mirror of
https://github.com/zkonduit/ezkl.git
synced 2026-01-13 08:17:57 -05:00
Compare commits
8 Commits
v16.2.4
...
ac/artifac
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
9c699e30cb | ||
|
|
e86caca8b6 | ||
|
|
3b8e44df9b | ||
|
|
c839a30ae6 | ||
|
|
352812b9ac | ||
|
|
d48d0b0b3e | ||
|
|
8b223354cc | ||
|
|
caa6ef8e16 |
1
.github/workflows/pypi-gpu.yml
vendored
1
.github/workflows/pypi-gpu.yml
vendored
@@ -34,6 +34,7 @@ jobs:
|
||||
run: |
|
||||
mv pyproject.toml pyproject.toml.orig
|
||||
sed "s/ezkl/ezkl-gpu/" pyproject.toml.orig >pyproject.toml
|
||||
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" pyproject.toml.orig >pyproject.toml
|
||||
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
|
||||
9
.github/workflows/pypi.yml
vendored
9
.github/workflows/pypi.yml
vendored
@@ -233,6 +233,14 @@ jobs:
|
||||
python-version: 3.12
|
||||
architecture: x64
|
||||
|
||||
- name: Set pyproject.toml version to match github tag
|
||||
shell: bash
|
||||
env:
|
||||
RELEASE_TAG: ${{ github.ref_name }}
|
||||
run: |
|
||||
mv pyproject.toml pyproject.toml.orig
|
||||
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" pyproject.toml.orig >pyproject.toml
|
||||
|
||||
- name: Set Cargo.toml version to match github tag
|
||||
shell: bash
|
||||
env:
|
||||
@@ -242,7 +250,6 @@ jobs:
|
||||
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.toml.orig >Cargo.toml
|
||||
mv Cargo.lock Cargo.lock.orig
|
||||
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.lock.orig >Cargo.lock
|
||||
|
||||
- name: Install required libraries
|
||||
shell: bash
|
||||
run: |
|
||||
|
||||
4
Cargo.lock
generated
4
Cargo.lock
generated
@@ -2377,7 +2377,7 @@ dependencies = [
|
||||
[[package]]
|
||||
name = "halo2_gadgets"
|
||||
version = "0.2.0"
|
||||
source = "git+https://github.com/zkonduit/halo2#0654e92bdf725fd44d849bfef3643870a8c7d50b"
|
||||
source = "git+https://github.com/zkonduit/halo2#6d72498928cdb69ce0de9f2230d2873ca2cf5324"
|
||||
dependencies = [
|
||||
"arrayvec 0.7.4",
|
||||
"bitvec",
|
||||
@@ -2394,7 +2394,7 @@ dependencies = [
|
||||
[[package]]
|
||||
name = "halo2_proofs"
|
||||
version = "0.3.0"
|
||||
source = "git+https://github.com/zkonduit/halo2#0654e92bdf725fd44d849bfef3643870a8c7d50b#0654e92bdf725fd44d849bfef3643870a8c7d50b"
|
||||
source = "git+https://github.com/zkonduit/halo2#6d72498928cdb69ce0de9f2230d2873ca2cf5324#6d72498928cdb69ce0de9f2230d2873ca2cf5324"
|
||||
dependencies = [
|
||||
"bincode",
|
||||
"blake2b_simd",
|
||||
|
||||
@@ -147,6 +147,10 @@ shellexpand = "3.1.0"
|
||||
runner = 'wasm-bindgen-test-runner'
|
||||
|
||||
|
||||
[[bench]]
|
||||
name = "zero_finder"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "accum_dot"
|
||||
harness = false
|
||||
@@ -276,7 +280,10 @@ no-update = []
|
||||
|
||||
|
||||
[patch.'https://github.com/zkonduit/halo2']
|
||||
halo2_proofs = { git = "https://github.com/zkonduit/halo2#0654e92bdf725fd44d849bfef3643870a8c7d50b", package = "halo2_proofs" }
|
||||
halo2_proofs = { git = "https://github.com/zkonduit/halo2#6d72498928cdb69ce0de9f2230d2873ca2cf5324", package = "halo2_proofs" }
|
||||
|
||||
[patch.'https://github.com/zkonduit/halo2#0654e92bdf725fd44d849bfef3643870a8c7d50b']
|
||||
halo2_proofs = { git = "https://github.com/zkonduit/halo2#6d72498928cdb69ce0de9f2230d2873ca2cf5324", package = "halo2_proofs" }
|
||||
|
||||
[patch.crates-io]
|
||||
uniffi_testing = { git = "https://github.com/ElusAegis/uniffi-rs", branch = "feat/testing-feature-build-fix" }
|
||||
|
||||
116
benches/zero_finder.rs
Normal file
116
benches/zero_finder.rs
Normal file
@@ -0,0 +1,116 @@
|
||||
use std::thread;
|
||||
|
||||
use criterion::{black_box, criterion_group, criterion_main, Criterion};
|
||||
use halo2curves::{bn256::Fr as F, ff::Field};
|
||||
use maybe_rayon::{
|
||||
iter::{IndexedParallelIterator, IntoParallelRefIterator, ParallelIterator},
|
||||
slice::ParallelSlice,
|
||||
};
|
||||
use rand::Rng;
|
||||
|
||||
// Assuming these are your types
|
||||
#[derive(Clone)]
|
||||
enum ValType {
|
||||
Constant(F),
|
||||
AssignedConstant(usize, F),
|
||||
Other,
|
||||
}
|
||||
|
||||
// Helper to generate test data
|
||||
fn generate_test_data(size: usize, zero_probability: f64) -> Vec<ValType> {
|
||||
let mut rng = rand::thread_rng();
|
||||
(0..size)
|
||||
.map(|_i| {
|
||||
if rng.gen::<f64>() < zero_probability {
|
||||
ValType::Constant(F::ZERO)
|
||||
} else {
|
||||
ValType::Constant(F::ONE) // Or some other non-zero value
|
||||
}
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
|
||||
fn bench_zero_finding(c: &mut Criterion) {
|
||||
let sizes = [
|
||||
1_000, // 1K
|
||||
10_000, // 10K
|
||||
100_000, // 100K
|
||||
256 * 256 * 2, // Our specific case
|
||||
1_000_000, // 1M
|
||||
10_000_000, // 10M
|
||||
];
|
||||
|
||||
let zero_probability = 0.1; // 10% zeros
|
||||
|
||||
let mut group = c.benchmark_group("zero_finding");
|
||||
group.sample_size(10); // Adjust based on your needs
|
||||
|
||||
for &size in &sizes {
|
||||
let data = generate_test_data(size, zero_probability);
|
||||
|
||||
// Benchmark sequential version
|
||||
group.bench_function(format!("sequential_{}", size), |b| {
|
||||
b.iter(|| {
|
||||
let result = data
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter_map(|(i, e)| match e {
|
||||
ValType::Constant(r) | ValType::AssignedConstant(_, r) => {
|
||||
(*r == F::ZERO).then_some(i)
|
||||
}
|
||||
_ => None,
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
black_box(result)
|
||||
})
|
||||
});
|
||||
|
||||
// Benchmark parallel version
|
||||
group.bench_function(format!("parallel_{}", size), |b| {
|
||||
b.iter(|| {
|
||||
let result = data
|
||||
.par_iter()
|
||||
.enumerate()
|
||||
.filter_map(|(i, e)| match e {
|
||||
ValType::Constant(r) | ValType::AssignedConstant(_, r) => {
|
||||
(*r == F::ZERO).then_some(i)
|
||||
}
|
||||
_ => None,
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
black_box(result)
|
||||
})
|
||||
});
|
||||
|
||||
// Benchmark chunked parallel version
|
||||
group.bench_function(format!("chunked_parallel_{}", size), |b| {
|
||||
b.iter(|| {
|
||||
let num_cores = thread::available_parallelism()
|
||||
.map(|n| n.get())
|
||||
.unwrap_or(1);
|
||||
let chunk_size = (size / num_cores).max(100);
|
||||
|
||||
let result = data
|
||||
.par_chunks(chunk_size)
|
||||
.enumerate()
|
||||
.flat_map(|(chunk_idx, chunk)| {
|
||||
chunk
|
||||
.par_iter() // Make sure we use par_iter() here
|
||||
.enumerate()
|
||||
.filter_map(move |(i, e)| match e {
|
||||
ValType::Constant(r) | ValType::AssignedConstant(_, r) => {
|
||||
(*r == F::ZERO).then_some(chunk_idx * chunk_size + i)
|
||||
}
|
||||
_ => None,
|
||||
})
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
black_box(result)
|
||||
})
|
||||
});
|
||||
}
|
||||
group.finish();
|
||||
}
|
||||
|
||||
criterion_group!(benches, bench_zero_finding);
|
||||
criterion_main!(benches);
|
||||
@@ -12,6 +12,7 @@ asyncio_mode = "auto"
|
||||
|
||||
[project]
|
||||
name = "ezkl"
|
||||
version = "0.0.0"
|
||||
requires-python = ">=3.7"
|
||||
classifiers = [
|
||||
"Programming Language :: Rust",
|
||||
|
||||
@@ -30,6 +30,8 @@ use crate::{
|
||||
use super::*;
|
||||
use crate::circuit::ops::lookup::LookupOp;
|
||||
|
||||
const ASCII_ALPHABET: &str = "abcdefghijklmnopqrstuvwxyz";
|
||||
|
||||
/// Calculate the L1 distance between two tensors.
|
||||
/// ```
|
||||
/// use ezkl::tensor::Tensor;
|
||||
@@ -418,10 +420,6 @@ pub fn dot<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
values[0].remove_indices(&mut removal_indices, true)?;
|
||||
values[1].remove_indices(&mut removal_indices, true)?;
|
||||
|
||||
let elapsed = global_start.elapsed();
|
||||
trace!("filtering const zero indices took: {:?}", elapsed);
|
||||
|
||||
let start = instant::Instant::now();
|
||||
let mut inputs = vec![];
|
||||
let block_width = config.custom_gates.output.num_inner_cols();
|
||||
|
||||
@@ -429,37 +427,22 @@ pub fn dot<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
for (i, input) in values.iter_mut().enumerate() {
|
||||
input.pad_to_zero_rem(block_width, ValType::Constant(F::ZERO))?;
|
||||
let inp = {
|
||||
let (res, len) = region.assign_with_duplication(
|
||||
&config.custom_gates.inputs[i],
|
||||
input,
|
||||
&config.check_mode,
|
||||
false,
|
||||
)?;
|
||||
let (res, len) = region
|
||||
.assign_with_duplication_unconstrained(&config.custom_gates.inputs[i], input)?;
|
||||
assigned_len = len;
|
||||
res.get_inner()?
|
||||
};
|
||||
inputs.push(inp);
|
||||
}
|
||||
|
||||
let elapsed = start.elapsed();
|
||||
trace!("assigning inputs took: {:?}", elapsed);
|
||||
|
||||
// Now we can assign the dot product
|
||||
// time this step
|
||||
let start = instant::Instant::now();
|
||||
let accumulated_dot = accumulated::dot(&[inputs[0].clone(), inputs[1].clone()], block_width)?;
|
||||
let elapsed = start.elapsed();
|
||||
trace!("calculating accumulated dot took: {:?}", elapsed);
|
||||
|
||||
let start = instant::Instant::now();
|
||||
let (output, output_assigned_len) = region.assign_with_duplication(
|
||||
let (output, output_assigned_len) = region.assign_with_duplication_constrained(
|
||||
&config.custom_gates.output,
|
||||
&accumulated_dot.into(),
|
||||
&config.check_mode,
|
||||
true,
|
||||
)?;
|
||||
let elapsed = start.elapsed();
|
||||
trace!("assigning output took: {:?}", elapsed);
|
||||
|
||||
// enable the selectors
|
||||
if !region.is_dummy() {
|
||||
@@ -1000,7 +983,6 @@ fn select<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
region: &mut RegionCtx<F>,
|
||||
values: &[ValTensor<F>; 2],
|
||||
) -> Result<ValTensor<F>, CircuitError> {
|
||||
let start = instant::Instant::now();
|
||||
let (mut input, index) = (values[0].clone(), values[1].clone());
|
||||
input.flatten();
|
||||
|
||||
@@ -1028,9 +1010,6 @@ fn select<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
let (_, assigned_output) =
|
||||
dynamic_lookup(config, region, &[index, output], &[dim_indices, input])?;
|
||||
|
||||
let end = start.elapsed();
|
||||
trace!("select took: {:?}", end);
|
||||
|
||||
Ok(assigned_output)
|
||||
}
|
||||
|
||||
@@ -1092,7 +1071,6 @@ pub(crate) fn dynamic_lookup<F: PrimeField + TensorType + PartialOrd + std::hash
|
||||
lookups: &[ValTensor<F>; 2],
|
||||
tables: &[ValTensor<F>; 2],
|
||||
) -> Result<(ValTensor<F>, ValTensor<F>), CircuitError> {
|
||||
let start = instant::Instant::now();
|
||||
// if not all lookups same length err
|
||||
if lookups[0].len() != lookups[1].len() {
|
||||
return Err(CircuitError::MismatchedLookupLength(
|
||||
@@ -1126,28 +1104,20 @@ pub(crate) fn dynamic_lookup<F: PrimeField + TensorType + PartialOrd + std::hash
|
||||
}
|
||||
let table_len = table_0.len();
|
||||
|
||||
trace!("assigning tables took: {:?}", start.elapsed());
|
||||
|
||||
// now create a vartensor of constants for the dynamic lookup index
|
||||
let table_index = create_constant_tensor(F::from(dynamic_lookup_index as u64), table_len);
|
||||
let _table_index =
|
||||
region.assign_dynamic_lookup(&config.dynamic_lookups.tables[2], &table_index)?;
|
||||
|
||||
trace!("assigning table index took: {:?}", start.elapsed());
|
||||
|
||||
let lookup_0 = region.assign(&config.dynamic_lookups.inputs[0], &lookup_0)?;
|
||||
let lookup_1 = region.assign(&config.dynamic_lookups.inputs[1], &lookup_1)?;
|
||||
let lookup_len = lookup_0.len();
|
||||
|
||||
trace!("assigning lookups took: {:?}", start.elapsed());
|
||||
|
||||
// now set the lookup index
|
||||
let lookup_index = create_constant_tensor(F::from(dynamic_lookup_index as u64), lookup_len);
|
||||
|
||||
let _lookup_index = region.assign(&config.dynamic_lookups.inputs[2], &lookup_index)?;
|
||||
|
||||
trace!("assigning lookup index took: {:?}", start.elapsed());
|
||||
|
||||
let mut lookup_block = 0;
|
||||
|
||||
if !region.is_dummy() {
|
||||
@@ -1194,9 +1164,6 @@ pub(crate) fn dynamic_lookup<F: PrimeField + TensorType + PartialOrd + std::hash
|
||||
region.increment_dynamic_lookup_index(1);
|
||||
region.increment(lookup_len);
|
||||
|
||||
let end = start.elapsed();
|
||||
trace!("dynamic lookup took: {:?}", end);
|
||||
|
||||
Ok((lookup_0, lookup_1))
|
||||
}
|
||||
|
||||
@@ -1441,7 +1408,6 @@ pub(crate) fn linearize_element_index<F: PrimeField + TensorType + PartialOrd +
|
||||
dim: usize,
|
||||
is_flat_index: bool,
|
||||
) -> Result<ValTensor<F>, CircuitError> {
|
||||
let start_time = instant::Instant::now();
|
||||
let index = values[0].clone();
|
||||
if !is_flat_index {
|
||||
assert_eq!(index.dims().len(), dims.len());
|
||||
@@ -1515,9 +1481,6 @@ pub(crate) fn linearize_element_index<F: PrimeField + TensorType + PartialOrd +
|
||||
|
||||
region.apply_in_loop(&mut output, inner_loop_function)?;
|
||||
|
||||
let elapsed = start_time.elapsed();
|
||||
trace!("linearize_element_index took: {:?}", elapsed);
|
||||
|
||||
Ok(output.into())
|
||||
}
|
||||
|
||||
@@ -1949,16 +1912,11 @@ pub fn sum<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
|
||||
region.flush()?;
|
||||
// time this entire function run
|
||||
let global_start = instant::Instant::now();
|
||||
|
||||
let mut values = values.clone();
|
||||
|
||||
// this section has been optimized to death, don't mess with it
|
||||
values[0].remove_const_zero_values();
|
||||
|
||||
let elapsed = global_start.elapsed();
|
||||
trace!("filtering const zero indices took: {:?}", elapsed);
|
||||
|
||||
// if empty return a const
|
||||
if values[0].is_empty() {
|
||||
return Ok(create_zero_tensor(1));
|
||||
@@ -1970,12 +1928,8 @@ pub fn sum<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
let input = {
|
||||
let mut input = values[0].clone();
|
||||
input.pad_to_zero_rem(block_width, ValType::Constant(F::ZERO))?;
|
||||
let (res, len) = region.assign_with_duplication(
|
||||
&config.custom_gates.inputs[1],
|
||||
&input,
|
||||
&config.check_mode,
|
||||
false,
|
||||
)?;
|
||||
let (res, len) =
|
||||
region.assign_with_duplication_unconstrained(&config.custom_gates.inputs[1], &input)?;
|
||||
assigned_len = len;
|
||||
res.get_inner()?
|
||||
};
|
||||
@@ -1983,11 +1937,10 @@ pub fn sum<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
// Now we can assign the dot product
|
||||
let accumulated_sum = accumulated::sum(&input, block_width)?;
|
||||
|
||||
let (output, output_assigned_len) = region.assign_with_duplication(
|
||||
let (output, output_assigned_len) = region.assign_with_duplication_constrained(
|
||||
&config.custom_gates.output,
|
||||
&accumulated_sum.into(),
|
||||
&config.check_mode,
|
||||
true,
|
||||
)?;
|
||||
|
||||
// enable the selectors
|
||||
@@ -2053,13 +2006,10 @@ pub fn prod<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
) -> Result<ValTensor<F>, CircuitError> {
|
||||
region.flush()?;
|
||||
// time this entire function run
|
||||
let global_start = instant::Instant::now();
|
||||
|
||||
// this section has been optimized to death, don't mess with it
|
||||
let removal_indices = values[0].get_const_zero_indices();
|
||||
|
||||
let elapsed = global_start.elapsed();
|
||||
trace!("finding const zero indices took: {:?}", elapsed);
|
||||
// if empty return a const
|
||||
if !removal_indices.is_empty() {
|
||||
return Ok(create_zero_tensor(1));
|
||||
@@ -2070,12 +2020,8 @@ pub fn prod<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
let input = {
|
||||
let mut input = values[0].clone();
|
||||
input.pad_to_zero_rem(block_width, ValType::Constant(F::ONE))?;
|
||||
let (res, len) = region.assign_with_duplication(
|
||||
&config.custom_gates.inputs[1],
|
||||
&input,
|
||||
&config.check_mode,
|
||||
false,
|
||||
)?;
|
||||
let (res, len) =
|
||||
region.assign_with_duplication_unconstrained(&config.custom_gates.inputs[1], &input)?;
|
||||
assigned_len = len;
|
||||
res.get_inner()?
|
||||
};
|
||||
@@ -2083,11 +2029,10 @@ pub fn prod<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
// Now we can assign the dot product
|
||||
let accumulated_prod = accumulated::prod(&input, block_width)?;
|
||||
|
||||
let (output, output_assigned_len) = region.assign_with_duplication(
|
||||
let (output, output_assigned_len) = region.assign_with_duplication_constrained(
|
||||
&config.custom_gates.output,
|
||||
&accumulated_prod.into(),
|
||||
&config.check_mode,
|
||||
true,
|
||||
)?;
|
||||
|
||||
// enable the selectors
|
||||
@@ -2440,7 +2385,6 @@ pub(crate) fn pairwise<F: PrimeField + TensorType + PartialOrd + std::hash::Hash
|
||||
let orig_lhs = lhs.clone();
|
||||
let orig_rhs = rhs.clone();
|
||||
|
||||
let start = instant::Instant::now();
|
||||
let first_zero_indices = HashSet::from_iter(lhs.get_const_zero_indices());
|
||||
let second_zero_indices = HashSet::from_iter(rhs.get_const_zero_indices());
|
||||
|
||||
@@ -2455,7 +2399,6 @@ pub(crate) fn pairwise<F: PrimeField + TensorType + PartialOrd + std::hash::Hash
|
||||
BaseOp::Sub => second_zero_indices.clone(),
|
||||
_ => return Err(CircuitError::UnsupportedOp),
|
||||
};
|
||||
trace!("setting up indices took {:?}", start.elapsed());
|
||||
|
||||
if lhs.len() != rhs.len() {
|
||||
return Err(CircuitError::DimMismatch(format!(
|
||||
@@ -2480,7 +2423,6 @@ pub(crate) fn pairwise<F: PrimeField + TensorType + PartialOrd + std::hash::Hash
|
||||
|
||||
// Now we can assign the dot product
|
||||
// time the calc
|
||||
let start = instant::Instant::now();
|
||||
let op_result = match op {
|
||||
BaseOp::Add => add(&inputs),
|
||||
BaseOp::Sub => sub(&inputs),
|
||||
@@ -2491,20 +2433,13 @@ pub(crate) fn pairwise<F: PrimeField + TensorType + PartialOrd + std::hash::Hash
|
||||
error!("{}", e);
|
||||
halo2_proofs::plonk::Error::Synthesis
|
||||
})?;
|
||||
trace!("pairwise {} calc took {:?}", op.as_str(), start.elapsed());
|
||||
|
||||
let start = instant::Instant::now();
|
||||
let assigned_len = op_result.len() - removal_indices.len();
|
||||
let mut output = region.assign_with_omissions(
|
||||
&config.custom_gates.output,
|
||||
&op_result.into(),
|
||||
&removal_indices,
|
||||
)?;
|
||||
trace!(
|
||||
"pairwise {} input assign took {:?}",
|
||||
op.as_str(),
|
||||
start.elapsed()
|
||||
);
|
||||
|
||||
// Enable the selectors
|
||||
if !region.is_dummy() {
|
||||
@@ -2671,9 +2606,7 @@ pub fn greater<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
rhs.expand(&broadcasted_shape)?;
|
||||
|
||||
let diff = pairwise(config, region, &[lhs, rhs], BaseOp::Sub)?;
|
||||
|
||||
let sign = sign(config, region, &[diff])?;
|
||||
|
||||
equals(config, region, &[sign, create_unit_tensor(1)])
|
||||
}
|
||||
|
||||
@@ -5286,75 +5219,72 @@ pub(crate) fn decompose<F: PrimeField + TensorType + PartialOrd + std::hash::Has
|
||||
base: &usize,
|
||||
n: &usize,
|
||||
) -> Result<ValTensor<F>, CircuitError> {
|
||||
let input = values[0].clone();
|
||||
let mut input = values[0].clone();
|
||||
|
||||
let is_assigned = !input.all_prev_assigned();
|
||||
|
||||
let bases: ValTensor<F> = Tensor::from(
|
||||
(0..*n)
|
||||
.rev()
|
||||
.map(|x| ValType::Constant(integer_rep_to_felt(base.pow(x as u32) as IntegerRep))),
|
||||
if !is_assigned {
|
||||
input = region.assign(&config.custom_gates.inputs[0], &input)?;
|
||||
}
|
||||
|
||||
let mut bases: ValTensor<F> = Tensor::from(
|
||||
// repeat it input.len() times
|
||||
(0..input.len()).flat_map(|_| {
|
||||
(0..*n)
|
||||
.rev()
|
||||
.map(|x| ValType::Constant(integer_rep_to_felt(base.pow(x as u32) as IntegerRep)))
|
||||
}),
|
||||
)
|
||||
.into();
|
||||
let mut bases_dims = input.dims().to_vec();
|
||||
bases_dims.push(*n);
|
||||
bases.reshape(&bases_dims)?;
|
||||
|
||||
let cartesian_coord = input
|
||||
.dims()
|
||||
.iter()
|
||||
.map(|x| 0..*x)
|
||||
.multi_cartesian_product()
|
||||
.collect::<Vec<_>>();
|
||||
let mut decomposed_dims = input.dims().to_vec();
|
||||
decomposed_dims.push(*n + 1);
|
||||
|
||||
let mut output: Tensor<Tensor<ValType<F>>> = Tensor::new(None, input.dims())?;
|
||||
let claimed_output = if region.witness_gen() {
|
||||
input.decompose(*base, *n)?
|
||||
} else {
|
||||
let decomposed_len = decomposed_dims.iter().product();
|
||||
let claimed_output = Tensor::new(
|
||||
Some(&vec![ValType::Value(Value::unknown()); decomposed_len]),
|
||||
&decomposed_dims,
|
||||
)?;
|
||||
|
||||
let inner_loop_function =
|
||||
|i: usize, region: &mut RegionCtx<F>| -> Result<Tensor<ValType<F>>, CircuitError> {
|
||||
let coord = cartesian_coord[i].clone();
|
||||
let slice = coord.iter().map(|x| *x..*x + 1).collect::<Vec<_>>();
|
||||
let mut sliced_input = input.get_slice(&slice)?;
|
||||
sliced_input.flatten();
|
||||
claimed_output.into()
|
||||
};
|
||||
region.assign(&config.custom_gates.output, &claimed_output)?;
|
||||
region.increment(claimed_output.len());
|
||||
|
||||
if !is_assigned {
|
||||
sliced_input = region.assign(&config.custom_gates.inputs[0], &sliced_input)?;
|
||||
}
|
||||
let input_slice = input.dims().iter().map(|x| 0..*x).collect::<Vec<_>>();
|
||||
let mut sign_slice = input_slice.clone();
|
||||
sign_slice.push(0..1);
|
||||
let mut rest_slice = input_slice.clone();
|
||||
rest_slice.push(1..n + 1);
|
||||
|
||||
let mut claimed_output_slice = if region.witness_gen() {
|
||||
sliced_input.decompose(*base, *n)?
|
||||
} else {
|
||||
Tensor::from(vec![ValType::Value(Value::unknown()); *n + 1].into_iter()).into()
|
||||
};
|
||||
let sign = claimed_output.get_slice(&sign_slice)?;
|
||||
let rest = claimed_output.get_slice(&rest_slice)?;
|
||||
|
||||
claimed_output_slice =
|
||||
region.assign(&config.custom_gates.inputs[1], &claimed_output_slice)?;
|
||||
claimed_output_slice.flatten();
|
||||
let sign = range_check(config, region, &[sign], &(-1, 1))?;
|
||||
let rest = range_check(config, region, &[rest], &(0, (*base - 1) as i128))?;
|
||||
|
||||
region.increment(claimed_output_slice.len());
|
||||
// equation needs to be constructed as ij,ij->i but for arbitrary n dims we need to construct this dynamically
|
||||
// indices should map in order of the alphabet
|
||||
// start with lhs
|
||||
let lhs = ASCII_ALPHABET.chars().take(rest.dims().len()).join("");
|
||||
let rhs = ASCII_ALPHABET.chars().take(rest.dims().len() - 1).join("");
|
||||
let equation = format!("{},{}->{}", lhs, lhs, rhs);
|
||||
|
||||
// get the sign bit and make sure it is valid
|
||||
let sign = claimed_output_slice.first()?;
|
||||
let sign = range_check(config, region, &[sign], &(-1, 1))?;
|
||||
// now add the rhs
|
||||
|
||||
// get the rest of the thing and make sure it is in the correct range
|
||||
let rest = claimed_output_slice.get_slice(&[1..claimed_output_slice.len()])?;
|
||||
let prod_decomp = einsum(config, region, &[rest.clone(), bases], &equation)?;
|
||||
|
||||
let rest = range_check(config, region, &[rest], &(0, (base - 1) as i128))?;
|
||||
let signed_decomp = pairwise(config, region, &[prod_decomp, sign], BaseOp::Mult)?;
|
||||
|
||||
let prod_decomp = dot(config, region, &[rest, bases.clone()])?;
|
||||
enforce_equality(config, region, &[input, signed_decomp])?;
|
||||
|
||||
let signed_decomp = pairwise(config, region, &[prod_decomp, sign], BaseOp::Mult)?;
|
||||
|
||||
enforce_equality(config, region, &[sliced_input, signed_decomp])?;
|
||||
|
||||
Ok(claimed_output_slice.get_inner_tensor()?.clone())
|
||||
};
|
||||
|
||||
region.apply_in_loop(&mut output, inner_loop_function)?;
|
||||
|
||||
let mut combined_output = output.combine()?;
|
||||
let mut output_dims = input.dims().to_vec();
|
||||
output_dims.push(*n + 1);
|
||||
combined_output.reshape(&output_dims)?;
|
||||
|
||||
Ok(combined_output.into())
|
||||
Ok(claimed_output)
|
||||
}
|
||||
|
||||
pub(crate) fn sign<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
|
||||
@@ -671,22 +671,17 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
|
||||
}
|
||||
|
||||
/// Assign a valtensor to a vartensor with duplication
|
||||
pub fn assign_with_duplication(
|
||||
pub fn assign_with_duplication_unconstrained(
|
||||
&mut self,
|
||||
var: &VarTensor,
|
||||
values: &ValTensor<F>,
|
||||
check_mode: &crate::circuit::CheckMode,
|
||||
single_inner_col: bool,
|
||||
) -> Result<(ValTensor<F>, usize), Error> {
|
||||
if let Some(region) = &self.region {
|
||||
// duplicates every nth element to adjust for column overflow
|
||||
let (res, len) = var.assign_with_duplication(
|
||||
let (res, len) = var.assign_with_duplication_unconstrained(
|
||||
&mut region.borrow_mut(),
|
||||
self.row,
|
||||
self.linear_coord,
|
||||
values,
|
||||
check_mode,
|
||||
single_inner_col,
|
||||
&mut self.assigned_constants,
|
||||
)?;
|
||||
Ok((res, len))
|
||||
@@ -695,7 +690,37 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
|
||||
self.row,
|
||||
self.linear_coord,
|
||||
values,
|
||||
single_inner_col,
|
||||
false,
|
||||
&mut self.assigned_constants,
|
||||
)?;
|
||||
Ok((values.clone(), len))
|
||||
}
|
||||
}
|
||||
|
||||
/// Assign a valtensor to a vartensor with duplication
|
||||
pub fn assign_with_duplication_constrained(
|
||||
&mut self,
|
||||
var: &VarTensor,
|
||||
values: &ValTensor<F>,
|
||||
check_mode: &crate::circuit::CheckMode,
|
||||
) -> Result<(ValTensor<F>, usize), Error> {
|
||||
if let Some(region) = &self.region {
|
||||
// duplicates every nth element to adjust for column overflow
|
||||
let (res, len) = var.assign_with_duplication_constrained(
|
||||
&mut region.borrow_mut(),
|
||||
self.row,
|
||||
self.linear_coord,
|
||||
values,
|
||||
check_mode,
|
||||
&mut self.assigned_constants,
|
||||
)?;
|
||||
Ok((res, len))
|
||||
} else {
|
||||
let (_, len) = var.dummy_assign_with_duplication(
|
||||
self.row,
|
||||
self.linear_coord,
|
||||
values,
|
||||
true,
|
||||
&mut self.assigned_constants,
|
||||
)?;
|
||||
Ok((values.clone(), len))
|
||||
|
||||
@@ -488,7 +488,7 @@ pub async fn deploy_da_verifier_via_solidity(
|
||||
}
|
||||
}
|
||||
|
||||
let contract = match call_to_account {
|
||||
match call_to_account {
|
||||
Some(call) => {
|
||||
deploy_single_da_contract(
|
||||
client,
|
||||
@@ -514,8 +514,7 @@ pub async fn deploy_da_verifier_via_solidity(
|
||||
)
|
||||
.await
|
||||
}
|
||||
};
|
||||
return contract;
|
||||
}
|
||||
}
|
||||
|
||||
async fn deploy_multi_da_contract(
|
||||
@@ -630,7 +629,7 @@ async fn deploy_single_da_contract(
|
||||
// bytes memory _callData,
|
||||
PackedSeqToken(call_data.as_ref()),
|
||||
// uint256 _decimals,
|
||||
WordToken(B256::from(decimals).into()),
|
||||
WordToken(B256::from(decimals)),
|
||||
// uint[] memory _scales,
|
||||
DynSeqToken(
|
||||
scales
|
||||
|
||||
@@ -280,7 +280,13 @@ impl GraphWitness {
|
||||
})?;
|
||||
|
||||
let reader = std::io::BufReader::with_capacity(*EZKL_BUF_CAPACITY, file);
|
||||
serde_json::from_reader(reader).map_err(|e| e.into())
|
||||
let witness: GraphWitness =
|
||||
serde_json::from_reader(reader).map_err(|e| Into::<GraphError>::into(e))?;
|
||||
|
||||
// check versions match
|
||||
crate::check_version_string_matches(witness.version.as_deref().unwrap_or(""));
|
||||
|
||||
Ok(witness)
|
||||
}
|
||||
|
||||
/// Save the model input to a file
|
||||
@@ -572,10 +578,14 @@ impl GraphSettings {
|
||||
// buf reader
|
||||
let reader =
|
||||
std::io::BufReader::with_capacity(*EZKL_BUF_CAPACITY, std::fs::File::open(path)?);
|
||||
serde_json::from_reader(reader).map_err(|e| {
|
||||
let settings: GraphSettings = serde_json::from_reader(reader).map_err(|e| {
|
||||
error!("failed to load settings file at {}", e);
|
||||
std::io::Error::new(std::io::ErrorKind::Other, e)
|
||||
})
|
||||
})?;
|
||||
|
||||
crate::check_version_string_matches(&settings.version);
|
||||
|
||||
Ok(settings)
|
||||
}
|
||||
|
||||
/// Export the ezkl configuration as json
|
||||
@@ -697,6 +707,9 @@ impl GraphCircuit {
|
||||
let reader = std::io::BufReader::with_capacity(*EZKL_BUF_CAPACITY, f);
|
||||
let result: GraphCircuit = bincode::deserialize_from(reader)?;
|
||||
|
||||
// check the versions matche
|
||||
crate::check_version_string_matches(&result.core.settings.version);
|
||||
|
||||
Ok(result)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1226,6 +1226,7 @@ impl Model {
|
||||
values.iter().map(|v| v.dims()).collect_vec()
|
||||
);
|
||||
|
||||
let start = instant::Instant::now();
|
||||
match &node {
|
||||
NodeType::Node(n) => {
|
||||
let res = if node.is_constant() && node.num_uses() == 1 {
|
||||
@@ -1363,6 +1364,7 @@ impl Model {
|
||||
results.insert(*idx, full_results);
|
||||
}
|
||||
}
|
||||
debug!("------------ layout of {} took {:?}", idx, start.elapsed());
|
||||
}
|
||||
|
||||
// we do this so we can support multiple passes of the same model and have deterministic results (Non-assigned inputs etc... etc...)
|
||||
|
||||
@@ -142,8 +142,6 @@ use tract_onnx::prelude::SymbolValues;
|
||||
pub fn extract_tensor_value(
|
||||
input: Arc<tract_onnx::prelude::Tensor>,
|
||||
) -> Result<Tensor<f32>, GraphError> {
|
||||
use maybe_rayon::prelude::{IntoParallelRefIterator, ParallelIterator};
|
||||
|
||||
let dt = input.datum_type();
|
||||
let dims = input.shape().to_vec();
|
||||
|
||||
@@ -156,7 +154,7 @@ pub fn extract_tensor_value(
|
||||
match dt {
|
||||
DatumType::F16 => {
|
||||
let vec = input.as_slice::<tract_onnx::prelude::f16>()?.to_vec();
|
||||
let cast: Vec<f32> = vec.par_iter().map(|x| (*x).into()).collect();
|
||||
let cast: Vec<f32> = vec.iter().map(|x| (*x).into()).collect();
|
||||
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
|
||||
}
|
||||
DatumType::F32 => {
|
||||
@@ -165,61 +163,61 @@ pub fn extract_tensor_value(
|
||||
}
|
||||
DatumType::F64 => {
|
||||
let vec = input.as_slice::<f64>()?.to_vec();
|
||||
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
|
||||
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
|
||||
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
|
||||
}
|
||||
DatumType::I64 => {
|
||||
// Generally a shape or hyperparam
|
||||
let vec = input.as_slice::<i64>()?.to_vec();
|
||||
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
|
||||
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
|
||||
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
|
||||
}
|
||||
DatumType::I32 => {
|
||||
// Generally a shape or hyperparam
|
||||
let vec = input.as_slice::<i32>()?.to_vec();
|
||||
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
|
||||
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
|
||||
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
|
||||
}
|
||||
DatumType::I16 => {
|
||||
// Generally a shape or hyperparam
|
||||
let vec = input.as_slice::<i16>()?.to_vec();
|
||||
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
|
||||
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
|
||||
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
|
||||
}
|
||||
DatumType::I8 => {
|
||||
// Generally a shape or hyperparam
|
||||
let vec = input.as_slice::<i8>()?.to_vec();
|
||||
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
|
||||
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
|
||||
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
|
||||
}
|
||||
DatumType::U8 => {
|
||||
// Generally a shape or hyperparam
|
||||
let vec = input.as_slice::<u8>()?.to_vec();
|
||||
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
|
||||
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
|
||||
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
|
||||
}
|
||||
DatumType::U16 => {
|
||||
// Generally a shape or hyperparam
|
||||
let vec = input.as_slice::<u16>()?.to_vec();
|
||||
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
|
||||
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
|
||||
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
|
||||
}
|
||||
DatumType::U32 => {
|
||||
// Generally a shape or hyperparam
|
||||
let vec = input.as_slice::<u32>()?.to_vec();
|
||||
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
|
||||
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
|
||||
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
|
||||
}
|
||||
DatumType::U64 => {
|
||||
// Generally a shape or hyperparam
|
||||
let vec = input.as_slice::<u64>()?.to_vec();
|
||||
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
|
||||
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
|
||||
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
|
||||
}
|
||||
DatumType::Bool => {
|
||||
// Generally a shape or hyperparam
|
||||
let vec = input.as_slice::<bool>()?.to_vec();
|
||||
let cast: Vec<f32> = vec.par_iter().map(|x| *x as usize as f32).collect();
|
||||
let cast: Vec<f32> = vec.iter().map(|x| *x as usize as f32).collect();
|
||||
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
|
||||
}
|
||||
DatumType::TDim => {
|
||||
@@ -227,7 +225,7 @@ pub fn extract_tensor_value(
|
||||
let vec = input.as_slice::<tract_onnx::prelude::TDim>()?.to_vec();
|
||||
|
||||
let cast: Result<Vec<f32>, GraphError> = vec
|
||||
.par_iter()
|
||||
.iter()
|
||||
.map(|x| match x.to_i64() {
|
||||
Ok(v) => Ok(v as f32),
|
||||
Err(_) => match x.to_i64() {
|
||||
@@ -1136,23 +1134,21 @@ pub fn new_op_from_onnx(
|
||||
a: crate::circuit::utils::F32(exponent),
|
||||
})
|
||||
}
|
||||
} else {
|
||||
if let Some(c) = inputs[0].opkind().get_mutable_constant() {
|
||||
inputs[0].decrement_use();
|
||||
deleted_indices.push(0);
|
||||
if c.raw_values.len() > 1 {
|
||||
unimplemented!("only support scalar base")
|
||||
}
|
||||
|
||||
let base = c.raw_values[0];
|
||||
|
||||
SupportedOp::Nonlinear(LookupOp::Exp {
|
||||
scale: scale_to_multiplier(input_scales[1]).into(),
|
||||
base: base.into(),
|
||||
})
|
||||
} else {
|
||||
unimplemented!("only support constant base or pow for now")
|
||||
} else if let Some(c) = inputs[0].opkind().get_mutable_constant() {
|
||||
inputs[0].decrement_use();
|
||||
deleted_indices.push(0);
|
||||
if c.raw_values.len() > 1 {
|
||||
unimplemented!("only support scalar base")
|
||||
}
|
||||
|
||||
let base = c.raw_values[0];
|
||||
|
||||
SupportedOp::Nonlinear(LookupOp::Exp {
|
||||
scale: scale_to_multiplier(input_scales[1]).into(),
|
||||
base: base.into(),
|
||||
})
|
||||
} else {
|
||||
unimplemented!("only support constant base or pow for now")
|
||||
}
|
||||
}
|
||||
"Div" => {
|
||||
|
||||
27
src/lib.rs
27
src/lib.rs
@@ -420,3 +420,30 @@ where
|
||||
let b = s[pos + 2..].parse()?;
|
||||
Ok((a, b))
|
||||
}
|
||||
|
||||
/// Check if the version string matches the artifact version
|
||||
/// If the version string does not match the artifact version, log a warning
|
||||
pub fn check_version_string_matches(artifact_version: &str) {
|
||||
if artifact_version == "0.0.0"
|
||||
|| artifact_version == "source - no compatibility guaranteed"
|
||||
|| artifact_version.is_empty()
|
||||
{
|
||||
log::warn!("Artifact version is 0.0.0, skipping version check");
|
||||
return;
|
||||
}
|
||||
|
||||
let version = crate::version();
|
||||
|
||||
if version == "source - no compatibility guaranteed" {
|
||||
log::warn!("Compiled source version is not guaranteed to match artifact version");
|
||||
return;
|
||||
}
|
||||
|
||||
if version != artifact_version {
|
||||
log::warn!(
|
||||
"Version mismatch: CLI version is {} but artifact version is {}",
|
||||
version,
|
||||
artifact_version
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -822,6 +822,7 @@ where
|
||||
Scheme::Scalar: PrimeField + SerdeObject + FromUniformBytes<64>,
|
||||
{
|
||||
debug!("loading proving key from {:?}", path);
|
||||
let start = instant::Instant::now();
|
||||
let f = File::open(path.clone()).map_err(|e| PfsysError::LoadPk(format!("{}", e)))?;
|
||||
let mut reader = BufReader::with_capacity(*EZKL_BUF_CAPACITY, f);
|
||||
let pk = ProvingKey::<Scheme::Curve>::read::<_, C>(
|
||||
@@ -830,7 +831,8 @@ where
|
||||
params,
|
||||
)
|
||||
.map_err(|e| PfsysError::LoadPk(format!("{}", e)))?;
|
||||
info!("loaded proving key ✅");
|
||||
let elapsed = start.elapsed();
|
||||
info!("loaded proving key in {:?}", elapsed);
|
||||
Ok(pk)
|
||||
}
|
||||
|
||||
|
||||
@@ -638,42 +638,44 @@ impl<T: Clone + TensorType> Tensor<T> {
|
||||
where
|
||||
T: Send + Sync,
|
||||
{
|
||||
if indices.is_empty() {
|
||||
// Fast path: empty indices or full tensor slice
|
||||
if indices.is_empty()
|
||||
|| indices.iter().map(|x| x.end - x.start).collect::<Vec<_>>() == self.dims
|
||||
{
|
||||
return Ok(self.clone());
|
||||
}
|
||||
|
||||
// Validate dimensions
|
||||
if self.dims.len() < indices.len() {
|
||||
return Err(TensorError::DimError(format!(
|
||||
"The dimensionality of the slice {:?} is greater than the tensor's {:?}",
|
||||
indices, self.dims
|
||||
)));
|
||||
} else if indices.iter().map(|x| x.end - x.start).collect::<Vec<_>>() == self.dims {
|
||||
// else if slice is the same as dims, return self
|
||||
return Ok(self.clone());
|
||||
}
|
||||
|
||||
// if indices weren't specified we fill them in as required
|
||||
let mut full_indices = indices.to_vec();
|
||||
// Pre-allocate the full indices vector with capacity
|
||||
let mut full_indices = Vec::with_capacity(self.dims.len());
|
||||
full_indices.extend_from_slice(indices);
|
||||
|
||||
for i in 0..(self.dims.len() - indices.len()) {
|
||||
full_indices.push(0..self.dims()[indices.len() + i])
|
||||
}
|
||||
// Fill remaining dimensions
|
||||
full_indices.extend((indices.len()..self.dims.len()).map(|i| 0..self.dims[i]));
|
||||
|
||||
let cartesian_coord: Vec<Vec<usize>> = full_indices
|
||||
// Pre-calculate total size and allocate result vector
|
||||
let total_size: usize = full_indices
|
||||
.iter()
|
||||
.cloned()
|
||||
.multi_cartesian_product()
|
||||
.collect();
|
||||
|
||||
let res: Vec<T> = cartesian_coord
|
||||
.par_iter()
|
||||
.map(|e| {
|
||||
let index = self.get_index(e);
|
||||
self[index].clone()
|
||||
})
|
||||
.collect();
|
||||
.map(|range| range.end - range.start)
|
||||
.product();
|
||||
let mut res = Vec::with_capacity(total_size);
|
||||
|
||||
// Calculate new dimensions once
|
||||
let dims: Vec<usize> = full_indices.iter().map(|e| e.end - e.start).collect();
|
||||
|
||||
// Use iterator directly without collecting into intermediate Vec
|
||||
for coord in full_indices.iter().cloned().multi_cartesian_product() {
|
||||
let index = self.get_index(&coord);
|
||||
res.push(self[index].clone());
|
||||
}
|
||||
|
||||
Tensor::new(Some(&res), &dims)
|
||||
}
|
||||
|
||||
@@ -831,7 +833,7 @@ impl<T: Clone + TensorType> Tensor<T> {
|
||||
num_repeats: usize,
|
||||
initial_offset: usize,
|
||||
) -> Result<Tensor<T>, TensorError> {
|
||||
let mut inner: Vec<T> = vec![];
|
||||
let mut inner: Vec<T> = Vec::with_capacity(self.inner.len());
|
||||
let mut offset = initial_offset;
|
||||
for (i, elem) in self.inner.clone().into_iter().enumerate() {
|
||||
if (i + offset + 1) % n == 0 {
|
||||
@@ -860,20 +862,22 @@ impl<T: Clone + TensorType> Tensor<T> {
|
||||
num_repeats: usize,
|
||||
initial_offset: usize,
|
||||
) -> Result<Tensor<T>, TensorError> {
|
||||
let mut inner: Vec<T> = vec![];
|
||||
let mut indices_to_remove = std::collections::HashSet::new();
|
||||
for i in 0..self.inner.len() {
|
||||
if (i + initial_offset + 1) % n == 0 {
|
||||
for j in 1..(1 + num_repeats) {
|
||||
indices_to_remove.insert(i + j);
|
||||
}
|
||||
}
|
||||
}
|
||||
// Pre-calculate capacity to avoid reallocations
|
||||
let estimated_size = self.inner.len() - (self.inner.len() / n) * num_repeats;
|
||||
let mut inner = Vec::with_capacity(estimated_size);
|
||||
|
||||
let old_inner = self.inner.clone();
|
||||
for (i, elem) in old_inner.into_iter().enumerate() {
|
||||
if !indices_to_remove.contains(&i) {
|
||||
inner.push(elem.clone());
|
||||
// Use iterator directly instead of creating intermediate collections
|
||||
let mut i = 0;
|
||||
while i < self.inner.len() {
|
||||
// Add the current element
|
||||
inner.push(self.inner[i].clone());
|
||||
|
||||
// If this is an nth position (accounting for offset)
|
||||
if (i + initial_offset + 1) % n == 0 {
|
||||
// Skip the next num_repeats elements
|
||||
i += num_repeats + 1;
|
||||
} else {
|
||||
i += 1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
use crate::{circuit::region::ConstantsMap, fieldutils::felt_to_integer_rep};
|
||||
use maybe_rayon::slice::Iter;
|
||||
use maybe_rayon::slice::{Iter, ParallelSlice};
|
||||
|
||||
use super::{
|
||||
ops::{intercalate_values, pad, resize},
|
||||
*,
|
||||
};
|
||||
use halo2_proofs::{arithmetic::Field, circuit::Cell, plonk::Instance};
|
||||
use maybe_rayon::iter::{FilterMap, IntoParallelIterator, ParallelIterator};
|
||||
use maybe_rayon::iter::{FilterMap, ParallelIterator};
|
||||
|
||||
pub(crate) fn create_constant_tensor<
|
||||
F: PrimeField + TensorType + std::marker::Send + std::marker::Sync + PartialOrd,
|
||||
@@ -455,7 +455,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ValTensor<F> {
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the number of constants in the [ValTensor].
|
||||
/// Returns an iterator over the [ValTensor]'s constants.
|
||||
pub fn create_constants_map_iterator(
|
||||
&self,
|
||||
) -> FilterMap<Iter<'_, ValType<F>>, fn(&ValType<F>) -> Option<(F, ValType<F>)>> {
|
||||
@@ -473,20 +473,48 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ValTensor<F> {
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the number of constants in the [ValTensor].
|
||||
/// Returns a map of the constants in the [ValTensor].
|
||||
pub fn create_constants_map(&self) -> ConstantsMap<F> {
|
||||
match self {
|
||||
ValTensor::Value { inner, .. } => inner
|
||||
.par_iter()
|
||||
.filter_map(|x| {
|
||||
if let ValType::Constant(v) = x {
|
||||
Some((*v, x.clone()))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
})
|
||||
.collect(),
|
||||
ValTensor::Instance { .. } => ConstantsMap::new(),
|
||||
let threshold = 1_000_000; // Tuned using the benchmarks
|
||||
|
||||
if self.len() < threshold {
|
||||
match self {
|
||||
ValTensor::Value { inner, .. } => inner
|
||||
.par_iter()
|
||||
.filter_map(|x| {
|
||||
if let ValType::Constant(v) = x {
|
||||
Some((*v, x.clone()))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
})
|
||||
.collect(),
|
||||
ValTensor::Instance { .. } => ConstantsMap::new(),
|
||||
}
|
||||
} else {
|
||||
// Use parallel for larger arrays
|
||||
let num_cores = std::thread::available_parallelism()
|
||||
.map(|n| n.get())
|
||||
.unwrap_or(1);
|
||||
let chunk_size = (self.len() / num_cores).max(100_000);
|
||||
|
||||
match self {
|
||||
ValTensor::Value { inner, .. } => inner
|
||||
.par_chunks(chunk_size)
|
||||
.flat_map(|chunk| {
|
||||
chunk
|
||||
.par_iter() // Make sure we use par_iter() here
|
||||
.filter_map(|x| {
|
||||
if let ValType::Constant(v) = x {
|
||||
Some((*v, x.clone()))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
})
|
||||
})
|
||||
.collect(),
|
||||
ValTensor::Instance { .. } => ConstantsMap::new(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -878,70 +906,161 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ValTensor<F> {
|
||||
|
||||
/// remove constant zero values constants
|
||||
pub fn remove_const_zero_values(&mut self) {
|
||||
match self {
|
||||
ValTensor::Value { inner: v, dims, .. } => {
|
||||
*v = v
|
||||
.clone()
|
||||
.into_par_iter()
|
||||
.filter_map(|e| {
|
||||
if let ValType::Constant(r) = e {
|
||||
if r == F::ZERO {
|
||||
return None;
|
||||
let size_threshold = 1_000_000; // Tuned using the benchmarks
|
||||
|
||||
if self.len() < size_threshold {
|
||||
match self {
|
||||
ValTensor::Value { inner: v, dims, .. } => {
|
||||
*v = v
|
||||
.clone()
|
||||
.into_iter()
|
||||
.filter_map(|e| {
|
||||
if let ValType::Constant(r) = e {
|
||||
if r == F::ZERO {
|
||||
return None;
|
||||
}
|
||||
} else if let ValType::AssignedConstant(_, r) = e {
|
||||
if r == F::ZERO {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
} else if let ValType::AssignedConstant(_, r) = e {
|
||||
if r == F::ZERO {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
Some(e)
|
||||
})
|
||||
.collect();
|
||||
*dims = v.dims().to_vec();
|
||||
Some(e)
|
||||
})
|
||||
.collect();
|
||||
*dims = v.dims().to_vec();
|
||||
}
|
||||
ValTensor::Instance { .. } => {}
|
||||
}
|
||||
} else {
|
||||
// Use parallel for larger arrays
|
||||
let num_cores = std::thread::available_parallelism()
|
||||
.map(|n| n.get())
|
||||
.unwrap_or(1);
|
||||
let chunk_size = (self.len() / num_cores).max(100_000);
|
||||
|
||||
match self {
|
||||
ValTensor::Value { inner: v, dims, .. } => {
|
||||
*v = v
|
||||
.par_chunks_mut(chunk_size)
|
||||
.flat_map(|chunk| {
|
||||
chunk
|
||||
.par_iter_mut() // Make sure we use par_iter() here
|
||||
.filter_map(|e| {
|
||||
if let ValType::Constant(r) = e {
|
||||
if *r == F::ZERO {
|
||||
return None;
|
||||
}
|
||||
} else if let ValType::AssignedConstant(_, r) = e {
|
||||
if *r == F::ZERO {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
Some(e.clone())
|
||||
})
|
||||
})
|
||||
.collect();
|
||||
*dims = v.dims().to_vec();
|
||||
}
|
||||
ValTensor::Instance { .. } => {}
|
||||
}
|
||||
ValTensor::Instance { .. } => {}
|
||||
}
|
||||
}
|
||||
|
||||
/// gets constants
|
||||
/// filter constant zero values constants
|
||||
pub fn get_const_zero_indices(&self) -> Vec<usize> {
|
||||
match self {
|
||||
ValTensor::Value { inner: v, .. } => v
|
||||
.par_iter()
|
||||
.enumerate()
|
||||
.filter_map(|(i, e)| {
|
||||
if let ValType::Constant(r) = e {
|
||||
if *r == F::ZERO {
|
||||
return Some(i);
|
||||
let size_threshold = 1_000_000; // Tuned using the benchmarks
|
||||
|
||||
if self.len() < size_threshold {
|
||||
// Use single-threaded for smaller arrays
|
||||
match &self {
|
||||
ValTensor::Value { inner: v, .. } => v
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter_map(|(i, e)| {
|
||||
match e {
|
||||
// Combine both match arms to reduce branching
|
||||
ValType::Constant(r) | ValType::AssignedConstant(_, r) => {
|
||||
(*r == F::ZERO).then_some(i)
|
||||
}
|
||||
_ => None,
|
||||
}
|
||||
} else if let ValType::AssignedConstant(_, r) = e {
|
||||
if *r == F::ZERO {
|
||||
return Some(i);
|
||||
}
|
||||
}
|
||||
None
|
||||
})
|
||||
.collect(),
|
||||
ValTensor::Instance { .. } => vec![],
|
||||
})
|
||||
.collect(),
|
||||
ValTensor::Instance { .. } => vec![],
|
||||
}
|
||||
} else {
|
||||
// Use parallel for larger arrays
|
||||
let num_cores = std::thread::available_parallelism()
|
||||
.map(|n| n.get())
|
||||
.unwrap_or(1);
|
||||
let chunk_size = (self.len() / num_cores).max(100_000);
|
||||
|
||||
match &self {
|
||||
ValTensor::Value { inner: v, .. } => v
|
||||
.par_chunks(chunk_size)
|
||||
.enumerate()
|
||||
.flat_map(|(chunk_idx, chunk)| {
|
||||
chunk
|
||||
.par_iter() // Make sure we use par_iter() here
|
||||
.enumerate()
|
||||
.filter_map(move |(i, e)| match e {
|
||||
ValType::Constant(r) | ValType::AssignedConstant(_, r) => {
|
||||
(*r == F::ZERO).then_some(chunk_idx * chunk_size + i)
|
||||
}
|
||||
_ => None,
|
||||
})
|
||||
})
|
||||
.collect::<Vec<_>>(),
|
||||
ValTensor::Instance { .. } => vec![],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// gets constants
|
||||
/// gets constant indices
|
||||
pub fn get_const_indices(&self) -> Vec<usize> {
|
||||
match self {
|
||||
ValTensor::Value { inner: v, .. } => v
|
||||
.par_iter()
|
||||
.enumerate()
|
||||
.filter_map(|(i, e)| {
|
||||
if let ValType::Constant(_) = e {
|
||||
Some(i)
|
||||
} else if let ValType::AssignedConstant(_, _) = e {
|
||||
Some(i)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
})
|
||||
.collect(),
|
||||
ValTensor::Instance { .. } => vec![],
|
||||
let size_threshold = 1_000_000; // Tuned using the benchmarks
|
||||
|
||||
if self.len() < size_threshold {
|
||||
// Use single-threaded for smaller arrays
|
||||
match &self {
|
||||
ValTensor::Value { inner: v, .. } => v
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter_map(|(i, e)| {
|
||||
match e {
|
||||
// Combine both match arms to reduce branching
|
||||
ValType::Constant(_) | ValType::AssignedConstant(_, _) => Some(i),
|
||||
_ => None,
|
||||
}
|
||||
})
|
||||
.collect(),
|
||||
ValTensor::Instance { .. } => vec![],
|
||||
}
|
||||
} else {
|
||||
// Use parallel for larger arrays
|
||||
let num_cores = std::thread::available_parallelism()
|
||||
.map(|n| n.get())
|
||||
.unwrap_or(1);
|
||||
let chunk_size = (self.len() / num_cores).max(100_000);
|
||||
|
||||
match &self {
|
||||
ValTensor::Value { inner: v, .. } => v
|
||||
.par_chunks(chunk_size)
|
||||
.enumerate()
|
||||
.flat_map(|(chunk_idx, chunk)| {
|
||||
chunk
|
||||
.par_iter() // Make sure we use par_iter() here
|
||||
.enumerate()
|
||||
.filter_map(move |(i, e)| match e {
|
||||
ValType::Constant(_) | ValType::AssignedConstant(_, _) => {
|
||||
Some(chunk_idx * chunk_size + i)
|
||||
}
|
||||
_ => None,
|
||||
})
|
||||
})
|
||||
.collect::<Vec<_>>(),
|
||||
ValTensor::Instance { .. } => vec![],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -494,16 +494,56 @@ impl VarTensor {
|
||||
}
|
||||
}
|
||||
|
||||
/// Assigns specific values (`ValTensor`) to the columns of the inner tensor but allows for column wrapping for accumulated operations.
|
||||
pub fn assign_with_duplication_unconstrained<
|
||||
F: PrimeField + TensorType + PartialOrd + std::hash::Hash,
|
||||
>(
|
||||
&self,
|
||||
region: &mut Region<F>,
|
||||
offset: usize,
|
||||
values: &ValTensor<F>,
|
||||
constants: &mut ConstantsMap<F>,
|
||||
) -> Result<(ValTensor<F>, usize), halo2_proofs::plonk::Error> {
|
||||
match values {
|
||||
ValTensor::Instance { .. } => unimplemented!("duplication is not supported on instance columns. increase K if you require more rows."),
|
||||
ValTensor::Value { inner: v, dims , ..} => {
|
||||
|
||||
let duplication_freq = self.block_size();
|
||||
|
||||
let num_repeats = self.num_inner_cols();
|
||||
|
||||
let duplication_offset = offset;
|
||||
|
||||
// duplicates every nth element to adjust for column overflow
|
||||
let v = v.duplicate_every_n(duplication_freq, num_repeats, duplication_offset).unwrap();
|
||||
let mut res: ValTensor<F> = {
|
||||
v.enum_map(|coord, k| {
|
||||
let cell = self.assign_value(region, offset, k.clone(), coord, constants)?;
|
||||
Ok::<_, halo2_proofs::plonk::Error>(cell)
|
||||
|
||||
})?.into()};
|
||||
let total_used_len = res.len();
|
||||
res.remove_every_n(duplication_freq, num_repeats, duplication_offset).unwrap();
|
||||
|
||||
res.reshape(dims).unwrap();
|
||||
res.set_scale(values.scale());
|
||||
|
||||
Ok((res, total_used_len))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Assigns specific values (`ValTensor`) to the columns of the inner tensor but allows for column wrapping for accumulated operations.
|
||||
/// Duplication occurs by copying the last cell of the column to the first cell next column and creating a copy constraint between the two.
|
||||
pub fn assign_with_duplication<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
pub fn assign_with_duplication_constrained<
|
||||
F: PrimeField + TensorType + PartialOrd + std::hash::Hash,
|
||||
>(
|
||||
&self,
|
||||
region: &mut Region<F>,
|
||||
row: usize,
|
||||
offset: usize,
|
||||
values: &ValTensor<F>,
|
||||
check_mode: &CheckMode,
|
||||
single_inner_col: bool,
|
||||
constants: &mut ConstantsMap<F>,
|
||||
) -> Result<(ValTensor<F>, usize), halo2_proofs::plonk::Error> {
|
||||
let mut prev_cell = None;
|
||||
@@ -512,34 +552,16 @@ impl VarTensor {
|
||||
ValTensor::Instance { .. } => unimplemented!("duplication is not supported on instance columns. increase K if you require more rows."),
|
||||
ValTensor::Value { inner: v, dims , ..} => {
|
||||
|
||||
let duplication_freq = if single_inner_col {
|
||||
self.col_size()
|
||||
} else {
|
||||
self.block_size()
|
||||
};
|
||||
|
||||
let num_repeats = if single_inner_col {
|
||||
1
|
||||
} else {
|
||||
self.num_inner_cols()
|
||||
};
|
||||
|
||||
let duplication_offset = if single_inner_col {
|
||||
row
|
||||
} else {
|
||||
offset
|
||||
};
|
||||
let duplication_freq = self.col_size();
|
||||
let num_repeats = 1;
|
||||
let duplication_offset = row;
|
||||
|
||||
// duplicates every nth element to adjust for column overflow
|
||||
let v = v.duplicate_every_n(duplication_freq, num_repeats, duplication_offset).unwrap();
|
||||
let mut res: ValTensor<F> = {
|
||||
v.enum_map(|coord, k| {
|
||||
|
||||
let step = if !single_inner_col {
|
||||
1
|
||||
} else {
|
||||
self.num_inner_cols()
|
||||
};
|
||||
let step = self.num_inner_cols();
|
||||
|
||||
let (x, y, z) = self.cartesian_coord(offset + coord * step);
|
||||
if matches!(check_mode, CheckMode::SAFE) && coord > 0 && z == 0 && y == 0 {
|
||||
@@ -549,11 +571,13 @@ impl VarTensor {
|
||||
|
||||
let cell = self.assign_value(region, offset, k.clone(), coord * step, constants)?;
|
||||
|
||||
if single_inner_col {
|
||||
if z == 0 {
|
||||
let at_end_of_column = z == duplication_freq - 1;
|
||||
let at_beginning_of_column = z == 0;
|
||||
|
||||
if at_end_of_column {
|
||||
// if we are at the end of the column, we need to copy the cell to the next column
|
||||
prev_cell = Some(cell.clone());
|
||||
} else if coord > 0 && z == 0 && single_inner_col {
|
||||
} else if coord > 0 && at_beginning_of_column {
|
||||
if let Some(prev_cell) = prev_cell.as_ref() {
|
||||
let cell = cell.cell().ok_or({
|
||||
error!("Error getting cell: {:?}", (x,y));
|
||||
@@ -563,10 +587,10 @@ impl VarTensor {
|
||||
halo2_proofs::plonk::Error::Synthesis})?;
|
||||
region.constrain_equal(prev_cell,cell)?;
|
||||
} else {
|
||||
error!("Error copy-constraining previous value: {:?}", (x,y));
|
||||
error!("Previous cell was not set");
|
||||
return Err(halo2_proofs::plonk::Error::Synthesis);
|
||||
}
|
||||
}}
|
||||
}
|
||||
|
||||
Ok(cell)
|
||||
|
||||
@@ -577,20 +601,6 @@ impl VarTensor {
|
||||
res.reshape(dims).unwrap();
|
||||
res.set_scale(values.scale());
|
||||
|
||||
if matches!(check_mode, CheckMode::SAFE) {
|
||||
// during key generation this will be 0 so we use this as a flag to check
|
||||
// TODO: this isn't very safe and would be better to get the phase directly
|
||||
let res_evals = res.int_evals().unwrap();
|
||||
let is_assigned = res_evals
|
||||
.iter()
|
||||
.all(|&x| x == 0);
|
||||
if !is_assigned {
|
||||
assert_eq!(
|
||||
values.int_evals().unwrap(),
|
||||
res_evals
|
||||
)};
|
||||
}
|
||||
|
||||
Ok((res, total_used_len))
|
||||
}
|
||||
}
|
||||
|
||||
Binary file not shown.
Binary file not shown.
Reference in New Issue
Block a user