mirror of
https://github.com/zkonduit/ezkl.git
synced 2026-01-13 16:27:59 -05:00
Compare commits
18 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4f69ee643d | ||
|
|
d0ba505baa | ||
|
|
f35688917d | ||
|
|
7ae541ed35 | ||
|
|
675628cd08 | ||
|
|
4fe7290240 | ||
|
|
3e027db9b6 | ||
|
|
e566acc22a | ||
|
|
75ea99e81d | ||
|
|
c5354c382d | ||
|
|
bdcba5ca61 | ||
|
|
6752a05f19 | ||
|
|
03aefb85eb | ||
|
|
e86caca8b6 | ||
|
|
c839a30ae6 | ||
|
|
352812b9ac | ||
|
|
d48d0b0b3e | ||
|
|
8b223354cc |
55
.github/workflows/benchmarks.yml
vendored
55
.github/workflows/benchmarks.yml
vendored
@@ -6,22 +6,15 @@ on:
|
||||
description: "Test scenario tags"
|
||||
|
||||
jobs:
|
||||
bench_elgamal:
|
||||
runs-on: self-hosted
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2023-06-27
|
||||
override: true
|
||||
components: rustfmt, clippy
|
||||
- name: Bench elgamal
|
||||
run: cargo bench --verbose --bench elgamal
|
||||
|
||||
bench_poseidon:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: self-hosted
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2023-06-27
|
||||
@@ -31,10 +24,14 @@ jobs:
|
||||
run: cargo bench --verbose --bench poseidon
|
||||
|
||||
bench_einsum_accum_matmul:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: self-hosted
|
||||
needs: [bench_poseidon]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2023-06-27
|
||||
@@ -44,10 +41,14 @@ jobs:
|
||||
run: cargo bench --verbose --bench accum_einsum_matmul
|
||||
|
||||
bench_accum_matmul_relu:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: self-hosted
|
||||
needs: [bench_poseidon]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2023-06-27
|
||||
@@ -57,10 +58,14 @@ jobs:
|
||||
run: cargo bench --verbose --bench accum_matmul_relu
|
||||
|
||||
bench_accum_matmul_relu_overflow:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: self-hosted
|
||||
needs: [bench_poseidon]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2023-06-27
|
||||
@@ -70,10 +75,14 @@ jobs:
|
||||
run: cargo bench --verbose --bench accum_matmul_relu_overflow
|
||||
|
||||
bench_relu:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: self-hosted
|
||||
needs: [bench_poseidon]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2023-06-27
|
||||
@@ -83,10 +92,14 @@ jobs:
|
||||
run: cargo bench --verbose --bench relu
|
||||
|
||||
bench_accum_dot:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: self-hosted
|
||||
needs: [bench_poseidon]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2023-06-27
|
||||
@@ -96,10 +109,14 @@ jobs:
|
||||
run: cargo bench --verbose --bench accum_dot
|
||||
|
||||
bench_accum_conv:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: self-hosted
|
||||
needs: [bench_poseidon]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2023-06-27
|
||||
@@ -109,10 +126,14 @@ jobs:
|
||||
run: cargo bench --verbose --bench accum_conv
|
||||
|
||||
bench_accum_sumpool:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: self-hosted
|
||||
needs: [bench_poseidon]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2023-06-27
|
||||
@@ -122,10 +143,14 @@ jobs:
|
||||
run: cargo bench --verbose --bench accum_sumpool
|
||||
|
||||
bench_pairwise_add:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: self-hosted
|
||||
needs: [bench_poseidon]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2023-06-27
|
||||
@@ -135,10 +160,14 @@ jobs:
|
||||
run: cargo bench --verbose --bench pairwise_add
|
||||
|
||||
bench_accum_sum:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: self-hosted
|
||||
needs: [bench_poseidon]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2023-06-27
|
||||
@@ -148,10 +177,14 @@ jobs:
|
||||
run: cargo bench --verbose --bench accum_sum
|
||||
|
||||
bench_pairwise_pow:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: self-hosted
|
||||
needs: [bench_poseidon]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2023-06-27
|
||||
|
||||
16
.github/workflows/engine.yml
vendored
16
.github/workflows/engine.yml
vendored
@@ -15,11 +15,16 @@ defaults:
|
||||
working-directory: .
|
||||
jobs:
|
||||
publish-wasm-bindings:
|
||||
permissions:
|
||||
contents: read
|
||||
packages: write
|
||||
name: publish-wasm-bindings
|
||||
runs-on: ubuntu-latest
|
||||
if: startsWith(github.ref, 'refs/tags/')
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2024-07-18
|
||||
@@ -51,7 +56,7 @@ jobs:
|
||||
run: |
|
||||
echo '{
|
||||
"name": "@ezkljs/engine",
|
||||
"version": "${{ github.ref_name }}",
|
||||
"version": "${RELEASE_TAG}",
|
||||
"dependencies": {
|
||||
"@types/json-bigint": "^1.0.1",
|
||||
"json-bigint": "^1.0.0"
|
||||
@@ -184,21 +189,26 @@ jobs:
|
||||
|
||||
|
||||
in-browser-evm-ver-publish:
|
||||
permissions:
|
||||
contents: read
|
||||
packages: write
|
||||
name: publish-in-browser-evm-verifier-package
|
||||
needs: [publish-wasm-bindings]
|
||||
runs-on: ubuntu-latest
|
||||
if: startsWith(github.ref, 'refs/tags/')
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Update version in package.json
|
||||
shell: bash
|
||||
env:
|
||||
RELEASE_TAG: ${{ github.ref_name }}
|
||||
run: |
|
||||
sed -i "s|\"version\": \".*\"|\"version\": \"${{ github.ref_name }}\"|" in-browser-evm-verifier/package.json
|
||||
sed -i "s|\"version\": \".*\"|\"version\": \"${RELEASE_TAG}\"|" in-browser-evm-verifier/package.json
|
||||
- name: Prepare tag and fetch package integrity
|
||||
run: |
|
||||
CLEANED_TAG=${{ github.ref_name }} # Get the tag from ref_name
|
||||
CLEANED_TAG=${RELEASE_TAG} # Get the tag from ref_name
|
||||
CLEANED_TAG="${CLEANED_TAG#v}" # Remove leading 'v'
|
||||
echo "CLEANED_TAG=${CLEANED_TAG}" >> $GITHUB_ENV # Set it as an environment variable for later steps
|
||||
ENGINE_INTEGRITY=$(npm view @ezkljs/engine@$CLEANED_TAG dist.integrity)
|
||||
|
||||
4
.github/workflows/large-tests.yml
vendored
4
.github/workflows/large-tests.yml
vendored
@@ -6,9 +6,13 @@ on:
|
||||
description: "Test scenario tags"
|
||||
jobs:
|
||||
large-tests:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: kaiju
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2024-07-18
|
||||
|
||||
6
.github/workflows/pypi-gpu.yml
vendored
6
.github/workflows/pypi-gpu.yml
vendored
@@ -18,12 +18,17 @@ defaults:
|
||||
jobs:
|
||||
|
||||
linux:
|
||||
permissions:
|
||||
contents: read
|
||||
packages: write
|
||||
runs-on: GPU
|
||||
strategy:
|
||||
matrix:
|
||||
target: [x86_64]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: 3.12
|
||||
@@ -34,6 +39,7 @@ jobs:
|
||||
run: |
|
||||
mv pyproject.toml pyproject.toml.orig
|
||||
sed "s/ezkl/ezkl-gpu/" pyproject.toml.orig >pyproject.toml
|
||||
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" pyproject.toml.orig >pyproject.toml
|
||||
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
|
||||
41
.github/workflows/pypi.yml
vendored
41
.github/workflows/pypi.yml
vendored
@@ -16,6 +16,8 @@ defaults:
|
||||
|
||||
jobs:
|
||||
macos:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: macos-latest
|
||||
if: startsWith(github.ref, 'refs/tags/')
|
||||
strategy:
|
||||
@@ -23,6 +25,8 @@ jobs:
|
||||
target: [x86_64, universal2-apple-darwin]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: 3.12
|
||||
@@ -45,6 +49,13 @@ jobs:
|
||||
components: rustfmt, clippy
|
||||
|
||||
- name: Build wheels
|
||||
if: matrix.target == 'universal2-apple-darwin'
|
||||
uses: PyO3/maturin-action@v1
|
||||
with:
|
||||
target: ${{ matrix.target }}
|
||||
args: --release --out dist --features python-bindings
|
||||
- name: Build wheels
|
||||
if: matrix.target == 'x86_64'
|
||||
uses: PyO3/maturin-action@v1
|
||||
with:
|
||||
target: ${{ matrix.target }}
|
||||
@@ -62,6 +73,8 @@ jobs:
|
||||
path: dist
|
||||
|
||||
windows:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: windows-latest
|
||||
if: startsWith(github.ref, 'refs/tags/')
|
||||
strategy:
|
||||
@@ -69,6 +82,8 @@ jobs:
|
||||
target: [x64, x86]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: 3.12
|
||||
@@ -107,6 +122,8 @@ jobs:
|
||||
path: dist
|
||||
|
||||
linux:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: ubuntu-latest
|
||||
if: startsWith(github.ref, 'refs/tags/')
|
||||
strategy:
|
||||
@@ -114,6 +131,8 @@ jobs:
|
||||
target: [x86_64]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: 3.12
|
||||
@@ -220,6 +239,8 @@ jobs:
|
||||
# path: dist
|
||||
|
||||
musllinux:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: ubuntu-latest
|
||||
if: startsWith(github.ref, 'refs/tags/')
|
||||
strategy:
|
||||
@@ -228,11 +249,21 @@ jobs:
|
||||
- x86_64-unknown-linux-musl
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: 3.12
|
||||
architecture: x64
|
||||
|
||||
- name: Set pyproject.toml version to match github tag
|
||||
shell: bash
|
||||
env:
|
||||
RELEASE_TAG: ${{ github.ref_name }}
|
||||
run: |
|
||||
mv pyproject.toml pyproject.toml.orig
|
||||
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" pyproject.toml.orig >pyproject.toml
|
||||
|
||||
- name: Set Cargo.toml version to match github tag
|
||||
shell: bash
|
||||
env:
|
||||
@@ -242,7 +273,6 @@ jobs:
|
||||
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.toml.orig >Cargo.toml
|
||||
mv Cargo.lock Cargo.lock.orig
|
||||
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.lock.orig >Cargo.lock
|
||||
|
||||
- name: Install required libraries
|
||||
shell: bash
|
||||
run: |
|
||||
@@ -276,6 +306,8 @@ jobs:
|
||||
path: dist
|
||||
|
||||
musllinux-cross:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: ubuntu-latest
|
||||
if: startsWith(github.ref, 'refs/tags/')
|
||||
strategy:
|
||||
@@ -285,6 +317,8 @@ jobs:
|
||||
arch: aarch64
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: 3.12
|
||||
@@ -361,12 +395,15 @@ jobs:
|
||||
packages-dir: ./
|
||||
|
||||
doc-publish:
|
||||
permissions:
|
||||
contents: read
|
||||
name: Trigger ReadTheDocs Build
|
||||
runs-on: ubuntu-latest
|
||||
needs: pypi-publish
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Trigger RTDs build
|
||||
uses: dfm/rtds-action@v1
|
||||
with:
|
||||
|
||||
23
.github/workflows/release.yml
vendored
23
.github/workflows/release.yml
vendored
@@ -10,6 +10,9 @@ on:
|
||||
- "*"
|
||||
jobs:
|
||||
create-release:
|
||||
permissions:
|
||||
contents: read
|
||||
packages: write
|
||||
name: create-release
|
||||
runs-on: ubuntu-22.04
|
||||
if: startsWith(github.ref, 'refs/tags/')
|
||||
@@ -33,6 +36,9 @@ jobs:
|
||||
tag_name: ${{ env.EZKL_VERSION }}
|
||||
|
||||
build-release-gpu:
|
||||
permissions:
|
||||
contents: read
|
||||
packages: write
|
||||
name: build-release-gpu
|
||||
needs: ["create-release"]
|
||||
runs-on: GPU
|
||||
@@ -50,6 +56,9 @@ jobs:
|
||||
components: rustfmt, clippy
|
||||
- name: Checkout repo
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
|
||||
|
||||
- name: Get release version from tag
|
||||
shell: bash
|
||||
@@ -91,6 +100,10 @@ jobs:
|
||||
asset_content_type: application/octet-stream
|
||||
|
||||
build-release:
|
||||
permissions:
|
||||
contents: read
|
||||
packages: write
|
||||
issues: write
|
||||
name: build-release
|
||||
needs: ["create-release"]
|
||||
runs-on: ${{ matrix.os }}
|
||||
@@ -132,6 +145,8 @@ jobs:
|
||||
steps:
|
||||
- name: Checkout repo
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
|
||||
- name: Get release version from tag
|
||||
shell: bash
|
||||
@@ -181,14 +196,18 @@ jobs:
|
||||
echo "target flag is: ${{ env.TARGET_FLAGS }}"
|
||||
echo "target dir is: ${{ env.TARGET_DIR }}"
|
||||
|
||||
- name: Build release binary (no asm)
|
||||
if: matrix.build != 'linux-gnu'
|
||||
- name: Build release binary (no asm or metal)
|
||||
if: matrix.build != 'linux-gnu' && matrix.build != 'macos-aarch64'
|
||||
run: ${{ env.CARGO }} build --release ${{ env.TARGET_FLAGS }} -Z sparse-registry
|
||||
|
||||
- name: Build release binary (asm)
|
||||
if: matrix.build == 'linux-gnu'
|
||||
run: ${{ env.CARGO }} build --release ${{ env.TARGET_FLAGS }} -Z sparse-registry --features asm
|
||||
|
||||
- name: Build release binary (metal)
|
||||
if: matrix.build == 'macos-aarch64'
|
||||
run: ${{ env.CARGO }} build --release ${{ env.TARGET_FLAGS }} -Z sparse-registry --features macos-metal
|
||||
|
||||
- name: Strip release binary
|
||||
if: matrix.build != 'windows-msvc' && matrix.build != 'linux-aarch64'
|
||||
run: strip "target/${{ matrix.target }}/release/ezkl"
|
||||
|
||||
156
.github/workflows/rust.yml
vendored
156
.github/workflows/rust.yml
vendored
@@ -19,11 +19,31 @@ env:
|
||||
CARGO_TERM_COLOR: always
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
fr-age-test:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: large-self-hosted
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2024-07-18
|
||||
override: true
|
||||
components: rustfmt, clippy
|
||||
- name: fr age Mock
|
||||
run: cargo test --release --verbose tests::large_mock_::large_tests_6_expects -- --include-ignored
|
||||
|
||||
build:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2024-07-18
|
||||
@@ -33,9 +53,13 @@ jobs:
|
||||
run: cargo build --verbose
|
||||
|
||||
docs:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2024-07-18
|
||||
@@ -45,9 +69,13 @@ jobs:
|
||||
run: cargo doc --verbose
|
||||
|
||||
library-tests:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: ubuntu-latest-32-cores
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2024-07-18
|
||||
@@ -71,6 +99,8 @@ jobs:
|
||||
# ENABLE_ICICLE_GPU: true
|
||||
# steps:
|
||||
# - uses: actions/checkout@v4
|
||||
# with:
|
||||
# persist-credentials: false
|
||||
# - uses: actions-rs/toolchain@v1
|
||||
# with:
|
||||
# toolchain: nightly-2024-07-18
|
||||
@@ -101,9 +131,13 @@ jobs:
|
||||
# run: cargo nextest run conv_relu_col_ultra_overflow --no-capture --features icicle -- --include-ignored
|
||||
|
||||
ultra-overflow-tests_og-lookup:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: non-gpu
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2024-07-18
|
||||
@@ -134,9 +168,13 @@ jobs:
|
||||
run: cargo nextest run --release conv_relu_col_ultra_overflow --no-capture --no-default-features --features ezkl -- --include-ignored
|
||||
|
||||
ultra-overflow-tests:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: non-gpu
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2024-07-18
|
||||
@@ -167,9 +205,13 @@ jobs:
|
||||
run: cargo nextest run --release conv_relu_col_ultra_overflow --no-capture -- --include-ignored
|
||||
|
||||
model-serialization:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: ubuntu-latest-16-cores
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2024-07-18
|
||||
@@ -183,9 +225,13 @@ jobs:
|
||||
run: cargo nextest run native_tests::tests::model_serialization_different_binaries_ --test-threads 1
|
||||
|
||||
wasm32-tests:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2024-07-18
|
||||
@@ -208,10 +254,14 @@ jobs:
|
||||
run: wasm-pack test --chrome --headless -- -Z build-std="panic_abort,std" --features web
|
||||
|
||||
mock-proving-tests:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: non-gpu
|
||||
needs: [build, library-tests, docs, python-tests, python-integration-tests]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2024-07-18
|
||||
@@ -271,10 +321,14 @@ jobs:
|
||||
run: cargo nextest run --release --verbose tests::mock_fixed_params_ --test-threads 32
|
||||
|
||||
prove-and-verify-evm-tests:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: non-gpu
|
||||
needs: [build, library-tests, docs, python-tests, python-integration-tests]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2024-07-18
|
||||
@@ -285,6 +339,8 @@ jobs:
|
||||
crate: cargo-nextest
|
||||
locked: true
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Use pnpm 8
|
||||
uses: pnpm/action-setup@v2
|
||||
with:
|
||||
@@ -349,11 +405,50 @@ jobs:
|
||||
- name: KZG prove and verify tests (EVM + hashed outputs)
|
||||
run: cargo nextest run --release --verbose tests_evm::kzg_evm_hashed_output_prove_and_verify --test-threads 1
|
||||
|
||||
# prove-and-verify-tests-metal:
|
||||
# permissions:
|
||||
# contents: read
|
||||
# runs-on: macos-13
|
||||
# # needs: [build, library-tests, docs]
|
||||
# steps:
|
||||
# - uses: actions/checkout@v4
|
||||
# with:
|
||||
# persist-credentials: false
|
||||
# - uses: actions-rs/toolchain@v1
|
||||
# with:
|
||||
# toolchain: nightly-2024-07-18
|
||||
# override: true
|
||||
# components: rustfmt, clippy
|
||||
# - uses: jetli/wasm-pack-action@v0.4.0
|
||||
# with:
|
||||
# # Pin to version 0.12.1
|
||||
# version: 'v0.12.1'
|
||||
# - name: Add rust-src
|
||||
# run: rustup component add rust-src --toolchain nightly-2024-07-18
|
||||
# - uses: actions/checkout@v3
|
||||
# with:
|
||||
# persist-credentials: false
|
||||
# - name: Use pnpm 8
|
||||
# uses: pnpm/action-setup@v2
|
||||
# with:
|
||||
# version: 8
|
||||
# - uses: baptiste0928/cargo-install@v1
|
||||
# with:
|
||||
# crate: cargo-nextest
|
||||
# locked: true
|
||||
# - name: KZG prove and verify tests (public outputs)
|
||||
# run: cargo nextest run --release --features macos-metal --verbose tests::kzg_prove_and_verify_::t --no-capture
|
||||
|
||||
|
||||
prove-and-verify-tests:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: non-gpu
|
||||
needs: [build, library-tests, docs]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2024-07-18
|
||||
@@ -369,6 +464,8 @@ jobs:
|
||||
- name: Add rust-src
|
||||
run: rustup component add rust-src --toolchain nightly-2024-07-18-x86_64-unknown-linux-gnu
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Use pnpm 8
|
||||
uses: pnpm/action-setup@v2
|
||||
with:
|
||||
@@ -431,6 +528,8 @@ jobs:
|
||||
# ENABLE_ICICLE_GPU: true
|
||||
# steps:
|
||||
# - uses: actions/checkout@v4
|
||||
# with:
|
||||
# persist-credentials: false
|
||||
# - uses: actions-rs/toolchain@v1
|
||||
# with:
|
||||
# toolchain: nightly-2024-07-18
|
||||
@@ -461,10 +560,14 @@ jobs:
|
||||
# run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_hashed --features icicle --test-threads 1
|
||||
|
||||
prove-and-verify-mock-aggr-tests:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: self-hosted
|
||||
needs: [build, library-tests, docs, python-tests, python-integration-tests]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2024-07-18
|
||||
@@ -483,6 +586,8 @@ jobs:
|
||||
# ENABLE_ICICLE_GPU: true
|
||||
# steps:
|
||||
# - uses: actions/checkout@v4
|
||||
# with:
|
||||
# persist-credentials: false
|
||||
# - uses: actions-rs/toolchain@v1
|
||||
# with:
|
||||
# toolchain: nightly-2024-07-18
|
||||
@@ -496,10 +601,14 @@ jobs:
|
||||
# run: cargo nextest run --verbose tests_aggr::kzg_aggr_prove_and_verify_ --features icicle --test-threads 1 -- --include-ignored
|
||||
|
||||
prove-and-verify-aggr-tests:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: large-self-hosted
|
||||
needs: [build, library-tests, docs, python-tests, python-integration-tests]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2024-07-18
|
||||
@@ -513,10 +622,14 @@ jobs:
|
||||
run: cargo nextest run --release --verbose tests_aggr::kzg_aggr_prove_and_verify_ --test-threads 4 -- --include-ignored
|
||||
|
||||
prove-and-verify-aggr-evm-tests:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: large-self-hosted
|
||||
needs: [build, library-tests, docs, python-tests, python-integration-tests]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2024-07-18
|
||||
@@ -534,10 +647,14 @@ jobs:
|
||||
run: cargo nextest run --release --verbose tests_evm::kzg_evm_aggr_prove_and_verify_::t --test-threads 4 -- --include-ignored
|
||||
|
||||
examples:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: ubuntu-latest-32-cores
|
||||
needs: [build, library-tests, docs]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2024-07-18
|
||||
@@ -551,10 +668,14 @@ jobs:
|
||||
run: cargo nextest run --release tests_examples
|
||||
|
||||
python-tests:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: non-gpu
|
||||
needs: [build, library-tests, docs]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.12"
|
||||
@@ -577,10 +698,14 @@ jobs:
|
||||
run: source .env/bin/activate; pip install pytest-asyncio; pytest -vv
|
||||
|
||||
accuracy-measurement-tests:
|
||||
runs-on: ubuntu-latest-32-cores
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: non-gpu
|
||||
needs: [build, library-tests, docs, python-tests, python-integration-tests]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.12"
|
||||
@@ -607,6 +732,8 @@ jobs:
|
||||
run: source .env/bin/activate; cargo nextest run --release --verbose tests::resources_accuracy_measurement_public_outputs_
|
||||
|
||||
python-integration-tests:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: large-self-hosted
|
||||
services:
|
||||
# Label used to access the service container
|
||||
@@ -628,6 +755,8 @@ jobs:
|
||||
- 5432:5432
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.11"
|
||||
@@ -650,6 +779,8 @@ jobs:
|
||||
run: python -m venv .env --clear; source .env/bin/activate; pip install -r requirements.txt; python -m ensurepip --upgrade
|
||||
- name: Build python ezkl
|
||||
run: source .env/bin/activate; unset CONDA_PREFIX; maturin develop --features python-bindings --release
|
||||
- name: Voice tutorial
|
||||
run: source .env/bin/activate; cargo nextest run py_tests::tests::voice_
|
||||
- name: Neural bow
|
||||
run: source .env/bin/activate; cargo nextest run py_tests::tests::neural_bag_of_words_ --no-capture
|
||||
- name: Felt conversion
|
||||
@@ -669,17 +800,19 @@ jobs:
|
||||
# chmod 600 /home/ubuntu/.kaggle/kaggle.json
|
||||
- name: All notebooks
|
||||
run: source .env/bin/activate; cargo nextest run py_tests::tests::run_notebook_ --test-threads 1
|
||||
- name: Voice tutorial
|
||||
run: source .env/bin/activate; cargo nextest run py_tests::tests::voice_
|
||||
- name: NBEATS tutorial
|
||||
run: source .env/bin/activate; cargo nextest run py_tests::tests::nbeats_
|
||||
# - name: Reusable verifier tutorial
|
||||
# run: source .env/bin/activate; cargo nextest run py_tests::tests::reusable_
|
||||
|
||||
ios-integration-tests:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: macos-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2024-07-18
|
||||
@@ -693,11 +826,15 @@ jobs:
|
||||
run: CARGO_BUILD_TARGET=aarch64-apple-darwin RUSTUP_TOOLCHAIN=nightly-2024-07-18-aarch64-apple-darwin cargo test --test ios_integration_tests --features ios-bindings-test --no-default-features
|
||||
|
||||
swift-package-tests:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: macos-latest
|
||||
needs: [ios-integration-tests]
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2024-07-18
|
||||
@@ -715,6 +852,15 @@ jobs:
|
||||
rm -rf ezkl-swift-package/Sources/EzklCoreBindings
|
||||
cp -r build/EzklCoreBindings ezkl-swift-package/Sources/
|
||||
|
||||
- name: Copy Test Files
|
||||
run: |
|
||||
rm -rf ezkl-swift-package/Tests/EzklAssets/
|
||||
mkdir -p ezkl-swift-package/Tests/EzklAssets/
|
||||
cp tests/assets/kzg ezkl-swift-package/Tests/EzklAssets/kzg.srs
|
||||
cp tests/assets/input.json ezkl-swift-package/Tests/EzklAssets/input.json
|
||||
cp tests/assets/model.compiled ezkl-swift-package/Tests/EzklAssets/network.ezkl
|
||||
cp tests/assets/settings.json ezkl-swift-package/Tests/EzklAssets/settings.json
|
||||
|
||||
- name: Set up Xcode environment
|
||||
run: |
|
||||
sudo xcode-select -s /Applications/Xcode.app/Contents/Developer
|
||||
|
||||
33
.github/workflows/static-analysis.yml
vendored
Normal file
33
.github/workflows/static-analysis.yml
vendored
Normal file
@@ -0,0 +1,33 @@
|
||||
name: Static Analysis
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main ]
|
||||
pull_request:
|
||||
branches: [ main ]
|
||||
|
||||
jobs:
|
||||
analyze:
|
||||
permissions:
|
||||
contents: read
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly-2024-07-18
|
||||
override: true
|
||||
components: rustfmt, clippy
|
||||
|
||||
# Run Zizmor static analysis
|
||||
|
||||
- name: Install Zizmor
|
||||
run: cargo install --locked zizmor
|
||||
|
||||
- name: Run Zizmor Analysis
|
||||
run: zizmor .
|
||||
|
||||
|
||||
|
||||
13
.github/workflows/swift-pm.yml
vendored
13
.github/workflows/swift-pm.yml
vendored
@@ -9,18 +9,24 @@ on:
|
||||
|
||||
jobs:
|
||||
build-and-update:
|
||||
permissions:
|
||||
contents: read
|
||||
packages: write
|
||||
runs-on: macos-latest
|
||||
env:
|
||||
EZKL_SWIFT_PACKAGE_REPO: github.com/zkonduit/ezkl-swift-package.git
|
||||
RELEASE_TAG: ${{ github.ref_name }}
|
||||
|
||||
steps:
|
||||
- name: Checkout EZKL
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
persist-credentials: false
|
||||
|
||||
- name: Extract TAG from github.ref_name
|
||||
run: |
|
||||
# github.ref_name is provided by GitHub Actions and contains the tag name directly.
|
||||
TAG="${{ github.ref_name }}"
|
||||
TAG="${RELEASE_TAG}"
|
||||
echo "Original TAG: $TAG"
|
||||
# Remove leading 'v' if present to match the Swift Package Manager version format.
|
||||
NEW_TAG=${TAG#v}
|
||||
@@ -47,7 +53,8 @@ jobs:
|
||||
|
||||
- name: Copy Test Files
|
||||
run: |
|
||||
rm -rf ezkl-swift-package/Tests/EzklAssets/*
|
||||
rm -rf ezkl-swift-package/Tests/EzklAssets/
|
||||
mkdir -p ezkl-swift-package/Tests/EzklAssets/
|
||||
cp tests/assets/kzg ezkl-swift-package/Tests/EzklAssets/kzg.srs
|
||||
cp tests/assets/input.json ezkl-swift-package/Tests/EzklAssets/input.json
|
||||
cp tests/assets/model.compiled ezkl-swift-package/Tests/EzklAssets/network.ezkl
|
||||
@@ -105,7 +112,6 @@ jobs:
|
||||
cd ezkl-swift-package
|
||||
git add Sources/EzklCoreBindings Tests/EzklAssets
|
||||
git commit -m "Automatically updated EzklCoreBindings for EZKL"
|
||||
|
||||
if ! git push origin; then
|
||||
echo "::error::Failed to push changes to ${{ env.EZKL_SWIFT_PACKAGE_REPO }}. Please ensure that EZKL_PORTER_TOKEN has the correct permissions."
|
||||
exit 1
|
||||
@@ -115,7 +121,6 @@ jobs:
|
||||
run: |
|
||||
cd ezkl-swift-package
|
||||
source $GITHUB_ENV
|
||||
|
||||
# Tag the latest commit on the current branch
|
||||
if git rev-parse "$TAG" >/dev/null 2>&1; then
|
||||
echo "Tag $TAG already exists locally. Skipping tag creation."
|
||||
|
||||
2
.github/workflows/tagging.yml
vendored
2
.github/workflows/tagging.yml
vendored
@@ -12,6 +12,8 @@ jobs:
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Bump version and push tag
|
||||
id: tag_version
|
||||
uses: mathieudutour/github-tag-action@v6.2
|
||||
|
||||
110
Cargo.lock
generated
110
Cargo.lock
generated
@@ -1835,6 +1835,16 @@ dependencies = [
|
||||
"syn 2.0.90",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "env_filter"
|
||||
version = "0.1.3"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "186e05a59d4c50738528153b83b0b0194d3a29507dfec16eccd4b342903397d0"
|
||||
dependencies = [
|
||||
"log",
|
||||
"regex",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "env_logger"
|
||||
version = "0.10.2"
|
||||
@@ -1848,6 +1858,19 @@ dependencies = [
|
||||
"termcolor",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "env_logger"
|
||||
version = "0.11.6"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "dcaee3d8e3cfc3fd92428d477bc97fc29ec8716d180c0d74c643bb26166660e0"
|
||||
dependencies = [
|
||||
"anstream",
|
||||
"anstyle",
|
||||
"env_filter",
|
||||
"humantime",
|
||||
"log",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "equivalent"
|
||||
version = "1.0.1"
|
||||
@@ -1923,7 +1946,7 @@ dependencies = [
|
||||
"console_error_panic_hook",
|
||||
"criterion 0.5.1",
|
||||
"ecc",
|
||||
"env_logger",
|
||||
"env_logger 0.10.2",
|
||||
"ethabi",
|
||||
"foundry-compilers",
|
||||
"gag",
|
||||
@@ -1931,7 +1954,7 @@ dependencies = [
|
||||
"halo2_gadgets",
|
||||
"halo2_proofs",
|
||||
"halo2_solidity_verifier",
|
||||
"halo2curves 0.7.0",
|
||||
"halo2curves 0.7.0 (git+https://github.com/privacy-scaling-explorations/halo2curves?rev=b753a832e92d5c86c5c997327a9cf9de86a18851)",
|
||||
"hex",
|
||||
"indicatif",
|
||||
"instant",
|
||||
@@ -1939,7 +1962,6 @@ dependencies = [
|
||||
"lazy_static",
|
||||
"log",
|
||||
"maybe-rayon",
|
||||
"metal",
|
||||
"mimalloc",
|
||||
"mnist",
|
||||
"num",
|
||||
@@ -2377,7 +2399,7 @@ dependencies = [
|
||||
[[package]]
|
||||
name = "halo2_gadgets"
|
||||
version = "0.2.0"
|
||||
source = "git+https://github.com/zkonduit/halo2#0654e92bdf725fd44d849bfef3643870a8c7d50b"
|
||||
source = "git+https://github.com/zkonduit/halo2#d7ecad83c7439fa1cb450ee4a89c2d0b45604ceb"
|
||||
dependencies = [
|
||||
"arrayvec 0.7.4",
|
||||
"bitvec",
|
||||
@@ -2394,14 +2416,14 @@ dependencies = [
|
||||
[[package]]
|
||||
name = "halo2_proofs"
|
||||
version = "0.3.0"
|
||||
source = "git+https://github.com/zkonduit/halo2#0654e92bdf725fd44d849bfef3643870a8c7d50b#0654e92bdf725fd44d849bfef3643870a8c7d50b"
|
||||
source = "git+https://github.com/zkonduit/halo2#bf9d0057a82443be48c4779bbe14961c18fb5996#bf9d0057a82443be48c4779bbe14961c18fb5996"
|
||||
dependencies = [
|
||||
"bincode",
|
||||
"blake2b_simd",
|
||||
"env_logger",
|
||||
"env_logger 0.10.2",
|
||||
"ff",
|
||||
"group",
|
||||
"halo2curves 0.7.0",
|
||||
"halo2curves 0.7.0 (git+https://github.com/privacy-scaling-explorations/halo2curves?rev=b753a832e92d5c86c5c997327a9cf9de86a18851)",
|
||||
"icicle-bn254",
|
||||
"icicle-core",
|
||||
"icicle-cuda-runtime",
|
||||
@@ -2409,6 +2431,7 @@ dependencies = [
|
||||
"lazy_static",
|
||||
"log",
|
||||
"maybe-rayon",
|
||||
"mopro-msm",
|
||||
"rand_chacha",
|
||||
"rand_core 0.6.4",
|
||||
"rustc-hash 2.0.0",
|
||||
@@ -2497,13 +2520,14 @@ dependencies = [
|
||||
[[package]]
|
||||
name = "halo2curves"
|
||||
version = "0.7.0"
|
||||
source = "git+https://github.com/privacy-scaling-explorations/halo2curves?rev=b753a832e92d5c86c5c997327a9cf9de86a18851#b753a832e92d5c86c5c997327a9cf9de86a18851"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "d380afeef3f1d4d3245b76895172018cfb087d9976a7cabcd5597775b2933e07"
|
||||
dependencies = [
|
||||
"blake2",
|
||||
"digest 0.10.7",
|
||||
"ff",
|
||||
"group",
|
||||
"halo2derive",
|
||||
"halo2derive 0.1.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"hex",
|
||||
"lazy_static",
|
||||
"num-bigint",
|
||||
@@ -2523,6 +2547,49 @@ dependencies = [
|
||||
"unroll",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "halo2curves"
|
||||
version = "0.7.0"
|
||||
source = "git+https://github.com/privacy-scaling-explorations/halo2curves?rev=b753a832e92d5c86c5c997327a9cf9de86a18851#b753a832e92d5c86c5c997327a9cf9de86a18851"
|
||||
dependencies = [
|
||||
"blake2",
|
||||
"digest 0.10.7",
|
||||
"ff",
|
||||
"group",
|
||||
"halo2derive 0.1.0 (git+https://github.com/privacy-scaling-explorations/halo2curves?rev=b753a832e92d5c86c5c997327a9cf9de86a18851)",
|
||||
"hex",
|
||||
"lazy_static",
|
||||
"num-bigint",
|
||||
"num-integer",
|
||||
"num-traits",
|
||||
"pairing",
|
||||
"pasta_curves",
|
||||
"paste",
|
||||
"rand 0.8.5",
|
||||
"rand_core 0.6.4",
|
||||
"rayon",
|
||||
"serde",
|
||||
"serde_arrays",
|
||||
"sha2",
|
||||
"static_assertions",
|
||||
"subtle",
|
||||
"unroll",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "halo2derive"
|
||||
version = "0.1.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "bdb99e7492b4f5ff469d238db464131b86c2eaac814a78715acba369f64d2c76"
|
||||
dependencies = [
|
||||
"num-bigint",
|
||||
"num-integer",
|
||||
"num-traits",
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 1.0.109",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "halo2derive"
|
||||
version = "0.1.0"
|
||||
@@ -3283,7 +3350,8 @@ dependencies = [
|
||||
[[package]]
|
||||
name = "metal"
|
||||
version = "0.29.0"
|
||||
source = "git+https://github.com/gfx-rs/metal-rs#0e1918b34689c4b8cd13a43372f9898680547ee9"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "7ecfd3296f8c56b7c1f6fbac3c71cefa9d78ce009850c45000015f206dc7fa21"
|
||||
dependencies = [
|
||||
"bitflags 2.5.0",
|
||||
"block",
|
||||
@@ -3354,6 +3422,28 @@ dependencies = [
|
||||
"byteorder",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "mopro-msm"
|
||||
version = "0.1.0"
|
||||
source = "git+https://github.com/zkonduit/metal-msm-gpu-acceleration.git#be5f647b1a6c1a6ea9024390744a2b4d87f5d002"
|
||||
dependencies = [
|
||||
"bincode",
|
||||
"env_logger 0.11.6",
|
||||
"halo2curves 0.7.0 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
"instant",
|
||||
"itertools 0.13.0",
|
||||
"lazy_static",
|
||||
"log",
|
||||
"metal",
|
||||
"objc",
|
||||
"once_cell",
|
||||
"rand 0.8.5",
|
||||
"rayon",
|
||||
"serde",
|
||||
"thiserror",
|
||||
"walkdir",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "native-tls"
|
||||
version = "0.2.11"
|
||||
|
||||
@@ -91,7 +91,6 @@ pyo3-async-runtimes = { git = "https://github.com/PyO3/pyo3-async-runtimes", ver
|
||||
pyo3-log = { version = "0.12.0", default-features = false, optional = true }
|
||||
tract-onnx = { git = "https://github.com/sonos/tract/", rev = "37132e0397d0a73e5bd3a8615d932dabe44f6736", default-features = false, optional = true }
|
||||
tabled = { version = "0.12.0", optional = true }
|
||||
metal = { git = "https://github.com/gfx-rs/metal-rs", optional = true }
|
||||
objc = { version = "0.2.4", optional = true }
|
||||
mimalloc = { version = "0.1", optional = true }
|
||||
pyo3-stub-gen = { version = "0.6.0", optional = true }
|
||||
@@ -277,10 +276,14 @@ icicle = ["halo2_proofs/icicle_gpu"]
|
||||
empty-cmd = []
|
||||
no-banner = []
|
||||
no-update = []
|
||||
|
||||
macos-metal = ["halo2_proofs/macos"]
|
||||
ios-metal = ["halo2_proofs/ios"]
|
||||
|
||||
[patch.'https://github.com/zkonduit/halo2']
|
||||
halo2_proofs = { git = "https://github.com/zkonduit/halo2#0654e92bdf725fd44d849bfef3643870a8c7d50b", package = "halo2_proofs" }
|
||||
halo2_proofs = { git = "https://github.com/zkonduit/halo2#bf9d0057a82443be48c4779bbe14961c18fb5996", package = "halo2_proofs" }
|
||||
|
||||
[patch.'https://github.com/zkonduit/halo2#0654e92bdf725fd44d849bfef3643870a8c7d50b']
|
||||
halo2_proofs = { git = "https://github.com/zkonduit/halo2#bf9d0057a82443be48c4779bbe14961c18fb5996", package = "halo2_proofs" }
|
||||
|
||||
[patch.crates-io]
|
||||
uniffi_testing = { git = "https://github.com/ElusAegis/uniffi-rs", branch = "feat/testing-feature-build-fix" }
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import ezkl
|
||||
|
||||
project = 'ezkl'
|
||||
release = '0.0.0'
|
||||
release = '18.1.2'
|
||||
version = release
|
||||
|
||||
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@@ -54,7 +54,7 @@
|
||||
" gip_run_args.param_scale = 19\n",
|
||||
" gip_run_args.logrows = 8\n",
|
||||
" run_args = ezkl.gen_settings(py_run_args=gip_run_args)\n",
|
||||
" ezkl.get_srs(commitment=ezkl.PyCommitments.KZG)\n",
|
||||
" await ezkl.get_srs(commitment=ezkl.PyCommitments.KZG)\n",
|
||||
" ezkl.compile_circuit()\n",
|
||||
" res = await ezkl.gen_witness()\n",
|
||||
" print(res)\n",
|
||||
|
||||
@@ -1,279 +1,284 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "cf69bb3f-94e6-4dba-92cd-ce08df117d67",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Linear Regression\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"Sklearn based models are slightly finicky to get into a suitable onnx format. \n",
|
||||
"This notebook showcases how to do so using the `hummingbird-ml` python package ! "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "95613ee9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# check if notebook is in colab\n",
|
||||
"try:\n",
|
||||
" # install ezkl\n",
|
||||
" import google.colab\n",
|
||||
" import subprocess\n",
|
||||
" import sys\n",
|
||||
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n",
|
||||
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n",
|
||||
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"hummingbird-ml\"])\n",
|
||||
"\n",
|
||||
"# rely on local installation of ezkl if the notebook is not in colab\n",
|
||||
"except:\n",
|
||||
" pass\n",
|
||||
"\n",
|
||||
"import os\n",
|
||||
"import torch\n",
|
||||
"import ezkl\n",
|
||||
"import json\n",
|
||||
"from hummingbird.ml import convert\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# here we create and (potentially train a model)\n",
|
||||
"\n",
|
||||
"# make sure you have the dependencies required here already installed\n",
|
||||
"import numpy as np\n",
|
||||
"from sklearn.linear_model import LinearRegression\n",
|
||||
"X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])\n",
|
||||
"# y = 1 * x_0 + 2 * x_1 + 3\n",
|
||||
"y = np.dot(X, np.array([1, 2])) + 3\n",
|
||||
"reg = LinearRegression().fit(X, y)\n",
|
||||
"reg.score(X, y)\n",
|
||||
"\n",
|
||||
"circuit = convert(reg, \"torch\", X[:1]).model\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "b37637c4",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model_path = os.path.join('network.onnx')\n",
|
||||
"compiled_model_path = os.path.join('network.compiled')\n",
|
||||
"pk_path = os.path.join('test.pk')\n",
|
||||
"vk_path = os.path.join('test.vk')\n",
|
||||
"settings_path = os.path.join('settings.json')\n",
|
||||
"\n",
|
||||
"witness_path = os.path.join('witness.json')\n",
|
||||
"data_path = os.path.join('input.json')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "82db373a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"\n",
|
||||
"# export to onnx format\n",
|
||||
"# !!!!!!!!!!!!!!!!! This will flash a warning but it is fine !!!!!!!!!!!!!!!!!!!!!\n",
|
||||
"\n",
|
||||
"# Input to the model\n",
|
||||
"shape = X.shape[1:]\n",
|
||||
"x = torch.rand(1, *shape, requires_grad=True)\n",
|
||||
"torch_out = circuit(x)\n",
|
||||
"# Export the model\n",
|
||||
"torch.onnx.export(circuit, # model being run\n",
|
||||
" # model input (or a tuple for multiple inputs)\n",
|
||||
" x,\n",
|
||||
" # where to save the model (can be a file or file-like object)\n",
|
||||
" \"network.onnx\",\n",
|
||||
" export_params=True, # store the trained parameter weights inside the model file\n",
|
||||
" opset_version=10, # the ONNX version to export the model to\n",
|
||||
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
|
||||
" input_names=['input'], # the model's input names\n",
|
||||
" output_names=['output'], # the model's output names\n",
|
||||
" dynamic_axes={'input': {0: 'batch_size'}, # variable length axes\n",
|
||||
" 'output': {0: 'batch_size'}})\n",
|
||||
"\n",
|
||||
"d = ((x).detach().numpy()).reshape([-1]).tolist()\n",
|
||||
"\n",
|
||||
"data = dict(input_shapes=[shape],\n",
|
||||
" input_data=[d],\n",
|
||||
" output_data=[((o).detach().numpy()).reshape([-1]).tolist() for o in torch_out])\n",
|
||||
"\n",
|
||||
"# Serialize data into file:\n",
|
||||
"json.dump(data, open(\"input.json\", 'w'))\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d5e374a2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!RUST_LOG=trace\n",
|
||||
"# TODO: Dictionary outputs\n",
|
||||
"res = ezkl.gen_settings(model_path, settings_path)\n",
|
||||
"assert res == True\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"cal_path = os.path.join(\"calibration.json\")\n",
|
||||
"\n",
|
||||
"data_array = (torch.randn(20, *shape).detach().numpy()).reshape([-1]).tolist()\n",
|
||||
"\n",
|
||||
"data = dict(input_data = [data_array])\n",
|
||||
"\n",
|
||||
"# Serialize data into file:\n",
|
||||
"json.dump(data, open(cal_path, 'w'))\n",
|
||||
"\n",
|
||||
"res = await ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
|
||||
"assert res == True\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "3aa4f090",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n",
|
||||
"assert res == True"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8b74dcee",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# srs path\n",
|
||||
"res = await ezkl.get_srs( settings_path)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "18c8b7c7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# now generate the witness file \n",
|
||||
"\n",
|
||||
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
|
||||
"assert os.path.isfile(witness_path)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "b1c561a8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"# HERE WE SETUP THE CIRCUIT PARAMS\n",
|
||||
"# WE GOT KEYS\n",
|
||||
"# WE GOT CIRCUIT PARAMETERS\n",
|
||||
"# EVERYTHING ANYONE HAS EVER NEEDED FOR ZK\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"res = ezkl.setup(\n",
|
||||
" compiled_model_path,\n",
|
||||
" vk_path,\n",
|
||||
" pk_path,\n",
|
||||
" \n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"assert res == True\n",
|
||||
"assert os.path.isfile(vk_path)\n",
|
||||
"assert os.path.isfile(pk_path)\n",
|
||||
"assert os.path.isfile(settings_path)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "c384cbc8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# GENERATE A PROOF\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"proof_path = os.path.join('test.pf')\n",
|
||||
"\n",
|
||||
"res = ezkl.prove(\n",
|
||||
" witness_path,\n",
|
||||
" compiled_model_path,\n",
|
||||
" pk_path,\n",
|
||||
" proof_path,\n",
|
||||
" \n",
|
||||
" \"single\",\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"print(res)\n",
|
||||
"assert os.path.isfile(proof_path)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "76f00d41",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# VERIFY IT\n",
|
||||
"\n",
|
||||
"res = ezkl.verify(\n",
|
||||
" proof_path,\n",
|
||||
" settings_path,\n",
|
||||
" vk_path,\n",
|
||||
" \n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"assert res == True\n",
|
||||
"print(\"verified\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.15"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "cf69bb3f-94e6-4dba-92cd-ce08df117d67",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Linear Regression\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"Sklearn based models are slightly finicky to get into a suitable onnx format. \n",
|
||||
"This notebook showcases how to do so using the `hummingbird-ml` python package ! "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "95613ee9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# check if notebook is in colab\n",
|
||||
"try:\n",
|
||||
" # install ezkl\n",
|
||||
" import google.colab\n",
|
||||
" import subprocess\n",
|
||||
" import sys\n",
|
||||
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n",
|
||||
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n",
|
||||
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"hummingbird-ml\"])\n",
|
||||
"\n",
|
||||
"# rely on local installation of ezkl if the notebook is not in colab\n",
|
||||
"except:\n",
|
||||
" pass\n",
|
||||
"\n",
|
||||
"import os\n",
|
||||
"import torch\n",
|
||||
"import ezkl\n",
|
||||
"import json\n",
|
||||
"from hummingbird.ml import convert\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# here we create and (potentially train a model)\n",
|
||||
"\n",
|
||||
"# make sure you have the dependencies required here already installed\n",
|
||||
"import numpy as np\n",
|
||||
"from sklearn.linear_model import LinearRegression\n",
|
||||
"X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])\n",
|
||||
"# y = 1 * x_0 + 2 * x_1 + 3\n",
|
||||
"y = np.dot(X, np.array([1, 2])) + 3\n",
|
||||
"reg = LinearRegression().fit(X, y)\n",
|
||||
"reg.score(X, y)\n",
|
||||
"\n",
|
||||
"circuit = convert(reg, \"torch\", X[:1]).model\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "b37637c4",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model_path = os.path.join('network.onnx')\n",
|
||||
"compiled_model_path = os.path.join('network.compiled')\n",
|
||||
"pk_path = os.path.join('test.pk')\n",
|
||||
"vk_path = os.path.join('test.vk')\n",
|
||||
"settings_path = os.path.join('settings.json')\n",
|
||||
"\n",
|
||||
"witness_path = os.path.join('witness.json')\n",
|
||||
"data_path = os.path.join('input.json')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "82db373a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"\n",
|
||||
"# export to onnx format\n",
|
||||
"# !!!!!!!!!!!!!!!!! This will flash a warning but it is fine !!!!!!!!!!!!!!!!!!!!!\n",
|
||||
"\n",
|
||||
"# Input to the model\n",
|
||||
"shape = X.shape[1:]\n",
|
||||
"x = torch.rand(1, *shape, requires_grad=True)\n",
|
||||
"torch_out = circuit(x)\n",
|
||||
"# Export the model\n",
|
||||
"torch.onnx.export(circuit, # model being run\n",
|
||||
" # model input (or a tuple for multiple inputs)\n",
|
||||
" x,\n",
|
||||
" # where to save the model (can be a file or file-like object)\n",
|
||||
" \"network.onnx\",\n",
|
||||
" export_params=True, # store the trained parameter weights inside the model file\n",
|
||||
" opset_version=10, # the ONNX version to export the model to\n",
|
||||
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
|
||||
" input_names=['input'], # the model's input names\n",
|
||||
" output_names=['output'], # the model's output names\n",
|
||||
" dynamic_axes={'input': {0: 'batch_size'}, # variable length axes\n",
|
||||
" 'output': {0: 'batch_size'}})\n",
|
||||
"\n",
|
||||
"d = ((x).detach().numpy()).reshape([-1]).tolist()\n",
|
||||
"\n",
|
||||
"data = dict(input_shapes=[shape],\n",
|
||||
" input_data=[d],\n",
|
||||
" output_data=[((o).detach().numpy()).reshape([-1]).tolist() for o in torch_out])\n",
|
||||
"\n",
|
||||
"# Serialize data into file:\n",
|
||||
"json.dump(data, open(\"input.json\", 'w'))\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# note that you can also call the following function to generate random data for the model\n",
|
||||
"# it is functionally equivalent to the code above\n",
|
||||
"ezkl.gen_random_data()\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d5e374a2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!RUST_LOG=trace\n",
|
||||
"# TODO: Dictionary outputs\n",
|
||||
"res = ezkl.gen_settings(model_path, settings_path)\n",
|
||||
"assert res == True\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"cal_path = os.path.join(\"calibration.json\")\n",
|
||||
"\n",
|
||||
"data_array = (torch.randn(20, *shape).detach().numpy()).reshape([-1]).tolist()\n",
|
||||
"\n",
|
||||
"data = dict(input_data = [data_array])\n",
|
||||
"\n",
|
||||
"# Serialize data into file:\n",
|
||||
"json.dump(data, open(cal_path, 'w'))\n",
|
||||
"\n",
|
||||
"res = await ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
|
||||
"assert res == True\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "3aa4f090",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n",
|
||||
"assert res == True"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8b74dcee",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# srs path\n",
|
||||
"res = await ezkl.get_srs( settings_path)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "18c8b7c7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# now generate the witness file \n",
|
||||
"\n",
|
||||
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
|
||||
"assert os.path.isfile(witness_path)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "b1c561a8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"# HERE WE SETUP THE CIRCUIT PARAMS\n",
|
||||
"# WE GOT KEYS\n",
|
||||
"# WE GOT CIRCUIT PARAMETERS\n",
|
||||
"# EVERYTHING ANYONE HAS EVER NEEDED FOR ZK\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"res = ezkl.setup(\n",
|
||||
" compiled_model_path,\n",
|
||||
" vk_path,\n",
|
||||
" pk_path,\n",
|
||||
" \n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"assert res == True\n",
|
||||
"assert os.path.isfile(vk_path)\n",
|
||||
"assert os.path.isfile(pk_path)\n",
|
||||
"assert os.path.isfile(settings_path)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "c384cbc8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# GENERATE A PROOF\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"proof_path = os.path.join('test.pf')\n",
|
||||
"\n",
|
||||
"res = ezkl.prove(\n",
|
||||
" witness_path,\n",
|
||||
" compiled_model_path,\n",
|
||||
" pk_path,\n",
|
||||
" proof_path,\n",
|
||||
" \n",
|
||||
" \"single\",\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"print(res)\n",
|
||||
"assert os.path.isfile(proof_path)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "76f00d41",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# VERIFY IT\n",
|
||||
"\n",
|
||||
"res = ezkl.verify(\n",
|
||||
" proof_path,\n",
|
||||
" settings_path,\n",
|
||||
" vk_path,\n",
|
||||
" \n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"assert res == True\n",
|
||||
"print(\"verified\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.15"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
|
||||
@@ -1,456 +1,459 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Mean of ERC20 transfer amounts\n",
|
||||
"\n",
|
||||
"This notebook shows how to calculate the mean of ERC20 transfer amounts, pulling data in from a Postgres database. First we install and get the necessary libraries running. \n",
|
||||
"The first of which is [shovel](https://indexsupply.com/shovel/docs/#getting-started), which is a library that allows us to pull data from the Ethereum blockchain into a Postgres database.\n",
|
||||
"\n",
|
||||
"Make sure you install postgres if needed https://indexsupply.com/shovel/docs/#getting-started. \n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import getpass\n",
|
||||
"import json\n",
|
||||
"import time\n",
|
||||
"import subprocess\n",
|
||||
"\n",
|
||||
"# swap out for the relevant linux/amd64, darwin/arm64, darwin/amd64, windows/amd64\n",
|
||||
"os.system(\"curl -LO https://indexsupply.net/bin/1.0/linux/amd64/shovel\")\n",
|
||||
"os.system(\"chmod +x shovel\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"os.environ[\"PG_URL\"] = \"postgres://\" + getpass.getuser() + \":@localhost:5432/shovel\"\n",
|
||||
"\n",
|
||||
"# create a config.json file with the following contents\n",
|
||||
"config = {\n",
|
||||
" \"pg_url\": \"$PG_URL\",\n",
|
||||
" \"eth_sources\": [\n",
|
||||
" {\"name\": \"mainnet\", \"chain_id\": 1, \"url\": \"https://ethereum-rpc.publicnode.com\"},\n",
|
||||
" {\"name\": \"base\", \"chain_id\": 8453, \"url\": \"https://base-rpc.publicnode.com\"}\n",
|
||||
" ],\n",
|
||||
" \"integrations\": [{\n",
|
||||
" \"name\": \"usdc_transfer\",\n",
|
||||
" \"enabled\": True,\n",
|
||||
" \"sources\": [{\"name\": \"mainnet\"}, {\"name\": \"base\"}],\n",
|
||||
" \"table\": {\n",
|
||||
" \"name\": \"usdc\",\n",
|
||||
" \"columns\": [\n",
|
||||
" {\"name\": \"log_addr\", \"type\": \"bytea\"},\n",
|
||||
" {\"name\": \"block_num\", \"type\": \"numeric\"},\n",
|
||||
" {\"name\": \"f\", \"type\": \"bytea\"},\n",
|
||||
" {\"name\": \"t\", \"type\": \"bytea\"},\n",
|
||||
" {\"name\": \"v\", \"type\": \"numeric\"}\n",
|
||||
" ]\n",
|
||||
" },\n",
|
||||
" \"block\": [\n",
|
||||
" {\"name\": \"block_num\", \"column\": \"block_num\"},\n",
|
||||
" {\n",
|
||||
" \"name\": \"log_addr\",\n",
|
||||
" \"column\": \"log_addr\",\n",
|
||||
" \"filter_op\": \"contains\",\n",
|
||||
" \"filter_arg\": [\n",
|
||||
" \"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48\",\n",
|
||||
" \"833589fCD6eDb6E08f4c7C32D4f71b54bdA02913\"\n",
|
||||
" ]\n",
|
||||
" }\n",
|
||||
" ],\n",
|
||||
" \"event\": {\n",
|
||||
" \"name\": \"Transfer\",\n",
|
||||
" \"type\": \"event\",\n",
|
||||
" \"anonymous\": False,\n",
|
||||
" \"inputs\": [\n",
|
||||
" {\"indexed\": True, \"name\": \"from\", \"type\": \"address\", \"column\": \"f\"},\n",
|
||||
" {\"indexed\": True, \"name\": \"to\", \"type\": \"address\", \"column\": \"t\"},\n",
|
||||
" {\"indexed\": False, \"name\": \"value\", \"type\": \"uint256\", \"column\": \"v\"}\n",
|
||||
" ]\n",
|
||||
" }\n",
|
||||
" }]\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"# write the config to a file\n",
|
||||
"with open(\"config.json\", \"w\") as f:\n",
|
||||
" f.write(json.dumps(config))\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# print the two env variables\n",
|
||||
"os.system(\"echo $PG_URL\")\n",
|
||||
"\n",
|
||||
"os.system(\"createdb -h localhost -p 5432 shovel\")\n",
|
||||
"\n",
|
||||
"os.system(\"echo shovel is now installed. starting:\")\n",
|
||||
"\n",
|
||||
"command = [\"./shovel\", \"-config\", \"config.json\"]\n",
|
||||
"proc = subprocess.Popen(command)\n",
|
||||
"\n",
|
||||
"os.system(\"echo shovel started.\")\n",
|
||||
"\n",
|
||||
"time.sleep(10)\n",
|
||||
"\n",
|
||||
"# after we've fetched some data -- kill the process\n",
|
||||
"proc.terminate()\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "2wIAHwqH2_mo"
|
||||
},
|
||||
"source": [
|
||||
"**Import Dependencies**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "9Byiv2Nc2MsK"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# check if notebook is in colab\n",
|
||||
"try:\n",
|
||||
" # install ezkl\n",
|
||||
" import google.colab\n",
|
||||
" import subprocess\n",
|
||||
" import sys\n",
|
||||
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n",
|
||||
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n",
|
||||
"\n",
|
||||
"# rely on local installation of ezkl if the notebook is not in colab\n",
|
||||
"except:\n",
|
||||
" pass\n",
|
||||
"\n",
|
||||
"import ezkl\n",
|
||||
"import torch\n",
|
||||
"import datetime\n",
|
||||
"import pandas as pd\n",
|
||||
"import requests\n",
|
||||
"import json\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import logging\n",
|
||||
"# # uncomment for more descriptive logging \n",
|
||||
"FORMAT = '%(levelname)s %(name)s %(asctime)-15s %(filename)s:%(lineno)d %(message)s'\n",
|
||||
"logging.basicConfig(format=FORMAT)\n",
|
||||
"logging.getLogger().setLevel(logging.DEBUG)\n",
|
||||
"\n",
|
||||
"print(\"ezkl version: \", ezkl.__version__)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "osjj-0Ta3E8O"
|
||||
},
|
||||
"source": [
|
||||
"**Create Computational Graph**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "x1vl9ZXF3EEW",
|
||||
"outputId": "bda21d02-fe5f-4fb2-8106-f51a8e2e67aa"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from torch import nn\n",
|
||||
"import torch\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class Model(nn.Module):\n",
|
||||
" def __init__(self):\n",
|
||||
" super(Model, self).__init__()\n",
|
||||
"\n",
|
||||
" # x is a time series \n",
|
||||
" def forward(self, x):\n",
|
||||
" return [torch.mean(x)]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"circuit = Model()\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"x = 0.1*torch.rand(1,*[1,5], requires_grad=True)\n",
|
||||
"\n",
|
||||
"# # print(torch.__version__)\n",
|
||||
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
|
||||
"\n",
|
||||
"print(device)\n",
|
||||
"\n",
|
||||
"circuit.to(device)\n",
|
||||
"\n",
|
||||
"# Flips the neural net into inference mode\n",
|
||||
"circuit.eval()\n",
|
||||
"\n",
|
||||
"# Export the model\n",
|
||||
"torch.onnx.export(circuit, # model being run\n",
|
||||
" x, # model input (or a tuple for multiple inputs)\n",
|
||||
" \"lol.onnx\", # where to save the model (can be a file or file-like object)\n",
|
||||
" export_params=True, # store the trained parameter weights inside the model file\n",
|
||||
" opset_version=11, # the ONNX version to export the model to\n",
|
||||
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
|
||||
" input_names = ['input'], # the model's input names\n",
|
||||
" output_names = ['output'], # the model's output names\n",
|
||||
" dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes\n",
|
||||
" 'output' : {0 : 'batch_size'}})\n",
|
||||
"\n",
|
||||
"# export(circuit, input_shape=[1, 20])\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "E3qCeX-X5xqd"
|
||||
},
|
||||
"source": [
|
||||
"**Set Data Source and Get Data**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "6RAMplxk5xPk",
|
||||
"outputId": "bd2158fe-0c00-44fd-e632-6a3f70cdb7c9"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"# make an input.json file from the df above\n",
|
||||
"input_filename = os.path.join('input.json')\n",
|
||||
"\n",
|
||||
"pg_input_file = dict(input_data = {\n",
|
||||
" \"host\": \"localhost\",\n",
|
||||
" # make sure you replace this with your own username\n",
|
||||
" \"user\": getpass.getuser(),\n",
|
||||
" \"dbname\": \"shovel\",\n",
|
||||
" \"password\": \"\",\n",
|
||||
" \"query\": \"SELECT v FROM usdc ORDER BY block_num DESC LIMIT 5\",\n",
|
||||
" \"port\": \"5432\",\n",
|
||||
"})\n",
|
||||
"\n",
|
||||
"json_formatted_str = json.dumps(pg_input_file, indent=2)\n",
|
||||
"print(json_formatted_str)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # Serialize data into file:\n",
|
||||
"json.dump(pg_input_file, open(input_filename, 'w' ))\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# this corresponds to 4 batches\n",
|
||||
"calibration_filename = os.path.join('calibration.json')\n",
|
||||
"\n",
|
||||
"pg_cal_file = dict(input_data = {\n",
|
||||
" \"host\": \"localhost\",\n",
|
||||
" # make sure you replace this with your own username\n",
|
||||
" \"user\": getpass.getuser(),\n",
|
||||
" \"dbname\": \"shovel\",\n",
|
||||
" \"password\": \"\",\n",
|
||||
" \"query\": \"SELECT v FROM usdc ORDER BY block_num DESC LIMIT 20\",\n",
|
||||
" \"port\": \"5432\",\n",
|
||||
"})\n",
|
||||
"\n",
|
||||
" # Serialize data into file:\n",
|
||||
"json.dump( pg_cal_file, open(calibration_filename, 'w' ))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "eLJ7oirQ_HQR"
|
||||
},
|
||||
"source": [
|
||||
"**EZKL Workflow**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "rNw0C9QL6W88"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import subprocess\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"onnx_filename = os.path.join('lol.onnx')\n",
|
||||
"compiled_filename = os.path.join('lol.compiled')\n",
|
||||
"settings_filename = os.path.join('settings.json')\n",
|
||||
"\n",
|
||||
"# Generate settings using ezkl\n",
|
||||
"res = ezkl.gen_settings(onnx_filename, settings_filename)\n",
|
||||
"\n",
|
||||
"assert res == True\n",
|
||||
"\n",
|
||||
"res = await ezkl.calibrate_settings(input_filename, onnx_filename, settings_filename, \"resources\")\n",
|
||||
"\n",
|
||||
"assert res == True"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"ezkl.compile_circuit(onnx_filename, compiled_filename, settings_filename)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "4MmE9SX66_Il",
|
||||
"outputId": "16403639-66a4-4280-ac7f-6966b75de5a3"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# generate settings\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# show the settings.json\n",
|
||||
"with open(\"settings.json\") as f:\n",
|
||||
" data = json.load(f)\n",
|
||||
" json_formatted_str = json.dumps(data, indent=2)\n",
|
||||
"\n",
|
||||
" print(json_formatted_str)\n",
|
||||
"\n",
|
||||
"assert os.path.exists(\"settings.json\")\n",
|
||||
"assert os.path.exists(\"input.json\")\n",
|
||||
"assert os.path.exists(\"lol.onnx\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "fULvvnK7_CMb"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pk_path = os.path.join('test.pk')\n",
|
||||
"vk_path = os.path.join('test.vk')\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# setup the proof\n",
|
||||
"res = ezkl.setup(\n",
|
||||
" compiled_filename,\n",
|
||||
" vk_path,\n",
|
||||
" pk_path\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"assert res == True\n",
|
||||
"assert os.path.isfile(vk_path)\n",
|
||||
"assert os.path.isfile(pk_path)\n",
|
||||
"assert os.path.isfile(settings_filename)\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"witness_path = \"witness.json\"\n",
|
||||
"\n",
|
||||
"# generate the witness\n",
|
||||
"res = await ezkl.gen_witness(\n",
|
||||
" input_filename,\n",
|
||||
" compiled_filename,\n",
|
||||
" witness_path\n",
|
||||
" )\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "Oog3j6Kd-Wed",
|
||||
"outputId": "5839d0c1-5b43-476e-c2f8-6707de562260"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# prove the zk circuit\n",
|
||||
"# GENERATE A PROOF\n",
|
||||
"proof_path = os.path.join('test.pf')\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"proof = ezkl.prove(\n",
|
||||
" witness_path,\n",
|
||||
" compiled_filename,\n",
|
||||
" pk_path,\n",
|
||||
" proof_path,\n",
|
||||
" \"single\"\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"print(\"proved\")\n",
|
||||
"\n",
|
||||
"assert os.path.isfile(proof_path)\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"provenance": []
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.2"
|
||||
}
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Mean of ERC20 transfer amounts\n",
|
||||
"\n",
|
||||
"This notebook shows how to calculate the mean of ERC20 transfer amounts, pulling data in from a Postgres database. First we install and get the necessary libraries running. \n",
|
||||
"The first of which is [shovel](https://indexsupply.com/shovel/docs/#getting-started), which is a library that allows us to pull data from the Ethereum blockchain into a Postgres database.\n",
|
||||
"\n",
|
||||
"Make sure you install postgres if needed https://indexsupply.com/shovel/docs/#getting-started. \n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import getpass\n",
|
||||
"import json\n",
|
||||
"import time\n",
|
||||
"import subprocess\n",
|
||||
"\n",
|
||||
"# swap out for the relevant linux/amd64, darwin/arm64, darwin/amd64, windows/amd64\n",
|
||||
"os.system(\"curl -LO https://indexsupply.net/bin/1.0/linux/amd64/shovel\")\n",
|
||||
"os.system(\"chmod +x shovel\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"os.environ[\"PG_URL\"] = \"postgres://\" + getpass.getuser() + \":@localhost:5432/shovel\"\n",
|
||||
"\n",
|
||||
"# create a config.json file with the following contents\n",
|
||||
"config = {\n",
|
||||
" \"pg_url\": \"$PG_URL\",\n",
|
||||
" \"eth_sources\": [\n",
|
||||
" {\"name\": \"mainnet\", \"chain_id\": 1, \"url\": \"https://ethereum-rpc.publicnode.com\"},\n",
|
||||
" {\"name\": \"base\", \"chain_id\": 8453, \"url\": \"https://base-rpc.publicnode.com\"}\n",
|
||||
" ],\n",
|
||||
" \"integrations\": [{\n",
|
||||
" \"name\": \"usdc_transfer\",\n",
|
||||
" \"enabled\": True,\n",
|
||||
" \"sources\": [{\"name\": \"mainnet\"}, {\"name\": \"base\"}],\n",
|
||||
" \"table\": {\n",
|
||||
" \"name\": \"usdc\",\n",
|
||||
" \"columns\": [\n",
|
||||
" {\"name\": \"log_addr\", \"type\": \"bytea\"},\n",
|
||||
" {\"name\": \"block_num\", \"type\": \"numeric\"},\n",
|
||||
" {\"name\": \"f\", \"type\": \"bytea\"},\n",
|
||||
" {\"name\": \"t\", \"type\": \"bytea\"},\n",
|
||||
" {\"name\": \"v\", \"type\": \"numeric\"}\n",
|
||||
" ]\n",
|
||||
" },\n",
|
||||
" \"block\": [\n",
|
||||
" {\"name\": \"block_num\", \"column\": \"block_num\"},\n",
|
||||
" {\n",
|
||||
" \"name\": \"log_addr\",\n",
|
||||
" \"column\": \"log_addr\",\n",
|
||||
" \"filter_op\": \"contains\",\n",
|
||||
" \"filter_arg\": [\n",
|
||||
" \"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48\",\n",
|
||||
" \"833589fCD6eDb6E08f4c7C32D4f71b54bdA02913\"\n",
|
||||
" ]\n",
|
||||
" }\n",
|
||||
" ],\n",
|
||||
" \"event\": {\n",
|
||||
" \"name\": \"Transfer\",\n",
|
||||
" \"type\": \"event\",\n",
|
||||
" \"anonymous\": False,\n",
|
||||
" \"inputs\": [\n",
|
||||
" {\"indexed\": True, \"name\": \"from\", \"type\": \"address\", \"column\": \"f\"},\n",
|
||||
" {\"indexed\": True, \"name\": \"to\", \"type\": \"address\", \"column\": \"t\"},\n",
|
||||
" {\"indexed\": False, \"name\": \"value\", \"type\": \"uint256\", \"column\": \"v\"}\n",
|
||||
" ]\n",
|
||||
" }\n",
|
||||
" }]\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"# write the config to a file\n",
|
||||
"with open(\"config.json\", \"w\") as f:\n",
|
||||
" f.write(json.dumps(config))\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# print the two env variables\n",
|
||||
"os.system(\"echo $PG_URL\")\n",
|
||||
"\n",
|
||||
"os.system(\"createdb -h localhost -p 5432 shovel\")\n",
|
||||
"\n",
|
||||
"os.system(\"echo shovel is now installed. starting:\")\n",
|
||||
"\n",
|
||||
"command = [\"./shovel\", \"-config\", \"config.json\"]\n",
|
||||
"proc = subprocess.Popen(command)\n",
|
||||
"\n",
|
||||
"os.system(\"echo shovel started.\")\n",
|
||||
"\n",
|
||||
"time.sleep(10)\n",
|
||||
"\n",
|
||||
"# after we've fetched some data -- kill the process\n",
|
||||
"proc.terminate()\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "2wIAHwqH2_mo"
|
||||
},
|
||||
"source": [
|
||||
"**Import Dependencies**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "9Byiv2Nc2MsK"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# check if notebook is in colab\n",
|
||||
"try:\n",
|
||||
" # install ezkl\n",
|
||||
" import google.colab\n",
|
||||
" import subprocess\n",
|
||||
" import sys\n",
|
||||
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n",
|
||||
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n",
|
||||
"\n",
|
||||
"# rely on local installation of ezkl if the notebook is not in colab\n",
|
||||
"except:\n",
|
||||
" pass\n",
|
||||
"\n",
|
||||
"import ezkl\n",
|
||||
"import torch\n",
|
||||
"import datetime\n",
|
||||
"import pandas as pd\n",
|
||||
"import requests\n",
|
||||
"import json\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"import logging\n",
|
||||
"# # uncomment for more descriptive logging \n",
|
||||
"FORMAT = '%(levelname)s %(name)s %(asctime)-15s %(filename)s:%(lineno)d %(message)s'\n",
|
||||
"logging.basicConfig(format=FORMAT)\n",
|
||||
"logging.getLogger().setLevel(logging.DEBUG)\n",
|
||||
"\n",
|
||||
"print(\"ezkl version: \", ezkl.__version__)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "osjj-0Ta3E8O"
|
||||
},
|
||||
"source": [
|
||||
"**Create Computational Graph**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "x1vl9ZXF3EEW",
|
||||
"outputId": "bda21d02-fe5f-4fb2-8106-f51a8e2e67aa"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from torch import nn\n",
|
||||
"import torch\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class Model(nn.Module):\n",
|
||||
" def __init__(self):\n",
|
||||
" super(Model, self).__init__()\n",
|
||||
"\n",
|
||||
" # x is a time series \n",
|
||||
" def forward(self, x):\n",
|
||||
" return [torch.mean(x)]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"circuit = Model()\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"x = 0.1*torch.rand(1,*[1,5], requires_grad=True)\n",
|
||||
"\n",
|
||||
"# # print(torch.__version__)\n",
|
||||
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
|
||||
"\n",
|
||||
"print(device)\n",
|
||||
"\n",
|
||||
"circuit.to(device)\n",
|
||||
"\n",
|
||||
"# Flips the neural net into inference mode\n",
|
||||
"circuit.eval()\n",
|
||||
"\n",
|
||||
"# Export the model\n",
|
||||
"torch.onnx.export(circuit, # model being run\n",
|
||||
" x, # model input (or a tuple for multiple inputs)\n",
|
||||
" \"lol.onnx\", # where to save the model (can be a file or file-like object)\n",
|
||||
" export_params=True, # store the trained parameter weights inside the model file\n",
|
||||
" opset_version=11, # the ONNX version to export the model to\n",
|
||||
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
|
||||
" input_names = ['input'], # the model's input names\n",
|
||||
" output_names = ['output'], # the model's output names\n",
|
||||
" dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes\n",
|
||||
" 'output' : {0 : 'batch_size'}})\n",
|
||||
"\n",
|
||||
"# export(circuit, input_shape=[1, 20])\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "E3qCeX-X5xqd"
|
||||
},
|
||||
"source": [
|
||||
"**Set Data Source and Get Data**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "6RAMplxk5xPk",
|
||||
"outputId": "bd2158fe-0c00-44fd-e632-6a3f70cdb7c9"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import getpass\n",
|
||||
"# make an input.json file from the df above\n",
|
||||
"input_filename = os.path.join('input.json')\n",
|
||||
"\n",
|
||||
"pg_input_file = dict(input_data = {\n",
|
||||
" \"host\": \"localhost\",\n",
|
||||
" # make sure you replace this with your own username\n",
|
||||
" \"user\": getpass.getuser(),\n",
|
||||
" \"dbname\": \"shovel\",\n",
|
||||
" \"password\": \"\",\n",
|
||||
" \"query\": \"SELECT v FROM usdc ORDER BY block_num DESC LIMIT 5\",\n",
|
||||
" \"port\": \"5432\",\n",
|
||||
"})\n",
|
||||
"\n",
|
||||
"json_formatted_str = json.dumps(pg_input_file, indent=2)\n",
|
||||
"print(json_formatted_str)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # Serialize data into file:\n",
|
||||
"json.dump(pg_input_file, open(input_filename, 'w' ))\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# this corresponds to 4 batches\n",
|
||||
"calibration_filename = os.path.join('calibration.json')\n",
|
||||
"\n",
|
||||
"pg_cal_file = dict(input_data = {\n",
|
||||
" \"host\": \"localhost\",\n",
|
||||
" # make sure you replace this with your own username\n",
|
||||
" \"user\": getpass.getuser(),\n",
|
||||
" \"dbname\": \"shovel\",\n",
|
||||
" \"password\": \"\",\n",
|
||||
" \"query\": \"SELECT v FROM usdc ORDER BY block_num DESC LIMIT 20\",\n",
|
||||
" \"port\": \"5432\",\n",
|
||||
"})\n",
|
||||
"\n",
|
||||
" # Serialize data into file:\n",
|
||||
"json.dump( pg_cal_file, open(calibration_filename, 'w' ))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "eLJ7oirQ_HQR"
|
||||
},
|
||||
"source": [
|
||||
"**EZKL Workflow**"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "rNw0C9QL6W88"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import subprocess\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"onnx_filename = os.path.join('lol.onnx')\n",
|
||||
"compiled_filename = os.path.join('lol.compiled')\n",
|
||||
"settings_filename = os.path.join('settings.json')\n",
|
||||
"\n",
|
||||
"# Generate settings using ezkl\n",
|
||||
"res = ezkl.gen_settings(onnx_filename, settings_filename)\n",
|
||||
"\n",
|
||||
"assert res == True\n",
|
||||
"\n",
|
||||
"res = await ezkl.calibrate_settings(input_filename, onnx_filename, settings_filename, \"resources\")\n",
|
||||
"\n",
|
||||
"assert res == True\n",
|
||||
"\n",
|
||||
"await ezkl.get_srs(settings_filename)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"ezkl.compile_circuit(onnx_filename, compiled_filename, settings_filename)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "4MmE9SX66_Il",
|
||||
"outputId": "16403639-66a4-4280-ac7f-6966b75de5a3"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# generate settings\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# show the settings.json\n",
|
||||
"with open(\"settings.json\") as f:\n",
|
||||
" data = json.load(f)\n",
|
||||
" json_formatted_str = json.dumps(data, indent=2)\n",
|
||||
"\n",
|
||||
" print(json_formatted_str)\n",
|
||||
"\n",
|
||||
"assert os.path.exists(\"settings.json\")\n",
|
||||
"assert os.path.exists(\"input.json\")\n",
|
||||
"assert os.path.exists(\"lol.onnx\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "fULvvnK7_CMb"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pk_path = os.path.join('test.pk')\n",
|
||||
"vk_path = os.path.join('test.vk')\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# setup the proof\n",
|
||||
"res = ezkl.setup(\n",
|
||||
" compiled_filename,\n",
|
||||
" vk_path,\n",
|
||||
" pk_path\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"assert res == True\n",
|
||||
"assert os.path.isfile(vk_path)\n",
|
||||
"assert os.path.isfile(pk_path)\n",
|
||||
"assert os.path.isfile(settings_filename)\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"witness_path = \"witness.json\"\n",
|
||||
"\n",
|
||||
"# generate the witness\n",
|
||||
"res = await ezkl.gen_witness(\n",
|
||||
" input_filename,\n",
|
||||
" compiled_filename,\n",
|
||||
" witness_path\n",
|
||||
" )\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "Oog3j6Kd-Wed",
|
||||
"outputId": "5839d0c1-5b43-476e-c2f8-6707de562260"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# prove the zk circuit\n",
|
||||
"# GENERATE A PROOF\n",
|
||||
"proof_path = os.path.join('test.pf')\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"proof = ezkl.prove(\n",
|
||||
" witness_path,\n",
|
||||
" compiled_filename,\n",
|
||||
" pk_path,\n",
|
||||
" proof_path,\n",
|
||||
" \"single\"\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"print(\"proved\")\n",
|
||||
"\n",
|
||||
"assert os.path.isfile(proof_path)\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"provenance": []
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": ".env",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
||||
|
||||
@@ -453,18 +453,18 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# now mock aggregate the proofs\n",
|
||||
"proofs = []\n",
|
||||
"for i in range(3):\n",
|
||||
" proof_path = os.path.join('proof_split_'+str(i)+'.json')\n",
|
||||
" proofs.append(proof_path)\n",
|
||||
"# proofs = []\n",
|
||||
"# for i in range(3):\n",
|
||||
"# proof_path = os.path.join('proof_split_'+str(i)+'.json')\n",
|
||||
"# proofs.append(proof_path)\n",
|
||||
"\n",
|
||||
"ezkl.mock_aggregate(proofs, logrows=23, split_proofs = True)"
|
||||
"# ezkl.mock_aggregate(proofs, logrows=26, split_proofs = True)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "ezkl",
|
||||
"display_name": ".env",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
@@ -478,7 +478,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.5"
|
||||
"version": "3.12.7"
|
||||
},
|
||||
"orig_nbformat": 4
|
||||
},
|
||||
|
||||
1
examples/onnx/fr_age/input.json
Normal file
1
examples/onnx/fr_age/input.json
Normal file
File diff suppressed because one or more lines are too long
BIN
examples/onnx/fr_age/network.onnx
Normal file
BIN
examples/onnx/fr_age/network.onnx
Normal file
Binary file not shown.
@@ -12,6 +12,7 @@ asyncio_mode = "auto"
|
||||
|
||||
[project]
|
||||
name = "ezkl"
|
||||
version = "0.0.0"
|
||||
requires-python = ">=3.7"
|
||||
classifiers = [
|
||||
"Programming Language :: Rust",
|
||||
|
||||
@@ -938,6 +938,45 @@ fn gen_settings(
|
||||
Ok(true)
|
||||
}
|
||||
|
||||
/// Generates random data for the model
|
||||
///
|
||||
/// Arguments
|
||||
/// ---------
|
||||
/// model: str
|
||||
/// Path to the onnx file
|
||||
///
|
||||
/// output: str
|
||||
/// Path to create the data file
|
||||
///
|
||||
/// seed: int
|
||||
/// Random seed to use for generated data
|
||||
///
|
||||
/// variables
|
||||
/// Returns
|
||||
/// -------
|
||||
/// bool
|
||||
///
|
||||
#[pyfunction(signature = (
|
||||
model=PathBuf::from(DEFAULT_MODEL),
|
||||
output=PathBuf::from(DEFAULT_SETTINGS),
|
||||
variables=Vec::from([("batch_size".to_string(), 1)]),
|
||||
seed=DEFAULT_SEED.parse().unwrap(),
|
||||
))]
|
||||
#[gen_stub_pyfunction]
|
||||
fn gen_random_data(
|
||||
model: PathBuf,
|
||||
output: PathBuf,
|
||||
variables: Vec<(String, usize)>,
|
||||
seed: u64,
|
||||
) -> Result<bool, PyErr> {
|
||||
crate::execute::gen_random_data(model, output, variables, seed).map_err(|e| {
|
||||
let err_str = format!("Failed to generate settings: {}", e);
|
||||
PyRuntimeError::new_err(err_str)
|
||||
})?;
|
||||
|
||||
Ok(true)
|
||||
}
|
||||
|
||||
/// Calibrates the circuit settings
|
||||
///
|
||||
/// Arguments
|
||||
@@ -2055,6 +2094,7 @@ fn ezkl(m: &Bound<'_, PyModule>) -> PyResult<()> {
|
||||
m.add_function(wrap_pyfunction!(get_srs, m)?)?;
|
||||
m.add_function(wrap_pyfunction!(gen_witness, m)?)?;
|
||||
m.add_function(wrap_pyfunction!(gen_settings, m)?)?;
|
||||
m.add_function(wrap_pyfunction!(gen_random_data, m)?)?;
|
||||
m.add_function(wrap_pyfunction!(calibrate_settings, m)?)?;
|
||||
m.add_function(wrap_pyfunction!(aggregate, m)?)?;
|
||||
m.add_function(wrap_pyfunction!(mock_aggregate, m)?)?;
|
||||
|
||||
@@ -100,9 +100,6 @@ impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, con
|
||||
let rc_a = (0..WIDTH).map(|_| meta.fixed_column()).collect::<Vec<_>>();
|
||||
let rc_b = (0..WIDTH).map(|_| meta.fixed_column()).collect::<Vec<_>>();
|
||||
|
||||
for input in hash_inputs.iter().take(WIDTH) {
|
||||
meta.enable_equality(*input);
|
||||
}
|
||||
meta.enable_constant(rc_b[0]);
|
||||
|
||||
Self::configure_with_cols(
|
||||
@@ -152,9 +149,6 @@ impl<S: Spec<Fp, WIDTH, RATE> + Sync, const WIDTH: usize, const RATE: usize, con
|
||||
let rc_a = (0..WIDTH).map(|_| meta.fixed_column()).collect::<Vec<_>>();
|
||||
let rc_b = (0..WIDTH).map(|_| meta.fixed_column()).collect::<Vec<_>>();
|
||||
|
||||
for input in hash_inputs.iter().take(WIDTH) {
|
||||
meta.enable_equality(*input);
|
||||
}
|
||||
meta.enable_constant(rc_b[0]);
|
||||
|
||||
let instance = meta.instance_column();
|
||||
|
||||
@@ -75,6 +75,16 @@ impl FromStr for CheckMode {
|
||||
}
|
||||
}
|
||||
|
||||
impl CheckMode {
|
||||
/// Returns the value of the check mode
|
||||
pub fn is_safe(&self) -> bool {
|
||||
match self {
|
||||
CheckMode::SAFE => true,
|
||||
CheckMode::UNSAFE => false,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(missing_docs)]
|
||||
/// An enum representing the tolerance we can accept for the accumulated arguments, either absolute or percentage
|
||||
#[derive(Clone, Default, Debug, PartialEq, PartialOrd, Serialize, Deserialize, Copy)]
|
||||
@@ -205,15 +215,16 @@ impl DynamicLookups {
|
||||
|
||||
/// A struct representing the selectors for the dynamic lookup tables
|
||||
#[derive(Clone, Debug, Default)]
|
||||
|
||||
pub struct Shuffles {
|
||||
/// [Selector]s generated when configuring the layer. We use a [BTreeMap] as we expect to configure many dynamic lookup ops.
|
||||
pub input_selectors: BTreeMap<(usize, (usize, usize)), Selector>,
|
||||
/// Selectors for the dynamic lookup tables
|
||||
pub reference_selectors: Vec<Selector>,
|
||||
pub output_selectors: Vec<Selector>,
|
||||
/// Inputs:
|
||||
pub inputs: Vec<VarTensor>,
|
||||
/// tables
|
||||
pub references: Vec<VarTensor>,
|
||||
pub outputs: Vec<VarTensor>,
|
||||
}
|
||||
|
||||
impl Shuffles {
|
||||
@@ -224,9 +235,13 @@ impl Shuffles {
|
||||
|
||||
Self {
|
||||
input_selectors: BTreeMap::new(),
|
||||
reference_selectors: vec![],
|
||||
inputs: vec![dummy_var.clone(), dummy_var.clone()],
|
||||
references: vec![single_col_dummy_var.clone(), single_col_dummy_var.clone()],
|
||||
output_selectors: vec![],
|
||||
inputs: vec![dummy_var.clone(), dummy_var.clone(), dummy_var.clone()],
|
||||
outputs: vec![
|
||||
single_col_dummy_var.clone(),
|
||||
single_col_dummy_var.clone(),
|
||||
single_col_dummy_var.clone(),
|
||||
],
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -364,6 +379,12 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
|
||||
if inputs[0].num_cols() != output.num_cols() {
|
||||
log::warn!("input and output shapes do not match");
|
||||
}
|
||||
if inputs[0].num_inner_cols() != inputs[1].num_inner_cols() {
|
||||
log::warn!("input number of inner columns do not match");
|
||||
}
|
||||
if inputs[0].num_inner_cols() != output.num_inner_cols() {
|
||||
log::warn!("input and output number of inner columns do not match");
|
||||
}
|
||||
|
||||
for i in 0..output.num_blocks() {
|
||||
for j in 0..output.num_inner_cols() {
|
||||
@@ -730,8 +751,8 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
|
||||
pub fn configure_shuffles(
|
||||
&mut self,
|
||||
cs: &mut ConstraintSystem<F>,
|
||||
inputs: &[VarTensor; 2],
|
||||
references: &[VarTensor; 2],
|
||||
inputs: &[VarTensor; 3],
|
||||
outputs: &[VarTensor; 3],
|
||||
) -> Result<(), CircuitError>
|
||||
where
|
||||
F: Field,
|
||||
@@ -742,14 +763,14 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
|
||||
}
|
||||
}
|
||||
|
||||
for t in references.iter() {
|
||||
for t in outputs.iter() {
|
||||
if !t.is_advice() || t.num_inner_cols() > 1 {
|
||||
return Err(CircuitError::WrongDynamicColumnType(t.name().to_string()));
|
||||
}
|
||||
}
|
||||
|
||||
// assert all tables have the same number of blocks
|
||||
if references
|
||||
if outputs
|
||||
.iter()
|
||||
.map(|t| t.num_blocks())
|
||||
.collect::<Vec<_>>()
|
||||
@@ -757,23 +778,23 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
|
||||
.any(|w| w[0] != w[1])
|
||||
{
|
||||
return Err(CircuitError::WrongDynamicColumnType(
|
||||
"references inner cols".to_string(),
|
||||
"outputs inner cols".to_string(),
|
||||
));
|
||||
}
|
||||
|
||||
let one = Expression::Constant(F::ONE);
|
||||
|
||||
for q in 0..references[0].num_blocks() {
|
||||
let s_reference = cs.complex_selector();
|
||||
for q in 0..outputs[0].num_blocks() {
|
||||
let s_output = cs.complex_selector();
|
||||
|
||||
for x in 0..inputs[0].num_blocks() {
|
||||
for y in 0..inputs[0].num_inner_cols() {
|
||||
let s_input = cs.complex_selector();
|
||||
|
||||
cs.lookup_any("lookup", |cs| {
|
||||
cs.lookup_any("shuffle", |cs| {
|
||||
let s_inputq = cs.query_selector(s_input);
|
||||
let mut expression = vec![];
|
||||
let s_referenceq = cs.query_selector(s_reference);
|
||||
let s_outputq = cs.query_selector(s_output);
|
||||
let mut input_queries = vec![one.clone()];
|
||||
|
||||
for input in inputs {
|
||||
@@ -785,9 +806,9 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
|
||||
});
|
||||
}
|
||||
|
||||
let mut ref_queries = vec![one.clone()];
|
||||
for reference in references {
|
||||
ref_queries.push(match reference {
|
||||
let mut output_queries = vec![one.clone()];
|
||||
for output in outputs {
|
||||
output_queries.push(match output {
|
||||
VarTensor::Advice { inner: advices, .. } => {
|
||||
cs.query_advice(advices[q][0], Rotation(0))
|
||||
}
|
||||
@@ -796,7 +817,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
|
||||
}
|
||||
|
||||
let lhs = input_queries.into_iter().map(|c| c * s_inputq.clone());
|
||||
let rhs = ref_queries.into_iter().map(|c| c * s_referenceq.clone());
|
||||
let rhs = output_queries.into_iter().map(|c| c * s_outputq.clone());
|
||||
expression.extend(lhs.zip(rhs));
|
||||
|
||||
expression
|
||||
@@ -807,13 +828,13 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> BaseConfig<F> {
|
||||
.or_insert(s_input);
|
||||
}
|
||||
}
|
||||
self.shuffles.reference_selectors.push(s_reference);
|
||||
self.shuffles.output_selectors.push(s_output);
|
||||
}
|
||||
|
||||
// if we haven't previously initialized the input/output, do so now
|
||||
if self.shuffles.references.is_empty() {
|
||||
debug!("assigning shuffles reference");
|
||||
self.shuffles.references = references.to_vec();
|
||||
if self.shuffles.outputs.is_empty() {
|
||||
debug!("assigning shuffles output");
|
||||
self.shuffles.outputs = outputs.to_vec();
|
||||
}
|
||||
if self.shuffles.inputs.is_empty() {
|
||||
debug!("assigning shuffles input");
|
||||
|
||||
@@ -100,4 +100,7 @@ pub enum CircuitError {
|
||||
#[error("invalid input type {0}")]
|
||||
/// Invalid input type
|
||||
InvalidInputType(String),
|
||||
#[error("an element is missing from the shuffled version of the tensor")]
|
||||
/// An element is missing from the shuffled version of the tensor
|
||||
MissingShuffleElement,
|
||||
}
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
use super::*;
|
||||
use crate::{
|
||||
circuit::{layouts, utils, Tolerance},
|
||||
fieldutils::integer_rep_to_felt,
|
||||
fieldutils::{integer_rep_to_felt, IntegerRep},
|
||||
graph::multiplier_to_scale,
|
||||
tensor::{self, Tensor, TensorType, ValTensor},
|
||||
};
|
||||
@@ -250,8 +250,8 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
|
||||
config,
|
||||
region,
|
||||
values[..].try_into()?,
|
||||
integer_rep_to_felt(input_scale.0 as i128),
|
||||
integer_rep_to_felt(output_scale.0 as i128),
|
||||
integer_rep_to_felt(input_scale.0 as IntegerRep),
|
||||
integer_rep_to_felt(output_scale.0 as IntegerRep),
|
||||
)?,
|
||||
HybridOp::Div { denom, .. } => {
|
||||
if denom.0.fract() == 0.0 {
|
||||
@@ -259,7 +259,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
|
||||
config,
|
||||
region,
|
||||
values[..].try_into()?,
|
||||
integer_rep_to_felt(denom.0 as i128),
|
||||
integer_rep_to_felt(denom.0 as IntegerRep),
|
||||
)?
|
||||
} else {
|
||||
layouts::nonlinearity(
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -671,22 +671,17 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
|
||||
}
|
||||
|
||||
/// Assign a valtensor to a vartensor with duplication
|
||||
pub fn assign_with_duplication(
|
||||
pub fn assign_with_duplication_unconstrained(
|
||||
&mut self,
|
||||
var: &VarTensor,
|
||||
values: &ValTensor<F>,
|
||||
check_mode: &crate::circuit::CheckMode,
|
||||
single_inner_col: bool,
|
||||
) -> Result<(ValTensor<F>, usize), Error> {
|
||||
if let Some(region) = &self.region {
|
||||
// duplicates every nth element to adjust for column overflow
|
||||
let (res, len) = var.assign_with_duplication(
|
||||
let (res, len) = var.assign_with_duplication_unconstrained(
|
||||
&mut region.borrow_mut(),
|
||||
self.row,
|
||||
self.linear_coord,
|
||||
values,
|
||||
check_mode,
|
||||
single_inner_col,
|
||||
&mut self.assigned_constants,
|
||||
)?;
|
||||
Ok((res, len))
|
||||
@@ -695,7 +690,37 @@ impl<'a, F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RegionCtx<'a
|
||||
self.row,
|
||||
self.linear_coord,
|
||||
values,
|
||||
single_inner_col,
|
||||
false,
|
||||
&mut self.assigned_constants,
|
||||
)?;
|
||||
Ok((values.clone(), len))
|
||||
}
|
||||
}
|
||||
|
||||
/// Assign a valtensor to a vartensor with duplication
|
||||
pub fn assign_with_duplication_constrained(
|
||||
&mut self,
|
||||
var: &VarTensor,
|
||||
values: &ValTensor<F>,
|
||||
check_mode: &crate::circuit::CheckMode,
|
||||
) -> Result<(ValTensor<F>, usize), Error> {
|
||||
if let Some(region) = &self.region {
|
||||
// duplicates every nth element to adjust for column overflow
|
||||
let (res, len) = var.assign_with_duplication_constrained(
|
||||
&mut region.borrow_mut(),
|
||||
self.row,
|
||||
self.linear_coord,
|
||||
values,
|
||||
check_mode,
|
||||
&mut self.assigned_constants,
|
||||
)?;
|
||||
Ok((res, len))
|
||||
} else {
|
||||
let (_, len) = var.dummy_assign_with_duplication(
|
||||
self.row,
|
||||
self.linear_coord,
|
||||
values,
|
||||
true,
|
||||
&mut self.assigned_constants,
|
||||
)?;
|
||||
Ok((values.clone(), len))
|
||||
|
||||
@@ -132,21 +132,16 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Table<F> {
|
||||
(first_element, op_f.output[0])
|
||||
}
|
||||
|
||||
///
|
||||
/// calculates the column size given the number of rows and reserved blinding rows
|
||||
pub fn cal_col_size(logrows: usize, reserved_blinding_rows: usize) -> usize {
|
||||
2usize.pow(logrows as u32) - reserved_blinding_rows
|
||||
}
|
||||
|
||||
///
|
||||
pub fn cal_bit_range(bits: usize, reserved_blinding_rows: usize) -> usize {
|
||||
2usize.pow(bits as u32) - reserved_blinding_rows
|
||||
}
|
||||
}
|
||||
|
||||
///
|
||||
pub fn num_cols_required(range_len: IntegerRep, col_size: usize) -> usize {
|
||||
// number of cols needed to store the range
|
||||
(range_len / (col_size as IntegerRep)) as usize + 1
|
||||
(range_len / col_size as IntegerRep) as usize + 1
|
||||
}
|
||||
|
||||
impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Table<F> {
|
||||
@@ -355,16 +350,11 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> RangeCheck<F> {
|
||||
integer_rep_to_felt(chunk * (self.col_size as IntegerRep) + self.range.0)
|
||||
}
|
||||
|
||||
///
|
||||
/// calculates the column size
|
||||
pub fn cal_col_size(logrows: usize, reserved_blinding_rows: usize) -> usize {
|
||||
2usize.pow(logrows as u32) - reserved_blinding_rows
|
||||
}
|
||||
|
||||
///
|
||||
pub fn cal_bit_range(bits: usize, reserved_blinding_rows: usize) -> usize {
|
||||
2usize.pow(bits as u32) - reserved_blinding_rows
|
||||
}
|
||||
|
||||
/// get column index given input
|
||||
pub fn get_col_index(&self, input: F) -> F {
|
||||
// range is split up into chunks of size col_size, find the chunk that input is in
|
||||
|
||||
@@ -1040,6 +1040,10 @@ mod conv {
|
||||
let a = VarTensor::new_advice(cs, K, 1, (LEN + 1) * LEN);
|
||||
let b = VarTensor::new_advice(cs, K, 1, (LEN + 1) * LEN);
|
||||
let output = VarTensor::new_advice(cs, K, 1, (LEN + 1) * LEN);
|
||||
|
||||
// column for constants
|
||||
let _constant = VarTensor::constant_cols(cs, K, 8, false);
|
||||
|
||||
Self::Config::configure(cs, &[a, b], &output, CheckMode::SAFE)
|
||||
}
|
||||
|
||||
@@ -1171,7 +1175,7 @@ mod conv_col_ultra_overflow {
|
||||
|
||||
use super::*;
|
||||
|
||||
const K: usize = 4;
|
||||
const K: usize = 6;
|
||||
const LEN: usize = 10;
|
||||
|
||||
#[derive(Clone)]
|
||||
@@ -1191,9 +1195,10 @@ mod conv_col_ultra_overflow {
|
||||
}
|
||||
|
||||
fn configure(cs: &mut ConstraintSystem<F>) -> Self::Config {
|
||||
let a = VarTensor::new_advice(cs, K, 1, LEN * LEN * LEN);
|
||||
let b = VarTensor::new_advice(cs, K, 1, LEN * LEN * LEN);
|
||||
let output = VarTensor::new_advice(cs, K, 1, LEN * LEN * LEN);
|
||||
let a = VarTensor::new_advice(cs, K, 1, LEN * LEN * LEN * LEN);
|
||||
let b = VarTensor::new_advice(cs, K, 1, LEN * LEN * LEN * LEN);
|
||||
let output = VarTensor::new_advice(cs, K, 1, LEN * LEN * LEN * LEN);
|
||||
let _constant = VarTensor::constant_cols(cs, K, LEN * LEN * LEN * LEN, false);
|
||||
Self::Config::configure(cs, &[a, b], &output, CheckMode::SAFE)
|
||||
}
|
||||
|
||||
@@ -1776,13 +1781,18 @@ mod shuffle {
|
||||
|
||||
let d = VarTensor::new_advice(cs, K, 1, LEN);
|
||||
let e = VarTensor::new_advice(cs, K, 1, LEN);
|
||||
let f: VarTensor = VarTensor::new_advice(cs, K, 1, LEN);
|
||||
|
||||
let _constant = VarTensor::constant_cols(cs, K, LEN * NUM_LOOP, false);
|
||||
|
||||
let mut config =
|
||||
Self::Config::configure(cs, &[a.clone(), b.clone()], &c, CheckMode::SAFE);
|
||||
config
|
||||
.configure_shuffles(cs, &[a.clone(), b.clone()], &[d.clone(), e.clone()])
|
||||
.configure_shuffles(
|
||||
cs,
|
||||
&[a.clone(), b.clone(), c.clone()],
|
||||
&[d.clone(), e.clone(), f.clone()],
|
||||
)
|
||||
.unwrap();
|
||||
config
|
||||
}
|
||||
|
||||
@@ -83,13 +83,15 @@ pub const DEFAULT_VK_SOL: &str = "vk.sol";
|
||||
/// Default VK abi path
|
||||
pub const DEFAULT_VK_ABI: &str = "vk.abi";
|
||||
/// Default scale rebase multipliers for calibration
|
||||
pub const DEFAULT_SCALE_REBASE_MULTIPLIERS: &str = "1,2,10";
|
||||
pub const DEFAULT_SCALE_REBASE_MULTIPLIERS: &str = "1,10";
|
||||
/// Default use reduced srs for verification
|
||||
pub const DEFAULT_USE_REDUCED_SRS_FOR_VERIFICATION: &str = "false";
|
||||
/// Default only check for range check rebase
|
||||
pub const DEFAULT_ONLY_RANGE_CHECK_REBASE: &str = "false";
|
||||
/// Default commitment
|
||||
pub const DEFAULT_COMMITMENT: &str = "kzg";
|
||||
/// Default seed used to generate random data
|
||||
pub const DEFAULT_SEED: &str = "21242";
|
||||
|
||||
#[cfg(feature = "python-bindings")]
|
||||
/// Converts TranscriptType into a PyObject (Required for TranscriptType to be compatible with Python)
|
||||
@@ -422,7 +424,21 @@ pub enum Commands {
|
||||
#[clap(flatten)]
|
||||
args: RunArgs,
|
||||
},
|
||||
|
||||
/// Generate random data for a model
|
||||
GenRandomData {
|
||||
/// The path to the .onnx model file
|
||||
#[arg(short = 'M', long, default_value = DEFAULT_MODEL, value_hint = clap::ValueHint::FilePath)]
|
||||
model: Option<PathBuf>,
|
||||
/// The path to the .json data file
|
||||
#[arg(short = 'D', long, default_value = DEFAULT_DATA, value_hint = clap::ValueHint::FilePath)]
|
||||
data: Option<PathBuf>,
|
||||
/// Hand-written parser for graph variables, eg. batch_size=1
|
||||
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(short = 'V', long, value_parser = crate::parse_key_val::<String, usize>, default_value = "batch_size->1", value_delimiter = ',', value_hint = clap::ValueHint::Other))]
|
||||
variables: Vec<(String, usize)>,
|
||||
/// random seed for reproducibility (optional)
|
||||
#[arg(long, value_hint = clap::ValueHint::Other, default_value = DEFAULT_SEED)]
|
||||
seed: u64,
|
||||
},
|
||||
/// Calibrates the proving scale, lookup bits and logrows from a circuit settings file.
|
||||
CalibrateSettings {
|
||||
/// The path to the .json calibration data file.
|
||||
|
||||
@@ -488,7 +488,6 @@ pub async fn deploy_da_verifier_via_solidity(
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
match call_to_account {
|
||||
Some(call) => {
|
||||
deploy_single_da_contract(
|
||||
|
||||
@@ -65,6 +65,8 @@ use std::str::FromStr;
|
||||
use std::time::Duration;
|
||||
use tabled::Tabled;
|
||||
use thiserror::Error;
|
||||
use tract_onnx::prelude::IntoTensor;
|
||||
use tract_onnx::prelude::Tensor as TractTensor;
|
||||
|
||||
use lazy_static::lazy_static;
|
||||
|
||||
@@ -134,6 +136,17 @@ pub async fn run(command: Commands) -> Result<String, EZKLError> {
|
||||
settings_path.unwrap_or(DEFAULT_SETTINGS.into()),
|
||||
args,
|
||||
),
|
||||
Commands::GenRandomData {
|
||||
model,
|
||||
data,
|
||||
variables,
|
||||
seed,
|
||||
} => gen_random_data(
|
||||
model.unwrap_or(DEFAULT_MODEL.into()),
|
||||
data.unwrap_or(DEFAULT_DATA.into()),
|
||||
variables,
|
||||
seed,
|
||||
),
|
||||
Commands::CalibrateSettings {
|
||||
model,
|
||||
settings_path,
|
||||
@@ -828,6 +841,71 @@ pub(crate) fn gen_circuit_settings(
|
||||
Ok(String::new())
|
||||
}
|
||||
|
||||
/// Generate a circuit settings file
|
||||
pub(crate) fn gen_random_data(
|
||||
model_path: PathBuf,
|
||||
data_path: PathBuf,
|
||||
variables: Vec<(String, usize)>,
|
||||
seed: u64,
|
||||
) -> Result<String, EZKLError> {
|
||||
let mut file = std::fs::File::open(&model_path).map_err(|e| {
|
||||
crate::graph::errors::GraphError::ReadWriteFileError(
|
||||
model_path.display().to_string(),
|
||||
e.to_string(),
|
||||
)
|
||||
})?;
|
||||
|
||||
let (tract_model, _symbol_values) = Model::load_onnx_using_tract(&mut file, &variables)?;
|
||||
|
||||
let input_facts = tract_model
|
||||
.input_outlets()
|
||||
.map_err(|e| EZKLError::from(e.to_string()))?
|
||||
.iter()
|
||||
.map(|&i| tract_model.outlet_fact(i))
|
||||
.collect::<tract_onnx::prelude::TractResult<Vec<_>>>()
|
||||
.map_err(|e| EZKLError::from(e.to_string()))?;
|
||||
|
||||
/// Generates a random tensor of a given size and type.
|
||||
fn random(
|
||||
sizes: &[usize],
|
||||
datum_type: tract_onnx::prelude::DatumType,
|
||||
seed: u64,
|
||||
) -> TractTensor {
|
||||
use rand::{Rng, SeedableRng};
|
||||
let mut rng = rand::rngs::StdRng::seed_from_u64(seed);
|
||||
|
||||
let mut tensor = TractTensor::zero::<f32>(sizes).unwrap();
|
||||
let slice = tensor.as_slice_mut::<f32>().unwrap();
|
||||
slice.iter_mut().for_each(|x| *x = rng.gen());
|
||||
tensor.cast_to_dt(datum_type).unwrap().into_owned()
|
||||
}
|
||||
|
||||
fn tensor_for_fact(fact: &tract_onnx::prelude::TypedFact, seed: u64) -> TractTensor {
|
||||
if let Some(value) = &fact.konst {
|
||||
return value.clone().into_tensor();
|
||||
}
|
||||
|
||||
random(
|
||||
fact.shape
|
||||
.as_concrete()
|
||||
.expect("Expected concrete shape, found: {fact:?}"),
|
||||
fact.datum_type,
|
||||
seed,
|
||||
)
|
||||
}
|
||||
|
||||
let generated = input_facts
|
||||
.iter()
|
||||
.map(|v| tensor_for_fact(v, seed))
|
||||
.collect_vec();
|
||||
|
||||
let data = GraphData::from_tract_data(&generated)?;
|
||||
|
||||
data.save(data_path)?;
|
||||
|
||||
Ok(String::new())
|
||||
}
|
||||
|
||||
// not for wasm targets
|
||||
pub(crate) fn init_spinner() -> ProgressBar {
|
||||
let pb = indicatif::ProgressBar::new_spinner();
|
||||
|
||||
@@ -5,7 +5,7 @@ use halo2curves::ff::PrimeField;
|
||||
/// Integer representation of a PrimeField element.
|
||||
pub type IntegerRep = i128;
|
||||
|
||||
/// Converts an i64 to a PrimeField element.
|
||||
/// Converts an integer rep to a PrimeField element.
|
||||
pub fn integer_rep_to_felt<F: PrimeField>(x: IntegerRep) -> F {
|
||||
if x >= 0 {
|
||||
F::from_u128(x as u128)
|
||||
@@ -69,7 +69,7 @@ mod test {
|
||||
fn felttointegerrep() {
|
||||
for x in -(2_i128.pow(16))..(2_i128.pow(16)) {
|
||||
let fieldx: F = integer_rep_to_felt::<F>(x);
|
||||
let xf: i128 = felt_to_integer_rep::<F>(fieldx);
|
||||
let xf: IntegerRep = felt_to_integer_rep::<F>(fieldx);
|
||||
assert_eq!(x, xf);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -11,6 +11,12 @@ pub enum GraphError {
|
||||
/// Shape mismatch in circuit construction
|
||||
#[error("invalid dimensions used for node {0} ({1})")]
|
||||
InvalidDims(usize, String),
|
||||
/// Non scalar power
|
||||
#[error("we only support scalar powers")]
|
||||
NonScalarPower,
|
||||
/// Non scalar base for exponentiation
|
||||
#[error("we only support scalar bases for exponentiation")]
|
||||
NonScalarBase,
|
||||
/// Wrong method was called to configure an op
|
||||
#[error("wrong method was called to configure node {0} ({1})")]
|
||||
WrongMethod(usize, String),
|
||||
@@ -143,4 +149,7 @@ pub enum GraphError {
|
||||
/// Invalid RunArg
|
||||
#[error("invalid RunArgs: {0}")]
|
||||
InvalidRunArgs(String),
|
||||
/// Only nearest neighbor interpolation is supported
|
||||
#[error("only nearest neighbor interpolation is supported")]
|
||||
InvalidInterpolation,
|
||||
}
|
||||
|
||||
@@ -14,7 +14,6 @@ use pyo3::prelude::*;
|
||||
use pyo3::types::PyDict;
|
||||
#[cfg(feature = "python-bindings")]
|
||||
use pyo3::ToPyObject;
|
||||
use serde::ser::SerializeStruct;
|
||||
use serde::{Deserialize, Deserializer, Serialize, Serializer};
|
||||
use std::io::BufReader;
|
||||
use std::io::BufWriter;
|
||||
@@ -515,7 +514,7 @@ impl<'de> Deserialize<'de> for DataSource {
|
||||
|
||||
/// Input to graph as a datasource
|
||||
/// Always use JSON serialization for GraphData. Seriously.
|
||||
#[derive(Clone, Debug, Deserialize, Default, PartialEq)]
|
||||
#[derive(Clone, Debug, Deserialize, Default, PartialEq, Serialize)]
|
||||
pub struct GraphData {
|
||||
/// Inputs to the model / computational graph (can be empty vectors if inputs are coming from on-chain).
|
||||
pub input_data: DataSource,
|
||||
@@ -557,6 +556,34 @@ impl GraphData {
|
||||
Ok(inputs)
|
||||
}
|
||||
|
||||
// not wasm
|
||||
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
|
||||
/// Convert the tract data to tract data
|
||||
pub fn from_tract_data(tensors: &[TractTensor]) -> Result<Self, GraphError> {
|
||||
use tract_onnx::prelude::DatumType;
|
||||
|
||||
let mut input_data = vec![];
|
||||
for tensor in tensors {
|
||||
match tensor.datum_type() {
|
||||
tract_onnx::prelude::DatumType::Bool => {
|
||||
let tensor = tensor.to_array_view::<bool>()?;
|
||||
let tensor = tensor.iter().map(|e| FileSourceInner::Bool(*e)).collect();
|
||||
input_data.push(tensor);
|
||||
}
|
||||
_ => {
|
||||
let cast_tensor = tensor.cast_to_dt(DatumType::F64)?;
|
||||
let tensor = cast_tensor.to_array_view::<f64>()?;
|
||||
let tensor = tensor.iter().map(|e| FileSourceInner::Float(*e)).collect();
|
||||
input_data.push(tensor);
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(GraphData {
|
||||
input_data: DataSource::File(input_data),
|
||||
output_data: None,
|
||||
})
|
||||
}
|
||||
|
||||
///
|
||||
pub fn new(input_data: DataSource) -> Self {
|
||||
GraphData {
|
||||
@@ -741,18 +768,6 @@ impl ToPyObject for FileSourceInner {
|
||||
}
|
||||
}
|
||||
|
||||
impl Serialize for GraphData {
|
||||
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
||||
where
|
||||
S: Serializer,
|
||||
{
|
||||
let mut state = serializer.serialize_struct("GraphData", 4)?;
|
||||
state.serialize_field("input_data", &self.input_data)?;
|
||||
state.serialize_field("output_data", &self.output_data)?;
|
||||
state.end()
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
@@ -280,7 +280,13 @@ impl GraphWitness {
|
||||
})?;
|
||||
|
||||
let reader = std::io::BufReader::with_capacity(*EZKL_BUF_CAPACITY, file);
|
||||
serde_json::from_reader(reader).map_err(|e| e.into())
|
||||
let witness: GraphWitness =
|
||||
serde_json::from_reader(reader).map_err(Into::<GraphError>::into)?;
|
||||
|
||||
// check versions match
|
||||
crate::check_version_string_matches(witness.version.as_deref().unwrap_or(""));
|
||||
|
||||
Ok(witness)
|
||||
}
|
||||
|
||||
/// Save the model input to a file
|
||||
@@ -572,10 +578,14 @@ impl GraphSettings {
|
||||
// buf reader
|
||||
let reader =
|
||||
std::io::BufReader::with_capacity(*EZKL_BUF_CAPACITY, std::fs::File::open(path)?);
|
||||
serde_json::from_reader(reader).map_err(|e| {
|
||||
let settings: GraphSettings = serde_json::from_reader(reader).map_err(|e| {
|
||||
error!("failed to load settings file at {}", e);
|
||||
std::io::Error::new(std::io::ErrorKind::Other, e)
|
||||
})
|
||||
})?;
|
||||
|
||||
crate::check_version_string_matches(&settings.version);
|
||||
|
||||
Ok(settings)
|
||||
}
|
||||
|
||||
/// Export the ezkl configuration as json
|
||||
@@ -697,6 +707,9 @@ impl GraphCircuit {
|
||||
let reader = std::io::BufReader::with_capacity(*EZKL_BUF_CAPACITY, f);
|
||||
let result: GraphCircuit = bincode::deserialize_from(reader)?;
|
||||
|
||||
// check the versions matche
|
||||
crate::check_version_string_matches(&result.core.settings.version);
|
||||
|
||||
Ok(result)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -621,16 +621,16 @@ impl Model {
|
||||
/// * `scale` - The scale to use for quantization.
|
||||
/// * `public_params` - Whether to make the params public.
|
||||
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
|
||||
fn load_onnx_using_tract(
|
||||
pub(crate) fn load_onnx_using_tract(
|
||||
reader: &mut dyn std::io::Read,
|
||||
run_args: &RunArgs,
|
||||
variables: &[(String, usize)],
|
||||
) -> Result<TractResult, GraphError> {
|
||||
use tract_onnx::tract_hir::internal::GenericFactoid;
|
||||
|
||||
let mut model = tract_onnx::onnx().model_for_read(reader)?;
|
||||
|
||||
let variables: std::collections::HashMap<String, usize> =
|
||||
std::collections::HashMap::from_iter(run_args.variables.clone());
|
||||
std::collections::HashMap::from_iter(variables.iter().map(|(k, v)| (k.clone(), *v)));
|
||||
|
||||
for (i, id) in model.clone().inputs.iter().enumerate() {
|
||||
let input = model.node_mut(id.node);
|
||||
@@ -655,7 +655,7 @@ impl Model {
|
||||
}
|
||||
|
||||
let mut symbol_values = SymbolValues::default();
|
||||
for (symbol, value) in run_args.variables.iter() {
|
||||
for (symbol, value) in variables.iter() {
|
||||
let symbol = model.symbols.sym(symbol);
|
||||
symbol_values = symbol_values.with(&symbol, *value as i64);
|
||||
debug!("set {} to {}", symbol, value);
|
||||
@@ -683,7 +683,7 @@ impl Model {
|
||||
) -> Result<ParsedNodes, GraphError> {
|
||||
let start_time = instant::Instant::now();
|
||||
|
||||
let (model, symbol_values) = Self::load_onnx_using_tract(reader, run_args)?;
|
||||
let (model, symbol_values) = Self::load_onnx_using_tract(reader, &run_args.variables)?;
|
||||
|
||||
let scales = VarScales::from_args(run_args);
|
||||
let nodes = Self::nodes_from_graph(
|
||||
@@ -964,7 +964,7 @@ impl Model {
|
||||
GraphError::ReadWriteFileError(model_path.display().to_string(), e.to_string())
|
||||
})?;
|
||||
|
||||
let (model, _) = Model::load_onnx_using_tract(&mut file, run_args)?;
|
||||
let (model, _) = Model::load_onnx_using_tract(&mut file, &run_args.variables)?;
|
||||
|
||||
let datum_types: Vec<DatumType> = model
|
||||
.input_outlets()?
|
||||
@@ -1045,8 +1045,8 @@ impl Model {
|
||||
if settings.requires_shuffle() {
|
||||
base_gate.configure_shuffles(
|
||||
meta,
|
||||
vars.advices[0..2].try_into()?,
|
||||
vars.advices[3..5].try_into()?,
|
||||
vars.advices[0..3].try_into()?,
|
||||
vars.advices[3..6].try_into()?,
|
||||
)?;
|
||||
}
|
||||
|
||||
@@ -1226,6 +1226,7 @@ impl Model {
|
||||
values.iter().map(|v| v.dims()).collect_vec()
|
||||
);
|
||||
|
||||
let start = instant::Instant::now();
|
||||
match &node {
|
||||
NodeType::Node(n) => {
|
||||
let res = if node.is_constant() && node.num_uses() == 1 {
|
||||
@@ -1363,6 +1364,7 @@ impl Model {
|
||||
results.insert(*idx, full_results);
|
||||
}
|
||||
}
|
||||
debug!("------------ layout of {} took {:?}", idx, start.elapsed());
|
||||
}
|
||||
|
||||
// we do this so we can support multiple passes of the same model and have deterministic results (Non-assigned inputs etc... etc...)
|
||||
|
||||
@@ -44,11 +44,10 @@ use tract_onnx::tract_hir::{
|
||||
tract_core::ops::cnn::{conv::KernelFormat, MaxPool, SumPool},
|
||||
};
|
||||
|
||||
/// Quantizes an iterable of f32s to a [Tensor] of i32s using a fixed point representation.
|
||||
/// Quantizes an iterable of f64 to a [Tensor] of IntegerRep using a fixed point representation.
|
||||
/// Arguments
|
||||
///
|
||||
/// * `vec` - the vector to quantize.
|
||||
/// * `dims` - the dimensionality of the resulting [Tensor].
|
||||
/// * `elem` - the element to quantize.
|
||||
/// * `shift` - offset used in the fixed point representation.
|
||||
/// * `scale` - `2^scale` used in the fixed point representation.
|
||||
pub fn quantize_float(
|
||||
@@ -85,7 +84,7 @@ pub fn scale_to_multiplier(scale: crate::Scale) -> f64 {
|
||||
f64::powf(2., scale as f64)
|
||||
}
|
||||
|
||||
/// Converts a scale (log base 2) to a fixed point multiplier.
|
||||
/// Converts a fixed point multiplier to a scale (log base 2).
|
||||
pub fn multiplier_to_scale(mult: f64) -> crate::Scale {
|
||||
mult.log2().round() as crate::Scale
|
||||
}
|
||||
@@ -142,8 +141,6 @@ use tract_onnx::prelude::SymbolValues;
|
||||
pub fn extract_tensor_value(
|
||||
input: Arc<tract_onnx::prelude::Tensor>,
|
||||
) -> Result<Tensor<f32>, GraphError> {
|
||||
use maybe_rayon::prelude::{IntoParallelRefIterator, ParallelIterator};
|
||||
|
||||
let dt = input.datum_type();
|
||||
let dims = input.shape().to_vec();
|
||||
|
||||
@@ -156,7 +153,7 @@ pub fn extract_tensor_value(
|
||||
match dt {
|
||||
DatumType::F16 => {
|
||||
let vec = input.as_slice::<tract_onnx::prelude::f16>()?.to_vec();
|
||||
let cast: Vec<f32> = vec.par_iter().map(|x| (*x).into()).collect();
|
||||
let cast: Vec<f32> = vec.iter().map(|x| (*x).into()).collect();
|
||||
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
|
||||
}
|
||||
DatumType::F32 => {
|
||||
@@ -165,61 +162,61 @@ pub fn extract_tensor_value(
|
||||
}
|
||||
DatumType::F64 => {
|
||||
let vec = input.as_slice::<f64>()?.to_vec();
|
||||
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
|
||||
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
|
||||
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
|
||||
}
|
||||
DatumType::I64 => {
|
||||
// Generally a shape or hyperparam
|
||||
let vec = input.as_slice::<i64>()?.to_vec();
|
||||
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
|
||||
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
|
||||
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
|
||||
}
|
||||
DatumType::I32 => {
|
||||
// Generally a shape or hyperparam
|
||||
let vec = input.as_slice::<i32>()?.to_vec();
|
||||
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
|
||||
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
|
||||
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
|
||||
}
|
||||
DatumType::I16 => {
|
||||
// Generally a shape or hyperparam
|
||||
let vec = input.as_slice::<i16>()?.to_vec();
|
||||
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
|
||||
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
|
||||
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
|
||||
}
|
||||
DatumType::I8 => {
|
||||
// Generally a shape or hyperparam
|
||||
let vec = input.as_slice::<i8>()?.to_vec();
|
||||
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
|
||||
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
|
||||
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
|
||||
}
|
||||
DatumType::U8 => {
|
||||
// Generally a shape or hyperparam
|
||||
let vec = input.as_slice::<u8>()?.to_vec();
|
||||
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
|
||||
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
|
||||
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
|
||||
}
|
||||
DatumType::U16 => {
|
||||
// Generally a shape or hyperparam
|
||||
let vec = input.as_slice::<u16>()?.to_vec();
|
||||
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
|
||||
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
|
||||
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
|
||||
}
|
||||
DatumType::U32 => {
|
||||
// Generally a shape or hyperparam
|
||||
let vec = input.as_slice::<u32>()?.to_vec();
|
||||
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
|
||||
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
|
||||
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
|
||||
}
|
||||
DatumType::U64 => {
|
||||
// Generally a shape or hyperparam
|
||||
let vec = input.as_slice::<u64>()?.to_vec();
|
||||
let cast: Vec<f32> = vec.par_iter().map(|x| *x as f32).collect();
|
||||
let cast: Vec<f32> = vec.iter().map(|x| *x as f32).collect();
|
||||
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
|
||||
}
|
||||
DatumType::Bool => {
|
||||
// Generally a shape or hyperparam
|
||||
let vec = input.as_slice::<bool>()?.to_vec();
|
||||
let cast: Vec<f32> = vec.par_iter().map(|x| *x as usize as f32).collect();
|
||||
let cast: Vec<f32> = vec.iter().map(|x| *x as usize as f32).collect();
|
||||
const_value = Tensor::<f32>::new(Some(&cast), &dims)?;
|
||||
}
|
||||
DatumType::TDim => {
|
||||
@@ -227,7 +224,7 @@ pub fn extract_tensor_value(
|
||||
let vec = input.as_slice::<tract_onnx::prelude::TDim>()?.to_vec();
|
||||
|
||||
let cast: Result<Vec<f32>, GraphError> = vec
|
||||
.par_iter()
|
||||
.iter()
|
||||
.map(|x| match x.to_i64() {
|
||||
Ok(v) => Ok(v as f32),
|
||||
Err(_) => match x.to_i64() {
|
||||
@@ -314,6 +311,9 @@ pub fn new_op_from_onnx(
|
||||
let mut deleted_indices = vec![];
|
||||
let node = match node.op().name().as_ref() {
|
||||
"ShiftLeft" => {
|
||||
if inputs.len() != 2 {
|
||||
return Err(GraphError::InvalidDims(idx, "shift left".to_string()));
|
||||
};
|
||||
// load shift amount
|
||||
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
|
||||
inputs[1].decrement_use();
|
||||
@@ -326,10 +326,13 @@ pub fn new_op_from_onnx(
|
||||
out_scale: Some(input_scales[0] - raw_values[0] as i32),
|
||||
})
|
||||
} else {
|
||||
return Err(GraphError::OpMismatch(idx, "ShiftLeft".to_string()));
|
||||
return Err(GraphError::OpMismatch(idx, "shift left".to_string()));
|
||||
}
|
||||
}
|
||||
"ShiftRight" => {
|
||||
if inputs.len() != 2 {
|
||||
return Err(GraphError::InvalidDims(idx, "shift right".to_string()));
|
||||
};
|
||||
// load shift amount
|
||||
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
|
||||
inputs[1].decrement_use();
|
||||
@@ -342,7 +345,7 @@ pub fn new_op_from_onnx(
|
||||
out_scale: Some(input_scales[0] + raw_values[0] as i32),
|
||||
})
|
||||
} else {
|
||||
return Err(GraphError::OpMismatch(idx, "ShiftRight".to_string()));
|
||||
return Err(GraphError::OpMismatch(idx, "shift right".to_string()));
|
||||
}
|
||||
}
|
||||
"MultiBroadcastTo" => {
|
||||
@@ -365,7 +368,10 @@ pub fn new_op_from_onnx(
|
||||
}
|
||||
}
|
||||
|
||||
assert_eq!(input_ops.len(), 3, "Range requires 3 inputs");
|
||||
if input_ops.len() != 3 {
|
||||
return Err(GraphError::InvalidDims(idx, "range".to_string()));
|
||||
}
|
||||
|
||||
let input_ops = input_ops
|
||||
.iter()
|
||||
.map(|x| x.get_constant().ok_or(GraphError::NonConstantRange))
|
||||
@@ -421,6 +427,10 @@ pub fn new_op_from_onnx(
|
||||
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
|
||||
inputs[1].decrement_use();
|
||||
deleted_indices.push(inputs.len() - 1);
|
||||
if inputs[0].out_dims().is_empty() || inputs[0].out_dims()[0].len() <= axis {
|
||||
return Err(GraphError::InvalidDims(idx, "gather".to_string()));
|
||||
}
|
||||
|
||||
op = SupportedOp::Hybrid(crate::circuit::ops::hybrid::HybridOp::Gather {
|
||||
dim: axis,
|
||||
constant_idx: Some(c.raw_values.map(|x| {
|
||||
@@ -449,8 +459,17 @@ pub fn new_op_from_onnx(
|
||||
"Topk" => {
|
||||
let op = load_op::<Topk>(node.op(), idx, node.op().name().to_string())?;
|
||||
let axis = op.axis;
|
||||
|
||||
if inputs.len() != 2 {
|
||||
return Err(GraphError::InvalidDims(idx, "topk".to_string()));
|
||||
};
|
||||
|
||||
// if param_visibility.is_public() {
|
||||
let k = if let Some(c) = inputs[1].opkind().get_mutable_constant() {
|
||||
if c.raw_values.len() != 1 {
|
||||
return Err(GraphError::InvalidDims(idx, "topk".to_string()));
|
||||
}
|
||||
|
||||
inputs[1].decrement_use();
|
||||
deleted_indices.push(inputs.len() - 1);
|
||||
c.raw_values.map(|x| x as usize)[0]
|
||||
@@ -490,6 +509,10 @@ pub fn new_op_from_onnx(
|
||||
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
|
||||
inputs[1].decrement_use();
|
||||
deleted_indices.push(1);
|
||||
if c.raw_values.is_empty() {
|
||||
return Err(GraphError::InvalidDims(idx, "scatter elements".to_string()));
|
||||
}
|
||||
|
||||
op = SupportedOp::Linear(crate::circuit::ops::poly::PolyOp::ScatterElements {
|
||||
dim: axis,
|
||||
constant_idx: Some(c.raw_values.map(|x| x as usize)),
|
||||
@@ -524,6 +547,9 @@ pub fn new_op_from_onnx(
|
||||
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
|
||||
inputs[1].decrement_use();
|
||||
deleted_indices.push(1);
|
||||
if c.raw_values.is_empty() {
|
||||
return Err(GraphError::InvalidDims(idx, "scatter nd".to_string()));
|
||||
}
|
||||
op = SupportedOp::Linear(crate::circuit::ops::poly::PolyOp::ScatterND {
|
||||
constant_idx: Some(c.raw_values.map(|x| x as usize)),
|
||||
})
|
||||
@@ -557,6 +583,9 @@ pub fn new_op_from_onnx(
|
||||
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
|
||||
inputs[1].decrement_use();
|
||||
deleted_indices.push(1);
|
||||
if c.raw_values.is_empty() {
|
||||
return Err(GraphError::InvalidDims(idx, "gather nd".to_string()));
|
||||
}
|
||||
op = SupportedOp::Linear(crate::circuit::ops::poly::PolyOp::GatherND {
|
||||
batch_dims,
|
||||
indices: Some(c.raw_values.map(|x| x as usize)),
|
||||
@@ -591,6 +620,9 @@ pub fn new_op_from_onnx(
|
||||
if let Some(c) = inputs[1].opkind().get_mutable_constant() {
|
||||
inputs[1].decrement_use();
|
||||
deleted_indices.push(1);
|
||||
if c.raw_values.is_empty() {
|
||||
return Err(GraphError::InvalidDims(idx, "gather elements".to_string()));
|
||||
}
|
||||
op = SupportedOp::Linear(crate::circuit::ops::poly::PolyOp::GatherElements {
|
||||
dim: axis,
|
||||
constant_idx: Some(c.raw_values.map(|x| x as usize)),
|
||||
@@ -686,7 +718,9 @@ pub fn new_op_from_onnx(
|
||||
};
|
||||
let op = load_op::<Reduce>(node.op(), idx, node.op().name().to_string())?;
|
||||
let axes: Vec<usize> = op.axes.into_iter().collect();
|
||||
assert_eq!(axes.len(), 1, "only support argmax over one axis");
|
||||
if axes.len() != 1 {
|
||||
return Err(GraphError::InvalidDims(idx, "argmax".to_string()));
|
||||
}
|
||||
|
||||
SupportedOp::Hybrid(HybridOp::ReduceArgMax { dim: axes[0] })
|
||||
}
|
||||
@@ -696,7 +730,9 @@ pub fn new_op_from_onnx(
|
||||
};
|
||||
let op = load_op::<Reduce>(node.op(), idx, node.op().name().to_string())?;
|
||||
let axes: Vec<usize> = op.axes.into_iter().collect();
|
||||
assert_eq!(axes.len(), 1, "only support argmin over one axis");
|
||||
if axes.len() != 1 {
|
||||
return Err(GraphError::InvalidDims(idx, "argmin".to_string()));
|
||||
}
|
||||
|
||||
SupportedOp::Hybrid(HybridOp::ReduceArgMin { dim: axes[0] })
|
||||
}
|
||||
@@ -805,6 +841,9 @@ pub fn new_op_from_onnx(
|
||||
}
|
||||
}
|
||||
"Recip" => {
|
||||
if inputs.len() != 1 {
|
||||
return Err(GraphError::InvalidDims(idx, "recip".to_string()));
|
||||
};
|
||||
let in_scale = input_scales[0];
|
||||
let max_scale = std::cmp::max(scales.get_max(), in_scale);
|
||||
// If the input scale is larger than the params scale
|
||||
@@ -848,6 +887,9 @@ pub fn new_op_from_onnx(
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
}),
|
||||
"Rsqrt" => {
|
||||
if input_scales.len() != 1 {
|
||||
return Err(GraphError::InvalidDims(idx, "rsqrt".to_string()));
|
||||
};
|
||||
let in_scale = input_scales[0];
|
||||
let max_scale = std::cmp::max(scales.get_max(), in_scale);
|
||||
SupportedOp::Hybrid(HybridOp::Rsqrt {
|
||||
@@ -935,7 +977,9 @@ pub fn new_op_from_onnx(
|
||||
let op = load_op::<Cast>(node.op(), idx, node.op().name().to_string())?;
|
||||
let dt = op.to;
|
||||
|
||||
assert_eq!(input_scales.len(), 1);
|
||||
if input_scales.len() != 1 {
|
||||
return Err(GraphError::InvalidDims(idx, "cast".to_string()));
|
||||
};
|
||||
|
||||
match dt {
|
||||
DatumType::Bool
|
||||
@@ -985,6 +1029,11 @@ pub fn new_op_from_onnx(
|
||||
|
||||
if const_idx.len() == 1 {
|
||||
let const_idx = const_idx[0];
|
||||
|
||||
if inputs.len() <= const_idx {
|
||||
return Err(GraphError::InvalidDims(idx, "mul".to_string()));
|
||||
}
|
||||
|
||||
if let Some(c) = inputs[const_idx].opkind().get_mutable_constant() {
|
||||
if c.raw_values.len() == 1 && c.raw_values[0] < 1. {
|
||||
// if not divisible by 2 then we need to add a range check
|
||||
@@ -1059,6 +1108,9 @@ pub fn new_op_from_onnx(
|
||||
return Err(GraphError::OpMismatch(idx, "softmax".to_string()));
|
||||
}
|
||||
};
|
||||
if input_scales.len() != 1 {
|
||||
return Err(GraphError::InvalidDims(idx, "softmax".to_string()));
|
||||
}
|
||||
|
||||
let in_scale = input_scales[0];
|
||||
let max_scale = std::cmp::max(scales.get_max(), in_scale);
|
||||
@@ -1098,22 +1150,42 @@ pub fn new_op_from_onnx(
|
||||
pool_dims: kernel_shape.to_vec(),
|
||||
})
|
||||
}
|
||||
"Ceil" => SupportedOp::Hybrid(HybridOp::Ceil {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
legs: run_args.decomp_legs,
|
||||
}),
|
||||
"Floor" => SupportedOp::Hybrid(HybridOp::Floor {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
legs: run_args.decomp_legs,
|
||||
}),
|
||||
"Round" => SupportedOp::Hybrid(HybridOp::Round {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
legs: run_args.decomp_legs,
|
||||
}),
|
||||
"RoundHalfToEven" => SupportedOp::Hybrid(HybridOp::RoundHalfToEven {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
legs: run_args.decomp_legs,
|
||||
}),
|
||||
"Ceil" => {
|
||||
if input_scales.len() != 1 {
|
||||
return Err(GraphError::InvalidDims(idx, "ceil".to_string()));
|
||||
}
|
||||
SupportedOp::Hybrid(HybridOp::Ceil {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
legs: run_args.decomp_legs,
|
||||
})
|
||||
}
|
||||
"Floor" => {
|
||||
if input_scales.len() != 1 {
|
||||
return Err(GraphError::InvalidDims(idx, "floor".to_string()));
|
||||
}
|
||||
SupportedOp::Hybrid(HybridOp::Floor {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
legs: run_args.decomp_legs,
|
||||
})
|
||||
}
|
||||
"Round" => {
|
||||
if input_scales.len() != 1 {
|
||||
return Err(GraphError::InvalidDims(idx, "round".to_string()));
|
||||
}
|
||||
SupportedOp::Hybrid(HybridOp::Round {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
legs: run_args.decomp_legs,
|
||||
})
|
||||
}
|
||||
"RoundHalfToEven" => {
|
||||
if input_scales.len() != 1 {
|
||||
return Err(GraphError::InvalidDims(idx, "roundhalftoeven".to_string()));
|
||||
}
|
||||
SupportedOp::Hybrid(HybridOp::RoundHalfToEven {
|
||||
scale: scale_to_multiplier(input_scales[0]).into(),
|
||||
legs: run_args.decomp_legs,
|
||||
})
|
||||
}
|
||||
"Sign" => SupportedOp::Linear(PolyOp::Sign),
|
||||
"Pow" => {
|
||||
// Extract the slope layer hyperparams from a const
|
||||
@@ -1123,7 +1195,9 @@ pub fn new_op_from_onnx(
|
||||
inputs[1].decrement_use();
|
||||
deleted_indices.push(1);
|
||||
if c.raw_values.len() > 1 {
|
||||
unimplemented!("only support scalar pow")
|
||||
return Err(GraphError::NonScalarPower);
|
||||
} else if c.raw_values.is_empty() {
|
||||
return Err(GraphError::InvalidDims(idx, "pow".to_string()));
|
||||
}
|
||||
|
||||
let exponent = c.raw_values[0];
|
||||
@@ -1140,7 +1214,9 @@ pub fn new_op_from_onnx(
|
||||
inputs[0].decrement_use();
|
||||
deleted_indices.push(0);
|
||||
if c.raw_values.len() > 1 {
|
||||
unimplemented!("only support scalar base")
|
||||
return Err(GraphError::NonScalarBase);
|
||||
} else if c.raw_values.is_empty() {
|
||||
return Err(GraphError::InvalidDims(idx, "pow".to_string()));
|
||||
}
|
||||
|
||||
let base = c.raw_values[0];
|
||||
@@ -1150,10 +1226,14 @@ pub fn new_op_from_onnx(
|
||||
base: base.into(),
|
||||
})
|
||||
} else {
|
||||
unimplemented!("only support constant base or pow for now")
|
||||
return Err(GraphError::InvalidDims(idx, "pow".to_string()));
|
||||
}
|
||||
}
|
||||
"Div" => {
|
||||
if inputs.len() != 2 {
|
||||
return Err(GraphError::InvalidDims(idx, "div".to_string()));
|
||||
}
|
||||
|
||||
let const_idx = inputs
|
||||
.iter()
|
||||
.enumerate()
|
||||
@@ -1161,14 +1241,15 @@ pub fn new_op_from_onnx(
|
||||
.map(|(i, _)| i)
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
if const_idx.len() > 1 {
|
||||
if const_idx.len() > 1 || const_idx.is_empty() {
|
||||
return Err(GraphError::InvalidDims(idx, "div".to_string()));
|
||||
}
|
||||
|
||||
let const_idx = const_idx[0];
|
||||
|
||||
if const_idx != 1 {
|
||||
unimplemented!("only support div with constant as second input")
|
||||
return Err(GraphError::MisformedParams(
|
||||
"only support div with constant as second input".to_string(),
|
||||
));
|
||||
}
|
||||
|
||||
if let Some(c) = inputs[const_idx].opkind().get_mutable_constant() {
|
||||
@@ -1182,10 +1263,14 @@ pub fn new_op_from_onnx(
|
||||
denom: denom.into(),
|
||||
})
|
||||
} else {
|
||||
unimplemented!("only support non zero divisors of size 1")
|
||||
return Err(GraphError::MisformedParams(
|
||||
"only support non zero divisors of size 1".to_string(),
|
||||
));
|
||||
}
|
||||
} else {
|
||||
unimplemented!("only support div with constant as second input")
|
||||
return Err(GraphError::MisformedParams(
|
||||
"only support div with constant as second input".to_string(),
|
||||
));
|
||||
}
|
||||
}
|
||||
"Cube" => SupportedOp::Linear(PolyOp::Pow(3)),
|
||||
@@ -1325,7 +1410,7 @@ pub fn new_op_from_onnx(
|
||||
if !resize_node.contains("interpolator: Nearest")
|
||||
&& !resize_node.contains("nearest: Floor")
|
||||
{
|
||||
unimplemented!("Only nearest neighbor interpolation is supported")
|
||||
return Err(GraphError::InvalidInterpolation);
|
||||
}
|
||||
// check if optional scale factor is present
|
||||
if inputs.len() != 2 && inputs.len() != 3 {
|
||||
@@ -1429,6 +1514,10 @@ pub fn new_op_from_onnx(
|
||||
SupportedOp::Linear(PolyOp::Reshape(output_shape))
|
||||
}
|
||||
"Flatten" => {
|
||||
if inputs.len() != 1 || inputs[0].out_dims().is_empty() {
|
||||
return Err(GraphError::InvalidDims(idx, "flatten".to_string()));
|
||||
};
|
||||
|
||||
let new_dims: Vec<usize> = vec![inputs[0].out_dims()[0].iter().product::<usize>()];
|
||||
SupportedOp::Linear(PolyOp::Flatten(new_dims))
|
||||
}
|
||||
@@ -1548,6 +1637,7 @@ pub fn homogenize_input_scales(
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
/// tests for the utility module
|
||||
pub mod tests {
|
||||
|
||||
use super::*;
|
||||
|
||||
@@ -435,7 +435,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> ModelVars<F> {
|
||||
.collect_vec();
|
||||
|
||||
if requires_dynamic_lookup || requires_shuffle {
|
||||
let num_cols = if requires_dynamic_lookup { 3 } else { 2 };
|
||||
let num_cols = 3;
|
||||
for _ in 0..num_cols {
|
||||
let dynamic_lookup =
|
||||
VarTensor::new_advice(cs, logrows, 1, dynamic_lookup_and_shuffle_size);
|
||||
|
||||
27
src/lib.rs
27
src/lib.rs
@@ -420,3 +420,30 @@ where
|
||||
let b = s[pos + 2..].parse()?;
|
||||
Ok((a, b))
|
||||
}
|
||||
|
||||
/// Check if the version string matches the artifact version
|
||||
/// If the version string does not match the artifact version, log a warning
|
||||
pub fn check_version_string_matches(artifact_version: &str) {
|
||||
if artifact_version == "0.0.0"
|
||||
|| artifact_version == "source - no compatibility guaranteed"
|
||||
|| artifact_version.is_empty()
|
||||
{
|
||||
log::warn!("Artifact version is 0.0.0, skipping version check");
|
||||
return;
|
||||
}
|
||||
|
||||
let version = crate::version();
|
||||
|
||||
if version == "source - no compatibility guaranteed" {
|
||||
log::warn!("Compiled source version is not guaranteed to match artifact version");
|
||||
return;
|
||||
}
|
||||
|
||||
if version != artifact_version {
|
||||
log::warn!(
|
||||
"Version mismatch: CLI version is {} but artifact version is {}",
|
||||
version,
|
||||
artifact_version
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -822,6 +822,7 @@ where
|
||||
Scheme::Scalar: PrimeField + SerdeObject + FromUniformBytes<64>,
|
||||
{
|
||||
debug!("loading proving key from {:?}", path);
|
||||
let start = instant::Instant::now();
|
||||
let f = File::open(path.clone()).map_err(|e| PfsysError::LoadPk(format!("{}", e)))?;
|
||||
let mut reader = BufReader::with_capacity(*EZKL_BUF_CAPACITY, f);
|
||||
let pk = ProvingKey::<Scheme::Curve>::read::<_, C>(
|
||||
@@ -830,7 +831,8 @@ where
|
||||
params,
|
||||
)
|
||||
.map_err(|e| PfsysError::LoadPk(format!("{}", e)))?;
|
||||
info!("loaded proving key ✅");
|
||||
let elapsed = start.elapsed();
|
||||
info!("loaded proving key in {:?}", elapsed);
|
||||
Ok(pk)
|
||||
}
|
||||
|
||||
|
||||
@@ -24,9 +24,6 @@ use std::path::PathBuf;
|
||||
pub use val::*;
|
||||
pub use var::*;
|
||||
|
||||
#[cfg(feature = "metal")]
|
||||
use instant::Instant;
|
||||
|
||||
use crate::{
|
||||
circuit::utils,
|
||||
fieldutils::{integer_rep_to_felt, IntegerRep},
|
||||
@@ -40,8 +37,6 @@ use halo2_proofs::{
|
||||
poly::Rotation,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
#[cfg(feature = "metal")]
|
||||
use metal::{Device, MTLResourceOptions, MTLSize};
|
||||
use std::error::Error;
|
||||
use std::fmt::Debug;
|
||||
use std::io::Read;
|
||||
@@ -49,31 +44,6 @@ use std::iter::Iterator;
|
||||
use std::ops::{Add, Deref, DerefMut, Div, Mul, Neg, Range, Sub};
|
||||
use std::{cmp::max, ops::Rem};
|
||||
|
||||
#[cfg(feature = "metal")]
|
||||
use std::collections::HashMap;
|
||||
|
||||
#[cfg(feature = "metal")]
|
||||
const LIB_DATA: &[u8] = include_bytes!("metal/tensor_ops.metallib");
|
||||
|
||||
#[cfg(feature = "metal")]
|
||||
lazy_static::lazy_static! {
|
||||
static ref DEVICE: Device = Device::system_default().expect("no device found");
|
||||
|
||||
static ref LIB: metal::Library = DEVICE.new_library_with_data(LIB_DATA).unwrap();
|
||||
|
||||
static ref QUEUE: metal::CommandQueue = DEVICE.new_command_queue();
|
||||
|
||||
static ref PIPELINES: HashMap<String, metal::ComputePipelineState> = {
|
||||
let mut map = HashMap::new();
|
||||
for name in ["add", "sub", "mul"] {
|
||||
let function = LIB.get_function(name, None).unwrap();
|
||||
let pipeline = DEVICE.new_compute_pipeline_state_with_function(&function).unwrap();
|
||||
map.insert(name.to_string(), pipeline);
|
||||
}
|
||||
map
|
||||
};
|
||||
}
|
||||
|
||||
/// The (inner) type of tensor elements.
|
||||
pub trait TensorType: Clone + Debug + 'static {
|
||||
/// Returns the zero value.
|
||||
@@ -638,42 +608,44 @@ impl<T: Clone + TensorType> Tensor<T> {
|
||||
where
|
||||
T: Send + Sync,
|
||||
{
|
||||
if indices.is_empty() {
|
||||
// Fast path: empty indices or full tensor slice
|
||||
if indices.is_empty()
|
||||
|| indices.iter().map(|x| x.end - x.start).collect::<Vec<_>>() == self.dims
|
||||
{
|
||||
return Ok(self.clone());
|
||||
}
|
||||
|
||||
// Validate dimensions
|
||||
if self.dims.len() < indices.len() {
|
||||
return Err(TensorError::DimError(format!(
|
||||
"The dimensionality of the slice {:?} is greater than the tensor's {:?}",
|
||||
indices, self.dims
|
||||
)));
|
||||
} else if indices.iter().map(|x| x.end - x.start).collect::<Vec<_>>() == self.dims {
|
||||
// else if slice is the same as dims, return self
|
||||
return Ok(self.clone());
|
||||
}
|
||||
|
||||
// if indices weren't specified we fill them in as required
|
||||
let mut full_indices = indices.to_vec();
|
||||
// Pre-allocate the full indices vector with capacity
|
||||
let mut full_indices = Vec::with_capacity(self.dims.len());
|
||||
full_indices.extend_from_slice(indices);
|
||||
|
||||
for i in 0..(self.dims.len() - indices.len()) {
|
||||
full_indices.push(0..self.dims()[indices.len() + i])
|
||||
}
|
||||
// Fill remaining dimensions
|
||||
full_indices.extend((indices.len()..self.dims.len()).map(|i| 0..self.dims[i]));
|
||||
|
||||
let cartesian_coord: Vec<Vec<usize>> = full_indices
|
||||
// Pre-calculate total size and allocate result vector
|
||||
let total_size: usize = full_indices
|
||||
.iter()
|
||||
.cloned()
|
||||
.multi_cartesian_product()
|
||||
.collect();
|
||||
|
||||
let res: Vec<T> = cartesian_coord
|
||||
.par_iter()
|
||||
.map(|e| {
|
||||
let index = self.get_index(e);
|
||||
self[index].clone()
|
||||
})
|
||||
.collect();
|
||||
.map(|range| range.end - range.start)
|
||||
.product();
|
||||
let mut res = Vec::with_capacity(total_size);
|
||||
|
||||
// Calculate new dimensions once
|
||||
let dims: Vec<usize> = full_indices.iter().map(|e| e.end - e.start).collect();
|
||||
|
||||
// Use iterator directly without collecting into intermediate Vec
|
||||
for coord in full_indices.iter().cloned().multi_cartesian_product() {
|
||||
let index = self.get_index(&coord);
|
||||
res.push(self[index].clone());
|
||||
}
|
||||
|
||||
Tensor::new(Some(&res), &dims)
|
||||
}
|
||||
|
||||
@@ -831,7 +803,7 @@ impl<T: Clone + TensorType> Tensor<T> {
|
||||
num_repeats: usize,
|
||||
initial_offset: usize,
|
||||
) -> Result<Tensor<T>, TensorError> {
|
||||
let mut inner: Vec<T> = vec![];
|
||||
let mut inner: Vec<T> = Vec::with_capacity(self.inner.len());
|
||||
let mut offset = initial_offset;
|
||||
for (i, elem) in self.inner.clone().into_iter().enumerate() {
|
||||
if (i + offset + 1) % n == 0 {
|
||||
@@ -860,20 +832,22 @@ impl<T: Clone + TensorType> Tensor<T> {
|
||||
num_repeats: usize,
|
||||
initial_offset: usize,
|
||||
) -> Result<Tensor<T>, TensorError> {
|
||||
let mut inner: Vec<T> = vec![];
|
||||
let mut indices_to_remove = std::collections::HashSet::new();
|
||||
for i in 0..self.inner.len() {
|
||||
if (i + initial_offset + 1) % n == 0 {
|
||||
for j in 1..(1 + num_repeats) {
|
||||
indices_to_remove.insert(i + j);
|
||||
}
|
||||
}
|
||||
}
|
||||
// Pre-calculate capacity to avoid reallocations
|
||||
let estimated_size = self.inner.len() - (self.inner.len() / n) * num_repeats;
|
||||
let mut inner = Vec::with_capacity(estimated_size);
|
||||
|
||||
let old_inner = self.inner.clone();
|
||||
for (i, elem) in old_inner.into_iter().enumerate() {
|
||||
if !indices_to_remove.contains(&i) {
|
||||
inner.push(elem.clone());
|
||||
// Use iterator directly instead of creating intermediate collections
|
||||
let mut i = 0;
|
||||
while i < self.inner.len() {
|
||||
// Add the current element
|
||||
inner.push(self.inner[i].clone());
|
||||
|
||||
// If this is an nth position (accounting for offset)
|
||||
if (i + initial_offset + 1) % n == 0 {
|
||||
// Skip the next num_repeats elements
|
||||
i += num_repeats + 1;
|
||||
} else {
|
||||
i += 1;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1400,10 +1374,6 @@ impl<T: TensorType + Add<Output = T> + std::marker::Send + std::marker::Sync> Ad
|
||||
let lhs = self.expand(&broadcasted_shape).unwrap();
|
||||
let rhs = rhs.expand(&broadcasted_shape).unwrap();
|
||||
|
||||
#[cfg(feature = "metal")]
|
||||
let res = metal_tensor_op(&lhs, &rhs, "add");
|
||||
|
||||
#[cfg(not(feature = "metal"))]
|
||||
let res = {
|
||||
let mut res: Tensor<T> = lhs
|
||||
.par_iter()
|
||||
@@ -1501,10 +1471,6 @@ impl<T: TensorType + Sub<Output = T> + std::marker::Send + std::marker::Sync> Su
|
||||
let lhs = self.expand(&broadcasted_shape).unwrap();
|
||||
let rhs = rhs.expand(&broadcasted_shape).unwrap();
|
||||
|
||||
#[cfg(feature = "metal")]
|
||||
let res = metal_tensor_op(&lhs, &rhs, "sub");
|
||||
|
||||
#[cfg(not(feature = "metal"))]
|
||||
let res = {
|
||||
let mut res: Tensor<T> = lhs
|
||||
.par_iter()
|
||||
@@ -1572,10 +1538,6 @@ impl<T: TensorType + Mul<Output = T> + std::marker::Send + std::marker::Sync> Mu
|
||||
let lhs = self.expand(&broadcasted_shape).unwrap();
|
||||
let rhs = rhs.expand(&broadcasted_shape).unwrap();
|
||||
|
||||
#[cfg(feature = "metal")]
|
||||
let res = metal_tensor_op(&lhs, &rhs, "mul");
|
||||
|
||||
#[cfg(not(feature = "metal"))]
|
||||
let res = {
|
||||
let mut res: Tensor<T> = lhs
|
||||
.par_iter()
|
||||
@@ -1807,66 +1769,4 @@ mod tests {
|
||||
let b = Tensor::<IntegerRep>::new(Some(&[1, 4]), &[2, 1]).unwrap();
|
||||
assert_eq!(a.get_slice(&[0..2, 0..1]).unwrap(), b);
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[cfg(feature = "metal")]
|
||||
fn tensor_metal_int() {
|
||||
let a = Tensor::<i64>::new(Some(&[1, 2, 3, 4]), &[2, 2]).unwrap();
|
||||
let b = Tensor::<i64>::new(Some(&[1, 2, 3, 4]), &[2, 2]).unwrap();
|
||||
let c = metal_tensor_op(&a, &b, "add");
|
||||
assert_eq!(c, Tensor::new(Some(&[2, 4, 6, 8]), &[2, 2]).unwrap());
|
||||
|
||||
let c = metal_tensor_op(&a, &b, "sub");
|
||||
assert_eq!(c, Tensor::new(Some(&[0, 0, 0, 0]), &[2, 2]).unwrap());
|
||||
|
||||
let c = metal_tensor_op(&a, &b, "mul");
|
||||
assert_eq!(c, Tensor::new(Some(&[1, 4, 9, 16]), &[2, 2]).unwrap());
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[cfg(feature = "metal")]
|
||||
fn tensor_metal_felt() {
|
||||
use halo2curves::bn256::Fr;
|
||||
|
||||
let a = Tensor::<Fr>::new(
|
||||
Some(&[Fr::from(1), Fr::from(2), Fr::from(3), Fr::from(4)]),
|
||||
&[2, 2],
|
||||
)
|
||||
.unwrap();
|
||||
let b = Tensor::<Fr>::new(
|
||||
Some(&[Fr::from(1), Fr::from(2), Fr::from(3), Fr::from(4)]),
|
||||
&[2, 2],
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let c = metal_tensor_op(&a, &b, "add");
|
||||
assert_eq!(
|
||||
c,
|
||||
Tensor::<Fr>::new(
|
||||
Some(&[Fr::from(2), Fr::from(4), Fr::from(6), Fr::from(8)]),
|
||||
&[2, 2],
|
||||
)
|
||||
.unwrap()
|
||||
);
|
||||
|
||||
let c = metal_tensor_op(&a, &b, "sub");
|
||||
assert_eq!(
|
||||
c,
|
||||
Tensor::<Fr>::new(
|
||||
Some(&[Fr::from(0), Fr::from(0), Fr::from(0), Fr::from(0)]),
|
||||
&[2, 2],
|
||||
)
|
||||
.unwrap()
|
||||
);
|
||||
|
||||
let c = metal_tensor_op(&a, &b, "mul");
|
||||
assert_eq!(
|
||||
c,
|
||||
Tensor::<Fr>::new(
|
||||
Some(&[Fr::from(1), Fr::from(4), Fr::from(9), Fr::from(16)]),
|
||||
&[2, 2],
|
||||
)
|
||||
.unwrap()
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -27,7 +27,7 @@ pub fn get_rep(
|
||||
n: usize,
|
||||
) -> Result<Vec<IntegerRep>, DecompositionError> {
|
||||
// check if x is too large
|
||||
if x.abs() > (base.pow(n as u32) as IntegerRep) - 1 {
|
||||
if (*x).abs() > ((base as i128).pow(n as u32)) - 1 {
|
||||
return Err(DecompositionError::TooLarge(*x, base, n));
|
||||
}
|
||||
let mut rep = vec![0; n + 1];
|
||||
@@ -43,8 +43,8 @@ pub fn get_rep(
|
||||
let mut x = x.abs();
|
||||
//
|
||||
for i in (1..rep.len()).rev() {
|
||||
rep[i] = x % base as i128;
|
||||
x /= base as i128;
|
||||
rep[i] = x % base as IntegerRep;
|
||||
x /= base as IntegerRep;
|
||||
}
|
||||
|
||||
Ok(rep)
|
||||
@@ -127,7 +127,7 @@ pub fn decompose(
|
||||
.flatten()
|
||||
.collect::<Vec<IntegerRep>>();
|
||||
|
||||
let output = Tensor::<i128>::new(Some(&resp), &dims)?;
|
||||
let output = Tensor::<IntegerRep>::new(Some(&resp), &dims)?;
|
||||
|
||||
Ok(output)
|
||||
}
|
||||
|
||||
@@ -494,16 +494,56 @@ impl VarTensor {
|
||||
}
|
||||
}
|
||||
|
||||
/// Assigns specific values (`ValTensor`) to the columns of the inner tensor but allows for column wrapping for accumulated operations.
|
||||
pub fn assign_with_duplication_unconstrained<
|
||||
F: PrimeField + TensorType + PartialOrd + std::hash::Hash,
|
||||
>(
|
||||
&self,
|
||||
region: &mut Region<F>,
|
||||
offset: usize,
|
||||
values: &ValTensor<F>,
|
||||
constants: &mut ConstantsMap<F>,
|
||||
) -> Result<(ValTensor<F>, usize), halo2_proofs::plonk::Error> {
|
||||
match values {
|
||||
ValTensor::Instance { .. } => unimplemented!("duplication is not supported on instance columns. increase K if you require more rows."),
|
||||
ValTensor::Value { inner: v, dims , ..} => {
|
||||
|
||||
let duplication_freq = self.block_size();
|
||||
|
||||
let num_repeats = self.num_inner_cols();
|
||||
|
||||
let duplication_offset = offset;
|
||||
|
||||
// duplicates every nth element to adjust for column overflow
|
||||
let v = v.duplicate_every_n(duplication_freq, num_repeats, duplication_offset).unwrap();
|
||||
let mut res: ValTensor<F> = {
|
||||
v.enum_map(|coord, k| {
|
||||
let cell = self.assign_value(region, offset, k.clone(), coord, constants)?;
|
||||
Ok::<_, halo2_proofs::plonk::Error>(cell)
|
||||
|
||||
})?.into()};
|
||||
let total_used_len = res.len();
|
||||
res.remove_every_n(duplication_freq, num_repeats, duplication_offset).unwrap();
|
||||
|
||||
res.reshape(dims).unwrap();
|
||||
res.set_scale(values.scale());
|
||||
|
||||
Ok((res, total_used_len))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Assigns specific values (`ValTensor`) to the columns of the inner tensor but allows for column wrapping for accumulated operations.
|
||||
/// Duplication occurs by copying the last cell of the column to the first cell next column and creating a copy constraint between the two.
|
||||
pub fn assign_with_duplication<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
pub fn assign_with_duplication_constrained<
|
||||
F: PrimeField + TensorType + PartialOrd + std::hash::Hash,
|
||||
>(
|
||||
&self,
|
||||
region: &mut Region<F>,
|
||||
row: usize,
|
||||
offset: usize,
|
||||
values: &ValTensor<F>,
|
||||
check_mode: &CheckMode,
|
||||
single_inner_col: bool,
|
||||
constants: &mut ConstantsMap<F>,
|
||||
) -> Result<(ValTensor<F>, usize), halo2_proofs::plonk::Error> {
|
||||
let mut prev_cell = None;
|
||||
@@ -512,34 +552,16 @@ impl VarTensor {
|
||||
ValTensor::Instance { .. } => unimplemented!("duplication is not supported on instance columns. increase K if you require more rows."),
|
||||
ValTensor::Value { inner: v, dims , ..} => {
|
||||
|
||||
let duplication_freq = if single_inner_col {
|
||||
self.col_size()
|
||||
} else {
|
||||
self.block_size()
|
||||
};
|
||||
|
||||
let num_repeats = if single_inner_col {
|
||||
1
|
||||
} else {
|
||||
self.num_inner_cols()
|
||||
};
|
||||
|
||||
let duplication_offset = if single_inner_col {
|
||||
row
|
||||
} else {
|
||||
offset
|
||||
};
|
||||
let duplication_freq = self.col_size();
|
||||
let num_repeats = 1;
|
||||
let duplication_offset = row;
|
||||
|
||||
// duplicates every nth element to adjust for column overflow
|
||||
let v = v.duplicate_every_n(duplication_freq, num_repeats, duplication_offset).unwrap();
|
||||
let mut res: ValTensor<F> = {
|
||||
let mut res: ValTensor<F> =
|
||||
v.enum_map(|coord, k| {
|
||||
|
||||
let step = if !single_inner_col {
|
||||
1
|
||||
} else {
|
||||
self.num_inner_cols()
|
||||
};
|
||||
let step = self.num_inner_cols();
|
||||
|
||||
let (x, y, z) = self.cartesian_coord(offset + coord * step);
|
||||
if matches!(check_mode, CheckMode::SAFE) && coord > 0 && z == 0 && y == 0 {
|
||||
@@ -549,48 +571,43 @@ impl VarTensor {
|
||||
|
||||
let cell = self.assign_value(region, offset, k.clone(), coord * step, constants)?;
|
||||
|
||||
if single_inner_col {
|
||||
if z == 0 {
|
||||
let at_end_of_column = z == duplication_freq - 1;
|
||||
let at_beginning_of_column = z == 0;
|
||||
|
||||
if at_end_of_column {
|
||||
// if we are at the end of the column, we need to copy the cell to the next column
|
||||
prev_cell = Some(cell.clone());
|
||||
} else if coord > 0 && z == 0 && single_inner_col {
|
||||
} else if coord > 0 && at_beginning_of_column {
|
||||
if let Some(prev_cell) = prev_cell.as_ref() {
|
||||
let cell = cell.cell().ok_or({
|
||||
let cell = if let Some(cell) = cell.cell() {
|
||||
cell
|
||||
} else {
|
||||
error!("Error getting cell: {:?}", (x,y));
|
||||
halo2_proofs::plonk::Error::Synthesis})?;
|
||||
let prev_cell = prev_cell.cell().ok_or({
|
||||
error!("Error getting cell: {:?}", (x,y));
|
||||
halo2_proofs::plonk::Error::Synthesis})?;
|
||||
return Err(halo2_proofs::plonk::Error::Synthesis);
|
||||
};
|
||||
let prev_cell = if let Some(prev_cell) = prev_cell.cell() {
|
||||
prev_cell
|
||||
} else {
|
||||
error!("Error getting prev cell: {:?}", (x,y));
|
||||
return Err(halo2_proofs::plonk::Error::Synthesis);
|
||||
};
|
||||
region.constrain_equal(prev_cell,cell)?;
|
||||
} else {
|
||||
error!("Error copy-constraining previous value: {:?}", (x,y));
|
||||
error!("Previous cell was not set");
|
||||
return Err(halo2_proofs::plonk::Error::Synthesis);
|
||||
}
|
||||
}}
|
||||
}
|
||||
|
||||
Ok(cell)
|
||||
|
||||
})?.into()};
|
||||
})?.into();
|
||||
|
||||
let total_used_len = res.len();
|
||||
res.remove_every_n(duplication_freq, num_repeats, duplication_offset).unwrap();
|
||||
|
||||
res.reshape(dims).unwrap();
|
||||
res.set_scale(values.scale());
|
||||
|
||||
if matches!(check_mode, CheckMode::SAFE) {
|
||||
// during key generation this will be 0 so we use this as a flag to check
|
||||
// TODO: this isn't very safe and would be better to get the phase directly
|
||||
let res_evals = res.int_evals().unwrap();
|
||||
let is_assigned = res_evals
|
||||
.iter()
|
||||
.all(|&x| x == 0);
|
||||
if !is_assigned {
|
||||
assert_eq!(
|
||||
values.int_evals().unwrap(),
|
||||
res_evals
|
||||
)};
|
||||
}
|
||||
|
||||
Ok((res, total_used_len))
|
||||
}
|
||||
}
|
||||
|
||||
Binary file not shown.
File diff suppressed because one or more lines are too long
Binary file not shown.
@@ -187,13 +187,14 @@ mod native_tests {
|
||||
|
||||
const PF_FAILURE_AGGR: &str = "examples/test_failure_aggr_proof.json";
|
||||
|
||||
const LARGE_TESTS: [&str; 6] = [
|
||||
const LARGE_TESTS: [&str; 7] = [
|
||||
"self_attention",
|
||||
"nanoGPT",
|
||||
"multihead_attention",
|
||||
"mobilenet",
|
||||
"mnist_gan",
|
||||
"smallworm",
|
||||
"fr_age",
|
||||
];
|
||||
|
||||
const ACCURACY_CAL_TESTS: [&str; 6] = [
|
||||
@@ -395,29 +396,29 @@ mod native_tests {
|
||||
const TESTS_AGGR: [&str; 3] = ["1l_mlp", "1l_flatten", "1l_average"];
|
||||
|
||||
const TESTS_EVM: [&str; 23] = [
|
||||
"1l_mlp",
|
||||
"1l_flatten",
|
||||
"1l_average",
|
||||
"1l_reshape",
|
||||
"1l_sigmoid",
|
||||
"1l_div",
|
||||
"1l_sqrt",
|
||||
"1l_prelu",
|
||||
"1l_var",
|
||||
"1l_leakyrelu",
|
||||
"1l_gelu_noappx",
|
||||
"1l_relu",
|
||||
"1l_tanh",
|
||||
"2l_relu_sigmoid_small",
|
||||
"2l_relu_small",
|
||||
"min",
|
||||
"max",
|
||||
"1l_max_pool",
|
||||
"idolmodel",
|
||||
"1l_identity",
|
||||
"lstm",
|
||||
"rnn",
|
||||
"quantize_dequantize",
|
||||
"1l_mlp", // 0
|
||||
"1l_flatten", // 1
|
||||
"1l_average", // 2
|
||||
"1l_reshape", // 3
|
||||
"1l_sigmoid", // 4
|
||||
"1l_div", // 5
|
||||
"1l_sqrt", // 6
|
||||
"1l_prelu", // 7
|
||||
"1l_var", // 8
|
||||
"1l_leakyrelu", // 9
|
||||
"1l_gelu_noappx", // 10
|
||||
"1l_relu", // 11
|
||||
"1l_tanh", // 12
|
||||
"2l_relu_sigmoid_small", // 13
|
||||
"2l_relu_small", // 14
|
||||
"min", // 15
|
||||
"max", // 16
|
||||
"1l_max_pool", // 17
|
||||
"idolmodel", // 18
|
||||
"1l_identity", // 19
|
||||
"lstm", // 20
|
||||
"rnn", // 21
|
||||
"quantize_dequantize", // 22
|
||||
];
|
||||
|
||||
const TESTS_EVM_AGGR: [&str; 18] = [
|
||||
@@ -541,7 +542,7 @@ mod native_tests {
|
||||
crate::native_tests::init_binary();
|
||||
let test_dir = TempDir::new(test).unwrap();
|
||||
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
|
||||
mock(path, test.to_string(), "public", "fixed", "public", 1, "accuracy", None, 0.0, false);
|
||||
mock(path, test.to_string(), "public", "fixed", "public", 1, "accuracy", None, 0.0, false, None, None);
|
||||
test_dir.close().unwrap();
|
||||
}
|
||||
});
|
||||
@@ -606,7 +607,7 @@ mod native_tests {
|
||||
crate::native_tests::init_binary();
|
||||
let test_dir = TempDir::new(test).unwrap();
|
||||
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
|
||||
mock(path, test.to_string(), "private", "private", "public", 1, "resources", None, 0.0, false);
|
||||
mock(path, test.to_string(), "private", "private", "public", 1, "resources", None, 0.0, false, None, None);
|
||||
test_dir.close().unwrap();
|
||||
}
|
||||
|
||||
@@ -616,7 +617,7 @@ mod native_tests {
|
||||
crate::native_tests::init_binary();
|
||||
let test_dir = TempDir::new(test).unwrap();
|
||||
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
|
||||
mock(path, test.to_string(), "private", "private", "public", 1, "resources", None, 0.0, true);
|
||||
mock(path, test.to_string(), "private", "private", "public", 1, "resources", None, 0.0, true, Some(8194), Some(4));
|
||||
test_dir.close().unwrap();
|
||||
}
|
||||
|
||||
@@ -627,7 +628,7 @@ mod native_tests {
|
||||
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
|
||||
// gen random number between 0.0 and 1.0
|
||||
let tolerance = rand::thread_rng().gen_range(0.0..1.0) * 100.0;
|
||||
mock(path, test.to_string(), "private", "private", "public", 1, "resources", None, tolerance, false);
|
||||
mock(path, test.to_string(), "private", "private", "public", 1, "resources", None, tolerance, false, Some(8194), Some(5));
|
||||
test_dir.close().unwrap();
|
||||
}
|
||||
|
||||
@@ -642,7 +643,7 @@ mod native_tests {
|
||||
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
|
||||
let large_batch_dir = &format!("large_batches_{}", test);
|
||||
crate::native_tests::mk_data_batches_(path, test, &large_batch_dir, 10);
|
||||
mock(path, large_batch_dir.to_string(), "private", "private", "public", 10, "resources", None, 0.0, false);
|
||||
mock(path, large_batch_dir.to_string(), "private", "private", "public", 10, "resources", None, 0.0, false, None, None);
|
||||
test_dir.close().unwrap();
|
||||
}
|
||||
}
|
||||
@@ -652,7 +653,7 @@ mod native_tests {
|
||||
crate::native_tests::init_binary();
|
||||
let test_dir = TempDir::new(test).unwrap();
|
||||
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
|
||||
mock(path, test.to_string(), "public", "private", "private", 1, "resources", None, 0.0, false);
|
||||
mock(path, test.to_string(), "public", "private", "private", 1, "resources", None, 0.0, false, None, None);
|
||||
test_dir.close().unwrap();
|
||||
}
|
||||
|
||||
@@ -661,7 +662,7 @@ mod native_tests {
|
||||
crate::native_tests::init_binary();
|
||||
let test_dir = TempDir::new(test).unwrap();
|
||||
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
|
||||
mock(path, test.to_string(), "public", "hashed", "private", 1, "resources", None, 0.0, false);
|
||||
mock(path, test.to_string(), "public", "hashed", "private", 1, "resources", None, 0.0, false, None, None);
|
||||
test_dir.close().unwrap();
|
||||
}
|
||||
|
||||
@@ -670,7 +671,7 @@ mod native_tests {
|
||||
crate::native_tests::init_binary();
|
||||
let test_dir = TempDir::new(test).unwrap();
|
||||
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
|
||||
mock(path, test.to_string(), "fixed", "private", "private", 1, "resources", None, 0.0, false);
|
||||
mock(path, test.to_string(), "fixed", "private", "private", 1, "resources", None, 0.0, false, None, None);
|
||||
test_dir.close().unwrap();
|
||||
}
|
||||
|
||||
@@ -679,7 +680,7 @@ mod native_tests {
|
||||
crate::native_tests::init_binary();
|
||||
let test_dir = TempDir::new(test).unwrap();
|
||||
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
|
||||
mock(path, test.to_string(), "private", "private", "fixed", 1, "resources", None, 0.0, false);
|
||||
mock(path, test.to_string(), "private", "private", "fixed", 1, "resources", None, 0.0, false, None, None);
|
||||
test_dir.close().unwrap();
|
||||
}
|
||||
|
||||
@@ -688,7 +689,7 @@ mod native_tests {
|
||||
crate::native_tests::init_binary();
|
||||
let test_dir = TempDir::new(test).unwrap();
|
||||
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
|
||||
mock(path, test.to_string(), "private", "fixed", "private", 1, "resources", None, 0.0, false);
|
||||
mock(path, test.to_string(), "private", "fixed", "private", 1, "resources", None, 0.0, false, None, None);
|
||||
test_dir.close().unwrap();
|
||||
}
|
||||
|
||||
@@ -697,7 +698,7 @@ mod native_tests {
|
||||
crate::native_tests::init_binary();
|
||||
let test_dir = TempDir::new(test).unwrap();
|
||||
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
|
||||
mock(path, test.to_string(), "hashed", "private", "public", 1, "resources", None, 0.0, false);
|
||||
mock(path, test.to_string(), "hashed", "private", "public", 1, "resources", None, 0.0, false, None, None);
|
||||
test_dir.close().unwrap();
|
||||
}
|
||||
|
||||
@@ -706,7 +707,7 @@ mod native_tests {
|
||||
crate::native_tests::init_binary();
|
||||
let test_dir = TempDir::new(test).unwrap();
|
||||
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
|
||||
mock(path, test.to_string(), "polycommit", "private", "public", 1, "resources", None, 0.0, false);
|
||||
mock(path, test.to_string(), "polycommit", "private", "public", 1, "resources", None, 0.0, false, None, None);
|
||||
test_dir.close().unwrap();
|
||||
}
|
||||
|
||||
@@ -716,7 +717,7 @@ mod native_tests {
|
||||
crate::native_tests::init_binary();
|
||||
let test_dir = TempDir::new(test).unwrap();
|
||||
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
|
||||
mock(path, test.to_string(), "private", "hashed", "public", 1, "resources", None, 0.0, false);
|
||||
mock(path, test.to_string(), "private", "hashed", "public", 1, "resources", None, 0.0, false, None, None);
|
||||
test_dir.close().unwrap();
|
||||
}
|
||||
|
||||
@@ -726,7 +727,7 @@ mod native_tests {
|
||||
crate::native_tests::init_binary();
|
||||
let test_dir = TempDir::new(test).unwrap();
|
||||
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
|
||||
mock(path, test.to_string(), "private", "polycommit", "public", 1, "resources", None, 0.0, false);
|
||||
mock(path, test.to_string(), "private", "polycommit", "public", 1, "resources", None, 0.0, false, None, None);
|
||||
test_dir.close().unwrap();
|
||||
}
|
||||
|
||||
@@ -735,7 +736,7 @@ mod native_tests {
|
||||
crate::native_tests::init_binary();
|
||||
let test_dir = TempDir::new(test).unwrap();
|
||||
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
|
||||
mock(path, test.to_string(), "public", "private", "hashed", 1, "resources", None, 0.0, false);
|
||||
mock(path, test.to_string(), "public", "private", "hashed", 1, "resources", None, 0.0, false, None, None);
|
||||
test_dir.close().unwrap();
|
||||
}
|
||||
|
||||
@@ -745,7 +746,7 @@ mod native_tests {
|
||||
crate::native_tests::init_binary();
|
||||
let test_dir = TempDir::new(test).unwrap();
|
||||
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
|
||||
mock(path, test.to_string(), "public", "private", "polycommit", 1, "resources", None, 0.0, false);
|
||||
mock(path, test.to_string(), "public", "private", "polycommit", 1, "resources", None, 0.0, false, None, None);
|
||||
test_dir.close().unwrap();
|
||||
}
|
||||
|
||||
@@ -754,7 +755,7 @@ mod native_tests {
|
||||
crate::native_tests::init_binary();
|
||||
let test_dir = TempDir::new(test).unwrap();
|
||||
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
|
||||
mock(path, test.to_string(), "public", "fixed", "hashed", 1, "resources", None, 0.0, false);
|
||||
mock(path, test.to_string(), "public", "fixed", "hashed", 1, "resources", None, 0.0, false, None, None);
|
||||
test_dir.close().unwrap();
|
||||
}
|
||||
|
||||
@@ -764,7 +765,7 @@ mod native_tests {
|
||||
crate::native_tests::init_binary();
|
||||
let test_dir = TempDir::new(test).unwrap();
|
||||
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
|
||||
mock(path, test.to_string(), "public", "polycommit", "hashed", 1, "resources", None, 0.0, false);
|
||||
mock(path, test.to_string(), "public", "polycommit", "hashed", 1, "resources", None, 0.0, false, None, None);
|
||||
test_dir.close().unwrap();
|
||||
}
|
||||
|
||||
@@ -774,7 +775,7 @@ mod native_tests {
|
||||
crate::native_tests::init_binary();
|
||||
let test_dir = TempDir::new(test).unwrap();
|
||||
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
|
||||
mock(path, test.to_string(), "polycommit", "polycommit", "polycommit", 1, "resources", None, 0.0, false);
|
||||
mock(path, test.to_string(), "polycommit", "polycommit", "polycommit", 1, "resources", None, 0.0, false, None, None);
|
||||
test_dir.close().unwrap();
|
||||
}
|
||||
|
||||
@@ -784,7 +785,7 @@ mod native_tests {
|
||||
crate::native_tests::init_binary();
|
||||
let test_dir = TempDir::new(test).unwrap();
|
||||
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
|
||||
mock(path, test.to_string(), "hashed", "private", "hashed", 1, "resources", None, 0.0, false);
|
||||
mock(path, test.to_string(), "hashed", "private", "hashed", 1, "resources", None, 0.0, false, None, None);
|
||||
test_dir.close().unwrap();
|
||||
}
|
||||
|
||||
@@ -794,7 +795,7 @@ mod native_tests {
|
||||
let test_dir = TempDir::new(test).unwrap();
|
||||
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
|
||||
// needs an extra row for the large model
|
||||
mock(path, test.to_string(),"hashed", "hashed", "public", 1, "resources", None, 0.0, false);
|
||||
mock(path, test.to_string(),"hashed", "hashed", "public", 1, "resources", None, 0.0, false, None, None);
|
||||
test_dir.close().unwrap();
|
||||
}
|
||||
|
||||
@@ -804,7 +805,7 @@ mod native_tests {
|
||||
let test_dir = TempDir::new(test).unwrap();
|
||||
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
|
||||
// needs an extra row for the large model
|
||||
mock(path, test.to_string(),"hashed", "hashed", "hashed", 1, "resources", None, 0.0, false);
|
||||
mock(path, test.to_string(),"hashed", "hashed", "hashed", 1, "resources", None, 0.0, false, None, None);
|
||||
test_dir.close().unwrap();
|
||||
}
|
||||
|
||||
@@ -963,7 +964,7 @@ mod native_tests {
|
||||
|
||||
});
|
||||
|
||||
seq!(N in 0..=5 {
|
||||
seq!(N in 0..=6 {
|
||||
|
||||
#(#[test_case(LARGE_TESTS[N])])*
|
||||
#[ignore]
|
||||
@@ -981,7 +982,7 @@ mod native_tests {
|
||||
crate::native_tests::init_binary();
|
||||
let test_dir = TempDir::new(test).unwrap();
|
||||
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
|
||||
mock(path, test.to_string(), "private", "fixed", "public", 1, "resources", None, 0.0, false);
|
||||
mock(path, test.to_string(), "private", "fixed", "public", 1, "resources", None, 0.0, false, None, None);
|
||||
test_dir.close().unwrap();
|
||||
}
|
||||
});
|
||||
@@ -1459,6 +1460,8 @@ mod native_tests {
|
||||
scales_to_use: Option<Vec<u32>>,
|
||||
tolerance: f32,
|
||||
bounded_lookup_log: bool,
|
||||
decomp_base: Option<usize>,
|
||||
decomp_legs: Option<usize>,
|
||||
) {
|
||||
let mut tolerance = tolerance;
|
||||
gen_circuit_settings_and_witness(
|
||||
@@ -1475,6 +1478,8 @@ mod native_tests {
|
||||
Commitments::KZG,
|
||||
2,
|
||||
bounded_lookup_log,
|
||||
decomp_base,
|
||||
decomp_legs,
|
||||
);
|
||||
|
||||
if tolerance > 0.0 {
|
||||
@@ -1616,6 +1621,8 @@ mod native_tests {
|
||||
commitment: Commitments,
|
||||
lookup_safety_margin: usize,
|
||||
bounded_lookup_log: bool,
|
||||
decomp_base: Option<usize>,
|
||||
decomp_legs: Option<usize>,
|
||||
) {
|
||||
let mut args = vec![
|
||||
"gen-settings".to_string(),
|
||||
@@ -1634,6 +1641,14 @@ mod native_tests {
|
||||
format!("--commitment={}", commitment),
|
||||
];
|
||||
|
||||
if let Some(decomp_base) = decomp_base {
|
||||
args.push(format!("--decomp-base={}", decomp_base));
|
||||
}
|
||||
|
||||
if let Some(decomp_legs) = decomp_legs {
|
||||
args.push(format!("--decomp-legs={}", decomp_legs));
|
||||
}
|
||||
|
||||
if bounded_lookup_log {
|
||||
args.push("--bounded-log-lookup".to_string());
|
||||
}
|
||||
@@ -1751,6 +1766,8 @@ mod native_tests {
|
||||
Commitments::KZG,
|
||||
2,
|
||||
false,
|
||||
None,
|
||||
None,
|
||||
);
|
||||
|
||||
println!(
|
||||
@@ -2035,6 +2052,8 @@ mod native_tests {
|
||||
commitment,
|
||||
lookup_safety_margin,
|
||||
false,
|
||||
None,
|
||||
None,
|
||||
);
|
||||
|
||||
let settings_path = format!("{}/{}/settings.json", test_dir, example_name);
|
||||
@@ -2467,6 +2486,8 @@ mod native_tests {
|
||||
Commitments::KZG,
|
||||
2,
|
||||
false,
|
||||
None,
|
||||
None,
|
||||
);
|
||||
|
||||
let model_path = format!("{}/{}/network.compiled", test_dir, example_name);
|
||||
@@ -2774,7 +2795,10 @@ mod native_tests {
|
||||
"--features",
|
||||
"icicle",
|
||||
];
|
||||
#[cfg(not(feature = "icicle"))]
|
||||
#[cfg(feature = "macos-metal")]
|
||||
let args = ["build", "--release", "--bin", "ezkl", "--features", "macos-metal"];
|
||||
// not macos-metal and not icicle
|
||||
#[cfg(all(not(feature = "icicle"), not(feature = "macos-metal")))]
|
||||
let args = ["build", "--release", "--bin", "ezkl"];
|
||||
#[cfg(not(feature = "mv-lookup"))]
|
||||
let args = [
|
||||
|
||||
@@ -72,11 +72,10 @@ mod py_tests {
|
||||
"torchtext==0.17.2",
|
||||
"torchvision==0.17.2",
|
||||
"pandas==2.2.1",
|
||||
"numpy==1.26.4",
|
||||
"seaborn==0.13.2",
|
||||
"notebook==7.1.2",
|
||||
"nbconvert==7.16.3",
|
||||
"onnx==1.16.0",
|
||||
"onnx==1.17.0",
|
||||
"kaggle==1.6.8",
|
||||
"py-solc-x==2.0.3",
|
||||
"web3==7.5.0",
|
||||
@@ -90,12 +89,13 @@ mod py_tests {
|
||||
"xgboost==2.0.3",
|
||||
"hummingbird-ml==0.4.11",
|
||||
"lightgbm==4.3.0",
|
||||
"numpy==1.26.4",
|
||||
])
|
||||
.status()
|
||||
.expect("failed to execute process");
|
||||
assert!(status.success());
|
||||
let status = Command::new("pip")
|
||||
.args(["install", "numpy==1.23"])
|
||||
.args(["install", "numpy==1.26.4"])
|
||||
.status()
|
||||
.expect("failed to execute process");
|
||||
|
||||
|
||||
@@ -873,6 +873,7 @@ def get_examples():
|
||||
'linear_regression',
|
||||
"mnist_gan",
|
||||
"smallworm",
|
||||
"fr_age"
|
||||
]
|
||||
examples = []
|
||||
for subdir, _, _ in os.walk(os.path.join(examples_path, "onnx")):
|
||||
|
||||
Reference in New Issue
Block a user