to quantize.
/// * `dims` - the dimensionality of the resulting [Tensor].
/// * `elem` - the element to quantize.
/// * `shift` - offset used in the fixed point representation.
/// * `scale` - `2^scale` used in the fixed point representation.
pub fn quantize_float(
@@ -85,7 +84,7 @@ pub fn scale_to_multiplier(scale: crate::Scale) -> f64 {
f64::powf(2., scale as f64)
}
/// Converts a scale (log base 2) to a fixed point multiplier.
/// Converts a fixed point multiplier to a scale (log base 2).
pub fn multiplier_to_scale(mult: f64) -> crate::Scale {
mult.log2().round() as crate::Scale
}
@@ -142,8 +141,6 @@ use tract_onnx::prelude::SymbolValues;
pub fn extract_tensor_value(
input: Arc<tract_onnx::prelude::Tensor>,
) -> Result<Tensor<f32>, GraphError> {
use maybe_rayon::prelude::{IntoParallelRefIterator, ParallelIterator};
let dt = input.datum_type();
let dims = input.shape().to_vec();
@@ -156,7 +153,7 @@ pub fn extract_tensor_value(
match dt {
DatumType::F16 => {
let vec = input.as_slice::<tract_onnx::prelude::f16>()?.to_vec();
let cast: Vec<f32> = vec.par_iter().map(|x| (*x).into()).collect();
let cast: Vec<f32> = vec.iter().map(|x| (*x).into()).collect();
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
}
DatumType::F32 => {
@@ -165,61 +162,61 @@ pub fn extract_tensor_value(
}
DatumType::F64 => {
let vec = input.as_slice::<f64>()?.to_vec();
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
}
DatumType::I64 => {
// Generally a shape or hyperparam
let vec = input.as_slice::<i64>()?.to_vec();
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
}
DatumType::I32 => {
// Generally a shape or hyperparam
let vec = input.as_slice::<i32>()?.to_vec();
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
}
DatumType::I16 => {
// Generally a shape or hyperparam
let vec = input.as_slice::<i16>()?.to_vec();
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
}
DatumType::I8 => {
// Generally a shape or hyperparam
let vec = input.as_slice::<i8>()?.to_vec();
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
}
DatumType::U8 => {
// Generally a shape or hyperparam
let vec = input.as_slice::<u8>()?.to_vec();
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
}
DatumType::U16 => {
// Generally a shape or hyperparam
let vec = input.as_slice::<u16>()?.to_vec();
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
}
DatumType::U32 => {
// Generally a shape or hyperparam
let vec = input.as_slice::<u32>()?.to_vec();
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
}
DatumType::U64 => {
// Generally a shape or hyperparam
let vec = input.as_slice::<u64>()?.to_vec();
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
}
DatumType::Bool => {
// Generally a shape or hyperparam
let vec = input.as_slice::<bool>()?.to_vec();
let cast: Vec<f32> = vec.par_iter().map(|x| *x as usize as f32).collect();
let cast: Vec<f32> = vec.iter().map(|x| *x as usize as f32).collect();
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
}
DatumType::TDim => {
@@ -227,7 +224,7 @@ pub fn extract_tensor_value(
let vec = input.as_slice::<tract_onnx::prelude::TDim>()?.to_vec();
let cast: Result<Vec<f32>, GraphError> = vec
.par_iter()
.iter()
.map(|x| match x.to_i64() {
Ok(v) => Ok(v as f32),
Err(_) => match x.to_i64() {
@@ -314,6 +311,9 @@ pub fn new_op_from_onnx(
let mut deleted_indices = vec![];
let node = match node.op().name().as_ref() {
"ShiftLeft" => {
if inputs.len() != 2 {
return Err(GraphError::InvalidDims(idx, "shift left".to_string()));
};
// load shift amount
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
inputs[1].decrement_use();
@@ -326,10 +326,13 @@ pub fn new_op_from_onnx(
out_scale: Some(input_scales[0] - raw_values[0] as i32),
})
} else {
return Err(GraphError::OpMismatch(idx, "ShiftLeft".to_string()));
return Err(GraphError::OpMismatch(idx, "shift left".to_string()));
}
}
"ShiftRight" => {
if inputs.len() != 2 {
return Err(GraphError::InvalidDims(idx, "shift right".to_string()));
};
// load shift amount
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
inputs[1].decrement_use();
@@ -342,7 +345,7 @@ pub fn new_op_from_onnx(
out_scale: Some(input_scales[0] + raw_values[0] as i32),
})
} else {
return Err(GraphError::OpMismatch(idx, "ShiftRight".to_string()));
return Err(GraphError::OpMismatch(idx, "shift right".to_string()));
}
}
"MultiBroadcastTo" => {
@@ -365,7 +368,10 @@ pub fn new_op_from_onnx(
}
}
assert_eq!(input_ops.len(), 3, "Range requires 3 inputs");
if input_ops.len() != 3 {
return Err(GraphError::InvalidDims(idx, "range".to_string()));
}
let input_ops = input_ops
.iter()
.map(|x| x.get_constant().ok_or(GraphError::NonConstantRange))
@@ -421,6 +427,10 @@ pub fn new_op_from_onnx(
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
inputs[1].decrement_use();
deleted_indices.push(inputs.len() - 1);
if inputs[0].out_dims().is_empty() || inputs[0].out_dims()[0].len() <= axis {
return Err(GraphError::InvalidDims(idx, "gather".to_string()));
}
op = SupportedOp::Hybrid(crate::circuit::ops::hybrid::HybridOp::Gather {
dim: axis,
constant_idx: Some(c.raw_values.map(|x| {
@@ -449,8 +459,17 @@ pub fn new_op_from_onnx(
"Topk" => {
let op = load_op::<Topk>(node.op(), idx, node.op().name().to_string())?;
let axis = op.axis;
if inputs.len() != 2 {
return Err(GraphError::InvalidDims(idx, "topk".to_string()));
};
// if param_visibility.is_public() {
let k = if let Some(c) = inputs[1].opkind().get_mutable_constant() {
if c.raw_values.len() != 1 {
return Err(GraphError::InvalidDims(idx, "topk".to_string()));
}
inputs[1].decrement_use();
deleted_indices.push(inputs.len() - 1);
c.raw_values.map(|x| x as usize)[0]
@@ -490,6 +509,10 @@ pub fn new_op_from_onnx(
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
inputs[1].decrement_use();
deleted_indices.push(1);
if c.raw_values.is_empty() {
return Err(GraphError::InvalidDims(idx, "scatter elements".to_string()));
}
op = SupportedOp::Linear(crate::circuit::ops::poly::PolyOp::ScatterElements {
dim: axis,
constant_idx: Some(c.raw_values.map(|x| x as usize)),
@@ -524,6 +547,9 @@ pub fn new_op_from_onnx(
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
inputs[1].decrement_use();
deleted_indices.push(1);
if c.raw_values.is_empty() {
return Err(GraphError::InvalidDims(idx, "scatter nd".to_string()));
}
op = SupportedOp::Linear(crate::circuit::ops::poly::PolyOp::ScatterND {
constant_idx: Some(c.raw_values.map(|x| x as usize)),
})
@@ -557,6 +583,9 @@ pub fn new_op_from_onnx(
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
inputs[1].decrement_use();
deleted_indices.push(1);
if c.raw_values.is_empty() {
return Err(GraphError::InvalidDims(idx, "gather nd".to_string()));
}
op = SupportedOp::Linear(crate::circuit::ops::poly::PolyOp::GatherND {
batch_dims,
indices: Some(c.raw_values.map(|x| x as usize)),
@@ -591,6 +620,9 @@ pub fn new_op_from_onnx(
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
inputs[1].decrement_use();
deleted_indices.push(1);
if c.raw_values.is_empty() {
return Err(GraphError::InvalidDims(idx, "gather elements".to_string()));
}
op = SupportedOp::Linear(crate::circuit::ops::poly::PolyOp::GatherElements {
dim: axis,
constant_idx: Some(c.raw_values.map(|x| x as usize)),
@@ -686,7 +718,9 @@ pub fn new_op_from_onnx(
};
let op = load_op::<Reduce>(node.op(), idx, node.op().name().to_string())?;
let axes: Vec<usize> = op.axes.into_iter().collect();
assert_eq!(axes.len(), 1, "only support argmax over one axis");
if axes.len() != 1 {
return Err(GraphError::InvalidDims(idx, "argmax".to_string()));
}
SupportedOp::Hybrid(HybridOp::ReduceArgMax { dim: axes[0] })
}
@@ -696,7 +730,9 @@ pub fn new_op_from_onnx(
};
let op = load_op::<Reduce>(node.op(), idx, node.op().name().to_string())?;
let axes: Vec<usize> = op.axes.into_iter().collect();
assert_eq!(axes.len(), 1, "only support argmin over one axis");
if axes.len() != 1 {
return Err(GraphError::InvalidDims(idx, "argmin".to_string()));
}
SupportedOp::Hybrid(HybridOp::ReduceArgMin { dim: axes[0] })
}
@@ -805,6 +841,9 @@ pub fn new_op_from_onnx(
}
}
"Recip" => {
if inputs.len() != 1 {
return Err(GraphError::InvalidDims(idx, "recip".to_string()));
};
let in_scale = input_scales[0];
let max_scale = std::cmp::max(scales.get_max(), in_scale);
// If the input scale is larger than the params scale
@@ -848,6 +887,9 @@ pub fn new_op_from_onnx(
scale: scale_to_multiplier(input_scales[0]).into(),
}),
"Rsqrt" => {
if input_scales.len() != 1 {
return Err(GraphError::InvalidDims(idx, "rsqrt".to_string()));
};
let in_scale = input_scales[0];
let max_scale = std::cmp::max(scales.get_max(), in_scale);
SupportedOp::Hybrid(HybridOp::Rsqrt {
@@ -935,7 +977,9 @@ pub fn new_op_from_onnx(
let op = load_op::<Cast>(node.op(), idx, node.op().name().to_string())?;
let dt = op.to;
assert_eq!(input_scales.len(), 1);
if input_scales.len() != 1 {
return Err(GraphError::InvalidDims(idx, "cast".to_string()));
};
match dt {
DatumType::Bool
@@ -985,6 +1029,11 @@ pub fn new_op_from_onnx(
if const_idx.len() == 1 {
let const_idx = const_idx[0];
if inputs.len() <= const_idx {
return Err(GraphError::InvalidDims(idx, "mul".to_string()));
}
if let Some(c) = inputs[const_idx].opkind().get_mutable_constant() {
if c.raw_values.len() == 1 && c.raw_values[0] < 1. {
// if not divisible by 2 then we need to add a range check
@@ -1059,6 +1108,9 @@ pub fn new_op_from_onnx(
return Err(GraphError::OpMismatch(idx, "softmax".to_string()));
}
};
if input_scales.len() != 1 {
return Err(GraphError::InvalidDims(idx, "softmax".to_string()));
}
let in_scale = input_scales[0];
let max_scale = std::cmp::max(scales.get_max(), in_scale);
@@ -1098,22 +1150,42 @@ pub fn new_op_from_onnx(
pool_dims: kernel_shape.to_vec(),
})
}
"Ceil" => SupportedOp::Hybrid(HybridOp::Ceil {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
}),
"Floor" => SupportedOp::Hybrid(HybridOp::Floor {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
}),
"Round" => SupportedOp::Hybrid(HybridOp::Round {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
}),
"RoundHalfToEven" => SupportedOp::Hybrid(HybridOp::RoundHalfToEven {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
}),
"Ceil" => {
if input_scales.len() != 1 {
return Err(GraphError::InvalidDims(idx, "ceil".to_string()));
}
SupportedOp::Hybrid(HybridOp::Ceil {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
})
}
"Floor" => {
if input_scales.len() != 1 {
return Err(GraphError::InvalidDims(idx, "floor".to_string()));
}
SupportedOp::Hybrid(HybridOp::Floor {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
})
}
"Round" => {
if input_scales.len() != 1 {
return Err(GraphError::InvalidDims(idx, "round".to_string()));
}
SupportedOp::Hybrid(HybridOp::Round {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
})
}
"RoundHalfToEven" => {
if input_scales.len() != 1 {
return Err(GraphError::InvalidDims(idx, "roundhalftoeven".to_string()));
}
SupportedOp::Hybrid(HybridOp::RoundHalfToEven {
scale: scale_to_multiplier(input_scales[0]).into(),
legs: run_args.decomp_legs,
})
}
"Sign" => SupportedOp::Linear(PolyOp::Sign),
"Pow" => {
// Extract the slope layer hyperparams from a const
@@ -1123,7 +1195,9 @@ pub fn new_op_from_onnx(
inputs[1].decrement_use();
deleted_indices.push(1);
if c.raw_values.len() > 1 {
unimplemented!("only support scalar pow")
return Err(GraphError::NonScalarPower);
} else if c.raw_values.is_empty() {
return Err(GraphError::InvalidDims(idx, "pow".to_string()));
}
let exponent = c.raw_values[0];
@@ -1136,26 +1210,30 @@ pub fn new_op_from_onnx(
a: crate::circuit::utils::F32(exponent),
})
}
} else {
if let Some(c) = inputs[0].opkind().get_mutable_constant() {
inputs[0].decrement_use();
deleted_indices.push(0);
if c.raw_values.len() > 1 {
unimplemented!("only support scalar base")
}
let base = c.raw_values[0];
SupportedOp::Nonlinear(LookupOp::Exp {
scale: scale_to_multiplier(input_scales[1]).into(),
base: base.into(),
})
} else {
unimplemented!("only support constant base or pow for now")
} else if let Some(c) = inputs[0].opkind().get_mutable_constant() {
inputs[0].decrement_use();
deleted_indices.push(0);
if c.raw_values.len() > 1 {
return Err(GraphError::NonScalarBase);
} else if c.raw_values.is_empty() {
return Err(GraphError::InvalidDims(idx, "pow".to_string()));
}
let base = c.raw_values[0];
SupportedOp::Nonlinear(LookupOp::Exp {
scale: scale_to_multiplier(input_scales[1]).into(),
base: base.into(),
})
} else {
return Err(GraphError::InvalidDims(idx, "pow".to_string()));
}
}
"Div" => {
if inputs.len() != 2 {
return Err(GraphError::InvalidDims(idx, "div".to_string()));
}
let const_idx = inputs
.iter()
.enumerate()
@@ -1163,14 +1241,15 @@ pub fn new_op_from_onnx(
.map(|(i, _)| i)
.collect::<Vec<_>>();
if const_idx.len() > 1 {
if const_idx.len() > 1 || const_idx.is_empty() {
return Err(GraphError::InvalidDims(idx, "div".to_string()));
}
let const_idx = const_idx[0];
if const_idx != 1 {
unimplemented!("only support div with constant as second input")
return Err(GraphError::MisformedParams(
"only support div with constant as second input".to_string(),
));
}
if let Some(c) = inputs[const_idx].opkind().get_mutable_constant() {
@@ -1184,10 +1263,14 @@ pub fn new_op_from_onnx(
denom: denom.into(),
})
} else {
unimplemented!("only support non zero divisors of size 1")
return Err(GraphError::MisformedParams(
"only support non zero divisors of size 1".to_string(),
));
}
} else {
unimplemented!("only support div with constant as second input")
return Err(GraphError::MisformedParams(
"only support div with constant as second input".to_string(),
));
}
}
"Cube" => SupportedOp::Linear(PolyOp::Pow(3)),
@@ -1327,7 +1410,7 @@ pub fn new_op_from_onnx(
if !resize_node.contains("interpolator: Nearest")
&& !resize_node.contains("nearest: Floor")
{
unimplemented!("Only nearest neighbor interpolation is supported")
return Err(GraphError::InvalidInterpolation);
}
// check if optional scale factor is present
if inputs.len() != 2 && inputs.len() != 3 {
@@ -1431,6 +1514,10 @@ pub fn new_op_from_onnx(
SupportedOp::Linear(PolyOp::Reshape(output_shape))
}
"Flatten" => {
if inputs.len() != 1 || inputs[0].out_dims().is_empty() {
return Err(GraphError::InvalidDims(idx, "flatten".to_string()));
};
let new_dims: Vec<usize> = vec![inputs[0].out_dims()[0].iter().product::<usize>()];
SupportedOp::Linear(PolyOp::Flatten(new_dims))
}
@@ -1550,6 +1637,7 @@ pub fn homogenize_input_scales(
}
#[cfg(test)]
/// tests for the utility module
pub mod tests {
use super::*;

View File

@@ -435,7 +435,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ModelVars<F> {
.collect_vec();
if requires_dynamic_lookup || requires_shuffle {
let num_cols = if requires_dynamic_lookup { 3 } else { 2 };
let num_cols = 3;
for _ in 0..num_cols {
let dynamic_lookup =
VarTensor::new_advice(cs, logrows, 1, dynamic_lookup_and_shuffle_size);

View File

@@ -420,3 +420,30 @@ where
let b = s[pos + 2..].parse()?;
Ok((a, b))
}
/// Check if the version string matches the artifact version
/// If the version string does not match the artifact version, log a warning
pub fn check_version_string_matches(artifact_version: &str) {
if artifact_version == "0.0.0"
|| artifact_version == "source - no compatibility guaranteed"
|| artifact_version.is_empty()
{
log::warn!("Artifact version is 0.0.0, skipping version check");
return;
}
let version = crate::version();
if version == "source - no compatibility guaranteed" {
log::warn!("Compiled source version is not guaranteed to match artifact version");
return;
}
if version != artifact_version {
log::warn!(
"Version mismatch: CLI version is {} but artifact version is {}",
version,
artifact_version
);
}
}

View File

@@ -822,6 +822,7 @@ where
Scheme::Scalar: PrimeField + SerdeObject + FromUniformBytes<64>,
{
debug!("loading proving key from {:?}", path);
let start = instant::Instant::now();
let f = File::open(path.clone()).map_err(|e| PfsysError::LoadPk(format!("{}", e)))?;
let mut reader = BufReader::with_capacity(*EZKL_BUF_CAPACITY, f);
let pk = ProvingKey::<Scheme::Curve>::read::<_, C>(
@@ -830,7 +831,8 @@ where
params,
)
.map_err(|e| PfsysError::LoadPk(format!("{}", e)))?;
info!("loaded proving key ✅");
let elapsed = start.elapsed();
info!("loaded proving key in {:?}", elapsed);
Ok(pk)
}

View File

@@ -24,9 +24,6 @@ use std::path::PathBuf;
pub use val::*;
pub use var::*;
#[cfg(feature = "metal")]
use instant::Instant;
use crate::{
circuit::utils,
fieldutils::{integer_rep_to_felt, IntegerRep},
@@ -40,8 +37,6 @@ use halo2_proofs::{
poly::Rotation,
};
use itertools::Itertools;
#[cfg(feature = "metal")]
use metal::{Device, MTLResourceOptions, MTLSize};
use std::error::Error;
use std::fmt::Debug;
use std::io::Read;
@@ -49,31 +44,6 @@ use std::iter::Iterator;
use std::ops::{Add, Deref, DerefMut, Div, Mul, Neg, Range, Sub};
use std::{cmp::max, ops::Rem};
#[cfg(feature = "metal")]
use std::collections::HashMap;
#[cfg(feature = "metal")]
const LIB_DATA: &[u8] = include_bytes!("metal/tensor_ops.metallib");
#[cfg(feature = "metal")]
lazy_static::lazy_static! {
static ref DEVICE: Device = Device::system_default().expect("no device found");
static ref LIB: metal::Library = DEVICE.new_library_with_data(LIB_DATA).unwrap();
static ref QUEUE: metal::CommandQueue = DEVICE.new_command_queue();
static ref PIPELINES: HashMap<String, metal::ComputePipelineState> = {
let mut map = HashMap::new();
for name in ["add", "sub", "mul"] {
let function = LIB.get_function(name, None).unwrap();
let pipeline = DEVICE.new_compute_pipeline_state_with_function(&function).unwrap();
map.insert(name.to_string(), pipeline);
}
map
};
}
/// The (inner) type of tensor elements.
pub trait TensorType: Clone + Debug + 'static {
/// Returns the zero value.
@@ -638,42 +608,44 @@ impl<T: Clone + TensorType> Tensor<T> {
where
T: Send + Sync,
{
if indices.is_empty() {
// Fast path: empty indices or full tensor slice
if indices.is_empty()
|| indices.iter().map(|x| x.end - x.start).collect::<Vec<_>>() == self.dims
{
return Ok(self.clone());
}
// Validate dimensions
if self.dims.len() < indices.len() {
return Err(TensorError::DimError(format!(
"The dimensionality of the slice {:?} is greater than the tensor's {:?}",
indices, self.dims
)));
} else if indices.iter().map(|x| x.end - x.start).collect::<Vec<_>>() == self.dims {
// else if slice is the same as dims, return self
return Ok(self.clone());
}
// if indices weren't specified we fill them in as required
let mut full_indices = indices.to_vec();
// Pre-allocate the full indices vector with capacity
let mut full_indices = Vec::with_capacity(self.dims.len());
full_indices.extend_from_slice(indices);
for i in 0..(self.dims.len() - indices.len()) {
full_indices.push(0..self.dims()[indices.len() + i])
}
// Fill remaining dimensions
full_indices.extend((indices.len()..self.dims.len()).map(|i| 0..self.dims[i]));
let cartesian_coord: Vec<Vec<usize>> = full_indices
// Pre-calculate total size and allocate result vector
let total_size: usize = full_indices
.iter()
.cloned()
.multi_cartesian_product()
.collect();
let res: Vec<T> = cartesian_coord
.par_iter()
.map(|e| {
let index = self.get_index(e);
self[index].clone()
})
.collect();
.map(|range| range.end - range.start)
.product();
let mut res = Vec::with_capacity(total_size);
// Calculate new dimensions once
let dims: Vec<usize> = full_indices.iter().map(|e| e.end - e.start).collect();
// Use iterator directly without collecting into intermediate Vec
for coord in full_indices.iter().cloned().multi_cartesian_product() {
let index = self.get_index(&coord);
res.push(self[index].clone());
}
Tensor::new(Some(&res), &dims)
}
@@ -831,7 +803,7 @@ impl<T: Clone + TensorType> Tensor<T> {
num_repeats: usize,
initial_offset: usize,
) -> Result<Tensor<T>, TensorError> {
let mut inner: Vec<T> = vec![];
let mut inner: Vec<T> = Vec::with_capacity(self.inner.len());
let mut offset = initial_offset;
for (i, elem) in self.inner.clone().into_iter().enumerate() {
if (i + offset + 1) % n == 0 {
@@ -860,20 +832,22 @@ impl<T: Clone + TensorType> Tensor<T> {
num_repeats: usize,
initial_offset: usize,
) -> Result<Tensor<T>, TensorError> {
let mut inner: Vec<T> = vec![];
let mut indices_to_remove = std::collections::HashSet::new();
for i in 0..self.inner.len() {
if (i + initial_offset + 1) % n == 0 {
for j in 1..(1 + num_repeats) {
indices_to_remove.insert(i + j);
}
}
}
// Pre-calculate capacity to avoid reallocations
let estimated_size = self.inner.len() - (self.inner.len() / n) * num_repeats;
let mut inner = Vec::with_capacity(estimated_size);
let old_inner = self.inner.clone();
for (i, elem) in old_inner.into_iter().enumerate() {
if !indices_to_remove.contains(&i) {
inner.push(elem.clone());
// Use iterator directly instead of creating intermediate collections
let mut i = 0;
while i < self.inner.len() {
// Add the current element
inner.push(self.inner[i].clone());
// If this is an nth position (accounting for offset)
if (i + initial_offset + 1) % n == 0 {
// Skip the next num_repeats elements
i += num_repeats + 1;
} else {
i += 1;
}
}
@@ -1400,10 +1374,6 @@ impl<T: TensorType + Add<Output = T> + std::marker::Send + std::marker::Sync> Ad
let lhs = self.expand(&broadcasted_shape).unwrap();
let rhs = rhs.expand(&broadcasted_shape).unwrap();
#[cfg(feature = "metal")]
let res = metal_tensor_op(&lhs, &rhs, "add");
#[cfg(not(feature = "metal"))]
let res = {
let mut res: Tensor<T> = lhs
.par_iter()
@@ -1501,10 +1471,6 @@ impl<T: TensorType + Sub<Output = T> + std::marker::Send + std::marker::Sync> Su
let lhs = self.expand(&broadcasted_shape).unwrap();
let rhs = rhs.expand(&broadcasted_shape).unwrap();
#[cfg(feature = "metal")]
let res = metal_tensor_op(&lhs, &rhs, "sub");
#[cfg(not(feature = "metal"))]
let res = {
let mut res: Tensor<T> = lhs
.par_iter()
@@ -1572,10 +1538,6 @@ impl<T: TensorType + Mul<Output = T> + std::marker::Send + std::marker::Sync> Mu
let lhs = self.expand(&broadcasted_shape).unwrap();
let rhs = rhs.expand(&broadcasted_shape).unwrap();
#[cfg(feature = "metal")]
let res = metal_tensor_op(&lhs, &rhs, "mul");
#[cfg(not(feature = "metal"))]
let res = {
let mut res: Tensor<T> = lhs
.par_iter()
@@ -1807,66 +1769,4 @@ mod tests {
let b = Tensor::<IntegerRep>::new(Some(&[1, 4]), &[2, 1]).unwrap();
assert_eq!(a.get_slice(&[0..2, 0..1]).unwrap(), b);
}
#[test]
#[cfg(feature = "metal")]
fn tensor_metal_int() {
let a = Tensor::<i64>::new(Some(&[1, 2, 3, 4]), &[2, 2]).unwrap();
let b = Tensor::<i64>::new(Some(&[1, 2, 3, 4]), &[2, 2]).unwrap();
let c = metal_tensor_op(&a, &b, "add");
assert_eq!(c, Tensor::new(Some(&[2, 4, 6, 8]), &[2, 2]).unwrap());
let c = metal_tensor_op(&a, &b, "sub");
assert_eq!(c, Tensor::new(Some(&[0, 0, 0, 0]), &[2, 2]).unwrap());
let c = metal_tensor_op(&a, &b, "mul");
assert_eq!(c, Tensor::new(Some(&[1, 4, 9, 16]), &[2, 2]).unwrap());
}
#[test]
#[cfg(feature = "metal")]
fn tensor_metal_felt() {
use halo2curves::bn256::Fr;
let a = Tensor::<Fr>::new(
Some(&[Fr::from(1), Fr::from(2), Fr::from(3), Fr::from(4)]),
&[2, 2],
)
.unwrap();
let b = Tensor::<Fr>::new(
Some(&[Fr::from(1), Fr::from(2), Fr::from(3), Fr::from(4)]),
&[2, 2],
)
.unwrap();
let c = metal_tensor_op(&a, &b, "add");
assert_eq!(
c,
Tensor::<Fr>::new(
Some(&[Fr::from(2), Fr::from(4), Fr::from(6), Fr::from(8)]),
&[2, 2],
)
.unwrap()
);
let c = metal_tensor_op(&a, &b, "sub");
assert_eq!(
c,
Tensor::<Fr>::new(
Some(&[Fr::from(0), Fr::from(0), Fr::from(0), Fr::from(0)]),
&[2, 2],
)
.unwrap()
);
let c = metal_tensor_op(&a, &b, "mul");
assert_eq!(
c,
Tensor::<Fr>::new(
Some(&[Fr::from(1), Fr::from(4), Fr::from(9), Fr::from(16)]),
&[2, 2],
)
.unwrap()
);
}
}

View File

@@ -27,7 +27,7 @@ pub fn get_rep(
n: usize,
) -> Result<Vec<IntegerRep>, DecompositionError> {
// check if x is too large
if x.abs() > (base.pow(n as u32) as IntegerRep) - 1 {
if (*x).abs() > ((base as i128).pow(n as u32)) - 1 {
return Err(DecompositionError::TooLarge(*x, base, n));
}
let mut rep = vec![0; n + 1];
@@ -43,8 +43,8 @@ pub fn get_rep(
let mut x = x.abs();
//
for i in (1..rep.len()).rev() {
rep[i] = x % base as i128;
x /= base as i128;
rep[i] = x % base as IntegerRep;
x /= base as IntegerRep;
}
Ok(rep)
@@ -127,7 +127,7 @@ pub fn decompose(
.flatten()
.collect::<Vec<IntegerRep>>();
let output = Tensor::<i128>::new(Some(&resp), &dims)?;
let output = Tensor::<IntegerRep>::new(Some(&resp), &dims)?;
Ok(output)
}

View File

@@ -1,12 +1,12 @@
use crate::{circuit::region::ConstantsMap, fieldutils::felt_to_integer_rep};
use maybe_rayon::slice::Iter;
use maybe_rayon::slice::{Iter, ParallelSlice};
use super::{
ops::{intercalate_values, pad, resize},
*,
};
use halo2_proofs::{arithmetic::Field, circuit::Cell, plonk::Instance};
use maybe_rayon::iter::{FilterMap, IntoParallelIterator, ParallelIterator};
use maybe_rayon::iter::{FilterMap, ParallelIterator};
pub(crate) fn create_constant_tensor<
F: PrimeField + TensorType + std::marker::Send + std::marker::Sync + PartialOrd,
@@ -455,7 +455,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ValTensor<F> {
}
}
/// Returns the number of constants in the [ValTensor].
/// Returns an iterator over the [ValTensor]'s constants.
pub fn create_constants_map_iterator(
&self,
) -> FilterMap<Iter<'_, ValType<F>>, fn(&ValType<F>) -> Option<(F, ValType<F>)>> {
@@ -473,20 +473,48 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ValTensor<F> {
}
}
/// Returns the number of constants in the [ValTensor].
/// Returns a map of the constants in the [ValTensor].
pub fn create_constants_map(&self) -> ConstantsMap<F> {
match self {
ValTensor::Value { inner, .. } => inner
.par_iter()
.filter_map(|x| {
if let ValType::Constant(v) = x {
Some((*v, x.clone()))
} else {
None
}
})
.collect(),
ValTensor::Instance { .. } => ConstantsMap::new(),
let threshold = 1_000_000; // Tuned using the benchmarks
if self.len() < threshold {
match self {
ValTensor::Value { inner, .. } => inner
.par_iter()
.filter_map(|x| {
if let ValType::Constant(v) = x {
Some((*v, x.clone()))
} else {
None
}
})
.collect(),
ValTensor::Instance { .. } => ConstantsMap::new(),
}
} else {
// Use parallel for larger arrays
let num_cores = std::thread::available_parallelism()
.map(|n| n.get())
.unwrap_or(1);
let chunk_size = (self.len() / num_cores).max(100_000);
match self {
ValTensor::Value { inner, .. } => inner
.par_chunks(chunk_size)
.flat_map(|chunk| {
chunk
.par_iter() // Make sure we use par_iter() here
.filter_map(|x| {
if let ValType::Constant(v) = x {
Some((*v, x.clone()))
} else {
None
}
})
})
.collect(),
ValTensor::Instance { .. } => ConstantsMap::new(),
}
}
}
@@ -878,70 +906,161 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ValTensor<F> {
/// remove constant zero values constants
pub fn remove_const_zero_values(&mut self) {
match self {
ValTensor::Value { inner: v, dims, .. } => {
*v = v
.clone()
.into_par_iter()
.filter_map(|e| {
if let ValType::Constant(r) = e {
if r == F::ZERO {
return None;
let size_threshold = 1_000_000; // Tuned using the benchmarks
if self.len() < size_threshold {
match self {
ValTensor::Value { inner: v, dims, .. } => {
*v = v
.clone()
.into_iter()
.filter_map(|e| {
if let ValType::Constant(r) = e {
if r == F::ZERO {
return None;
}
} else if let ValType::AssignedConstant(_, r) = e {
if r == F::ZERO {
return None;
}
}
} else if let ValType::AssignedConstant(_, r) = e {
if r == F::ZERO {
return None;
}
}
Some(e)
})
.collect();
*dims = v.dims().to_vec();
Some(e)
})
.collect();
*dims = v.dims().to_vec();
}
ValTensor::Instance { .. } => {}
}
} else {
// Use parallel for larger arrays
let num_cores = std::thread::available_parallelism()
.map(|n| n.get())
.unwrap_or(1);
let chunk_size = (self.len() / num_cores).max(100_000);
match self {
ValTensor::Value { inner: v, dims, .. } => {
*v = v
.par_chunks_mut(chunk_size)
.flat_map(|chunk| {
chunk
.par_iter_mut() // Make sure we use par_iter() here
.filter_map(|e| {
if let ValType::Constant(r) = e {
if *r == F::ZERO {
return None;
}
} else if let ValType::AssignedConstant(_, r) = e {
if *r == F::ZERO {
return None;
}
}
Some(e.clone())
})
})
.collect();
*dims = v.dims().to_vec();
}
ValTensor::Instance { .. } => {}
}
ValTensor::Instance { .. } => {}
}
}
/// gets constants
/// filter constant zero values constants
pub fn get_const_zero_indices(&self) -> Vec<usize> {
match self {
ValTensor::Value { inner: v, .. } => v
.par_iter()
.enumerate()
.filter_map(|(i, e)| {
if let ValType::Constant(r) = e {
if *r == F::ZERO {
return Some(i);
let size_threshold = 1_000_000; // Tuned using the benchmarks
if self.len() < size_threshold {
// Use single-threaded for smaller arrays
match &self {
ValTensor::Value { inner: v, .. } => v
.iter()
.enumerate()
.filter_map(|(i, e)| {
match e {
// Combine both match arms to reduce branching
ValType::Constant(r) | ValType::AssignedConstant(_, r) => {
(*r == F::ZERO).then_some(i)
}
_ => None,
}
} else if let ValType::AssignedConstant(_, r) = e {
if *r == F::ZERO {
return Some(i);
}
}
None
})
.collect(),
ValTensor::Instance { .. } => vec![],
})
.collect(),
ValTensor::Instance { .. } => vec![],
}
} else {
// Use parallel for larger arrays
let num_cores = std::thread::available_parallelism()
.map(|n| n.get())
.unwrap_or(1);
let chunk_size = (self.len() / num_cores).max(100_000);
match &self {
ValTensor::Value { inner: v, .. } => v
.par_chunks(chunk_size)
.enumerate()
.flat_map(|(chunk_idx, chunk)| {
chunk
.par_iter() // Make sure we use par_iter() here
.enumerate()
.filter_map(move |(i, e)| match e {
ValType::Constant(r) | ValType::AssignedConstant(_, r) => {
(*r == F::ZERO).then_some(chunk_idx * chunk_size + i)
}
_ => None,
})
})
.collect::<Vec<_>>(),
ValTensor::Instance { .. } => vec![],
}
}
}
/// gets constants
/// gets constant indices
pub fn get_const_indices(&self) -> Vec<usize> {
match self {
ValTensor::Value { inner: v, .. } => v
.par_iter()
.enumerate()
.filter_map(|(i, e)| {
if let ValType::Constant(_) = e {
Some(i)
} else if let ValType::AssignedConstant(_, _) = e {
Some(i)
} else {
None
}
})
.collect(),
ValTensor::Instance { .. } => vec![],
let size_threshold = 1_000_000; // Tuned using the benchmarks
if self.len() < size_threshold {
// Use single-threaded for smaller arrays
match &self {
ValTensor::Value { inner: v, .. } => v
.iter()
.enumerate()
.filter_map(|(i, e)| {
match e {
// Combine both match arms to reduce branching
ValType::Constant(_) | ValType::AssignedConstant(_, _) => Some(i),
_ => None,
}
})
.collect(),
ValTensor::Instance { .. } => vec![],
}
} else {
// Use parallel for larger arrays
let num_cores = std::thread::available_parallelism()
.map(|n| n.get())
.unwrap_or(1);
let chunk_size = (self.len() / num_cores).max(100_000);
match &self {
ValTensor::Value { inner: v, .. } => v
.par_chunks(chunk_size)
.enumerate()
.flat_map(|(chunk_idx, chunk)| {
chunk
.par_iter() // Make sure we use par_iter() here
.enumerate()
.filter_map(move |(i, e)| match e {
ValType::Constant(_) | ValType::AssignedConstant(_, _) => {
Some(chunk_idx * chunk_size + i)
}
_ => None,
})
})
.collect::<Vec<_>>(),
ValTensor::Instance { .. } => vec![],
}
}
}

View File

@@ -494,16 +494,56 @@ impl VarTensor {
}
}
/// Assigns specific values (`ValTensor`) to the columns of the inner tensor but allows for column wrapping for accumulated operations.
pub fn assign_with_duplication_unconstrained<
F: PrimeField + TensorType + PartialOrd + std::hash::Hash,
>(
&self,
region: &mut Region<F>,
offset: usize,
values: &ValTensor<F>,
constants: &mut ConstantsMap<F>,
) -> Result<(ValTensor<F>, usize), halo2_proofs::plonk::Error> {
match values {
ValTensor::Instance { .. } => unimplemented!("duplication is not supported on instance columns. increase K if you require more rows."),
ValTensor::Value { inner: v, dims , ..} => {
let duplication_freq = self.block_size();
let num_repeats = self.num_inner_cols();
let duplication_offset = offset;
// duplicates every nth element to adjust for column overflow
let v = v.duplicate_every_n(duplication_freq, num_repeats, duplication_offset).unwrap();
let mut res: ValTensor<F> = {
v.enum_map(|coord, k| {
let cell = self.assign_value(region, offset, k.clone(), coord, constants)?;
Ok::<_, halo2_proofs::plonk::Error>(cell)
})?.into()};
let total_used_len = res.len();
res.remove_every_n(duplication_freq, num_repeats, duplication_offset).unwrap();
res.reshape(dims).unwrap();
res.set_scale(values.scale());
Ok((res, total_used_len))
}
}
}
/// Assigns specific values (`ValTensor`) to the columns of the inner tensor but allows for column wrapping for accumulated operations.
/// Duplication occurs by copying the last cell of the column to the first cell next column and creating a copy constraint between the two.
pub fn assign_with_duplication<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
pub fn assign_with_duplication_constrained<
F: PrimeField + TensorType + PartialOrd + std::hash::Hash,
>(
&self,
region: &mut Region<F>,
row: usize,
offset: usize,
values: &ValTensor<F>,
check_mode: &CheckMode,
single_inner_col: bool,
constants: &mut ConstantsMap<F>,
) -> Result<(ValTensor<F>, usize), halo2_proofs::plonk::Error> {
let mut prev_cell = None;
@@ -512,34 +552,16 @@ impl VarTensor {
ValTensor::Instance { .. } => unimplemented!("duplication is not supported on instance columns. increase K if you require more rows."),
ValTensor::Value { inner: v, dims , ..} => {
let duplication_freq = if single_inner_col {
self.col_size()
} else {
self.block_size()
};
let num_repeats = if single_inner_col {
1
} else {
self.num_inner_cols()
};
let duplication_offset = if single_inner_col {
row
} else {
offset
};
let duplication_freq = self.col_size();
let num_repeats = 1;
let duplication_offset = row;
// duplicates every nth element to adjust for column overflow
let v = v.duplicate_every_n(duplication_freq, num_repeats, duplication_offset).unwrap();
let mut res: ValTensor<F> = {
let mut res: ValTensor<F> =
v.enum_map(|coord, k| {
let step = if !single_inner_col {
1
} else {
self.num_inner_cols()
};
let step = self.num_inner_cols();
let (x, y, z) = self.cartesian_coord(offset + coord * step);
if matches!(check_mode, CheckMode::SAFE) && coord > 0 && z == 0 && y == 0 {
@@ -549,48 +571,43 @@ impl VarTensor {
let cell = self.assign_value(region, offset, k.clone(), coord * step, constants)?;
if single_inner_col {
if z == 0 {
let at_end_of_column = z == duplication_freq - 1;
let at_beginning_of_column = z == 0;
if at_end_of_column {
// if we are at the end of the column, we need to copy the cell to the next column
prev_cell = Some(cell.clone());
} else if coord > 0 && z == 0 && single_inner_col {
} else if coord > 0 && at_beginning_of_column {
if let Some(prev_cell) = prev_cell.as_ref() {
let cell = cell.cell().ok_or({
let cell = if let Some(cell) = cell.cell() {
cell
} else {
error!("Error getting cell: {:?}", (x,y));
halo2_proofs::plonk::Error::Synthesis})?;
let prev_cell = prev_cell.cell().ok_or({
error!("Error getting cell: {:?}", (x,y));
halo2_proofs::plonk::Error::Synthesis})?;
return Err(halo2_proofs::plonk::Error::Synthesis);
};
let prev_cell = if let Some(prev_cell) = prev_cell.cell() {
prev_cell
} else {
error!("Error getting prev cell: {:?}", (x,y));
return Err(halo2_proofs::plonk::Error::Synthesis);
};
region.constrain_equal(prev_cell,cell)?;
} else {
error!("Error copy-constraining previous value: {:?}", (x,y));
error!("Previous cell was not set");
return Err(halo2_proofs::plonk::Error::Synthesis);
}
}}
}
Ok(cell)
})?.into()};
})?.into();
let total_used_len = res.len();
res.remove_every_n(duplication_freq, num_repeats, duplication_offset).unwrap();
res.reshape(dims).unwrap();
res.set_scale(values.scale());
if matches!(check_mode, CheckMode::SAFE) {
// during key generation this will be 0 so we use this as a flag to check
// TODO: this isn't very safe and would be better to get the phase directly
let res_evals = res.int_evals().unwrap();
let is_assigned = res_evals
.iter()
.all(|&x| x == 0);
if !is_assigned {
assert_eq!(
values.int_evals().unwrap(),
res_evals
)};
}
Ok((res, total_used_len))
}
}

Binary file not shown.

File diff suppressed because one or more lines are too long

Binary file not shown.

View File

@@ -187,13 +187,14 @@ mod native_tests {
const PF_FAILURE_AGGR: &str = "examples/test_failure_aggr_proof.json";
const LARGE_TESTS: [&str; 6] = [
const LARGE_TESTS: [&str; 7] = [
"self_attention",
"nanoGPT",
"multihead_attention",
"mobilenet",
"mnist_gan",
"smallworm",
"fr_age",
];
const ACCURACY_CAL_TESTS: [&str; 6] = [
@@ -395,29 +396,29 @@ mod native_tests {
const TESTS_AGGR: [&str; 3] = ["1l_mlp", "1l_flatten", "1l_average"];
const TESTS_EVM: [&str; 23] = [
"1l_mlp",
"1l_flatten",
"1l_average",
"1l_reshape",
"1l_sigmoid",
"1l_div",
"1l_sqrt",
"1l_prelu",
"1l_var",
"1l_leakyrelu",
"1l_gelu_noappx",
"1l_relu",
"1l_tanh",
"2l_relu_sigmoid_small",
"2l_relu_small",
"min",
"max",
"1l_max_pool",
"idolmodel",
"1l_identity",
"lstm",
"rnn",
"quantize_dequantize",
"1l_mlp", // 0
"1l_flatten", // 1
"1l_average", // 2
"1l_reshape", // 3
"1l_sigmoid", // 4
"1l_div", // 5
"1l_sqrt", // 6
"1l_prelu", // 7
"1l_var", // 8
"1l_leakyrelu", // 9
"1l_gelu_noappx", // 10
"1l_relu", // 11
"1l_tanh", // 12
"2l_relu_sigmoid_small", // 13
"2l_relu_small", // 14
"min", // 15
"max", // 16
"1l_max_pool", // 17
"idolmodel", // 18
"1l_identity", // 19
"lstm", // 20
"rnn", // 21
"quantize_dequantize", // 22
];
const TESTS_EVM_AGGR: [&str; 18] = [
@@ -541,7 +542,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "public", "fixed", "public", 1, "accuracy", None, 0.0, false);
mock(path, test.to_string(), "public", "fixed", "public", 1, "accuracy", None, 0.0, false, None, None);
test_dir.close().unwrap();
}
});
@@ -606,7 +607,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "private", "private", "public", 1, "resources", None, 0.0, false);
mock(path, test.to_string(), "private", "private", "public", 1, "resources", None, 0.0, false, None, None);
test_dir.close().unwrap();
}
@@ -616,7 +617,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "private", "private", "public", 1, "resources", None, 0.0, true);
mock(path, test.to_string(), "private", "private", "public", 1, "resources", None, 0.0, true, Some(8194), Some(4));
test_dir.close().unwrap();
}
@@ -627,7 +628,7 @@ mod native_tests {
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
// gen random number between 0.0 and 1.0
let tolerance = rand::thread_rng().gen_range(0.0..1.0) * 100.0;
mock(path, test.to_string(), "private", "private", "public", 1, "resources", None, tolerance, false);
mock(path, test.to_string(), "private", "private", "public", 1, "resources", None, tolerance, false, Some(8194), Some(5));
test_dir.close().unwrap();
}
@@ -642,7 +643,7 @@ mod native_tests {
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
let large_batch_dir = &format!("large_batches_{}", test);
crate::native_tests::mk_data_batches_(path, test, &large_batch_dir, 10);
mock(path, large_batch_dir.to_string(), "private", "private", "public", 10, "resources", None, 0.0, false);
mock(path, large_batch_dir.to_string(), "private", "private", "public", 10, "resources", None, 0.0, false, None, None);
test_dir.close().unwrap();
}
}
@@ -652,7 +653,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "public", "private", "private", 1, "resources", None, 0.0, false);
mock(path, test.to_string(), "public", "private", "private", 1, "resources", None, 0.0, false, None, None);
test_dir.close().unwrap();
}
@@ -661,7 +662,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "public", "hashed", "private", 1, "resources", None, 0.0, false);
mock(path, test.to_string(), "public", "hashed", "private", 1, "resources", None, 0.0, false, None, None);
test_dir.close().unwrap();
}
@@ -670,7 +671,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "fixed", "private", "private", 1, "resources", None, 0.0, false);
mock(path, test.to_string(), "fixed", "private", "private", 1, "resources", None, 0.0, false, None, None);
test_dir.close().unwrap();
}
@@ -679,7 +680,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "private", "private", "fixed", 1, "resources", None, 0.0, false);
mock(path, test.to_string(), "private", "private", "fixed", 1, "resources", None, 0.0, false, None, None);
test_dir.close().unwrap();
}
@@ -688,7 +689,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "private", "fixed", "private", 1, "resources", None, 0.0, false);
mock(path, test.to_string(), "private", "fixed", "private", 1, "resources", None, 0.0, false, None, None);
test_dir.close().unwrap();
}
@@ -697,7 +698,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "hashed", "private", "public", 1, "resources", None, 0.0, false);
mock(path, test.to_string(), "hashed", "private", "public", 1, "resources", None, 0.0, false, None, None);
test_dir.close().unwrap();
}
@@ -706,7 +707,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "polycommit", "private", "public", 1, "resources", None, 0.0, false);
mock(path, test.to_string(), "polycommit", "private", "public", 1, "resources", None, 0.0, false, None, None);
test_dir.close().unwrap();
}
@@ -716,7 +717,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "private", "hashed", "public", 1, "resources", None, 0.0, false);
mock(path, test.to_string(), "private", "hashed", "public", 1, "resources", None, 0.0, false, None, None);
test_dir.close().unwrap();
}
@@ -726,7 +727,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "private", "polycommit", "public", 1, "resources", None, 0.0, false);
mock(path, test.to_string(), "private", "polycommit", "public", 1, "resources", None, 0.0, false, None, None);
test_dir.close().unwrap();
}
@@ -735,7 +736,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "public", "private", "hashed", 1, "resources", None, 0.0, false);
mock(path, test.to_string(), "public", "private", "hashed", 1, "resources", None, 0.0, false, None, None);
test_dir.close().unwrap();
}
@@ -745,7 +746,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "public", "private", "polycommit", 1, "resources", None, 0.0, false);
mock(path, test.to_string(), "public", "private", "polycommit", 1, "resources", None, 0.0, false, None, None);
test_dir.close().unwrap();
}
@@ -754,7 +755,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "public", "fixed", "hashed", 1, "resources", None, 0.0, false);
mock(path, test.to_string(), "public", "fixed", "hashed", 1, "resources", None, 0.0, false, None, None);
test_dir.close().unwrap();
}
@@ -764,7 +765,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "public", "polycommit", "hashed", 1, "resources", None, 0.0, false);
mock(path, test.to_string(), "public", "polycommit", "hashed", 1, "resources", None, 0.0, false, None, None);
test_dir.close().unwrap();
}
@@ -774,7 +775,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "polycommit", "polycommit", "polycommit", 1, "resources", None, 0.0, false);
mock(path, test.to_string(), "polycommit", "polycommit", "polycommit", 1, "resources", None, 0.0, false, None, None);
test_dir.close().unwrap();
}
@@ -784,7 +785,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "hashed", "private", "hashed", 1, "resources", None, 0.0, false);
mock(path, test.to_string(), "hashed", "private", "hashed", 1, "resources", None, 0.0, false, None, None);
test_dir.close().unwrap();
}
@@ -794,7 +795,7 @@ mod native_tests {
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
// needs an extra row for the large model
mock(path, test.to_string(),"hashed", "hashed", "public", 1, "resources", None, 0.0, false);
mock(path, test.to_string(),"hashed", "hashed", "public", 1, "resources", None, 0.0, false, None, None);
test_dir.close().unwrap();
}
@@ -804,7 +805,7 @@ mod native_tests {
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
// needs an extra row for the large model
mock(path, test.to_string(),"hashed", "hashed", "hashed", 1, "resources", None, 0.0, false);
mock(path, test.to_string(),"hashed", "hashed", "hashed", 1, "resources", None, 0.0, false, None, None);
test_dir.close().unwrap();
}
@@ -963,7 +964,7 @@ mod native_tests {
});
seq!(N in 0..=5 {
seq!(N in 0..=6 {
#(#[test_case(LARGE_TESTS[N])])*
#[ignore]
@@ -981,7 +982,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "private", "fixed", "public", 1, "resources", None, 0.0, false);
mock(path, test.to_string(), "private", "fixed", "public", 1, "resources", None, 0.0, false, None, None);
test_dir.close().unwrap();
}
});
@@ -1459,6 +1460,8 @@ mod native_tests {
scales_to_use: Option<Vec<u32>>,
tolerance: f32,
bounded_lookup_log: bool,
decomp_base: Option<usize>,
decomp_legs: Option<usize>,
) {
let mut tolerance = tolerance;
gen_circuit_settings_and_witness(
@@ -1475,6 +1478,8 @@ mod native_tests {
Commitments::KZG,
2,
bounded_lookup_log,
decomp_base,
decomp_legs,
);
if tolerance > 0.0 {
@@ -1616,6 +1621,8 @@ mod native_tests {
commitment: Commitments,
lookup_safety_margin: usize,
bounded_lookup_log: bool,
decomp_base: Option<usize>,
decomp_legs: Option<usize>,
) {
let mut args = vec![
"gen-settings".to_string(),
@@ -1634,6 +1641,14 @@ mod native_tests {
format!("--commitment={}", commitment),
];
if let Some(decomp_base) = decomp_base {
args.push(format!("--decomp-base={}", decomp_base));
}
if let Some(decomp_legs) = decomp_legs {
args.push(format!("--decomp-legs={}", decomp_legs));
}
if bounded_lookup_log {
args.push("--bounded-log-lookup".to_string());
}
@@ -1751,6 +1766,8 @@ mod native_tests {
Commitments::KZG,
2,
false,
None,
None,
);
println!(
@@ -2035,6 +2052,8 @@ mod native_tests {
commitment,
lookup_safety_margin,
false,
None,
None,
);
let settings_path = format!("{}/{}/settings.json", test_dir, example_name);
@@ -2467,6 +2486,8 @@ mod native_tests {
Commitments::KZG,
2,
false,
None,
None,
);
let model_path = format!("{}/{}/network.compiled", test_dir, example_name);
@@ -2774,7 +2795,10 @@ mod native_tests {
"--features",
"icicle",
];
#[cfg(not(feature = "icicle"))]
#[cfg(feature = "macos-metal")]
let args = ["build", "--release", "--bin", "ezkl", "--features", "macos-metal"];
// not macos-metal and not icicle
#[cfg(all(not(feature = "icicle"), not(feature = "macos-metal")))]
let args = ["build", "--release", "--bin", "ezkl"];
#[cfg(not(feature = "mv-lookup"))]
let args = [

View File

@@ -68,13 +68,14 @@ mod py_tests {
"install",
"torch-geometric==2.5.2",
"torch==2.2.2",
"datasets==3.2.0",
"torchtext==0.17.2",
"torchvision==0.17.2",
"pandas==2.2.1",
"numpy==1.26.4",
"seaborn==0.13.2",
"notebook==7.1.2",
"nbconvert==7.16.3",
"onnx==1.16.0",
"onnx==1.17.0",
"kaggle==1.6.8",
"py-solc-x==2.0.3",
"web3==7.5.0",
@@ -88,12 +89,13 @@ mod py_tests {
"xgboost==2.0.3",
"hummingbird-ml==0.4.11",
"lightgbm==4.3.0",
"numpy==1.26.4",
])
.status()
.expect("failed to execute process");
assert!(status.success());
let status = Command::new("pip")
.args(["install", "numpy==1.23"])
.args(["install", "numpy==1.26.4"])
.status()
.expect("failed to execute process");
@@ -190,6 +192,16 @@ mod py_tests {
}
});
#[test]
fn neural_bag_of_words_notebook() {
crate::py_tests::init_binary();
let test_dir: TempDir = TempDir::new("neural_bow").unwrap();
let path = test_dir.path().to_str().unwrap();
crate::py_tests::mv_test_(path, "neural_bow.ipynb");
run_notebook(path, "neural_bow.ipynb");
test_dir.close().unwrap();
}
#[test]
fn felt_conversion_test_notebook() {
crate::py_tests::init_binary();

View File

@@ -873,6 +873,7 @@ def get_examples():
'linear_regression',
"mnist_gan",
"smallworm",
"fr_age"
]
examples = []
for subdir, _, _ in os.walk(os.path.join(examples_path, "onnx")):