Compare commits

..

52 Commits

Author SHA1 Message Date
dante
b3c5d6f4c3 no cache 2025-07-25 09:33:30 -04:00
dante
123f8d270a Update release.yml 2025-07-25 09:30:53 -04:00
dante
e2ea2e7d80 fix: release pipeline 2025-07-25 09:19:50 -04:00
dante
0e79d36238 fix: ln arg is too restrictive on distances (#989) 2025-07-24 18:56:50 -04:00
dante
e1c126c735 fix: ci (#988) 2025-07-23 20:11:31 -04:00
dante
9077b8debc refactor: shuffle + dynamic lookup params 2025-07-22 14:36:39 -04:00
dante
28594c7651 chore: simplify DataSource (#986) 2025-07-03 10:52:31 -04:00
DoHoon Kim
b9c5ae76c0 chore: bump halo2_solidity_verifier (#985) 2025-07-03 09:54:46 -04:00
dante
c34ce000ff chore: rm git creds from ci (#984) 2025-06-28 09:30:12 +01:00
Ethan Cemer
3ea68f08b3 feat: vka hashing squash (#982) 2025-06-27 22:58:10 +02:00
dante
e81d93a73a chore: display calibration fail reasons (#983) 2025-06-21 19:24:30 +02:00
dante
40ce9dfde9 chore: rm lots of clones (#980) 2025-05-26 10:54:09 -04:00
dante
839030ce10 chore: rm halo2proofs patches (#976) 2025-04-29 10:58:35 -04:00
dante
cfccc5460c refactor: rm postgres (#977) 2025-04-29 08:59:14 -04:00
dante
0de0682bfa refactor: configurable div epsilon (#968) 2025-04-23 09:12:24 +01:00
dante
bf9cf14ab7 refactor!: rpc url should be required (#965)
BREAKING CHANGE: in python the order of arguments for evm related functions has changed
2025-04-22 12:45:36 +01:00
dante
6818962ac2 chore: pass in raw data for gen-witness from file (#964) 2025-04-06 14:08:11 -04:00
dante
70469e3bf9 chore: add min/max to gen-random-data (#960) 2025-03-25 19:32:15 +00:00
dante
52ff187e55 refactor: command struct names should match str (#959) 2025-03-24 12:54:43 +00:00
dante
4e57a5a486 docs: link to audit (#958)
---------

Co-authored-by: Jason Morton <jason.morton@gmail.com>
2025-03-23 21:12:44 +00:00
Ethan Cemer
fe978caa85 fix!: bug fixes (#956)
BREAKING CHANGE: DA verifier no longer backwards compatible
2025-03-18 22:08:29 +00:00
dante
1bef92407c fix: recip denom epsilon can induce non opt res (#957) 2025-03-17 14:46:33 +00:00
dante
5ff1c48ede refactor: allow for negative stride downsample (#955) 2025-03-14 12:07:37 -04:00
dante
ab4997d0c2 chore: update docs and panics (#952) 2025-03-10 11:32:28 -04:00
dante
701e69dd2f fix: handle [] shapes in sort (#954) 2025-03-08 13:17:45 -05:00
dante
f631445e26 docs: document arguments better (#950) 2025-03-05 16:10:50 -05:00
dante
fcbb27677f fix: empty dim len can be 1 (#949) 2025-02-28 23:56:19 -05:00
dante
bc26691bd5 chore: smaller cat dog example (#947) 2025-02-28 10:37:08 -05:00
dante
73c813a81d feat: pass data directly in cli (#939) 2025-02-13 12:35:13 -05:00
dante
ae076aef09 refactor: rm tolerance parameter (#937) 2025-02-11 12:57:18 -05:00
dante
a7544f4060 feat: generalize conv mem layout and ND (#935) 2025-02-10 09:11:58 -05:00
dante
c19fa5218a refactor: enforce max decomp base/legs in args (#936) 2025-02-09 16:15:40 -05:00
rebustron
eb205d0c73 chore: fix typos in comments and docs (#934) 2025-02-08 19:13:17 -05:00
dante
db498f8d7c docs: cat-dog example (#929) 2025-02-08 17:30:13 -05:00
Cypher Pepe
a363c91160 fix: broken links in polycommit.rs and poseidon.rs (#932) 2025-02-08 12:40:53 -05:00
dante
f7f04415fa chore!: add model input/output types to settings (#933)
BREAKING CHANGE: compiled model serialization is not backwards compatible
2025-02-07 16:05:59 -05:00
Jseam
de8d419e5d ci: change to sha hashes (#922) 2025-02-07 12:27:35 -05:00
dante
a38d318923 fix: pypi publication pipeline (#931) 2025-02-05 23:03:21 -05:00
dante
864990fe2d fix: publishing path 2025-02-05 19:57:13 -05:00
dante
29c3e4f977 fix: bump download artifact to v4 2025-02-05 19:05:29 -05:00
dante
0689115828 fix: ezkl-gpu name (#930) 2025-02-05 18:29:28 -05:00
dante
99f741304a Revert "fix: ezkl-gpu install"
This reverts commit 20ac99fdbf.
2025-02-05 18:03:46 -05:00
dante
20ac99fdbf fix: ezkl-gpu install 2025-02-05 18:01:26 -05:00
dante
532fa65e93 fix: patch python release pipeline for v4 2025-02-05 17:59:35 -05:00
dante
cfe5db545c fix: npm and pypi releases 2025-02-05 17:26:36 -05:00
dante
21ad56aea1 refactor: serial lookup commits for metal (#928) 2025-02-05 16:54:12 -05:00
dante
4ed7e0fd29 fix: use variable len domain for poseidon (#927) 2025-02-05 16:52:28 -05:00
dante
05d1f10615 docs: advanced security notices (#926)
---------

Co-authored-by: jason <jason.morton@gmail.com>
2025-02-05 15:14:29 +00:00
dante
9a8c754e45 fix: use onnx convention when integer dividing (#925) 2025-02-05 09:32:44 +00:00
dante
d82766d413 fix: force prover det on argmax/min for collisions (#923) 2025-02-04 12:08:34 +00:00
dante
820a80122b fix: range-check graph input and outputs (#921) 2025-02-04 02:33:27 +00:00
dante
9c64e42bd3 docs: improve quality + code quality fixes (#920) 2025-01-31 10:48:25 +00:00
157 changed files with 50727 additions and 17390 deletions

View File

@@ -12,10 +12,10 @@ jobs:
contents: read
runs-on: self-hosted
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
- uses: actions-rust-lang/setup-rust-toolchain@fb51252c7ba57d633bc668f941da052e410add48 #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -29,10 +29,10 @@ jobs:
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
- uses: actions-rust-lang/setup-rust-toolchain@fb51252c7ba57d633bc668f941da052e410add48 #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -46,10 +46,10 @@ jobs:
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
- uses: actions-rust-lang/setup-rust-toolchain@fb51252c7ba57d633bc668f941da052e410add48 #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -63,10 +63,10 @@ jobs:
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
- uses: actions-rust-lang/setup-rust-toolchain@fb51252c7ba57d633bc668f941da052e410add48 #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -80,10 +80,10 @@ jobs:
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
- uses: actions-rust-lang/setup-rust-toolchain@fb51252c7ba57d633bc668f941da052e410add48 #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -97,10 +97,10 @@ jobs:
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
- uses: actions-rust-lang/setup-rust-toolchain@fb51252c7ba57d633bc668f941da052e410add48 #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -114,10 +114,10 @@ jobs:
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
- uses: actions-rust-lang/setup-rust-toolchain@fb51252c7ba57d633bc668f941da052e410add48 #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -131,10 +131,10 @@ jobs:
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
- uses: actions-rust-lang/setup-rust-toolchain@fb51252c7ba57d633bc668f941da052e410add48 #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -148,10 +148,10 @@ jobs:
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
- uses: actions-rust-lang/setup-rust-toolchain@fb51252c7ba57d633bc668f941da052e410add48 #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -165,10 +165,10 @@ jobs:
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
- uses: actions-rust-lang/setup-rust-toolchain@fb51252c7ba57d633bc668f941da052e410add48 #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
@@ -182,10 +182,10 @@ jobs:
runs-on: self-hosted
needs: [bench_poseidon]
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
- uses: actions-rust-lang/setup-rust-toolchain@fb51252c7ba57d633bc668f941da052e410add48 #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true

View File

@@ -21,18 +21,20 @@ jobs:
name: publish-wasm-bindings
env:
RELEASE_TAG: ${{ github.ref_name }}
RUSTFLAGS: "-C target-feature=+atomics,+bulk-memory"
runs-on: ubuntu-latest
if: startsWith(github.ref, 'refs/tags/')
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
- uses: actions-rust-lang/setup-rust-toolchain@fb51252c7ba57d633bc668f941da052e410add48 #v1.0.6
with:
toolchain: nightly-2024-07-18
toolchain: nightly-2025-06-16
override: true
components: rustfmt, clippy
- uses: jetli/wasm-pack-action@v0.4.0
cache: false
- uses: jetli/wasm-pack-action@0d096b08b4e5a7de8c28de67e11e945404e9eefa #v0.4.0
with:
# Pin to version 0.12.1
version: 'v0.12.1'
@@ -40,13 +42,17 @@ jobs:
run: rustup target add wasm32-unknown-unknown
- name: Add rust-src
run: rustup component add rust-src --toolchain nightly-2024-07-18-x86_64-unknown-linux-gnu
run: rustup component add rust-src --toolchain nightly-2025-06-16-x86_64-unknown-linux-gnu
- name: Install binaryen
run: |
set -e
curl -L https://github.com/WebAssembly/binaryen/releases/download/version_116/binaryen-version_116-x86_64-linux.tar.gz | tar xzf -
export PATH=$PATH:$PWD/binaryen-version_116/bin
wasm-opt --version
- name: Build wasm files for both web and nodejs compilation targets
run: |
wasm-pack build --release --target nodejs --out-dir ./pkg/nodejs . -- -Z build-std="panic_abort,std"
wasm-pack build --release --target web --out-dir ./pkg/web . -- -Z build-std="panic_abort,std" --features web
- name: Create package.json in pkg folder
shell: bash
run: |
@@ -83,7 +89,7 @@ jobs:
- name: Replace memory definition in nodejs
run: |
sed -i "3s|.*|imports['env'] = {memory: new WebAssembly.Memory({initial:20,maximum:65536,shared:true})}|" pkg/nodejs/ezkl.js
sed -i "3s|.*|imports['env'] = {memory: new WebAssembly.Memory({initial:21,maximum:65536,shared:true})}|" pkg/nodejs/ezkl.js
- name: Replace `import.meta.url` with `import.meta.resolve` definition in workerHelpers.js
run: |
@@ -172,7 +178,7 @@ jobs:
curl -s "https://raw.githubusercontent.com/zkonduit/ezkljs-engine/main/README.md" > ./pkg/README.md
- name: Set up Node.js
uses: actions/setup-node@v3
uses: actions/setup-node@1a4442cacd436585916779262731d5b162bc6ec7 #v3.8.2
with:
node-version: "18.12.1"
registry-url: "https://registry.npmjs.org"
@@ -184,63 +190,3 @@ jobs:
npm publish
env:
NODE_AUTH_TOKEN: ${{ secrets.NPM_TOKEN }}
in-browser-evm-ver-publish:
permissions:
contents: read
packages: write
name: publish-in-browser-evm-verifier-package
needs: [publish-wasm-bindings]
runs-on: ubuntu-latest
env:
RELEASE_TAG: ${{ github.ref_name }}
if: startsWith(github.ref, 'refs/tags/')
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- name: Update version in package.json
shell: bash
run: |
sed -i "s|\"version\": \".*\"|\"version\": \"$RELEASE_TAG\"|" in-browser-evm-verifier/package.json
- name: Prepare tag and fetch package integrity
run: |
CLEANED_TAG=${RELEASE_TAG} # Get the tag from ref_name
CLEANED_TAG="${CLEANED_TAG#v}" # Remove leading 'v'
echo "CLEANED_TAG=${CLEANED_TAG}" >> $GITHUB_ENV # Set it as an environment variable for later steps
ENGINE_INTEGRITY=$(npm view @ezkljs/engine@$CLEANED_TAG dist.integrity)
echo "ENGINE_INTEGRITY=$ENGINE_INTEGRITY" >> $GITHUB_ENV
- name: Update @ezkljs/engine version in package.json
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
run: |
sed -i "s|\"@ezkljs/engine\": \".*\"|\"@ezkljs/engine\": \"$CLEANED_TAG\"|" in-browser-evm-verifier/package.json
- name: Update the engine import in in-browser-evm-verifier to use @ezkljs/engine package instead of the local one;
run: |
sed -i "s|import { encodeVerifierCalldata } from '../nodejs/ezkl';|import { encodeVerifierCalldata } from '@ezkljs/engine';|" in-browser-evm-verifier/src/index.ts
- name: Update pnpm-lock.yaml versions and integrity
run: |
awk -v integrity="$ENGINE_INTEGRITY" -v tag="$CLEANED_TAG" '
NR==30{$0=" specifier: \"" tag "\""}
NR==31{$0=" version: \"" tag "\""}
NR==400{$0=" /@ezkljs/engine@" tag ":"}
NR==401{$0=" resolution: {integrity: \"" integrity "\"}"} 1' in-browser-evm-verifier/pnpm-lock.yaml > temp.yaml && mv temp.yaml in-browser-evm-verifier/pnpm-lock.yaml
- name: Use pnpm 8
uses: pnpm/action-setup@v2
with:
version: 8
- name: Set up Node.js
uses: actions/setup-node@v3
with:
node-version: "18.12.1"
registry-url: "https://registry.npmjs.org"
- name: Publish to npm
run: |
cd in-browser-evm-verifier
pnpm install --frozen-lockfile
pnpm run build
pnpm publish --no-git-checks
env:
NODE_AUTH_TOKEN: ${{ secrets.NPM_TOKEN }}

View File

@@ -10,12 +10,12 @@ jobs:
contents: read
runs-on: kaiju
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
- uses: actions-rust-lang/setup-rust-toolchain@fb51252c7ba57d633bc668f941da052e410add48 #v1.0.6
with:
toolchain: nightly-2024-07-18
toolchain: nightly-2025-06-16
override: true
components: rustfmt, clippy
- name: nanoGPT Mock

View File

@@ -28,34 +28,37 @@ jobs:
env:
RELEASE_TAG: ${{ github.ref_name }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions/setup-python@v4
- uses: actions/setup-python@b64ffcaf5b410884ad320a9cfac8866006a109aa #v4.8.0
with:
python-version: 3.12
architecture: x64
- name: Set pyproject.toml version to match github tag
- name: Set pyproject.toml version to match github tag and rename ezkl to ezkl-gpu
shell: bash
run: |
mv pyproject.toml pyproject.toml.orig
sed "s/ezkl/ezkl-gpu/" pyproject.toml.orig >pyproject.toml
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" pyproject.toml.orig >pyproject.toml
sed "s/ezkl/ezkl-gpu/" pyproject.toml.orig > pyproject.toml.tmp
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" pyproject.toml.tmp > pyproject.toml
- uses: actions-rs/toolchain@v1
- uses: actions-rust-lang/setup-rust-toolchain@fb51252c7ba57d633bc668f941da052e410add48 #v1.0.6
with:
toolchain: nightly-2023-06-27
override: true
components: rustfmt, clippy
cache: false
- name: Set Cargo.toml version to match github tag
- name: Set Cargo.toml version to match github tag and rename ezkl to ezkl-gpu
shell: bash
# the ezkl substitution here looks for the first instance of name = "ezkl" and changes it to "ezkl-gpu"
run: |
mv Cargo.toml Cargo.toml.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.toml.orig >Cargo.toml
sed "0,/name = \"ezkl\"/s/name = \"ezkl\"/name = \"ezkl-gpu\"/" Cargo.toml.orig > Cargo.toml.tmp
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.toml.tmp > Cargo.toml
mv Cargo.lock Cargo.lock.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.lock.orig >Cargo.lock
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.lock.orig > Cargo.lock
- name: Install required libraries
shell: bash
@@ -63,7 +66,7 @@ jobs:
sudo apt-get update && sudo apt-get install -y openssl pkg-config libssl-dev
- name: Build wheels
uses: PyO3/maturin-action@v1
uses: PyO3/maturin-action@5f8a1b3b0aad13193f46c9131f9b9e663def8ce5 #v1.46.0
with:
target: ${{ matrix.target }}
manylinux: auto
@@ -76,7 +79,7 @@ jobs:
pip install ezkl-gpu --no-index --find-links dist --force-reinstall
- name: Upload wheels
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@65c4c4a1ddee5b72f698fdd19549f0f0fb45cf08 #v4.6.0
with:
name: wheels
path: dist
@@ -92,7 +95,7 @@ jobs:
# needs: [ macos, windows, linux, linux-cross, musllinux, musllinux-cross ]
needs: [linux]
steps:
- uses: actions/download-artifact@v3
- uses: actions/download-artifact@fa0a91b85d4f404e444e00e005971372dc801d16 #v4.1.8
with:
name: wheels
- name: List Files
@@ -104,14 +107,14 @@ jobs:
# publishes to PyPI
- name: Publish package distributions to PyPI
continue-on-error: true
uses: pypa/gh-action-pypi-publish@unstable/v1
uses: pypa/gh-action-pypi-publish@76f52bc884231f62b9a034ebfe128415bbaabdfc #v1.12.4
with:
packages-dir: ./
packages-dir: ./wheels
# publishes to TestPyPI
- name: Publish package distribution to TestPyPI
continue-on-error: true
uses: pypa/gh-action-pypi-publish@unstable/v1
uses: pypa/gh-action-pypi-publish@76f52bc884231f62b9a034ebfe128415bbaabdfc #v1.12.4
with:
repository-url: https://test.pypi.org/legacy/
packages-dir: ./
packages-dir: ./wheels

View File

@@ -26,10 +26,10 @@ jobs:
env:
RELEASE_TAG: ${{ github.ref_name }}
steps:
- uses: actions/checkout@v4
with:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions/setup-python@v4
- uses: actions/setup-python@b64ffcaf5b410884ad320a9cfac8866006a109aa #v4.8.0
with:
python-version: 3.12
architecture: x64
@@ -48,21 +48,22 @@ jobs:
mv Cargo.lock Cargo.lock.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.lock.orig >Cargo.lock
- uses: actions-rs/toolchain@v1
- uses: actions-rust-lang/setup-rust-toolchain@fb51252c7ba57d633bc668f941da052e410add48 #v1.0.6
with:
toolchain: nightly-2024-07-18
toolchain: nightly-2025-06-16
override: true
components: rustfmt, clippy
cache: false
- name: Build wheels
if: matrix.target == 'universal2-apple-darwin'
uses: PyO3/maturin-action@v1
uses: PyO3/maturin-action@5f8a1b3b0aad13193f46c9131f9b9e663def8ce5 #v1.46.0
with:
target: ${{ matrix.target }}
args: --release --out dist --features python-bindings
- name: Build wheels
if: matrix.target == 'x86_64'
uses: PyO3/maturin-action@v1
uses: PyO3/maturin-action@5f8a1b3b0aad13193f46c9131f9b9e663def8ce5 #v1.46.0
with:
target: ${{ matrix.target }}
args: --release --out dist --features python-bindings
@@ -73,9 +74,9 @@ jobs:
python -c "import ezkl"
- name: Upload wheels
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@65c4c4a1ddee5b72f698fdd19549f0f0fb45cf08 #v4.6.0
with:
name: wheels
name: dist-macos-${{ matrix.target }}
path: dist
windows:
@@ -87,10 +88,10 @@ jobs:
matrix:
target: [x64, x86]
steps:
- uses: actions/checkout@v4
with:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions/setup-python@v4
- uses: actions/setup-python@b64ffcaf5b410884ad320a9cfac8866006a109aa #v4.8.0
with:
python-version: 3.12
architecture: ${{ matrix.target }}
@@ -113,14 +114,15 @@ jobs:
mv Cargo.lock Cargo.lock.orig
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.lock.orig >Cargo.lock
- uses: actions-rs/toolchain@v1
- uses: actions-rust-lang/setup-rust-toolchain@fb51252c7ba57d633bc668f941da052e410add48 #v1.0.6
with:
toolchain: nightly-2024-07-18
toolchain: nightly-2025-06-16
override: true
components: rustfmt, clippy
cache: false
- name: Build wheels
uses: PyO3/maturin-action@v1
uses: PyO3/maturin-action@5f8a1b3b0aad13193f46c9131f9b9e663def8ce5 #v1.46.0
with:
target: ${{ matrix.target }}
args: --release --out dist --features python-bindings
@@ -130,9 +132,9 @@ jobs:
python -c "import ezkl"
- name: Upload wheels
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@65c4c4a1ddee5b72f698fdd19549f0f0fb45cf08 #v4.6.0 #v4.6.0
with:
name: wheels
name: dist-windows-${{ matrix.target }}
path: dist
linux:
@@ -144,10 +146,10 @@ jobs:
matrix:
target: [x86_64]
steps:
- uses: actions/checkout@v4
with:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions/setup-python@v4
- uses: actions/setup-python@b64ffcaf5b410884ad320a9cfac8866006a109aa #v4.8.0
with:
python-version: 3.12
architecture: x64
@@ -176,7 +178,7 @@ jobs:
sudo apt-get update && sudo apt-get install -y openssl pkg-config libssl-dev
- name: Build wheels
uses: PyO3/maturin-action@v1
uses: PyO3/maturin-action@5f8a1b3b0aad13193f46c9131f9b9e663def8ce5 #v1.46.0
with:
target: ${{ matrix.target }}
manylinux: auto
@@ -203,9 +205,9 @@ jobs:
python -c "import ezkl"
- name: Upload wheels
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@65c4c4a1ddee5b72f698fdd19549f0f0fb45cf08 #v4.6.0
with:
name: wheels
name: dist-linux-${{ matrix.target }}
path: dist
musllinux:
@@ -218,10 +220,10 @@ jobs:
target:
- x86_64-unknown-linux-musl
steps:
- uses: actions/checkout@v4
with:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions/setup-python@v4
- uses: actions/setup-python@b64ffcaf5b410884ad320a9cfac8866006a109aa #v4.8.0
with:
python-version: 3.12
architecture: x64
@@ -250,7 +252,7 @@ jobs:
sudo apt-get update && sudo apt-get install -y pkg-config libssl-dev
- name: Build wheels
uses: PyO3/maturin-action@v1
uses: PyO3/maturin-action@5f8a1b3b0aad13193f46c9131f9b9e663def8ce5 #v1.46.0
with:
target: ${{ matrix.target }}
manylinux: musllinux_1_2
@@ -258,7 +260,7 @@ jobs:
- name: Install built wheel
if: matrix.target == 'x86_64-unknown-linux-musl'
uses: addnab/docker-run-action@v3
uses: addnab/docker-run-action@3e77f186b7a929ef010f183a9e24c0f9955ea609
with:
image: alpine:latest
options: -v ${{ github.workspace }}:/io -w /io
@@ -271,9 +273,9 @@ jobs:
python3 -c "import ezkl"
- name: Upload wheels
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@65c4c4a1ddee5b72f698fdd19549f0f0fb45cf08 #v4.6.0
with:
name: wheels
name: dist-musllinux-${{ matrix.target }}
path: dist
musllinux-cross:
@@ -287,10 +289,10 @@ jobs:
- target: aarch64-unknown-linux-musl
arch: aarch64
steps:
- uses: actions/checkout@v4
with:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions/setup-python@v4
- uses: actions/setup-python@b64ffcaf5b410884ad320a9cfac8866006a109aa #v4.8.0
with:
python-version: 3.12
@@ -313,13 +315,13 @@ jobs:
sed "s/0\\.0\\.0/${RELEASE_TAG//v}/" Cargo.lock.orig >Cargo.lock
- name: Build wheels
uses: PyO3/maturin-action@v1
uses: PyO3/maturin-action@5f8a1b3b0aad13193f46c9131f9b9e663def8ce5 #v1.46.0
with:
target: ${{ matrix.platform.target }}
manylinux: musllinux_1_2
args: --release --out dist --features python-bindings
- uses: uraimo/run-on-arch-action@v2.8.1
- uses: uraimo/run-on-arch-action@5397f9e30a9b62422f302092631c99ae1effcd9e #v2.8.1
name: Install built wheel
with:
arch: ${{ matrix.platform.arch }}
@@ -334,9 +336,9 @@ jobs:
python3 -c "import ezkl"
- name: Upload wheels
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@65c4c4a1ddee5b72f698fdd19549f0f0fb45cf08 #v4.6.0
with:
name: wheels
name: dist-musllinux-${{ matrix.platform.target }}
path: dist
pypi-publish:
@@ -347,24 +349,26 @@ jobs:
if: "startsWith(github.ref, 'refs/tags/')"
needs: [macos, windows, linux, musllinux, musllinux-cross]
steps:
- uses: actions/download-artifact@v3
- uses: actions/download-artifact@fa0a91b85d4f404e444e00e005971372dc801d16 #v4.1.8
with:
name: wheels
pattern: dist-*
merge-multiple: true
path: wheels
- name: List Files
run: ls -R
# # publishes to TestPyPI
# - name: Publish package distribution to TestPyPI
# uses: pypa/gh-action-pypi-publish@unstable/v1
# uses: pypa/gh-action-pypi-publish@76f52bc884231f62b9a034ebfe128415bbaabdfc #v1.12.4
# with:
# repository-url: https://test.pypi.org/legacy/
# packages-dir: ./
# publishes to PyPI
- name: Publish package distributions to PyPI
uses: pypa/gh-action-pypi-publish@unstable/v1
uses: pypa/gh-action-pypi-publish@76f52bc884231f62b9a034ebfe128415bbaabdfc #v1.12.4
with:
packages-dir: ./
packages-dir: ./wheels
doc-publish:
@@ -375,10 +379,10 @@ jobs:
needs: pypi-publish
steps:
- uses: actions/checkout@v4
with:
with:
persist-credentials: false
- name: Trigger RTDs build
uses: dfm/rtds-action@v1
uses: dfm/rtds-action@618148c547f4b56cdf4fa4dcf3a94c91ce025f2d
with:
webhook_url: ${{ secrets.RTDS_WEBHOOK_URL }}
webhook_token: ${{ secrets.RTDS_WEBHOOK_TOKEN }}

View File

@@ -26,11 +26,10 @@ jobs:
shell: bash
run: |
echo "EZKL_VERSION=${GITHUB_REF#refs/*/}" >> $GITHUB_ENV
echo "version is: ${{ env.EZKL_VERSION }}"
- name: Create Github Release
id: create-release
uses: softprops/action-gh-release@v1
uses: softprops/action-gh-release@c95fe1489396fe8a9eb87c0abf8aa5b2ef267fda #v2.2.1
with:
token: ${{ secrets.RELEASE_TOKEN }}
tag_name: ${{ env.EZKL_VERSION }}
@@ -49,14 +48,15 @@ jobs:
RUST_BACKTRACE: 1
PCRE2_SYS_STATIC: 1
steps:
- uses: actions-rs/toolchain@v1
- uses: actions-rust-lang/setup-rust-toolchain@fb51252c7ba57d633bc668f941da052e410add48 #v1.0.6
with:
toolchain: nightly-2024-07-18
toolchain: nightly-2025-06-16
override: true
components: rustfmt, clippy
cache: false
- name: Checkout repo
uses: actions/checkout@v4
with:
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
@@ -64,7 +64,6 @@ jobs:
shell: bash
run: |
echo "EZKL_VERSION=${GITHUB_REF#refs/*/}" >> $GITHUB_ENV
echo "version is: ${{ env.EZKL_VERSION }}"
- name: Set Cargo.toml version to match github tag
shell: bash
@@ -90,7 +89,7 @@ jobs:
echo "ASSET=build-artifacts/ezkl-linux-gpu.tar.gz" >> $GITHUB_ENV
- name: Upload release archive
uses: actions/upload-release-asset@v1.0.2
uses: actions/upload-release-asset@e8f9f06c4b078e705bd2ea027f0926603fc9b4d5 #v1.0.2
env:
GITHUB_TOKEN: ${{ secrets.RELEASE_TOKEN }}
with:
@@ -119,40 +118,39 @@ jobs:
include:
- build: windows-msvc
os: windows-latest
rust: nightly-2024-07-18
rust: nightly-2025-06-16
target: x86_64-pc-windows-msvc
- build: macos
os: macos-13
rust: nightly-2024-07-18
rust: nightly-2025-06-16
target: x86_64-apple-darwin
- build: macos-aarch64
os: macos-13
rust: nightly-2024-07-18
rust: nightly-2025-06-16
target: aarch64-apple-darwin
- build: linux-musl
os: ubuntu-22.04
rust: nightly-2024-07-18
os: ubuntu-latest-64-cores
rust: nightly-2025-06-16
target: x86_64-unknown-linux-musl
- build: linux-gnu
os: ubuntu-22.04
rust: nightly-2024-07-18
os: ubuntu-latest-64-cores
rust: nightly-2025-06-16
target: x86_64-unknown-linux-gnu
- build: linux-aarch64
os: ubuntu-22.04
rust: nightly-2024-07-18
os: ubuntu-latest-64-cores
rust: nightly-2025-06-16
target: aarch64-unknown-linux-gnu
steps:
- name: Checkout repo
uses: actions/checkout@v4
with:
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- name: Get release version from tag
shell: bash
run: |
echo "EZKL_VERSION=${GITHUB_REF#refs/*/}" >> $GITHUB_ENV
echo "version is: ${{ env.EZKL_VERSION }}"
- name: Set Cargo.toml version to match github tag
shell: bash
@@ -170,7 +168,7 @@ jobs:
fi
- name: Install Rust
uses: dtolnay/rust-toolchain@nightly
uses: dtolnay/rust-toolchain@4f94fbe7e03939b0e674bcc9ca609a16088f63ff #nightly branch, TODO: update when required
with:
target: ${{ matrix.target }}
@@ -196,17 +194,17 @@ jobs:
echo "target flag is: ${{ env.TARGET_FLAGS }}"
echo "target dir is: ${{ env.TARGET_DIR }}"
- name: Build release binary (no asm or metal)
- name: Build release binary (no asm or metal)
if: matrix.build != 'linux-gnu' && matrix.build != 'macos-aarch64'
run: ${{ env.CARGO }} build --release ${{ env.TARGET_FLAGS }} -Z sparse-registry
run: ${{ env.CARGO }} build --release ${{ env.TARGET_FLAGS }} -Z sparse-registry --features mimalloc
- name: Build release binary (asm)
if: matrix.build == 'linux-gnu'
run: ${{ env.CARGO }} build --release ${{ env.TARGET_FLAGS }} -Z sparse-registry --features asm
run: ${{ env.CARGO }} build --release ${{ env.TARGET_FLAGS }} -Z sparse-registry --features asm,mimalloc
- name: Build release binary (metal)
if: matrix.build == 'macos-aarch64'
run: ${{ env.CARGO }} build --release ${{ env.TARGET_FLAGS }} -Z sparse-registry --features macos-metal
run: ${{ env.CARGO }} build --release ${{ env.TARGET_FLAGS }} -Z sparse-registry --features macos-metal,mimalloc
- name: Strip release binary
if: matrix.build != 'windows-msvc' && matrix.build != 'linux-aarch64'
@@ -233,7 +231,7 @@ jobs:
echo "ASSET=build-artifacts/ezkl-win.zip" >> $GITHUB_ENV
- name: Upload release archive
uses: actions/upload-release-asset@v1.0.2
uses: actions/upload-release-asset@e8f9f06c4b078e705bd2ea027f0926603fc9b4d5 #v1.0.2
env:
GITHUB_TOKEN: ${{ secrets.RELEASE_TOKEN }}
with:

File diff suppressed because it is too large Load Diff

View File

@@ -12,12 +12,12 @@ jobs:
contents: read
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- uses: actions-rs/toolchain@v1
- uses: actions-rust-lang/setup-rust-toolchain@fb51252c7ba57d633bc668f941da052e410add48 #v1.0.6
with:
toolchain: nightly-2024-07-18
toolchain: nightly-2025-06-16
override: true
components: rustfmt, clippy
@@ -30,4 +30,3 @@ jobs:
run: zizmor .

View File

@@ -19,8 +19,8 @@ jobs:
steps:
- name: Checkout EZKL
uses: actions/checkout@v3
with:
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- name: Extract TAG from github.ref_name
@@ -34,7 +34,7 @@ jobs:
echo "TAG=$NEW_TAG" >> $GITHUB_ENV
- name: Install Rust (nightly)
uses: actions-rs/toolchain@v1
uses: actions-rs/toolchain@b2417cde72dcf67f306c0ae8e0828a81bf0b189f #v1.0.6
with:
toolchain: nightly
override: true

View File

@@ -11,12 +11,12 @@ jobs:
contents: write
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 #v4.2.2
with:
persist-credentials: false
- name: Bump version and push tag
id: tag_version
uses: mathieudutour/github-tag-action@v6.2
uses: mathieudutour/github-tag-action@a22cf08638b34d5badda920f9daf6e72c477b07b #v6.2
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
@@ -46,7 +46,7 @@ jobs:
git tag $RELEASE_TAG
- name: Push changes
uses: ad-m/github-push-action@master
uses: ad-m/github-push-action@77c5b412c50b723d2a4fbc6d71fb5723bcd439aa #master
env:
RELEASE_TAG: ${{ steps.tag_version.outputs.new_tag }}
with:

5
.gitignore vendored
View File

@@ -9,6 +9,7 @@ pkg
!AttestData.sol
!VerifierBase.sol
!LoadInstances.sol
!AttestData.t.sol
*.pf
*.vk
*.pk
@@ -49,3 +50,7 @@ timingData.json
!tests/assets/vk.key
docs/python/build
!tests/assets/vk_aggr.key
cache
out
!tests/assets/wasm.code
!tests/assets/wasm.sol

2730
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -35,7 +35,9 @@ halo2_wrong_ecc = { git = "https://github.com/zkonduit/halo2wrong", branch = "ac
snark-verifier = { git = "https://github.com/zkonduit/snark-verifier", branch = "ac/chunked-mv-lookup", features = [
"derive_serde",
] }
halo2_solidity_verifier = { git = "https://github.com/alexander-camuto/halo2-solidity-verifier", optional = true }
halo2_solidity_verifier = { git = "https://github.com/zkonduit/ezkl-verifier", branch = "main", optional = true, features = [
"evm",
] }
maybe-rayon = { version = "0.1.1", default-features = false }
bincode = { version = "1.3.3", default-features = false }
unzip-n = "0.1.2"
@@ -43,10 +45,12 @@ num = "0.4.1"
tosubcommand = { git = "https://github.com/zkonduit/enum_to_subcommand", package = "tosubcommand", optional = true }
semver = { version = "1.0.22", optional = true }
[target.'cfg(not(target_arch = "wasm32"))'.dependencies]
serde_json = { version = "1.0.97", features = ["float_roundtrip", "raw_value"] }
# evm related deps
serde_json = { version = "1.0.97", features = ["float_roundtrip", "raw_value"] }
alloy = { git = "https://github.com/alloy-rs/alloy", version = "0.1.0", rev = "5fbf57bac99edef9d8475190109a7ea9fb7e5e83", features = [
"provider-http",
"signers",
@@ -56,6 +60,7 @@ alloy = { git = "https://github.com/alloy-rs/alloy", version = "0.1.0", rev = "5
"node-bindings",
], optional = true }
foundry-compilers = { version = "0.4.1", features = [
"svm-solc",
], optional = true }
@@ -69,20 +74,18 @@ reqwest = { version = "0.12.4", default-features = false, features = [
"stream",
], optional = true }
openssl = { version = "0.10.55", features = ["vendored"], optional = true }
tokio-postgres = { version = "0.7.10", optional = true }
pg_bigdecimal = { version = "0.1.5", optional = true }
lazy_static = { version = "1.4.0", optional = true }
colored_json = { version = "3.0.1", default-features = false, optional = true }
tokio = { version = "1.35.0", default-features = false, features = [
"macros",
"rt-multi-thread",
], optional = true }
pyo3 = { version = "0.23.2", features = [
pyo3 = { version = "0.24.2", features = [
"extension-module",
"abi3-py37",
"macros",
], default-features = false, optional = true }
pyo3-async-runtimes = { git = "https://github.com/PyO3/pyo3-async-runtimes", version = "0.23.0", features = [
pyo3-async-runtimes = { git = "https://github.com/PyO3/pyo3-async-runtimes", version = "0.24.0", features = [
"attributes",
"tokio-runtime",
], default-features = false, optional = true }
@@ -90,9 +93,9 @@ pyo3-log = { version = "0.12.0", default-features = false, optional = true }
tract-onnx = { git = "https://github.com/sonos/tract/", rev = "37132e0397d0a73e5bd3a8615d932dabe44f6736", default-features = false, optional = true }
tabled = { version = "0.12.0", optional = true }
objc = { version = "0.2.4", optional = true }
mimalloc = { version = "0.1", optional = true }
pyo3-stub-gen = { version = "0.6.0", optional = true }
jemallocator = { version = "0.5", optional = true }
mimalloc = { version = "0.1", optional = true }
# universal bindings
uniffi = { version = "=0.28.0", optional = true }
getrandom = { version = "0.2.8", optional = true }
@@ -219,52 +222,54 @@ required-features = ["python-bindings"]
[features]
web = ["wasm-bindgen-rayon"]
default = [
"eth-mv-lookup",
"ezkl",
"mv-lookup",
"precompute-coset",
"no-banner",
"parallel-poly-read",
]
onnx = ["dep:tract-onnx"]
python-bindings = ["pyo3", "pyo3-log", "pyo3-async-runtimes", "pyo3-stub-gen"]
ios-bindings = ["mv-lookup", "precompute-coset", "parallel-poly-read", "uniffi"]
universal-bindings = [
"uniffi",
"mv-lookup",
"precompute-coset",
"parallel-poly-read",
"solidity-verifier-mv-lookup",
]
logging = ["dep:colored", "dep:env_logger", "dep:chrono"]
ios-bindings = ["universal-bindings"]
ios-bindings-test = ["ios-bindings", "uniffi/bindgen-tests"]
ezkl = [
"onnx",
"dep:colored",
"dep:env_logger",
"tabled/color",
"serde_json/std",
"colored_json",
"dep:alloy",
"dep:foundry-compilers",
"dep:ethabi",
"dep:indicatif",
"dep:gag",
"dep:reqwest",
"dep:tokio-postgres",
"dep:pg_bigdecimal",
"dep:lazy_static",
"dep:tokio",
"dep:openssl",
"dep:mimalloc",
"dep:chrono",
"dep:sha256",
"dep:clap_complete",
"dep:halo2_solidity_verifier",
"dep:semver",
"dep:clap",
"dep:tosubcommand",
"logging",
]
eth = ["dep:alloy", "dep:foundry-compilers", "dep:ethabi"]
solidity-verifier = ["dep:halo2_solidity_verifier"]
solidity-verifier-mv-lookup = ["halo2_solidity_verifier/mv-lookup"]
eth-mv-lookup = ["solidity-verifier-mv-lookup", "mv-lookup", "eth"]
eth-original-lookup = ["eth", "solidity-verifier"]
parallel-poly-read = [
"halo2_proofs/circuit-params",
"halo2_proofs/parallel-poly-read",
]
mv-lookup = [
"halo2_proofs/mv-lookup",
"snark-verifier/mv-lookup",
"halo2_solidity_verifier/mv-lookup",
]
mv-lookup = ["halo2_proofs/mv-lookup", "snark-verifier/mv-lookup"]
asm = ["halo2curves/asm", "halo2_proofs/asm"]
precompute-coset = ["halo2_proofs/precompute-coset"]
det-prove = []
@@ -274,26 +279,25 @@ no-banner = []
no-update = []
macos-metal = ["halo2_proofs/macos"]
ios-metal = ["halo2_proofs/ios"]
jemalloc = ["dep:jemallocator"]
mimalloc = ["dep:mimalloc"]
reusable-verifier = []
[patch.'https://github.com/zkonduit/halo2']
halo2_proofs = { git = "https://github.com/zkonduit/halo2#bf9d0057a82443be48c4779bbe14961c18fb5996", package = "halo2_proofs" }
[patch.'https://github.com/zkonduit/halo2#0654e92bdf725fd44d849bfef3643870a8c7d50b']
halo2_proofs = { git = "https://github.com/zkonduit/halo2#bf9d0057a82443be48c4779bbe14961c18fb5996", package = "halo2_proofs" }
[patch.crates-io]
uniffi_testing = { git = "https://github.com/ElusAegis/uniffi-rs", branch = "feat/testing-feature-build-fix" }
[profile.release]
# debug = true
rustflags = ["-C", "relocation-model=pic"]
lto = "fat"
codegen-units = 1
# panic = "abort"
[profile.test-runs]
inherits = "dev"
opt-level = 3
[package.metadata.wasm-pack.profile.release]
wasm-opt = [
"-O4",
"--flexible-inline-max-function-size",
"4294967295",
]
wasm-opt = ["-O4", "--flexible-inline-max-function-size", "4294967295"]

View File

@@ -43,7 +43,7 @@ The generated proofs can then be verified with much less computational resources
----------------------
### getting started ⚙️
### Getting Started ⚙️
The easiest way to get started is to try out a notebook.
@@ -76,12 +76,7 @@ For more details visit the [docs](https://docs.ezkl.xyz). The CLI is faster than
Build the auto-generated rust documentation and open the docs in your browser locally. `cargo doc --open`
#### In-browser EVM verifier
As an alternative to running the native Halo2 verifier as a WASM binding in the browser, you can use the in-browser EVM verifier. The source code of which you can find in the `in-browser-evm-verifier` directory and a README with instructions on how to use it.
### building the project 🔨
### Building the Project 🔨
#### Rust CLI
@@ -96,7 +91,7 @@ cargo install --locked --path .
#### building python bindings
#### Building Python Bindings
Python bindings exists and can be built using `maturin`. You will need `rust` and `cargo` to be installed.
```bash
@@ -126,7 +121,7 @@ unset ENABLE_ICICLE_GPU
**NOTE:** Even with the above environment variable set, icicle is disabled for circuits where k <= 8. To change the value of `k` where icicle is enabled, you can set the environment variable `ICICLE_SMALL_K`.
### contributing 🌎
### Contributing 🌎
If you're interested in contributing and are unsure where to start, reach out to one of the maintainers:
@@ -144,13 +139,21 @@ More broadly:
Any contribution intentionally submitted for inclusion in the work by you shall be licensed to Zkonduit Inc. under the terms and conditions specified in the [CLA](https://github.com/zkonduit/ezkl/blob/main/cla.md), which you agree to by intentionally submitting a contribution. In particular, you have the right to submit the contribution and we can distribute it, among other terms and conditions.
### no security guarantees
Ezkl is unaudited, beta software undergoing rapid development. There may be bugs. No guarantees of security are made and it should not be relied on in production.
### Audits & Security
> NOTE: Because operations are quantized when they are converted from an onnx file to a zk-circuit, outputs in python and ezkl may differ slightly.
[v21.0.0](https://github.com/zkonduit/ezkl/releases/tag/v21.0.0) has been audited by Trail of Bits, the report can be found [here](https://github.com/trailofbits/publications/blob/master/reviews/2025-03-zkonduit-ezkl-securityreview.pdf).
### no warranty
> NOTE: Because operations are quantized when they are converted from an onnx file to a zk-circuit, outputs in python and ezkl may differ slightly.
Copyright (c) 2024 Zkonduit Inc. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
Check out `docs/advanced_security` for more advanced information on potential threat vectors that are specific to zero-knowledge inference, quantization, and to machine learning models generally.
### No Warranty
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Copyright (c) 2025 Zkonduit Inc.

View File

@@ -1,167 +0,0 @@
[
{
"inputs": [
{
"internalType": "address[]",
"name": "_contractAddresses",
"type": "address[]"
},
{
"internalType": "bytes[][]",
"name": "_callData",
"type": "bytes[][]"
},
{
"internalType": "uint256[][]",
"name": "_decimals",
"type": "uint256[][]"
},
{
"internalType": "uint256[]",
"name": "_scales",
"type": "uint256[]"
},
{
"internalType": "uint8",
"name": "_instanceOffset",
"type": "uint8"
},
{
"internalType": "address",
"name": "_admin",
"type": "address"
}
],
"stateMutability": "nonpayable",
"type": "constructor"
},
{
"inputs": [
{
"internalType": "uint256",
"name": "",
"type": "uint256"
}
],
"name": "accountCalls",
"outputs": [
{
"internalType": "address",
"name": "contractAddress",
"type": "address"
},
{
"internalType": "uint256",
"name": "callCount",
"type": "uint256"
}
],
"stateMutability": "view",
"type": "function"
},
{
"inputs": [],
"name": "admin",
"outputs": [
{
"internalType": "address",
"name": "",
"type": "address"
}
],
"stateMutability": "view",
"type": "function"
},
{
"inputs": [],
"name": "instanceOffset",
"outputs": [
{
"internalType": "uint8",
"name": "",
"type": "uint8"
}
],
"stateMutability": "view",
"type": "function"
},
{
"inputs": [
{
"internalType": "uint256",
"name": "",
"type": "uint256"
}
],
"name": "scales",
"outputs": [
{
"internalType": "uint256",
"name": "",
"type": "uint256"
}
],
"stateMutability": "view",
"type": "function"
},
{
"inputs": [
{
"internalType": "address[]",
"name": "_contractAddresses",
"type": "address[]"
},
{
"internalType": "bytes[][]",
"name": "_callData",
"type": "bytes[][]"
},
{
"internalType": "uint256[][]",
"name": "_decimals",
"type": "uint256[][]"
}
],
"name": "updateAccountCalls",
"outputs": [],
"stateMutability": "nonpayable",
"type": "function"
},
{
"inputs": [
{
"internalType": "address",
"name": "_admin",
"type": "address"
}
],
"name": "updateAdmin",
"outputs": [],
"stateMutability": "nonpayable",
"type": "function"
},
{
"inputs": [
{
"internalType": "address",
"name": "verifier",
"type": "address"
},
{
"internalType": "bytes",
"name": "encoded",
"type": "bytes"
}
],
"name": "verifyWithDataAttestation",
"outputs": [
{
"internalType": "bool",
"name": "",
"type": "bool"
}
],
"stateMutability": "view",
"type": "function"
}
]

View File

@@ -1,147 +0,0 @@
[
{
"inputs": [
{
"internalType": "address",
"name": "_contractAddresses",
"type": "address"
},
{
"internalType": "bytes",
"name": "_callData",
"type": "bytes"
},
{
"internalType": "uint256",
"name": "_decimals",
"type": "uint256"
},
{
"internalType": "uint256[]",
"name": "_scales",
"type": "uint256[]"
},
{
"internalType": "uint8",
"name": "_instanceOffset",
"type": "uint8"
},
{
"internalType": "address",
"name": "_admin",
"type": "address"
}
],
"stateMutability": "nonpayable",
"type": "constructor"
},
{
"inputs": [],
"name": "accountCall",
"outputs": [
{
"internalType": "address",
"name": "contractAddress",
"type": "address"
},
{
"internalType": "bytes",
"name": "callData",
"type": "bytes"
},
{
"internalType": "uint256",
"name": "decimals",
"type": "uint256"
}
],
"stateMutability": "view",
"type": "function"
},
{
"inputs": [],
"name": "admin",
"outputs": [
{
"internalType": "address",
"name": "",
"type": "address"
}
],
"stateMutability": "view",
"type": "function"
},
{
"inputs": [],
"name": "instanceOffset",
"outputs": [
{
"internalType": "uint8",
"name": "",
"type": "uint8"
}
],
"stateMutability": "view",
"type": "function"
},
{
"inputs": [
{
"internalType": "address",
"name": "_contractAddresses",
"type": "address"
},
{
"internalType": "bytes",
"name": "_callData",
"type": "bytes"
},
{
"internalType": "uint256",
"name": "_decimals",
"type": "uint256"
}
],
"name": "updateAccountCalls",
"outputs": [],
"stateMutability": "nonpayable",
"type": "function"
},
{
"inputs": [
{
"internalType": "address",
"name": "_admin",
"type": "address"
}
],
"name": "updateAdmin",
"outputs": [],
"stateMutability": "nonpayable",
"type": "function"
},
{
"inputs": [
{
"internalType": "address",
"name": "verifier",
"type": "address"
},
{
"internalType": "bytes",
"name": "encoded",
"type": "bytes"
}
],
"name": "verifyWithDataAttestation",
"outputs": [
{
"internalType": "bool",
"name": "",
"type": "bool"
}
],
"stateMutability": "view",
"type": "function"
}
]

View File

@@ -1,98 +0,0 @@
[
{
"inputs": [
{
"internalType": "int256[]",
"name": "quantized_data",
"type": "int256[]"
}
],
"name": "check_is_valid_field_element",
"outputs": [
{
"internalType": "uint256[]",
"name": "output",
"type": "uint256[]"
}
],
"stateMutability": "pure",
"type": "function"
},
{
"inputs": [
{
"internalType": "bytes[]",
"name": "data",
"type": "bytes[]"
},
{
"internalType": "uint256[]",
"name": "decimals",
"type": "uint256[]"
},
{
"internalType": "uint256[]",
"name": "scales",
"type": "uint256[]"
}
],
"name": "quantize_data_multi",
"outputs": [
{
"internalType": "int256[]",
"name": "quantized_data",
"type": "int256[]"
}
],
"stateMutability": "pure",
"type": "function"
},
{
"inputs": [
{
"internalType": "bytes",
"name": "data",
"type": "bytes"
},
{
"internalType": "uint256",
"name": "decimals",
"type": "uint256"
},
{
"internalType": "uint256[]",
"name": "scales",
"type": "uint256[]"
}
],
"name": "quantize_data_single",
"outputs": [
{
"internalType": "int256[]",
"name": "quantized_data",
"type": "int256[]"
}
],
"stateMutability": "pure",
"type": "function"
},
{
"inputs": [
{
"internalType": "int64[]",
"name": "quantized_data",
"type": "int64[]"
}
],
"name": "to_field_element",
"outputs": [
{
"internalType": "uint256[]",
"name": "output",
"type": "uint256[]"
}
],
"stateMutability": "pure",
"type": "function"
}
]

View File

@@ -1,32 +0,0 @@
[
{
"inputs": [
{
"internalType": "int256[]",
"name": "_numbers",
"type": "int256[]"
}
],
"stateMutability": "nonpayable",
"type": "constructor"
},
{
"inputs": [
{
"internalType": "uint256",
"name": "",
"type": "uint256"
}
],
"name": "arr",
"outputs": [
{
"internalType": "int256",
"name": "",
"type": "int256"
}
],
"stateMutability": "view",
"type": "function"
}
]

View File

@@ -68,11 +68,13 @@ impl Circuit<Fr> for MyCircuit {
config
.layout(
&mut region,
&[self.image.clone(), self.kernel.clone(), self.bias.clone()],
&[&self.image, &self.kernel, &self.bias],
Box::new(PolyOp::Conv {
padding: vec![(0, 0)],
stride: vec![1; 2],
group: 1,
data_format: DataFormat::NCHW,
kernel_format: KernelFormat::OIHW,
}),
)
.unwrap();

View File

@@ -15,6 +15,7 @@ use halo2_proofs::{
plonk::{Circuit, ConstraintSystem, Error},
};
use halo2curves::bn256::{Bn256, Fr};
use itertools::Itertools;
use rand::rngs::OsRng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use std::marker::PhantomData;
@@ -59,7 +60,7 @@ impl Circuit<Fr> for MyCircuit {
config
.layout(
&mut region,
&self.inputs,
&self.inputs.iter().collect_vec(),
Box::new(PolyOp::Einsum {
equation: "i,i->".to_string(),
}),

View File

@@ -15,6 +15,7 @@ use halo2_proofs::{
plonk::{Circuit, ConstraintSystem, Error},
};
use halo2curves::bn256::{Bn256, Fr};
use itertools::Itertools;
use rand::rngs::OsRng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use std::marker::PhantomData;
@@ -61,7 +62,7 @@ impl Circuit<Fr> for MyCircuit {
config
.layout(
&mut region,
&self.inputs,
&self.inputs.iter().collect_vec(),
Box::new(PolyOp::Einsum {
equation: "ab,bc->ac".to_string(),
}),

View File

@@ -17,6 +17,7 @@ use halo2_proofs::{
plonk::{Circuit, ConstraintSystem, Error},
};
use halo2curves::bn256::{Bn256, Fr};
use itertools::Itertools;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use std::marker::PhantomData;
@@ -86,13 +87,13 @@ impl Circuit<Fr> for MyCircuit {
let mut region = region::RegionCtx::new(region, 0, 1, 1024, 2);
let output = config
.base_config
.layout(&mut region, &self.inputs, Box::new(op))
.layout(&mut region, &self.inputs.iter().collect_vec(), Box::new(op))
.unwrap();
let _output = config
.base_config
.layout(
&mut region,
&[output.unwrap()],
&[&output.unwrap()],
Box::new(LookupOp::Sigmoid { scale: 1.0.into() }),
)
.unwrap();

View File

@@ -17,6 +17,7 @@ use halo2_proofs::{
plonk::{Circuit, ConstraintSystem, Error},
};
use halo2curves::bn256::{Bn256, Fr};
use itertools::Itertools;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use std::marker::PhantomData;
@@ -87,13 +88,13 @@ impl Circuit<Fr> for MyCircuit {
let mut region = region::RegionCtx::new(region, 0, 1, 1024, 2);
let output = config
.base_config
.layout(&mut region, &self.inputs, Box::new(op))
.layout(&mut region, &self.inputs.iter().collect_vec(), Box::new(op))
.unwrap();
let _output = config
.base_config
.layout(
&mut region,
&[output.unwrap()],
&[&output.unwrap()],
Box::new(LookupOp::Sigmoid { scale: 1.0.into() }),
)
.unwrap();

View File

@@ -15,6 +15,7 @@ use halo2_proofs::{
plonk::{Circuit, ConstraintSystem, Error},
};
use halo2curves::bn256::{Bn256, Fr};
use itertools::Itertools;
use rand::rngs::OsRng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use std::marker::PhantomData;
@@ -59,7 +60,7 @@ impl Circuit<Fr> for MyCircuit {
config
.layout(
&mut region,
&self.inputs,
&self.inputs.iter().collect_vec(),
Box::new(PolyOp::Sum { axes: vec![0] }),
)
.unwrap();

View File

@@ -63,12 +63,13 @@ impl Circuit<Fr> for MyCircuit {
config
.layout(
&mut region,
&[self.image.clone()],
&[&self.image],
Box::new(HybridOp::SumPool {
padding: vec![(0, 0); 2],
stride: vec![1, 1],
kernel_shape: vec![2, 2],
normalized: false,
data_format: DataFormat::NCHW,
}),
)
.unwrap();

View File

@@ -15,6 +15,7 @@ use halo2_proofs::{
plonk::{Circuit, ConstraintSystem, Error},
};
use halo2curves::bn256::{Bn256, Fr};
use itertools::Itertools;
use rand::rngs::OsRng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use std::marker::PhantomData;
@@ -57,7 +58,11 @@ impl Circuit<Fr> for MyCircuit {
|region| {
let mut region = region::RegionCtx::new(region, 0, 1, 1024, 2);
config
.layout(&mut region, &self.inputs, Box::new(PolyOp::Add))
.layout(
&mut region,
&self.inputs.iter().collect_vec(),
Box::new(PolyOp::Add),
)
.unwrap();
Ok(())
},

View File

@@ -16,6 +16,7 @@ use halo2_proofs::{
plonk::{Circuit, ConstraintSystem, Error},
};
use halo2curves::bn256::{Bn256, Fr};
use itertools::Itertools;
use rand::rngs::OsRng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use std::marker::PhantomData;
@@ -58,7 +59,11 @@ impl Circuit<Fr> for MyCircuit {
|region| {
let mut region = RegionCtx::new(region, 0, 1, 1024, 2);
config
.layout(&mut region, &self.inputs, Box::new(PolyOp::Pow(4)))
.layout(
&mut region,
&self.inputs.iter().collect_vec(),
Box::new(PolyOp::Pow(4)),
)
.unwrap();
Ok(())
},

View File

@@ -23,8 +23,6 @@ use halo2curves::bn256::{Bn256, Fr};
use rand::rngs::OsRng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
const L: usize = 10;
#[derive(Clone, Debug)]
struct MyCircuit {
image: ValTensor<Fr>,
@@ -40,7 +38,7 @@ impl Circuit<Fr> for MyCircuit {
}
fn configure(cs: &mut ConstraintSystem<Fr>) -> Self::Config {
PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, 10>::configure(cs, ())
PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE>::configure(cs, ())
}
fn synthesize(
@@ -48,7 +46,7 @@ impl Circuit<Fr> for MyCircuit {
config: Self::Config,
mut layouter: impl Layouter<Fr>,
) -> Result<(), Error> {
let chip: PoseidonChip<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, L> =
let chip: PoseidonChip<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE> =
PoseidonChip::new(config);
chip.layout(&mut layouter, &[self.image.clone()], 0, &mut HashMap::new())?;
Ok(())
@@ -59,7 +57,7 @@ fn runposeidon(c: &mut Criterion) {
let mut group = c.benchmark_group("poseidon");
for size in [64, 784, 2352, 12288].iter() {
let k = (PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, L>::num_rows(*size)
let k = (PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE>::num_rows(*size)
as f32)
.log2()
.ceil() as u32;
@@ -67,7 +65,7 @@ fn runposeidon(c: &mut Criterion) {
let message = (0..*size).map(|_| Fr::random(OsRng)).collect::<Vec<_>>();
let _output =
PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, L>::run(message.to_vec())
PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE>::run(message.to_vec())
.unwrap();
let mut image = Tensor::from(message.into_iter().map(Value::known));

View File

@@ -70,7 +70,7 @@ impl Circuit<Fr> for NLCircuit {
config
.layout(
&mut region,
&[self.input.clone()],
&[&self.input],
Box::new(PolyOp::LeakyReLU {
slope: 0.0.into(),
scale: 1,

View File

@@ -67,7 +67,7 @@ impl Circuit<Fr> for NLCircuit {
config
.layout(
&mut region,
&[self.input.clone()],
&[&self.input],
Box::new(LookupOp::Sigmoid { scale: 1.0.into() }),
)
.unwrap();

View File

@@ -10,6 +10,7 @@ use rand::Rng;
// Assuming these are your types
#[derive(Clone)]
#[allow(dead_code)]
enum ValType {
Constant(F),
AssignedConstant(usize, F),
@@ -21,7 +22,7 @@ fn generate_test_data(size: usize, zero_probability: f64) -> Vec<ValType> {
let mut rng = rand::thread_rng();
(0..size)
.map(|_i| {
if rng.gen::<f64>() < zero_probability {
if rng.r#gen::<f64>() < zero_probability {
ValType::Constant(F::ZERO)
} else {
ValType::Constant(F::ONE) // Or some other non-zero value

View File

@@ -1,692 +0,0 @@
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
contract LoadInstances {
/**
* @dev Parse the instances array from the Halo2Verifier encoded calldata.
* @notice must pass encoded bytes from memory
* @param encoded - verifier calldata
*/
function getInstancesMemory(
bytes memory encoded
) internal pure returns (uint256[] memory instances) {
bytes4 funcSig;
uint256 instances_offset;
uint256 instances_length;
assembly {
// fetch function sig. Either `verifyProof(bytes,uint256[])` or `verifyProof(address,bytes,uint256[])`
funcSig := mload(add(encoded, 0x20))
// Fetch instances offset which is 4 + 32 + 32 bytes away from
// start of encoded for `verifyProof(bytes,uint256[])`,
// and 4 + 32 + 32 +32 away for `verifyProof(address,bytes,uint256[])`
instances_offset := mload(
add(encoded, add(0x44, mul(0x20, eq(funcSig, 0xaf83a18d))))
)
instances_length := mload(add(add(encoded, 0x24), instances_offset))
}
instances = new uint256[](instances_length); // Allocate memory for the instances array.
assembly {
// Now instances points to the start of the array data
// (right after the length field).
for {
let i := 0x20
} lt(i, add(mul(instances_length, 0x20), 0x20)) {
i := add(i, 0x20)
} {
mstore(
add(instances, i),
mload(add(add(encoded, add(i, 0x24)), instances_offset))
)
}
}
}
/**
* @dev Parse the instances array from the Halo2Verifier encoded calldata.
* @notice must pass encoded bytes from calldata
* @param encoded - verifier calldata
*/
function getInstancesCalldata(
bytes calldata encoded
) internal pure returns (uint256[] memory instances) {
bytes4 funcSig;
uint256 instances_offset;
uint256 instances_length;
assembly {
// fetch function sig. Either `verifyProof(bytes,uint256[])` or `verifyProof(address,bytes,uint256[])`
funcSig := calldataload(encoded.offset)
// Fetch instances offset which is 4 + 32 + 32 bytes away from
// start of encoded for `verifyProof(bytes,uint256[])`,
// and 4 + 32 + 32 +32 away for `verifyProof(address,bytes,uint256[])`
instances_offset := calldataload(
add(
encoded.offset,
add(0x24, mul(0x20, eq(funcSig, 0xaf83a18d)))
)
)
instances_length := calldataload(
add(add(encoded.offset, 0x04), instances_offset)
)
}
instances = new uint256[](instances_length); // Allocate memory for the instances array.
assembly {
// Now instances points to the start of the array data
// (right after the length field).
for {
let i := 0x20
} lt(i, add(mul(instances_length, 0x20), 0x20)) {
i := add(i, 0x20)
} {
mstore(
add(instances, i),
calldataload(
add(add(encoded.offset, add(i, 0x04)), instances_offset)
)
)
}
}
}
}
// The kzg commitments of a given model, all aggregated into a single bytes array.
// At solidity generation time, the commitments are hardcoded into the contract via the COMMITMENT_KZG constant.
// It will be used to check that the proof commitments match the expected commitments.
bytes constant COMMITMENT_KZG = hex"";
contract SwapProofCommitments {
/**
* @dev Swap the proof commitments
* @notice must pass encoded bytes from memory
* @param encoded - verifier calldata
*/
function checkKzgCommits(
bytes calldata encoded
) internal pure returns (bool equal) {
bytes4 funcSig;
uint256 proof_offset;
uint256 proof_length;
assembly {
// fetch function sig. Either `verifyProof(bytes,uint256[])` or `verifyProof(address,bytes,uint256[])`
funcSig := calldataload(encoded.offset)
// Fetch proof offset which is 4 + 32 bytes away from
// start of encoded for `verifyProof(bytes,uint256[])`,
// and 4 + 32 + 32 away for `verifyProof(address,bytes,uint256[])`
proof_offset := calldataload(
add(
encoded.offset,
add(0x04, mul(0x20, eq(funcSig, 0xaf83a18d)))
)
)
proof_length := calldataload(
add(add(encoded.offset, 0x04), proof_offset)
)
}
// Check the length of the commitment against the proof bytes
if (proof_length < COMMITMENT_KZG.length) {
return false;
}
// Load COMMITMENT_KZG into memory
bytes memory commitment = COMMITMENT_KZG;
// Compare the first N bytes of the proof with COMMITMENT_KZG
uint words = (commitment.length + 31) / 32; // Calculate the number of 32-byte words
assembly {
// Now we compare the commitment with the proof,
// ensuring that the commitments divided up into 32 byte words are all equal.
for {
let i := 0x20
} lt(i, add(mul(words, 0x20), 0x20)) {
i := add(i, 0x20)
} {
let wordProof := calldataload(
add(add(encoded.offset, add(i, 0x04)), proof_offset)
)
let wordCommitment := mload(add(commitment, i))
equal := eq(wordProof, wordCommitment)
if eq(equal, 0) {
return(0, 0)
}
}
}
return equal; // Return true if the commitment comparison passed
} /// end checkKzgCommits
}
contract DataAttestationSingle is LoadInstances, SwapProofCommitments {
/**
* @notice Struct used to make view only call to account to fetch the data that EZKL reads from.
* @param the address of the account to make calls to
* @param the abi encoded function calls to make to the `contractAddress`
*/
struct AccountCall {
address contractAddress;
bytes callData;
uint256 decimals;
}
AccountCall public accountCall;
uint[] scales;
address public admin;
/**
* @notice EZKL P value
* @dev In order to prevent the verifier from accepting two version of the same pubInput, n and the quantity (n + P), where n + P <= 2^256, we require that all instances are stricly less than P. a
* @dev The reason for this is that the assmebly code of the verifier performs all arithmetic operations modulo P and as a consequence can't distinguish between n and n + P.
*/
uint256 constant ORDER =
uint256(
0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001
);
uint256 constant INPUT_LEN = 0;
uint256 constant OUTPUT_LEN = 0;
uint8 public instanceOffset;
/**
* @dev Initialize the contract with account calls the EZKL model will read from.
* @param _contractAddresses - The calls to all the contracts EZKL reads storage from.
* @param _callData - The abi encoded function calls to make to the `contractAddress` that EZKL reads storage from.
*/
constructor(
address _contractAddresses,
bytes memory _callData,
uint256 _decimals,
uint[] memory _scales,
uint8 _instanceOffset,
address _admin
) {
admin = _admin;
for (uint i; i < _scales.length; i++) {
scales.push(1 << _scales[i]);
}
populateAccountCalls(_contractAddresses, _callData, _decimals);
instanceOffset = _instanceOffset;
}
function updateAdmin(address _admin) external {
require(msg.sender == admin, "Only admin can update admin");
if (_admin == address(0)) {
revert();
}
admin = _admin;
}
function updateAccountCalls(
address _contractAddresses,
bytes memory _callData,
uint256 _decimals
) external {
require(msg.sender == admin, "Only admin can update account calls");
populateAccountCalls(_contractAddresses, _callData, _decimals);
}
function populateAccountCalls(
address _contractAddresses,
bytes memory _callData,
uint256 _decimals
) internal {
AccountCall memory _accountCall = accountCall;
_accountCall.contractAddress = _contractAddresses;
_accountCall.callData = _callData;
_accountCall.decimals = 10 ** _decimals;
accountCall = _accountCall;
}
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
uint256 prod0;
uint256 prod1;
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
if (prod1 == 0) {
return prod0 / denominator;
}
require(denominator > prod1, "Math: mulDiv overflow");
uint256 remainder;
assembly {
remainder := mulmod(x, y, denominator)
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
uint256 twos = denominator & (~denominator + 1);
assembly {
denominator := div(denominator, twos)
prod0 := div(prod0, twos)
twos := add(div(sub(0, twos), twos), 1)
}
prod0 |= prod1 * twos;
uint256 inverse = (3 * denominator) ^ 2;
inverse *= 2 - denominator * inverse;
inverse *= 2 - denominator * inverse;
inverse *= 2 - denominator * inverse;
inverse *= 2 - denominator * inverse;
inverse *= 2 - denominator * inverse;
inverse *= 2 - denominator * inverse;
result = prod0 * inverse;
return result;
}
}
/**
* @dev Quantize the data returned from the account calls to the scale used by the EZKL model.
* @param x - One of the elements of the data returned from the account calls
* @param _decimals - Number of base 10 decimals to scale the data by.
* @param _scale - The base 2 scale used to convert the floating point value into a fixed point value.
*
*/
function quantizeData(
int x,
uint256 _decimals,
uint256 _scale
) internal pure returns (int256 quantized_data) {
bool neg = x < 0;
if (neg) x = -x;
uint output = mulDiv(uint256(x), _scale, _decimals);
if (mulmod(uint256(x), _scale, _decimals) * 2 >= _decimals) {
output += 1;
}
quantized_data = neg ? -int256(output) : int256(output);
}
/**
* @dev Make a static call to the account to fetch the data that EZKL reads from.
* @param target - The address of the account to make calls to.
* @param data - The abi encoded function calls to make to the `contractAddress` that EZKL reads storage from.
* @return The data returned from the account calls. (Must come from either a view or pure function. Will throw an error otherwise)
*/
function staticCall(
address target,
bytes memory data
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
if (success) {
if (returndata.length == 0) {
require(
target.code.length > 0,
"Address: call to non-contract"
);
}
return returndata;
} else {
revert("Address: low-level call failed");
}
}
/**
* @dev Convert the fixed point quantized data into a field element.
* @param x - The quantized data.
* @return field_element - The field element.
*/
function toFieldElement(
int256 x
) internal pure returns (uint256 field_element) {
// The casting down to uint256 is safe because the order is about 2^254, and the value
// of x ranges of -2^127 to 2^127, so x + int(ORDER) is always positive.
return uint256(x + int(ORDER)) % ORDER;
}
/**
* @dev Make the account calls to fetch the data that EZKL reads from and attest to the data.
* @param instances - The public instances to the proof (the data in the proof that publicly accessible to the verifier).
*/
function attestData(uint256[] memory instances) internal view {
require(
instances.length >= INPUT_LEN + OUTPUT_LEN,
"Invalid public inputs length"
);
AccountCall memory _accountCall = accountCall;
uint[] memory _scales = scales;
bytes memory returnData = staticCall(
_accountCall.contractAddress,
_accountCall.callData
);
int256[] memory x = abi.decode(returnData, (int256[]));
uint _offset;
int output = quantizeData(x[0], _accountCall.decimals, _scales[0]);
uint field_element = toFieldElement(output);
for (uint i = 0; i < x.length; i++) {
if (field_element != instances[i + instanceOffset]) {
_offset += 1;
} else {
break;
}
}
uint length = x.length - _offset;
for (uint i = 1; i < length; i++) {
output = quantizeData(x[i], _accountCall.decimals, _scales[i]);
field_element = toFieldElement(output);
require(
field_element == instances[i + instanceOffset + _offset],
"Public input does not match"
);
}
}
/**
* @dev Verify the proof with the data attestation.
* @param verifier - The address of the verifier contract.
* @param encoded - The verifier calldata.
*/
function verifyWithDataAttestation(
address verifier,
bytes calldata encoded
) public view returns (bool) {
require(verifier.code.length > 0, "Address: call to non-contract");
attestData(getInstancesCalldata(encoded));
// static call the verifier contract to verify the proof
(bool success, bytes memory returndata) = verifier.staticcall(encoded);
if (success) {
return abi.decode(returndata, (bool));
} else {
revert("low-level call to verifier failed");
}
}
}
// This contract serves as a Data Attestation Verifier for the EZKL model.
// It is designed to read and attest to instances of proofs generated from a specified circuit.
// It is particularly constructed to read only int256 data from specified on-chain contracts' view functions.
// Overview of the contract functionality:
// 1. Initialization: Through the constructor, it sets up the contract calls that the EZKL model will read from.
// 2. Data Quantization: Quantizes the returned data into a scaled fixed-point representation. See the `quantizeData` method for details.
// 3. Static Calls: Makes static calls to fetch data from other contracts. See the `staticCall` method.
// 4. Field Element Conversion: The fixed-point representation is then converted into a field element modulo P using the `toFieldElement` method.
// 5. Data Attestation: The `attestData` method validates that the public instances match the data fetched and processed by the contract.
// 6. Proof Verification: The `verifyWithDataAttestationMulti` method parses the instances out of the encoded calldata and calls the `attestData` method to validate the public instances,
// 6b. Optional KZG Commitment Verification: It also checks the KZG commitments in the proof against the expected commitments using the `checkKzgCommits` method.
// then calls the `verifyProof` method to verify the proof on the verifier.
contract DataAttestationMulti is LoadInstances, SwapProofCommitments {
/**
* @notice Struct used to make view only calls to accounts to fetch the data that EZKL reads from.
* @param the address of the account to make calls to
* @param the abi encoded function calls to make to the `contractAddress`
*/
struct AccountCall {
address contractAddress;
mapping(uint256 => bytes) callData;
mapping(uint256 => uint256) decimals;
uint callCount;
}
AccountCall[] public accountCalls;
uint[] public scales;
address public admin;
/**
* @notice EZKL P value
* @dev In order to prevent the verifier from accepting two version of the same pubInput, n and the quantity (n + P), where n + P <= 2^256, we require that all instances are stricly less than P. a
* @dev The reason for this is that the assmebly code of the verifier performs all arithmetic operations modulo P and as a consequence can't distinguish between n and n + P.
*/
uint256 constant ORDER =
uint256(
0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001
);
uint256 constant INPUT_CALLS = 0;
uint256 constant OUTPUT_CALLS = 0;
uint8 public instanceOffset;
/**
* @dev Initialize the contract with account calls the EZKL model will read from.
* @param _contractAddresses - The calls to all the contracts EZKL reads storage from.
* @param _callData - The abi encoded function calls to make to the `contractAddress` that EZKL reads storage from.
*/
constructor(
address[] memory _contractAddresses,
bytes[][] memory _callData,
uint256[][] memory _decimals,
uint[] memory _scales,
uint8 _instanceOffset,
address _admin
) {
admin = _admin;
for (uint i; i < _scales.length; i++) {
scales.push(1 << _scales[i]);
}
populateAccountCalls(_contractAddresses, _callData, _decimals);
instanceOffset = _instanceOffset;
}
function updateAdmin(address _admin) external {
require(msg.sender == admin, "Only admin can update admin");
if (_admin == address(0)) {
revert();
}
admin = _admin;
}
function updateAccountCalls(
address[] memory _contractAddresses,
bytes[][] memory _callData,
uint256[][] memory _decimals
) external {
require(msg.sender == admin, "Only admin can update account calls");
populateAccountCalls(_contractAddresses, _callData, _decimals);
}
function populateAccountCalls(
address[] memory _contractAddresses,
bytes[][] memory _callData,
uint256[][] memory _decimals
) internal {
require(
_contractAddresses.length == _callData.length &&
accountCalls.length == _contractAddresses.length,
"Invalid input length"
);
require(
_decimals.length == _contractAddresses.length,
"Invalid number of decimals"
);
// fill in the accountCalls storage array
uint counter = 0;
for (uint256 i = 0; i < _contractAddresses.length; i++) {
AccountCall storage accountCall = accountCalls[i];
accountCall.contractAddress = _contractAddresses[i];
accountCall.callCount = _callData[i].length;
for (uint256 j = 0; j < _callData[i].length; j++) {
accountCall.callData[j] = _callData[i][j];
accountCall.decimals[j] = 10 ** _decimals[i][j];
}
// count the total number of storage reads across all of the accounts
counter += _callData[i].length;
}
require(
counter == INPUT_CALLS + OUTPUT_CALLS,
"Invalid number of calls"
);
}
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
uint256 prod0;
uint256 prod1;
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
if (prod1 == 0) {
return prod0 / denominator;
}
require(denominator > prod1, "Math: mulDiv overflow");
uint256 remainder;
assembly {
remainder := mulmod(x, y, denominator)
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
uint256 twos = denominator & (~denominator + 1);
assembly {
denominator := div(denominator, twos)
prod0 := div(prod0, twos)
twos := add(div(sub(0, twos), twos), 1)
}
prod0 |= prod1 * twos;
uint256 inverse = (3 * denominator) ^ 2;
inverse *= 2 - denominator * inverse;
inverse *= 2 - denominator * inverse;
inverse *= 2 - denominator * inverse;
inverse *= 2 - denominator * inverse;
inverse *= 2 - denominator * inverse;
inverse *= 2 - denominator * inverse;
result = prod0 * inverse;
return result;
}
}
/**
* @dev Quantize the data returned from the account calls to the scale used by the EZKL model.
* @param data - The data returned from the account calls.
* @param decimals - The number of decimals the data returned from the account calls has (for floating point representation).
* @param scale - The scale used to convert the floating point value into a fixed point value.
*/
function quantizeData(
bytes memory data,
uint256 decimals,
uint256 scale
) internal pure returns (int256 quantized_data) {
int x = abi.decode(data, (int256));
bool neg = x < 0;
if (neg) x = -x;
uint output = mulDiv(uint256(x), scale, decimals);
if (mulmod(uint256(x), scale, decimals) * 2 >= decimals) {
output += 1;
}
quantized_data = neg ? -int256(output) : int256(output);
}
/**
* @dev Make a static call to the account to fetch the data that EZKL reads from.
* @param target - The address of the account to make calls to.
* @param data - The abi encoded function calls to make to the `contractAddress` that EZKL reads storage from.
* @return The data returned from the account calls. (Must come from either a view or pure function. Will throw an error otherwise)
*/
function staticCall(
address target,
bytes memory data
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
if (success) {
if (returndata.length == 0) {
require(
target.code.length > 0,
"Address: call to non-contract"
);
}
return returndata;
} else {
revert("Address: low-level call failed");
}
}
/**
* @dev Convert the fixed point quantized data into a field element.
* @param x - The quantized data.
* @return field_element - The field element.
*/
function toFieldElement(
int256 x
) internal pure returns (uint256 field_element) {
// The casting down to uint256 is safe because the order is about 2^254, and the value
// of x ranges of -2^127 to 2^127, so x + int(ORDER) is always positive.
return uint256(x + int(ORDER)) % ORDER;
}
/**
* @dev Make the account calls to fetch the data that EZKL reads from and attest to the data.
* @param instances - The public instances to the proof (the data in the proof that publicly accessible to the verifier).
*/
function attestData(uint256[] memory instances) internal view {
require(
instances.length >= INPUT_CALLS + OUTPUT_CALLS,
"Invalid public inputs length"
);
uint256 _accountCount = accountCalls.length;
uint counter = 0;
for (uint8 i = 0; i < _accountCount; ++i) {
address account = accountCalls[i].contractAddress;
for (uint8 j = 0; j < accountCalls[i].callCount; j++) {
bytes memory returnData = staticCall(
account,
accountCalls[i].callData[j]
);
uint256 scale = scales[counter];
int256 quantized_data = quantizeData(
returnData,
accountCalls[i].decimals[j],
scale
);
uint256 field_element = toFieldElement(quantized_data);
require(
field_element == instances[counter + instanceOffset],
"Public input does not match"
);
counter++;
}
}
}
/**
* @dev Verify the proof with the data attestation.
* @param verifier - The address of the verifier contract.
* @param encoded - The verifier calldata.
*/
function verifyWithDataAttestation(
address verifier,
bytes calldata encoded
) public view returns (bool) {
require(verifier.code.length > 0, "Address: call to non-contract");
attestData(getInstancesCalldata(encoded));
require(checkKzgCommits(encoded), "Invalid KZG commitments");
// static call the verifier contract to verify the proof
(bool success, bytes memory returndata) = verifier.staticcall(encoded);
if (success) {
return abi.decode(returndata, (bool));
} else {
revert("low-level call to verifier failed");
}
}
}

View File

@@ -0,0 +1,41 @@
## EZKL Security Note: Public Commitments and Low-Entropy Data
> **Disclaimer:** this a more technical post that requires some prior knowledge of how ZK proving systems like Halo2 operate, and in particular in how these APIs are constructed. For background reading we highly recommend the [Halo2 book](https://zcash.github.io/halo2/) and [Halo2 Club](https://halo2.club/).
## Overview of commitments in EZKL
A common design pattern in a zero knowledge (zk) application is thus:
- A prover has some data which is used within a circuit.
- This data, as it may be high-dimensional or somewhat private, is pre-committed to using some hash function.
- The zk-circuit which forms the core of the application then proves (para-phrasing) a statement of the form:
>"I know some data D which when hashed corresponds to the pre-committed to value H + whatever else the circuit is proving over D".
From our own experience, we've implemented such patterns using snark-friendly hash functions like [Poseidon](https://www.poseidon-hash.info/), for which there is a relatively well vetted [implementation](https://docs.rs/halo2_gadgets/latest/halo2_gadgets/poseidon/index.html) in Halo2. Even then these hash functions can introduce lots of overhead and can be very expensive to generate proofs for if the dimensionality of the data D is large.
You can also implement such a pattern using Halo2's `Fixed` columns _if the privacy preservation of the pre-image is not necessary_. These are Halo2 columns (i.e in reality just polynomials) that are left unblinded (unlike the blinded `Advice` columns), and whose commitments are shared with the verifier by way of the verifying key for the application's zk-circuit. These commitments are much lower cost to generate than implementing a hashing function, such as Poseidon, within a circuit.
> **Note:** Blinding is the process whereby a certain set of the final elements (i.e rows) of a Halo2 column are set to random field elements. This is the mechanism by which Halo2 achieves its zero knowledge properties for `Advice` columns. By contrast `Fixed` columns aren't zero-knowledge in that they are vulnerable to dictionary attacks in the same manner a hash function is. Given some set of known or popular data D an attacker can attempt to recover the pre-image of a hash by running D through the hash function to see if the outputs match a public commitment. These attacks aren't "possible" on blinded `Advice` columns.
> **Further Note:** Note that without blinding, with access to `M` proofs, each of which contains an evaluation of the polynomial at a different point, an attacker can more easily recover a non blinded column's pre-image. This is because each proof generates a new query and evaluation of the polynomial represented by the column and as such with repetition a clearer picture can emerge of the column's pre-image. Thus unblinded columns should only be used for privacy preservation, in the manner of a hash, if the number of proofs generated against a fixed set of values is limited. More formally if M independent and _unique_ queries are generated; if M is equal to the degree + 1 of the polynomial represented by the column (i.e the unique lagrange interpolation of the values in the columns), then the column's pre-image can be recovered. As such as the logrows K increases, the more queries are required to recover the pre-image (as 2^K unique queries are required). This assumes that the entries in the column are not structured, as if they are then the number of queries required to recover the pre-image is reduced (eg. if all rows above a certain point are known to be nil).
The annoyance in using `Fixed` columns comes from the fact that they require generating a new verifying key every time a new set of commitments is generated.
> **Example:** Say for instance an application leverages a zero-knowledge circuit to prove the correct execution of a neural network. Every week the neural network is finetuned or retrained on new data. If the architecture remains the same then commiting to the new network parameters, along with a new proof of performance on a test set, would be an ideal setup. If we leverage `Fixed` columns to commit to the model parameters, each new commitment will require re-generating a verifying key and sharing the new key with the verifier(s). This is not-ideal UX and can become expensive if the verifier is deployed on-chain.
An ideal commitment would thus have the low cost of a `Fixed` column but wouldn't require regenerating a new verifying key for each new commitment.
### Unblinded Advice Columns
A first step in designing such a commitment is to allow for optionally unblinded `Advice` columns within the Halo2 API. These won't be included in the verifying key, AND are blinded with a constant factor `1` -- such that if someone knows the pre-image to the commitment, they can recover it by running it through the corresponding polynomial commitment scheme (in ezkl's case [KZG commitments](https://dankradfeist.de/ethereum/2020/06/16/kate-polynomial-commitments.html)).
This is implemented using the `polycommit` visibility parameter in the ezkl API.
## The Vulnerability of Public Commitments
Public commitments in EZKL (both Poseidon-hashed inputs and KZG commitments) can be vulnerable to brute-force attacks when input data has low entropy. A malicious actor could reveal committed data by searching through possible input values, compromising privacy in applications like anonymous credentials. This is particularly relevant when input data comes from known finite sets (e.g., names, dates).
Example Risk: In an anonymous credential system using EZKL for ID verification, an attacker could match hashed outputs against a database of common identifying information to deanonymize users.

View File

@@ -0,0 +1,54 @@
# EZKL Security Note: Quantization-Activated Model Backdoors
## Model backdoors and provenance
Machine learning models inherently suffer from robustness issues, which can lead to various
kinds of attacks, from backdoors to evasion attacks. These vulnerabilities are a direct byproductof how machine learning models learn and cannot be remediated.
We say a model has a backdoor whenever a specific attacker-chosen trigger in the input leads
to the model misbehaving. For instance, if we have an image classifier discriminating cats from dogs, the ability to turn any image of a cat into an image classified as a dog by changing a specific pixel pattern constitutes a backdoor.
Backdoors can be introduced using many different vectors. An attacker can introduce a
backdoor using traditional security vulnerabilities. For instance, they could directly alter the file containing model weights or dynamically hack the Python code of the model. In addition, backdoors can be introduced by the training data through a process known as poisoning. In this case, an attacker adds malicious data points to the dataset before the model is trained so that the model learns to associate the backdoor trigger with the intended misbehavior.
All these vectors constitute a whole range of provenance challenges, as any component of an
AI system can virtually be an entrypoint for a backdoor. Although provenance is already a
concern with traditional code, the issue is exacerbated with AI, as retraining a model is
cost-prohibitive. It is thus impractical to translate the “recompile it yourself” thinking to AI.
## Quantization activated backdoors
Backdoors are a generic concern in AI that is outside the scope of EZKL. However, EZKL may
activate a specific subset of backdoors. Several academic papers have demonstrated the
possibility, both in theory and in practice, of implanting undetectable and inactive backdoors in a full precision model that can be reactivated by quantization.
An external attacker may trick the user of an application running EZKL into loading a model
containing a quantization backdoor. This backdoor is active in the resulting model and circuit but not in the full-precision model supplied to EZKL, compromising the integrity of the target application and the resulting proof.
### When is this a concern for me as a user?
Any untrusted component in your AI stack may be a backdoor vector. In practice, the most
sensitive parts include:
- Datasets downloaded from the web or containing crowdsourced data
- Models downloaded from the web even after finetuning
- Untrusted software dependencies (well-known frameworks such as PyTorch can typically
be considered trusted)
- Any component loaded through an unsafe serialization format, such as Pickle.
Because backdoors are inherent to ML and cannot be eliminated, reviewing the provenance of
these sensitive components is especially important.
### Responsibilities of the user and EZKL
As EZKL cannot prevent backdoored models from being used, it is the responsibility of the user to review the provenance of all the components in their AI stack to ensure that no backdoor could have been implanted. EZKL shall not be held responsible for misleading prediction proofs resulting from using a backdoored model or for any harm caused to a system or its users due to a misbehaving model.
### Limitations:
- Attack effectiveness depends on calibration settings and internal rescaling operations.
- Further research needed on backdoor persistence through witness/proof stages.
- Can be mitigated by evaluating the quantized model (using `ezkl gen-witness`), rather than relying on the evaluation of the original model in pytorch or onnx-runtime as difference in evaluation could reveal a backdoor.
References:
1. [Quantization Backdoors to Deep Learning Commercial Frameworks (Ma et al., 2021)](https://arxiv.org/abs/2108.09187)
2. [Planting Undetectable Backdoors in Machine Learning Models (Goldwasser et al., 2022)](https://arxiv.org/abs/2204.06974)

View File

@@ -1,7 +1,7 @@
import ezkl
project = 'ezkl'
release = '18.1.7'
release = '0.0.0'
version = release

View File

@@ -208,16 +208,14 @@ where
padding: vec![(PADDING, PADDING); 2],
stride: vec![STRIDE; 2],
group: 1,
data_format: DataFormat::NCHW,
kernel_format: KernelFormat::OIHW,
};
let x = config
.layer_config
.layout(
&mut region,
&[
self.input.clone(),
self.l0_params[0].clone(),
self.l0_params[1].clone(),
],
&[&self.input, &self.l0_params[0], &self.l0_params[1]],
Box::new(op),
)
.unwrap();
@@ -226,7 +224,7 @@ where
.layer_config
.layout(
&mut region,
&[x.unwrap()],
&[&x.unwrap()],
Box::new(PolyOp::LeakyReLU {
slope: 0.0.into(),
scale: 1,
@@ -238,7 +236,7 @@ where
.layer_config
.layout(
&mut region,
&[x.unwrap()],
&[&x.unwrap()],
Box::new(LookupOp::Div { denom: 32.0.into() }),
)
.unwrap()
@@ -250,7 +248,7 @@ where
.layer_config
.layout(
&mut region,
&[self.l2_params[0].clone(), x],
&[&self.l2_params[0], &x],
Box::new(PolyOp::Einsum {
equation: "ij,j->ik".to_string(),
}),
@@ -262,7 +260,7 @@ where
.layer_config
.layout(
&mut region,
&[x, self.l2_params[1].clone()],
&[&x, &self.l2_params[1]],
Box::new(PolyOp::Add),
)
.unwrap()

View File

@@ -117,10 +117,7 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
.layer_config
.layout(
&mut region,
&[
self.l0_params[0].clone().try_into().unwrap(),
self.input.clone(),
],
&[&self.l0_params[0].clone().try_into().unwrap(), &self.input],
Box::new(PolyOp::Einsum {
equation: "ab,bc->ac".to_string(),
}),
@@ -135,7 +132,7 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
.layer_config
.layout(
&mut region,
&[x, self.l0_params[1].clone().try_into().unwrap()],
&[&x, &self.l0_params[1].clone().try_into().unwrap()],
Box::new(PolyOp::Add),
)
.unwrap()
@@ -147,7 +144,7 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
.layer_config
.layout(
&mut region,
&[x],
&[&x],
Box::new(PolyOp::LeakyReLU {
scale: 1,
slope: 0.0.into(),
@@ -163,7 +160,7 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
.layer_config
.layout(
&mut region,
&[self.l2_params[0].clone().try_into().unwrap(), x],
&[&self.l2_params[0].clone().try_into().unwrap(), &x],
Box::new(PolyOp::Einsum {
equation: "ab,bc->ac".to_string(),
}),
@@ -178,7 +175,7 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
.layer_config
.layout(
&mut region,
&[x, self.l2_params[1].clone().try_into().unwrap()],
&[&x, &self.l2_params[1].clone().try_into().unwrap()],
Box::new(PolyOp::Add),
)
.unwrap()
@@ -190,7 +187,7 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
.layer_config
.layout(
&mut region,
&[x],
&[&x],
Box::new(PolyOp::LeakyReLU {
scale: 1,
slope: 0.0.into(),
@@ -203,7 +200,7 @@ impl<const LEN: usize, const LOOKUP_MIN: IntegerRep, const LOOKUP_MAX: IntegerRe
.layer_config
.layout(
&mut region,
&[x.unwrap()],
&[&x.unwrap()],
Box::new(LookupOp::Div {
denom: ezkl::circuit::utils::F32::from(128.),
}),

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,13 @@
# download tess data
# check if first argument has been set
if [ ! -z "$1" ]; then
DATA_DIR=$1
else
DATA_DIR=data
fi
echo "Downloading data to $DATA_DIR"
if [ ! -d "$DATA_DIR/CATDOG" ]; then
kaggle datasets download tongpython/cat-and-dog -p $DATA_DIR/CATDOG --unzip
fi

View File

@@ -1,601 +0,0 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# data-attest-ezkl\n",
"\n",
"Here's an example leveraging EZKL whereby the inputs to the model are read and attested to from an on-chain source.\n",
"\n",
"In this setup:\n",
"- the inputs and outputs are publicly known to the prover and verifier\n",
"- the on chain inputs will be fetched and then fed directly into the circuit\n",
"- the quantization of the on-chain inputs happens within the evm and is replicated at proving time \n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"First we import the necessary dependencies and set up logging to be as informative as possible. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# check if notebook is in colab\n",
"try:\n",
" # install ezkl\n",
" import google.colab\n",
" import subprocess\n",
" import sys\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n",
"\n",
"# rely on local installation of ezkl if the notebook is not in colab\n",
"except:\n",
" pass\n",
"\n",
"\n",
"from torch import nn\n",
"import ezkl\n",
"import os\n",
"import json\n",
"import logging\n",
"\n",
"# uncomment for more descriptive logging \n",
"FORMAT = '%(levelname)s %(name)s %(asctime)-15s %(filename)s:%(lineno)d %(message)s'\n",
"logging.basicConfig(format=FORMAT)\n",
"logging.getLogger().setLevel(logging.DEBUG)\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we define our model. It is a very simple PyTorch model that has just one layer, an average pooling 2D layer. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"# Defines the model\n",
"\n",
"class MyModel(nn.Module):\n",
" def __init__(self):\n",
" super(MyModel, self).__init__()\n",
" self.layer = nn.AvgPool2d(2, 1, (1, 1))\n",
"\n",
" def forward(self, x):\n",
" return self.layer(x)[0]\n",
"\n",
"\n",
"circuit = MyModel()\n",
"\n",
"# this is where you'd train your model"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"We omit training for purposes of this demonstration. We've marked where training would happen in the cell above. \n",
"Now we export the model to onnx and create a corresponding (randomly generated) input. This input data will eventually be stored on chain and read from according to the call_data field in the graph input.\n",
"\n",
"You can replace the random `x` with real data if you so wish. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x = 0.1*torch.rand(1,*[3, 2, 2], requires_grad=True)\n",
"\n",
"# Flips the neural net into inference mode\n",
"circuit.eval()\n",
"\n",
" # Export the model\n",
"torch.onnx.export(circuit, # model being run\n",
" x, # model input (or a tuple for multiple inputs)\n",
" \"network.onnx\", # where to save the model (can be a file or file-like object)\n",
" export_params=True, # store the trained parameter weights inside the model file\n",
" opset_version=10, # the ONNX version to export the model to\n",
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
" input_names = ['input'], # the model's input names\n",
" output_names = ['output'], # the model's output names\n",
" dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes\n",
" 'output' : {0 : 'batch_size'}})\n",
"\n",
"data_array = ((x).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data = dict(input_data = [data_array])\n",
"\n",
" # Serialize data into file:\n",
"json.dump(data, open(\"input.json\", 'w' ))\n",
"\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"We now define a function that will create a new anvil instance which we will deploy our test contract too. This contract will contain in its storage the data that we will read from and attest to. In production you would not need to set up a local anvil instance. Instead you would replace RPC_URL with the actual RPC endpoint of the chain you are deploying your verifiers too, reading from the data on said chain."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import subprocess\n",
"import time\n",
"import threading\n",
"\n",
"# make sure anvil is running locally\n",
"# $ anvil -p 3030\n",
"\n",
"RPC_URL = \"http://localhost:3030\"\n",
"\n",
"# Save process globally\n",
"anvil_process = None\n",
"\n",
"def start_anvil():\n",
" global anvil_process\n",
" if anvil_process is None:\n",
" anvil_process = subprocess.Popen([\"anvil\", \"-p\", \"3030\", \"--code-size-limit=41943040\"])\n",
" if anvil_process.returncode is not None:\n",
" raise Exception(\"failed to start anvil process\")\n",
" time.sleep(3)\n",
"\n",
"def stop_anvil():\n",
" global anvil_process\n",
" if anvil_process is not None:\n",
" anvil_process.terminate()\n",
" anvil_process = None\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"We define our `PyRunArgs` objects which contains the visibility parameters for out model. \n",
"- `input_visibility` defines the visibility of the model inputs\n",
"- `param_visibility` defines the visibility of the model weights and constants and parameters \n",
"- `output_visibility` defines the visibility of the model outputs\n",
"\n",
"Here we create the following setup:\n",
"- `input_visibility`: \"public\"\n",
"- `param_visibility`: \"private\"\n",
"- `output_visibility`: public\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import ezkl\n",
"\n",
"model_path = os.path.join('network.onnx')\n",
"compiled_model_path = os.path.join('network.compiled')\n",
"pk_path = os.path.join('test.pk')\n",
"vk_path = os.path.join('test.vk')\n",
"settings_path = os.path.join('settings.json')\n",
"srs_path = os.path.join('kzg.srs')\n",
"data_path = os.path.join('input.json')\n",
"\n",
"run_args = ezkl.PyRunArgs()\n",
"run_args.input_visibility = \"public\"\n",
"run_args.param_visibility = \"private\"\n",
"run_args.output_visibility = \"public\"\n",
"run_args.num_inner_cols = 1\n",
"run_args.variables = [(\"batch_size\", 1)]\n",
"\n",
"\n",
"\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we generate a settings file. This file basically instantiates a bunch of parameters that determine their circuit shape, size etc... Because of the way we represent nonlinearities in the circuit (using Halo2's [lookup tables](https://zcash.github.io/halo2/design/proving-system/lookup.html)), it is often best to _calibrate_ this settings file as some data can fall out of range of these lookups.\n",
"\n",
"You can pass a dataset for calibration that will be representative of real inputs you might find if and when you deploy the prover. Here we create a dummy calibration dataset for demonstration purposes. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!RUST_LOG=trace\n",
"# TODO: Dictionary outputs\n",
"res = ezkl.gen_settings(model_path, settings_path, py_run_args=run_args)\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# generate a bunch of dummy calibration data\n",
"cal_data = {\n",
" \"input_data\": [(0.1*torch.rand(2, *[3, 2, 2])).flatten().tolist()],\n",
"}\n",
"\n",
"cal_path = os.path.join('val_data.json')\n",
"# save as json file\n",
"with open(cal_path, \"w\") as f:\n",
" json.dump(cal_data, f)\n",
"\n",
"res = await ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n",
"assert res == True"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The graph input for on chain data sources is formatted completely differently compared to file based data sources.\n",
"\n",
"- For file data sources, the raw floating point values that eventually get quantized, converted into field elements and stored in `witness.json` to be consumed by the circuit are stored. The output data contains the expected floating point values returned as outputs from running your vanilla pytorch model on the given inputs.\n",
"- For on chain data sources, the input_data field contains all the data necessary to read and format the on chain data into something digestable by EZKL (aka field elements :-D). \n",
"Here is what the schema for an on-chain data source graph input file should look like:\n",
" \n",
"```json\n",
"{\n",
" \"input_data\": {\n",
" \"rpc\": \"http://localhost:3030\", // The rpc endpoint of the chain you are deploying your verifier to\n",
" \"calls\": [\n",
" {\n",
" \"call_data\": [\n",
" [\n",
" \"71e5ee5f0000000000000000000000000000000000000000000000000000000000000000\", // The abi encoded call data to a view function that returns a single on-chain data point (we only support uint256 returns for now)\n",
" 7 // The number of decimal places of the large uint256 value. This is our way of representing large wei values as floating points on chain, since the evm only natively supports integer values.\n",
" ],\n",
" [\n",
" \"71e5ee5f0000000000000000000000000000000000000000000000000000000000000001\",\n",
" 5\n",
" ],\n",
" [\n",
" \"71e5ee5f0000000000000000000000000000000000000000000000000000000000000002\",\n",
" 5\n",
" ]\n",
" ],\n",
" \"address\": \"5fbdb2315678afecb367f032d93f642f64180aa3\" // The address of the contract that we are calling to get the data. \n",
" }\n",
" ]\n",
" }\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"await ezkl.setup_test_evm_witness(\n",
" data_path,\n",
" compiled_model_path,\n",
" # we write the call data to the same file as the input data\n",
" data_path,\n",
" input_source=ezkl.PyTestDataSource.OnChain,\n",
" output_source=ezkl.PyTestDataSource.File,\n",
" rpc_url=RPC_URL)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"As we use Halo2 with KZG-commitments we need an SRS string from (preferably) a multi-party trusted setup ceremony. For an overview of the procedures for such a ceremony check out [this page](https://blog.ethereum.org/2023/01/16/announcing-kzg-ceremony). The `get_srs` command retrieves a correctly sized SRS given the calibrated settings file from [here](https://github.com/han0110/halo2-kzg-srs). \n",
"\n",
"These SRS were generated with [this](https://github.com/privacy-scaling-explorations/perpetualpowersoftau) ceremony. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"res = await ezkl.get_srs( settings_path)\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"We now need to generate the circuit witness. These are the model outputs (and any hashes) that are generated when feeding the previously generated `input.json` through the circuit / model. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!export RUST_BACKTRACE=1\n",
"\n",
"witness_path = \"witness.json\"\n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Here we setup verifying and proving keys for the circuit. As the name suggests the proving key is needed for ... proving and the verifying key is needed for ... verifying. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# HERE WE SETUP THE CIRCUIT PARAMS\n",
"# WE GOT KEYS\n",
"# WE GOT CIRCUIT PARAMETERS\n",
"# EVERYTHING ANYONE HAS EVER NEEDED FOR ZK\n",
"res = ezkl.setup(\n",
" compiled_model_path,\n",
" vk_path,\n",
" pk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
"assert os.path.isfile(vk_path)\n",
"assert os.path.isfile(pk_path)\n",
"assert os.path.isfile(settings_path)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we generate a full proof. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# GENERATE A PROOF\n",
"\n",
"proof_path = os.path.join('test.pf')\n",
"\n",
"res = ezkl.prove(\n",
" witness_path,\n",
" compiled_model_path,\n",
" pk_path,\n",
" proof_path,\n",
" \n",
" \"single\",\n",
" )\n",
"\n",
"print(res)\n",
"assert os.path.isfile(proof_path)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"And verify it as a sanity check. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# VERIFY IT\n",
"\n",
"res = ezkl.verify(\n",
" proof_path,\n",
" settings_path,\n",
" vk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
"print(\"verified\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can now create and then deploy a vanilla evm verifier."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"abi_path = 'test.abi'\n",
"sol_code_path = 'test.sol'\n",
"\n",
"res = await ezkl.create_evm_verifier(\n",
" vk_path,\n",
" \n",
" settings_path,\n",
" sol_code_path,\n",
" abi_path,\n",
" )\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"addr_path_verifier = \"addr_verifier.txt\"\n",
"\n",
"res = await ezkl.deploy_evm(\n",
" addr_path_verifier,\n",
" sol_code_path,\n",
" 'http://127.0.0.1:3030'\n",
")\n",
"\n",
"assert res == True"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"With the vanilla verifier deployed, we can now create the data attestation contract, which will read in the instances from the calldata to the verifier, attest to them, call the verifier and then return the result. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"abi_path = 'test.abi'\n",
"sol_code_path = 'test.sol'\n",
"input_path = 'input.json'\n",
"\n",
"res = await ezkl.create_evm_data_attestation(\n",
" input_path,\n",
" settings_path,\n",
" sol_code_path,\n",
" abi_path,\n",
" )"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can deploy the data attest verifier contract. For security reasons, this binding will only deploy to a local anvil instance, using accounts generated by anvil. \n",
"So should only be used for testing purposes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"addr_path_da = \"addr_da.txt\"\n",
"\n",
"res = await ezkl.deploy_da_evm(\n",
" addr_path_da,\n",
" input_path,\n",
" settings_path,\n",
" sol_code_path,\n",
" RPC_URL,\n",
" )\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the view only verify method on the contract to verify the proof. Since it is a view function this is safe to use in production since you don't have to pass your private key."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# read the verifier address\n",
"addr_verifier = None\n",
"with open(addr_path_verifier, 'r') as f:\n",
" addr = f.read()\n",
"#read the data attestation address\n",
"addr_da = None\n",
"with open(addr_path_da, 'r') as f:\n",
" addr_da = f.read()\n",
"\n",
"res = await ezkl.verify_evm(\n",
" addr,\n",
" proof_path,\n",
" RPC_URL,\n",
" addr_da,\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "ezkl",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.5"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,657 +0,0 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# data-attest-ezkl hashed\n",
"\n",
"Here's an example leveraging EZKL whereby the hashes of the outputs to the model are read and attested to from an on-chain source.\n",
"\n",
"In this setup:\n",
"- the hashes of outputs are publicly known to the prover and verifier\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"First we import the necessary dependencies and set up logging to be as informative as possible. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# check if notebook is in colab\n",
"try:\n",
" # install ezkl\n",
" import google.colab\n",
" import subprocess\n",
" import sys\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n",
"\n",
"# rely on local installation of ezkl if the notebook is not in colab\n",
"except:\n",
" pass\n",
"\n",
"\n",
"from torch import nn\n",
"import ezkl\n",
"import os\n",
"import json\n",
"import logging\n",
"\n",
"# uncomment for more descriptive logging \n",
"# FORMAT = '%(levelname)s %(name)s %(asctime)-15s %(filename)s:%(lineno)d %(message)s'\n",
"# logging.basicConfig(format=FORMAT)\n",
"# logging.getLogger().setLevel(logging.DEBUG)\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we define our model. It is a very simple PyTorch model that has just one layer, an average pooling 2D layer. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"# Defines the model\n",
"\n",
"class MyModel(nn.Module):\n",
" def __init__(self):\n",
" super(MyModel, self).__init__()\n",
" self.layer = nn.AvgPool2d(2, 1, (1, 1))\n",
"\n",
" def forward(self, x):\n",
" return self.layer(x)[0]\n",
"\n",
"\n",
"circuit = MyModel()\n",
"\n",
"# this is where you'd train your model\n",
"\n",
"\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"We omit training for purposes of this demonstration. We've marked where training would happen in the cell above. \n",
"Now we export the model to onnx and create a corresponding (randomly generated) input. This input data will eventually be stored on chain and read from according to the call_data field in the graph input.\n",
"\n",
"You can replace the random `x` with real data if you so wish. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x = 0.1*torch.rand(1,*[3, 2, 2], requires_grad=True)\n",
"\n",
"# Flips the neural net into inference mode\n",
"circuit.eval()\n",
"\n",
" # Export the model\n",
"torch.onnx.export(circuit, # model being run\n",
" x, # model input (or a tuple for multiple inputs)\n",
" \"network.onnx\", # where to save the model (can be a file or file-like object)\n",
" export_params=True, # store the trained parameter weights inside the model file\n",
" opset_version=10, # the ONNX version to export the model to\n",
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
" input_names = ['input'], # the model's input names\n",
" output_names = ['output'], # the model's output names\n",
" dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes\n",
" 'output' : {0 : 'batch_size'}})\n",
"\n",
"data_array = ((x).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data = dict(input_data = [data_array])\n",
"\n",
" # Serialize data into file:\n",
"json.dump(data, open(\"input.json\", 'w' ))\n",
"\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"We now define a function that will create a new anvil instance which we will deploy our test contract too. This contract will contain in its storage the data that we will read from and attest to. In production you would not need to set up a local anvil instance. Instead you would replace RPC_URL with the actual RPC endpoint of the chain you are deploying your verifiers too, reading from the data on said chain."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import subprocess\n",
"import time\n",
"import threading\n",
"\n",
"# make sure anvil is running locally\n",
"# $ anvil -p 3030\n",
"\n",
"RPC_URL = \"http://localhost:3030\"\n",
"\n",
"# Save process globally\n",
"anvil_process = None\n",
"\n",
"def start_anvil():\n",
" global anvil_process\n",
" if anvil_process is None:\n",
" anvil_process = subprocess.Popen([\"anvil\", \"-p\", \"3030\", \"--code-size-limit=41943040\"])\n",
" if anvil_process.returncode is not None:\n",
" raise Exception(\"failed to start anvil process\")\n",
" time.sleep(3)\n",
"\n",
"def stop_anvil():\n",
" global anvil_process\n",
" if anvil_process is not None:\n",
" anvil_process.terminate()\n",
" anvil_process = None\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"We define our `PyRunArgs` objects which contains the visibility parameters for out model. \n",
"- `input_visibility` defines the visibility of the model inputs\n",
"- `param_visibility` defines the visibility of the model weights and constants and parameters \n",
"- `output_visibility` defines the visibility of the model outputs\n",
"\n",
"Here we create the following setup:\n",
"- `input_visibility`: \"private\"\n",
"- `param_visibility`: \"private\"\n",
"- `output_visibility`: hashed\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import ezkl\n",
"\n",
"model_path = os.path.join('network.onnx')\n",
"compiled_model_path = os.path.join('network.compiled')\n",
"pk_path = os.path.join('test.pk')\n",
"vk_path = os.path.join('test.vk')\n",
"settings_path = os.path.join('settings.json')\n",
"srs_path = os.path.join('kzg.srs')\n",
"data_path = os.path.join('input.json')\n",
"\n",
"run_args = ezkl.PyRunArgs()\n",
"run_args.input_visibility = \"private\"\n",
"run_args.param_visibility = \"private\"\n",
"run_args.output_visibility = \"hashed\"\n",
"run_args.variables = [(\"batch_size\", 1)]\n",
"\n",
"\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we generate a settings file. This file basically instantiates a bunch of parameters that determine their circuit shape, size etc... Because of the way we represent nonlinearities in the circuit (using Halo2's [lookup tables](https://zcash.github.io/halo2/design/proving-system/lookup.html)), it is often best to _calibrate_ this settings file as some data can fall out of range of these lookups.\n",
"\n",
"You can pass a dataset for calibration that will be representative of real inputs you might find if and when you deploy the prover. Here we create a dummy calibration dataset for demonstration purposes. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!RUST_LOG=trace\n",
"# TODO: Dictionary outputs\n",
"res = ezkl.gen_settings(model_path, settings_path, py_run_args=run_args)\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# generate a bunch of dummy calibration data\n",
"cal_data = {\n",
" \"input_data\": [(0.1*torch.rand(2, *[3, 2, 2])).flatten().tolist()],\n",
"}\n",
"\n",
"cal_path = os.path.join('val_data.json')\n",
"# save as json file\n",
"with open(cal_path, \"w\") as f:\n",
" json.dump(cal_data, f)\n",
"\n",
"res = await ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n",
"assert res == True"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"As we use Halo2 with KZG-commitments we need an SRS string from (preferably) a multi-party trusted setup ceremony. For an overview of the procedures for such a ceremony check out [this page](https://blog.ethereum.org/2023/01/16/announcing-kzg-ceremony). The `get_srs` command retrieves a correctly sized SRS given the calibrated settings file from [here](https://github.com/han0110/halo2-kzg-srs). \n",
"\n",
"These SRS were generated with [this](https://github.com/privacy-scaling-explorations/perpetualpowersoftau) ceremony. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"res = await ezkl.get_srs( settings_path)\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"We now need to generate the circuit witness. These are the model outputs (and any hashes) that are generated when feeding the previously generated `input.json` through the circuit / model. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!export RUST_BACKTRACE=1\n",
"\n",
"witness_path = \"witness.json\"\n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(ezkl.felt_to_big_endian(res['processed_outputs']['poseidon_hash'][0]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We now post the hashes of the outputs to the chain. This is the data that will be read from and attested to."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from web3 import Web3, HTTPProvider\n",
"from solcx import compile_standard\n",
"from decimal import Decimal\n",
"import json\n",
"import os\n",
"import torch\n",
"\n",
"\n",
"# setup web3 instance\n",
"w3 = Web3(HTTPProvider(RPC_URL))\n",
"\n",
"def test_on_chain_data(res):\n",
" # Step 0: Convert the tensor to a flat list\n",
" data = [int(ezkl.felt_to_big_endian(res['processed_outputs']['poseidon_hash'][0]), 0)]\n",
"\n",
" # Step 1: Prepare the data\n",
" # Step 2: Prepare and compile the contract.\n",
" # We are using a test contract here but in production you would\n",
" # use whatever contract you are fetching data from.\n",
" contract_source_code = '''\n",
" // SPDX-License-Identifier: UNLICENSED\n",
" pragma solidity ^0.8.17;\n",
"\n",
" contract TestReads {\n",
"\n",
" uint[] public arr;\n",
" constructor(uint256[] memory _numbers) {\n",
" for(uint256 i = 0; i < _numbers.length; i++) {\n",
" arr.push(_numbers[i]);\n",
" }\n",
" }\n",
" }\n",
" '''\n",
"\n",
" compiled_sol = compile_standard({\n",
" \"language\": \"Solidity\",\n",
" \"sources\": {\"testreads.sol\": {\"content\": contract_source_code}},\n",
" \"settings\": {\"outputSelection\": {\"*\": {\"*\": [\"metadata\", \"evm.bytecode\", \"abi\"]}}}\n",
" })\n",
"\n",
" # Get bytecode\n",
" bytecode = compiled_sol['contracts']['testreads.sol']['TestReads']['evm']['bytecode']['object']\n",
"\n",
" # Get ABI\n",
" # In production if you are reading from really large contracts you can just use\n",
" # a stripped down version of the ABI of the contract you are calling, containing only the view functions you will fetch data from.\n",
" abi = json.loads(compiled_sol['contracts']['testreads.sol']['TestReads']['metadata'])['output']['abi']\n",
"\n",
" # Step 3: Deploy the contract\n",
" TestReads = w3.eth.contract(abi=abi, bytecode=bytecode)\n",
" tx_hash = TestReads.constructor(data).transact()\n",
" tx_receipt = w3.eth.wait_for_transaction_receipt(tx_hash)\n",
" # If you are deploying to production you can skip the 3 lines of code above and just instantiate the contract like this,\n",
" # passing the address and abi of the contract you are fetching data from.\n",
" contract = w3.eth.contract(address=tx_receipt['contractAddress'], abi=abi)\n",
"\n",
" # Step 4: Interact with the contract\n",
" calldata = []\n",
" for i, _ in enumerate(data):\n",
" call = contract.functions.arr(i).build_transaction()\n",
" calldata.append((call['data'][2:], 0))\n",
"\n",
" # Prepare the calls_to_account object\n",
" # If you were calling view functions across multiple contracts,\n",
" # you would have multiple entries in the calls_to_account array,\n",
" # one for each contract.\n",
" calls_to_account = [{\n",
" 'call_data': calldata,\n",
" 'address': contract.address[2:], # remove the '0x' prefix\n",
" }]\n",
"\n",
" print(f'calls_to_account: {calls_to_account}')\n",
"\n",
" return calls_to_account\n",
"\n",
"# Now let's start the Anvil process. You don't need to do this if you are deploying to a non-local chain.\n",
"start_anvil()\n",
"\n",
"# Now let's call our function, passing in the same input tensor we used to export the model 2 cells above.\n",
"calls_to_account = test_on_chain_data(res)\n",
"\n",
"data = dict(input_data = [data_array], output_data = {'rpc': RPC_URL, 'calls': calls_to_account })\n",
"\n",
"# Serialize on-chain data into file:\n",
"json.dump(data, open(\"input.json\", 'w'))\n",
"\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Here we setup verifying and proving keys for the circuit. As the name suggests the proving key is needed for ... proving and the verifying key is needed for ... verifying. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# HERE WE SETUP THE CIRCUIT PARAMS\n",
"# WE GOT KEYS\n",
"# WE GOT CIRCUIT PARAMETERS\n",
"# EVERYTHING ANYONE HAS EVER NEEDED FOR ZK\n",
"res = ezkl.setup(\n",
" compiled_model_path,\n",
" vk_path,\n",
" pk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
"assert os.path.isfile(vk_path)\n",
"assert os.path.isfile(pk_path)\n",
"assert os.path.isfile(settings_path)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we generate a full proof. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# GENERATE A PROOF\n",
"\n",
"proof_path = os.path.join('test.pf')\n",
"\n",
"res = ezkl.prove(\n",
" witness_path,\n",
" compiled_model_path,\n",
" pk_path,\n",
" proof_path,\n",
" \n",
" \"single\",\n",
" )\n",
"\n",
"print(res)\n",
"assert os.path.isfile(proof_path)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"And verify it as a sanity check. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# VERIFY IT\n",
"\n",
"res = ezkl.verify(\n",
" proof_path,\n",
" settings_path,\n",
" vk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
"print(\"verified\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can now create and then deploy a vanilla evm verifier."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"abi_path = 'test.abi'\n",
"sol_code_path = 'test.sol'\n",
"\n",
"res = await ezkl.create_evm_verifier(\n",
" vk_path,\n",
" \n",
" settings_path,\n",
" sol_code_path,\n",
" abi_path,\n",
" )\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"addr_path_verifier = \"addr_verifier.txt\"\n",
"\n",
"res = await ezkl.deploy_evm(\n",
" addr_path_verifier,\n",
" sol_code_path,\n",
" 'http://127.0.0.1:3030'\n",
")\n",
"\n",
"assert res == True"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"With the vanilla verifier deployed, we can now create the data attestation contract, which will read in the instances from the calldata to the verifier, attest to them, call the verifier and then return the result. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"abi_path = 'test.abi'\n",
"sol_code_path = 'test.sol'\n",
"input_path = 'input.json'\n",
"\n",
"res = await ezkl.create_evm_data_attestation(\n",
" input_path,\n",
" settings_path,\n",
" sol_code_path,\n",
" abi_path,\n",
" )"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can deploy the data attest verifier contract. For security reasons, this binding will only deploy to a local anvil instance, using accounts generated by anvil. \n",
"So should only be used for testing purposes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"addr_path_da = \"addr_da.txt\"\n",
"\n",
"res = await ezkl.deploy_da_evm(\n",
" addr_path_da,\n",
" input_path,\n",
" settings_path,\n",
" sol_code_path,\n",
" RPC_URL,\n",
" )\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the view only verify method on the contract to verify the proof. Since it is a view function this is safe to use in production since you don't have to pass your private key."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# read the verifier address\n",
"addr_verifier = None\n",
"with open(addr_path_verifier, 'r') as f:\n",
" addr = f.read()\n",
"#read the data attestation address\n",
"addr_da = None\n",
"with open(addr_path_da, 'r') as f:\n",
" addr_da = f.read()\n",
"\n",
"res = await ezkl.verify_evm(\n",
" addr,\n",
" proof_path,\n",
" RPC_URL,\n",
" addr_da,\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "ezkl",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -1,604 +0,0 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# data-attest-kzg-vis\n",
"\n",
"Here's an example leveraging EZKL whereby the inputs to the model are read and attested to from an on-chain source and the params and outputs are committed to using kzg-commitments. \n",
"\n",
"In this setup:\n",
"- the inputs and outputs are publicly known to the prover and verifier\n",
"- the on chain inputs will be fetched and then fed directly into the circuit\n",
"- the quantization of the on-chain inputs happens within the evm and is replicated at proving time \n",
"- The kzg commitment to the params and inputs will be read from the proof and checked to make sure it matches the expected commitment stored on-chain.\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"First we import the necessary dependencies and set up logging to be as informative as possible. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# check if notebook is in colab\n",
"try:\n",
" # install ezkl\n",
" import google.colab\n",
" import subprocess\n",
" import sys\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n",
"\n",
"# rely on local installation of ezkl if the notebook is not in colab\n",
"except:\n",
" pass\n",
"\n",
"\n",
"from torch import nn\n",
"import ezkl\n",
"import os\n",
"import json\n",
"import logging\n",
"\n",
"# uncomment for more descriptive logging \n",
"FORMAT = '%(levelname)s %(name)s %(asctime)-15s %(filename)s:%(lineno)d %(message)s'\n",
"logging.basicConfig(format=FORMAT)\n",
"logging.getLogger().setLevel(logging.DEBUG)\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we define our model. It is a very simple PyTorch model that has just one layer, an average pooling 2D layer. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"# Defines the model\n",
"\n",
"class MyModel(nn.Module):\n",
" def __init__(self):\n",
" super(MyModel, self).__init__()\n",
" self.layer = nn.AvgPool2d(2, 1, (1, 1))\n",
"\n",
" def forward(self, x):\n",
" return self.layer(x)[0]\n",
"\n",
"\n",
"circuit = MyModel()\n",
"\n",
"# this is where you'd train your model"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"We omit training for purposes of this demonstration. We've marked where training would happen in the cell above. \n",
"Now we export the model to onnx and create a corresponding (randomly generated) input. This input data will eventually be stored on chain and read from according to the call_data field in the graph input.\n",
"\n",
"You can replace the random `x` with real data if you so wish. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x = 0.1*torch.rand(1,*[3, 2, 2], requires_grad=True)\n",
"\n",
"# Flips the neural net into inference mode\n",
"circuit.eval()\n",
"\n",
" # Export the model\n",
"torch.onnx.export(circuit, # model being run\n",
" x, # model input (or a tuple for multiple inputs)\n",
" \"network.onnx\", # where to save the model (can be a file or file-like object)\n",
" export_params=True, # store the trained parameter weights inside the model file\n",
" opset_version=10, # the ONNX version to export the model to\n",
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
" input_names = ['input'], # the model's input names\n",
" output_names = ['output'], # the model's output names\n",
" dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes\n",
" 'output' : {0 : 'batch_size'}})\n",
"\n",
"data_array = ((x).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data = dict(input_data = [data_array])\n",
"\n",
" # Serialize data into file:\n",
"json.dump(data, open(\"input.json\", 'w' ))\n",
"\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"We now define a function that will create a new anvil instance which we will deploy our test contract too. This contract will contain in its storage the data that we will read from and attest to. In production you would not need to set up a local anvil instance. Instead you would replace RPC_URL with the actual RPC endpoint of the chain you are deploying your verifiers too, reading from the data on said chain."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import subprocess\n",
"import time\n",
"import threading\n",
"\n",
"# make sure anvil is running locally\n",
"# $ anvil -p 3030\n",
"\n",
"RPC_URL = \"http://localhost:3030\"\n",
"\n",
"# Save process globally\n",
"anvil_process = None\n",
"\n",
"def start_anvil():\n",
" global anvil_process\n",
" if anvil_process is None:\n",
" anvil_process = subprocess.Popen([\"anvil\", \"-p\", \"3030\", \"--code-size-limit=41943040\"])\n",
" if anvil_process.returncode is not None:\n",
" raise Exception(\"failed to start anvil process\")\n",
" time.sleep(3)\n",
"\n",
"def stop_anvil():\n",
" global anvil_process\n",
" if anvil_process is not None:\n",
" anvil_process.terminate()\n",
" anvil_process = None\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"We define our `PyRunArgs` objects which contains the visibility parameters for out model. \n",
"- `input_visibility` defines the visibility of the model inputs\n",
"- `param_visibility` defines the visibility of the model weights and constants and parameters \n",
"- `output_visibility` defines the visibility of the model outputs\n",
"\n",
"Here we create the following setup:\n",
"- `input_visibility`: \"public\"\n",
"- `param_visibility`: \"polycommitment\" \n",
"- `output_visibility`: \"polycommitment\"\n",
"\n",
"**Note**:\n",
"When we set this to polycommitment, we are saying that the model parameters are committed to using a polynomial commitment scheme. This commitment will be stored on chain as a constant stored in the DA contract, and the proof will contain the commitment to the parameters. The DA verification will then check that the commitment in the proof matches the commitment stored on chain. \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import ezkl\n",
"\n",
"model_path = os.path.join('network.onnx')\n",
"compiled_model_path = os.path.join('network.compiled')\n",
"pk_path = os.path.join('test.pk')\n",
"vk_path = os.path.join('test.vk')\n",
"settings_path = os.path.join('settings.json')\n",
"srs_path = os.path.join('kzg.srs')\n",
"data_path = os.path.join('input.json')\n",
"\n",
"run_args = ezkl.PyRunArgs()\n",
"run_args.input_visibility = \"public\"\n",
"run_args.param_visibility = \"polycommit\"\n",
"run_args.output_visibility = \"polycommit\"\n",
"run_args.num_inner_cols = 1\n",
"run_args.variables = [(\"batch_size\", 1)]\n",
"\n",
"\n",
"\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we generate a settings file. This file basically instantiates a bunch of parameters that determine their circuit shape, size etc... Because of the way we represent nonlinearities in the circuit (using Halo2's [lookup tables](https://zcash.github.io/halo2/design/proving-system/lookup.html)), it is often best to _calibrate_ this settings file as some data can fall out of range of these lookups.\n",
"\n",
"You can pass a dataset for calibration that will be representative of real inputs you might find if and when you deploy the prover. Here we create a dummy calibration dataset for demonstration purposes. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!RUST_LOG=trace\n",
"# TODO: Dictionary outputs\n",
"res = ezkl.gen_settings(model_path, settings_path, py_run_args=run_args)\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# generate a bunch of dummy calibration data\n",
"cal_data = {\n",
" \"input_data\": [(0.1*torch.rand(2, *[3, 2, 2])).flatten().tolist()],\n",
"}\n",
"\n",
"cal_path = os.path.join('val_data.json')\n",
"# save as json file\n",
"with open(cal_path, \"w\") as f:\n",
" json.dump(cal_data, f)\n",
"\n",
"res = await ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n",
"assert res == True"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The graph input for on chain data sources is formatted completely differently compared to file based data sources.\n",
"\n",
"- For file data sources, the raw floating point values that eventually get quantized, converted into field elements and stored in `witness.json` to be consumed by the circuit are stored. The output data contains the expected floating point values returned as outputs from running your vanilla pytorch model on the given inputs.\n",
"- For on chain data sources, the input_data field contains all the data necessary to read and format the on chain data into something digestable by EZKL (aka field elements :-D). \n",
"Here is what the schema for an on-chain data source graph input file should look like:\n",
" \n",
"```json\n",
"{\n",
" \"input_data\": {\n",
" \"rpc\": \"http://localhost:3030\", // The rpc endpoint of the chain you are deploying your verifier to\n",
" \"calls\": [\n",
" {\n",
" \"call_data\": [\n",
" [\n",
" \"71e5ee5f0000000000000000000000000000000000000000000000000000000000000000\", // The abi encoded call data to a view function that returns a single on-chain data point (we only support uint256 returns for now)\n",
" 7 // The number of decimal places of the large uint256 value. This is our way of representing large wei values as floating points on chain, since the evm only natively supports integer values.\n",
" ],\n",
" [\n",
" \"71e5ee5f0000000000000000000000000000000000000000000000000000000000000001\",\n",
" 5\n",
" ],\n",
" [\n",
" \"71e5ee5f0000000000000000000000000000000000000000000000000000000000000002\",\n",
" 5\n",
" ]\n",
" ],\n",
" \"address\": \"5fbdb2315678afecb367f032d93f642f64180aa3\" // The address of the contract that we are calling to get the data. \n",
" }\n",
" ]\n",
" }\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"await ezkl.setup_test_evm_witness(\n",
" data_path,\n",
" compiled_model_path,\n",
" # we write the call data to the same file as the input data\n",
" data_path,\n",
" input_source=ezkl.PyTestDataSource.OnChain,\n",
" output_source=ezkl.PyTestDataSource.File,\n",
" rpc_url=RPC_URL)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"As we use Halo2 with KZG-commitments we need an SRS string from (preferably) a multi-party trusted setup ceremony. For an overview of the procedures for such a ceremony check out [this page](https://blog.ethereum.org/2023/01/16/announcing-kzg-ceremony). The `get_srs` command retrieves a correctly sized SRS given the calibrated settings file from [here](https://github.com/han0110/halo2-kzg-srs). \n",
"\n",
"These SRS were generated with [this](https://github.com/privacy-scaling-explorations/perpetualpowersoftau) ceremony. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"res = await ezkl.get_srs( settings_path)\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"We now need to generate the circuit witness. These are the model outputs (and any hashes) that are generated when feeding the previously generated `input.json` through the circuit / model. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!export RUST_BACKTRACE=1\n",
"\n",
"witness_path = \"witness.json\"\n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path, vk_path)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Here we setup verifying and proving keys for the circuit. As the name suggests the proving key is needed for ... proving and the verifying key is needed for ... verifying. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# HERE WE SETUP THE CIRCUIT PARAMS\n",
"# WE GOT KEYS\n",
"# WE GOT CIRCUIT PARAMETERS\n",
"# EVERYTHING ANYONE HAS EVER NEEDED FOR ZK\n",
"res = ezkl.setup(\n",
" compiled_model_path,\n",
" vk_path,\n",
" pk_path,\n",
" )\n",
"\n",
"assert res == True\n",
"assert os.path.isfile(vk_path)\n",
"assert os.path.isfile(pk_path)\n",
"assert os.path.isfile(settings_path)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we generate a full proof. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# GENERATE A PROOF\n",
"\n",
"proof_path = os.path.join('test.pf')\n",
"\n",
"res = ezkl.prove(\n",
" witness_path,\n",
" compiled_model_path,\n",
" pk_path,\n",
" proof_path,\n",
" \n",
" \"single\",\n",
" )\n",
"\n",
"print(res)\n",
"assert os.path.isfile(proof_path)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"And verify it as a sanity check. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# VERIFY IT\n",
"\n",
"res = ezkl.verify(\n",
" proof_path,\n",
" settings_path,\n",
" vk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
"print(\"verified\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can now create and then deploy a vanilla evm verifier."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"abi_path = 'test.abi'\n",
"sol_code_path = 'test.sol'\n",
"\n",
"res = await ezkl.create_evm_verifier(\n",
" vk_path,\n",
" \n",
" settings_path,\n",
" sol_code_path,\n",
" abi_path,\n",
" )\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"addr_path_verifier = \"addr_verifier.txt\"\n",
"\n",
"res = await ezkl.deploy_evm(\n",
" addr_path_verifier,\n",
" sol_code_path,\n",
" 'http://127.0.0.1:3030'\n",
")\n",
"\n",
"assert res == True"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"When deploying a DA with kzg commitments, we need to make sure to also pass a witness file that contains the commitments to the parameters and inputs. This is because the verifier will need to check that the commitments in the proof match the commitments stored on chain."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"abi_path = 'test.abi'\n",
"sol_code_path = 'test.sol'\n",
"input_path = 'input.json'\n",
"\n",
"res = await ezkl.create_evm_data_attestation(\n",
" input_path,\n",
" settings_path,\n",
" sol_code_path,\n",
" abi_path,\n",
" witness_path = witness_path,\n",
" )"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can deploy the data attest verifier contract. For security reasons, this binding will only deploy to a local anvil instance, using accounts generated by anvil. \n",
"So should only be used for testing purposes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"addr_path_da = \"addr_da.txt\"\n",
"\n",
"res = await ezkl.deploy_da_evm(\n",
" addr_path_da,\n",
" input_path,\n",
" settings_path,\n",
" sol_code_path,\n",
" RPC_URL,\n",
" )\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Call the view only verify method on the contract to verify the proof. Since it is a view function this is safe to use in production since you don't have to pass your private key."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# read the verifier address\n",
"addr_verifier = None\n",
"with open(addr_path_verifier, 'r') as f:\n",
" addr = f.read()\n",
"#read the data attestation address\n",
"addr_da = None\n",
"with open(addr_path_da, 'r') as f:\n",
" addr_da = f.read()\n",
"\n",
"res = await ezkl.verify_evm(\n",
" addr,\n",
" proof_path,\n",
" RPC_URL,\n",
" addr_da,\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "ezkl",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -150,7 +150,7 @@
"res = ezkl.gen_settings(model_path, settings_path)\n",
"assert res == True\n",
"\n",
"res = await ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"res = ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"assert res == True"
]
},
@@ -170,7 +170,7 @@
"with open(cal_path, \"w\") as f:\n",
" json.dump(cal_data, f)\n",
"\n",
"res = await ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
"res = ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
]
},
{
@@ -204,7 +204,7 @@
"source": [
"# now generate the witness file \n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},

View File

@@ -437,7 +437,7 @@
"\n",
"# Optimize for resources, we cap logrows at 12 to reduce setup and proving time, at the expense of accuracy\n",
"# You may want to increase the max logrows if accuracy is a concern\n",
"res = await ezkl.calibrate_settings(target = \"resources\", max_logrows = 12, scales = [2])"
"res = ezkl.calibrate_settings(target = \"resources\", max_logrows = 12, scales = [2])"
]
},
{
@@ -526,7 +526,7 @@
"# now generate the witness file\n",
"witness_path = os.path.join('witness.json')\n",
"\n",
"res = await ezkl.gen_witness()\n",
"res = ezkl.gen_witness()\n",
"assert os.path.isfile(witness_path)"
]
},
@@ -736,4 +736,4 @@
},
"nbformat": 4,
"nbformat_minor": 0
}
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -467,7 +467,7 @@
"outputs": [],
"source": [
"\n",
"res = await ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"res = ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"assert res == True"
]
},
@@ -508,7 +508,7 @@
"source": [
"# now generate the witness file\n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},

View File

@@ -77,6 +77,7 @@
"outputs": [],
"source": [
"gip_run_args = ezkl.PyRunArgs()\n",
"gip_run_args.ignore_range_check_inputs_outputs = True\n",
"gip_run_args.input_visibility = \"polycommit\" # matrix and generalized inverse commitments\n",
"gip_run_args.output_visibility = \"fixed\" # no parameters used\n",
"gip_run_args.param_visibility = \"fixed\" # should be Tensor(True)"
@@ -195,7 +196,7 @@
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"\n",
"res = await ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"res = ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"assert res == True\n"
]
},
@@ -236,7 +237,7 @@
"source": [
"# now generate the witness file\n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},
@@ -335,7 +336,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
"version": "3.9.13"
}
},
"nbformat": 4,

View File

@@ -179,7 +179,7 @@
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"\n",
"res = await ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"res = ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"assert res == True\n"
]
},
@@ -214,7 +214,7 @@
"source": [
"# now generate the witness file \n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},

View File

@@ -241,7 +241,7 @@
"with open(cal_path, \"w\") as f:\n",
" json.dump(cal_data, f)\n",
"\n",
"res = await ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
"res = ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
]
},
{
@@ -291,7 +291,7 @@
"\n",
"witness_path = \"witness.json\"\n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)"
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)"
]
},
{
@@ -453,8 +453,8 @@
"\n",
"res = await ezkl.deploy_evm(\n",
" address_path,\n",
" 'http://127.0.0.1:3030',\n",
" sol_code_path,\n",
" 'http://127.0.0.1:3030'\n",
")\n",
"\n",
"assert res == True\n",
@@ -474,8 +474,8 @@
"\n",
"res = await ezkl.verify_evm(\n",
" addr,\n",
" \"http://127.0.0.1:3030\",\n",
" proof_path,\n",
" \"http://127.0.0.1:3030\"\n",
")\n",
"assert res == True"
]

View File

@@ -152,7 +152,7 @@
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"\n",
"res = await ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"res = ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"assert res == True\n"
]
},
@@ -188,7 +188,7 @@
"# now generate the witness file \n",
"witness_path = \"witness.json\"\n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},

View File

@@ -155,7 +155,7 @@
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"\n",
"res = await ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"res = ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"assert res == True\n"
]
},
@@ -190,7 +190,7 @@
"source": [
"# now generate the witness file \n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},

View File

@@ -233,7 +233,7 @@
"with open(cal_path, \"w\") as f:\n",
" json.dump(cal_data, f)\n",
"\n",
"res = await ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
"res = ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
]
},
{
@@ -315,7 +315,7 @@
"\n",
"witness_path = \"witness.json\"\n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path, vk_path)\n"
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path, vk_path)\n"
]
},
{
@@ -462,8 +462,8 @@
"\n",
"res = await ezkl.deploy_evm(\n",
" address_path,\n",
" 'http://127.0.0.1:3030',\n",
" sol_code_path,\n",
" 'http://127.0.0.1:3030'\n",
")\n",
"\n",
"assert res == True\n",
@@ -483,8 +483,8 @@
"\n",
"res = await ezkl.verify_evm(\n",
" addr,\n",
" \"http://127.0.0.1:3030\",\n",
" proof_path,\n",
" \"http://127.0.0.1:3030\"\n",
")\n",
"assert res == True"
]

View File

@@ -193,7 +193,7 @@
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"\n",
"res = await ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"res = ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"assert res == True\n"
]
},
@@ -228,7 +228,7 @@
"source": [
"# now generate the witness file \n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},

View File

@@ -1,284 +1,284 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "cf69bb3f-94e6-4dba-92cd-ce08df117d67",
"metadata": {},
"source": [
"## Linear Regression\n",
"\n",
"\n",
"Sklearn based models are slightly finicky to get into a suitable onnx format. \n",
"This notebook showcases how to do so using the `hummingbird-ml` python package ! "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "95613ee9",
"metadata": {},
"outputs": [],
"source": [
"# check if notebook is in colab\n",
"try:\n",
" # install ezkl\n",
" import google.colab\n",
" import subprocess\n",
" import sys\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"hummingbird-ml\"])\n",
"\n",
"# rely on local installation of ezkl if the notebook is not in colab\n",
"except:\n",
" pass\n",
"\n",
"import os\n",
"import torch\n",
"import ezkl\n",
"import json\n",
"from hummingbird.ml import convert\n",
"\n",
"\n",
"# here we create and (potentially train a model)\n",
"\n",
"# make sure you have the dependencies required here already installed\n",
"import numpy as np\n",
"from sklearn.linear_model import LinearRegression\n",
"X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])\n",
"# y = 1 * x_0 + 2 * x_1 + 3\n",
"y = np.dot(X, np.array([1, 2])) + 3\n",
"reg = LinearRegression().fit(X, y)\n",
"reg.score(X, y)\n",
"\n",
"circuit = convert(reg, \"torch\", X[:1]).model\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b37637c4",
"metadata": {},
"outputs": [],
"source": [
"model_path = os.path.join('network.onnx')\n",
"compiled_model_path = os.path.join('network.compiled')\n",
"pk_path = os.path.join('test.pk')\n",
"vk_path = os.path.join('test.vk')\n",
"settings_path = os.path.join('settings.json')\n",
"\n",
"witness_path = os.path.join('witness.json')\n",
"data_path = os.path.join('input.json')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "82db373a",
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"# export to onnx format\n",
"# !!!!!!!!!!!!!!!!! This will flash a warning but it is fine !!!!!!!!!!!!!!!!!!!!!\n",
"\n",
"# Input to the model\n",
"shape = X.shape[1:]\n",
"x = torch.rand(1, *shape, requires_grad=True)\n",
"torch_out = circuit(x)\n",
"# Export the model\n",
"torch.onnx.export(circuit, # model being run\n",
" # model input (or a tuple for multiple inputs)\n",
" x,\n",
" # where to save the model (can be a file or file-like object)\n",
" \"network.onnx\",\n",
" export_params=True, # store the trained parameter weights inside the model file\n",
" opset_version=10, # the ONNX version to export the model to\n",
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
" input_names=['input'], # the model's input names\n",
" output_names=['output'], # the model's output names\n",
" dynamic_axes={'input': {0: 'batch_size'}, # variable length axes\n",
" 'output': {0: 'batch_size'}})\n",
"\n",
"d = ((x).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data = dict(input_shapes=[shape],\n",
" input_data=[d],\n",
" output_data=[((o).detach().numpy()).reshape([-1]).tolist() for o in torch_out])\n",
"\n",
"# Serialize data into file:\n",
"json.dump(data, open(\"input.json\", 'w'))\n",
"\n",
"\n",
"# note that you can also call the following function to generate random data for the model\n",
"# it is functionally equivalent to the code above\n",
"ezkl.gen_random_data()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d5e374a2",
"metadata": {},
"outputs": [],
"source": [
"!RUST_LOG=trace\n",
"# TODO: Dictionary outputs\n",
"res = ezkl.gen_settings(model_path, settings_path)\n",
"assert res == True\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cal_path = os.path.join(\"calibration.json\")\n",
"\n",
"data_array = (torch.randn(20, *shape).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data = dict(input_data = [data_array])\n",
"\n",
"# Serialize data into file:\n",
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"res = await ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"assert res == True\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3aa4f090",
"metadata": {},
"outputs": [],
"source": [
"res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8b74dcee",
"metadata": {},
"outputs": [],
"source": [
"# srs path\n",
"res = await ezkl.get_srs( settings_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "18c8b7c7",
"metadata": {},
"outputs": [],
"source": [
"# now generate the witness file \n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b1c561a8",
"metadata": {},
"outputs": [],
"source": [
"\n",
"# HERE WE SETUP THE CIRCUIT PARAMS\n",
"# WE GOT KEYS\n",
"# WE GOT CIRCUIT PARAMETERS\n",
"# EVERYTHING ANYONE HAS EVER NEEDED FOR ZK\n",
"\n",
"\n",
"\n",
"res = ezkl.setup(\n",
" compiled_model_path,\n",
" vk_path,\n",
" pk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
"assert os.path.isfile(vk_path)\n",
"assert os.path.isfile(pk_path)\n",
"assert os.path.isfile(settings_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c384cbc8",
"metadata": {},
"outputs": [],
"source": [
"# GENERATE A PROOF\n",
"\n",
"\n",
"proof_path = os.path.join('test.pf')\n",
"\n",
"res = ezkl.prove(\n",
" witness_path,\n",
" compiled_model_path,\n",
" pk_path,\n",
" proof_path,\n",
" \n",
" \"single\",\n",
" )\n",
"\n",
"print(res)\n",
"assert os.path.isfile(proof_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "76f00d41",
"metadata": {},
"outputs": [],
"source": [
"# VERIFY IT\n",
"\n",
"res = ezkl.verify(\n",
" proof_path,\n",
" settings_path,\n",
" vk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
"print(\"verified\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
"cells": [
{
"cell_type": "markdown",
"id": "cf69bb3f-94e6-4dba-92cd-ce08df117d67",
"metadata": {},
"source": [
"## Linear Regression\n",
"\n",
"\n",
"Sklearn based models are slightly finicky to get into a suitable onnx format. \n",
"This notebook showcases how to do so using the `hummingbird-ml` python package ! "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "95613ee9",
"metadata": {},
"outputs": [],
"source": [
"# check if notebook is in colab\n",
"try:\n",
" # install ezkl\n",
" import google.colab\n",
" import subprocess\n",
" import sys\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"hummingbird-ml\"])\n",
"\n",
"# rely on local installation of ezkl if the notebook is not in colab\n",
"except:\n",
" pass\n",
"\n",
"import os\n",
"import torch\n",
"import ezkl\n",
"import json\n",
"from hummingbird.ml import convert\n",
"\n",
"\n",
"# here we create and (potentially train a model)\n",
"\n",
"# make sure you have the dependencies required here already installed\n",
"import numpy as np\n",
"from sklearn.linear_model import LinearRegression\n",
"X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])\n",
"# y = 1 * x_0 + 2 * x_1 + 3\n",
"y = np.dot(X, np.array([1, 2])) + 3\n",
"reg = LinearRegression().fit(X, y)\n",
"reg.score(X, y)\n",
"\n",
"circuit = convert(reg, \"torch\", X[:1]).model\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b37637c4",
"metadata": {},
"outputs": [],
"source": [
"model_path = os.path.join('network.onnx')\n",
"compiled_model_path = os.path.join('network.compiled')\n",
"pk_path = os.path.join('test.pk')\n",
"vk_path = os.path.join('test.vk')\n",
"settings_path = os.path.join('settings.json')\n",
"\n",
"witness_path = os.path.join('witness.json')\n",
"data_path = os.path.join('input.json')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "82db373a",
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"# export to onnx format\n",
"# !!!!!!!!!!!!!!!!! This will flash a warning but it is fine !!!!!!!!!!!!!!!!!!!!!\n",
"\n",
"# Input to the model\n",
"shape = X.shape[1:]\n",
"x = torch.rand(1, *shape, requires_grad=True)\n",
"torch_out = circuit(x)\n",
"# Export the model\n",
"torch.onnx.export(circuit, # model being run\n",
" # model input (or a tuple for multiple inputs)\n",
" x,\n",
" # where to save the model (can be a file or file-like object)\n",
" \"network.onnx\",\n",
" export_params=True, # store the trained parameter weights inside the model file\n",
" opset_version=10, # the ONNX version to export the model to\n",
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
" input_names=['input'], # the model's input names\n",
" output_names=['output'], # the model's output names\n",
" dynamic_axes={'input': {0: 'batch_size'}, # variable length axes\n",
" 'output': {0: 'batch_size'}})\n",
"\n",
"d = ((x).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data = dict(input_shapes=[shape],\n",
" input_data=[d],\n",
" output_data=[((o).detach().numpy()).reshape([-1]).tolist() for o in torch_out])\n",
"\n",
"# Serialize data into file:\n",
"json.dump(data, open(\"input.json\", 'w'))\n",
"\n",
"\n",
"# note that you can also call the following function to generate random data for the model\n",
"# it is functionally equivalent to the code above\n",
"ezkl.gen_random_data()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d5e374a2",
"metadata": {},
"outputs": [],
"source": [
"!RUST_LOG=trace\n",
"# TODO: Dictionary outputs\n",
"res = ezkl.gen_settings(model_path, settings_path)\n",
"assert res == True\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cal_path = os.path.join(\"calibration.json\")\n",
"\n",
"data_array = (torch.randn(20, *shape).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data = dict(input_data = [data_array])\n",
"\n",
"# Serialize data into file:\n",
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"res = ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"assert res == True\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3aa4f090",
"metadata": {},
"outputs": [],
"source": [
"res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8b74dcee",
"metadata": {},
"outputs": [],
"source": [
"# srs path\n",
"res = await ezkl.get_srs( settings_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "18c8b7c7",
"metadata": {},
"outputs": [],
"source": [
"# now generate the witness file \n",
"\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b1c561a8",
"metadata": {},
"outputs": [],
"source": [
"\n",
"# HERE WE SETUP THE CIRCUIT PARAMS\n",
"# WE GOT KEYS\n",
"# WE GOT CIRCUIT PARAMETERS\n",
"# EVERYTHING ANYONE HAS EVER NEEDED FOR ZK\n",
"\n",
"\n",
"\n",
"res = ezkl.setup(\n",
" compiled_model_path,\n",
" vk_path,\n",
" pk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
"assert os.path.isfile(vk_path)\n",
"assert os.path.isfile(pk_path)\n",
"assert os.path.isfile(settings_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c384cbc8",
"metadata": {},
"outputs": [],
"source": [
"# GENERATE A PROOF\n",
"\n",
"\n",
"proof_path = os.path.join('test.pf')\n",
"\n",
"res = ezkl.prove(\n",
" witness_path,\n",
" compiled_model_path,\n",
" pk_path,\n",
" proof_path,\n",
" \n",
" \"single\",\n",
" )\n",
"\n",
"print(res)\n",
"assert os.path.isfile(proof_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "76f00d41",
"metadata": {},
"outputs": [],
"source": [
"# VERIFY IT\n",
"\n",
"res = ezkl.verify(\n",
" proof_path,\n",
" settings_path,\n",
" vk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
"print(\"verified\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -347,7 +347,7 @@
"# Serialize data into file:\n",
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"res = await ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"res = ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"assert res == True\n"
]
},
@@ -383,7 +383,7 @@
"# now generate the witness file \n",
"witness_path = \"gan_witness.json\"\n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},

View File

@@ -142,7 +142,7 @@
"# Serialize data into file:\n",
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"res = await ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"res = ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"assert res == True\n"
]
},
@@ -177,7 +177,7 @@
"source": [
"# now generate the witness file \n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},
@@ -276,4 +276,4 @@
},
"nbformat": 4,
"nbformat_minor": 5
}
}

View File

@@ -139,7 +139,7 @@
"res = ezkl.gen_settings(model_path, settings_path, py_run_args=run_args)\n",
"assert res == True\n",
"\n",
"res = await ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"res = ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"assert res == True\n"
]
},
@@ -193,7 +193,7 @@
"# now generate the witness file \n",
"witness_path = \"lstmwitness.json\"\n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},

View File

@@ -1,459 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Mean of ERC20 transfer amounts\n",
"\n",
"This notebook shows how to calculate the mean of ERC20 transfer amounts, pulling data in from a Postgres database. First we install and get the necessary libraries running. \n",
"The first of which is [shovel](https://indexsupply.com/shovel/docs/#getting-started), which is a library that allows us to pull data from the Ethereum blockchain into a Postgres database.\n",
"\n",
"Make sure you install postgres if needed https://indexsupply.com/shovel/docs/#getting-started. \n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import getpass\n",
"import json\n",
"import time\n",
"import subprocess\n",
"\n",
"# swap out for the relevant linux/amd64, darwin/arm64, darwin/amd64, windows/amd64\n",
"os.system(\"curl -LO https://indexsupply.net/bin/1.0/linux/amd64/shovel\")\n",
"os.system(\"chmod +x shovel\")\n",
"\n",
"\n",
"os.environ[\"PG_URL\"] = \"postgres://\" + getpass.getuser() + \":@localhost:5432/shovel\"\n",
"\n",
"# create a config.json file with the following contents\n",
"config = {\n",
" \"pg_url\": \"$PG_URL\",\n",
" \"eth_sources\": [\n",
" {\"name\": \"mainnet\", \"chain_id\": 1, \"url\": \"https://ethereum-rpc.publicnode.com\"},\n",
" {\"name\": \"base\", \"chain_id\": 8453, \"url\": \"https://base-rpc.publicnode.com\"}\n",
" ],\n",
" \"integrations\": [{\n",
" \"name\": \"usdc_transfer\",\n",
" \"enabled\": True,\n",
" \"sources\": [{\"name\": \"mainnet\"}, {\"name\": \"base\"}],\n",
" \"table\": {\n",
" \"name\": \"usdc\",\n",
" \"columns\": [\n",
" {\"name\": \"log_addr\", \"type\": \"bytea\"},\n",
" {\"name\": \"block_num\", \"type\": \"numeric\"},\n",
" {\"name\": \"f\", \"type\": \"bytea\"},\n",
" {\"name\": \"t\", \"type\": \"bytea\"},\n",
" {\"name\": \"v\", \"type\": \"numeric\"}\n",
" ]\n",
" },\n",
" \"block\": [\n",
" {\"name\": \"block_num\", \"column\": \"block_num\"},\n",
" {\n",
" \"name\": \"log_addr\",\n",
" \"column\": \"log_addr\",\n",
" \"filter_op\": \"contains\",\n",
" \"filter_arg\": [\n",
" \"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48\",\n",
" \"833589fCD6eDb6E08f4c7C32D4f71b54bdA02913\"\n",
" ]\n",
" }\n",
" ],\n",
" \"event\": {\n",
" \"name\": \"Transfer\",\n",
" \"type\": \"event\",\n",
" \"anonymous\": False,\n",
" \"inputs\": [\n",
" {\"indexed\": True, \"name\": \"from\", \"type\": \"address\", \"column\": \"f\"},\n",
" {\"indexed\": True, \"name\": \"to\", \"type\": \"address\", \"column\": \"t\"},\n",
" {\"indexed\": False, \"name\": \"value\", \"type\": \"uint256\", \"column\": \"v\"}\n",
" ]\n",
" }\n",
" }]\n",
"}\n",
"\n",
"# write the config to a file\n",
"with open(\"config.json\", \"w\") as f:\n",
" f.write(json.dumps(config))\n",
"\n",
"\n",
"# print the two env variables\n",
"os.system(\"echo $PG_URL\")\n",
"\n",
"os.system(\"createdb -h localhost -p 5432 shovel\")\n",
"\n",
"os.system(\"echo shovel is now installed. starting:\")\n",
"\n",
"command = [\"./shovel\", \"-config\", \"config.json\"]\n",
"proc = subprocess.Popen(command)\n",
"\n",
"os.system(\"echo shovel started.\")\n",
"\n",
"time.sleep(10)\n",
"\n",
"# after we've fetched some data -- kill the process\n",
"proc.terminate()\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "2wIAHwqH2_mo"
},
"source": [
"**Import Dependencies**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "9Byiv2Nc2MsK"
},
"outputs": [],
"source": [
"# check if notebook is in colab\n",
"try:\n",
" # install ezkl\n",
" import google.colab\n",
" import subprocess\n",
" import sys\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n",
"\n",
"# rely on local installation of ezkl if the notebook is not in colab\n",
"except:\n",
" pass\n",
"\n",
"import ezkl\n",
"import torch\n",
"import datetime\n",
"import pandas as pd\n",
"import requests\n",
"import json\n",
"import os\n",
"\n",
"import logging\n",
"# # uncomment for more descriptive logging \n",
"FORMAT = '%(levelname)s %(name)s %(asctime)-15s %(filename)s:%(lineno)d %(message)s'\n",
"logging.basicConfig(format=FORMAT)\n",
"logging.getLogger().setLevel(logging.DEBUG)\n",
"\n",
"print(\"ezkl version: \", ezkl.__version__)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "osjj-0Ta3E8O"
},
"source": [
"**Create Computational Graph**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "x1vl9ZXF3EEW",
"outputId": "bda21d02-fe5f-4fb2-8106-f51a8e2e67aa"
},
"outputs": [],
"source": [
"from torch import nn\n",
"import torch\n",
"\n",
"\n",
"class Model(nn.Module):\n",
" def __init__(self):\n",
" super(Model, self).__init__()\n",
"\n",
" # x is a time series \n",
" def forward(self, x):\n",
" return [torch.mean(x)]\n",
"\n",
"\n",
"\n",
"\n",
"circuit = Model()\n",
"\n",
"\n",
"\n",
"\n",
"x = 0.1*torch.rand(1,*[1,5], requires_grad=True)\n",
"\n",
"# # print(torch.__version__)\n",
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
"\n",
"print(device)\n",
"\n",
"circuit.to(device)\n",
"\n",
"# Flips the neural net into inference mode\n",
"circuit.eval()\n",
"\n",
"# Export the model\n",
"torch.onnx.export(circuit, # model being run\n",
" x, # model input (or a tuple for multiple inputs)\n",
" \"lol.onnx\", # where to save the model (can be a file or file-like object)\n",
" export_params=True, # store the trained parameter weights inside the model file\n",
" opset_version=11, # the ONNX version to export the model to\n",
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
" input_names = ['input'], # the model's input names\n",
" output_names = ['output'], # the model's output names\n",
" dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes\n",
" 'output' : {0 : 'batch_size'}})\n",
"\n",
"# export(circuit, input_shape=[1, 20])\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "E3qCeX-X5xqd"
},
"source": [
"**Set Data Source and Get Data**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "6RAMplxk5xPk",
"outputId": "bd2158fe-0c00-44fd-e632-6a3f70cdb7c9"
},
"outputs": [],
"source": [
"import getpass\n",
"# make an input.json file from the df above\n",
"input_filename = os.path.join('input.json')\n",
"\n",
"pg_input_file = dict(input_data = {\n",
" \"host\": \"localhost\",\n",
" # make sure you replace this with your own username\n",
" \"user\": getpass.getuser(),\n",
" \"dbname\": \"shovel\",\n",
" \"password\": \"\",\n",
" \"query\": \"SELECT v FROM usdc ORDER BY block_num DESC LIMIT 5\",\n",
" \"port\": \"5432\",\n",
"})\n",
"\n",
"json_formatted_str = json.dumps(pg_input_file, indent=2)\n",
"print(json_formatted_str)\n",
"\n",
"\n",
" # Serialize data into file:\n",
"json.dump(pg_input_file, open(input_filename, 'w' ))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# this corresponds to 4 batches\n",
"calibration_filename = os.path.join('calibration.json')\n",
"\n",
"pg_cal_file = dict(input_data = {\n",
" \"host\": \"localhost\",\n",
" # make sure you replace this with your own username\n",
" \"user\": getpass.getuser(),\n",
" \"dbname\": \"shovel\",\n",
" \"password\": \"\",\n",
" \"query\": \"SELECT v FROM usdc ORDER BY block_num DESC LIMIT 20\",\n",
" \"port\": \"5432\",\n",
"})\n",
"\n",
" # Serialize data into file:\n",
"json.dump( pg_cal_file, open(calibration_filename, 'w' ))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eLJ7oirQ_HQR"
},
"source": [
"**EZKL Workflow**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "rNw0C9QL6W88"
},
"outputs": [],
"source": [
"import subprocess\n",
"import os\n",
"\n",
"onnx_filename = os.path.join('lol.onnx')\n",
"compiled_filename = os.path.join('lol.compiled')\n",
"settings_filename = os.path.join('settings.json')\n",
"\n",
"# Generate settings using ezkl\n",
"res = ezkl.gen_settings(onnx_filename, settings_filename)\n",
"\n",
"assert res == True\n",
"\n",
"res = await ezkl.calibrate_settings(input_filename, onnx_filename, settings_filename, \"resources\")\n",
"\n",
"assert res == True\n",
"\n",
"await ezkl.get_srs(settings_filename)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"ezkl.compile_circuit(onnx_filename, compiled_filename, settings_filename)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "4MmE9SX66_Il",
"outputId": "16403639-66a4-4280-ac7f-6966b75de5a3"
},
"outputs": [],
"source": [
"# generate settings\n",
"\n",
"\n",
"# show the settings.json\n",
"with open(\"settings.json\") as f:\n",
" data = json.load(f)\n",
" json_formatted_str = json.dumps(data, indent=2)\n",
"\n",
" print(json_formatted_str)\n",
"\n",
"assert os.path.exists(\"settings.json\")\n",
"assert os.path.exists(\"input.json\")\n",
"assert os.path.exists(\"lol.onnx\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "fULvvnK7_CMb"
},
"outputs": [],
"source": [
"pk_path = os.path.join('test.pk')\n",
"vk_path = os.path.join('test.vk')\n",
"\n",
"\n",
"# setup the proof\n",
"res = ezkl.setup(\n",
" compiled_filename,\n",
" vk_path,\n",
" pk_path\n",
" )\n",
"\n",
"assert res == True\n",
"assert os.path.isfile(vk_path)\n",
"assert os.path.isfile(pk_path)\n",
"assert os.path.isfile(settings_filename)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"witness_path = \"witness.json\"\n",
"\n",
"# generate the witness\n",
"res = await ezkl.gen_witness(\n",
" input_filename,\n",
" compiled_filename,\n",
" witness_path\n",
" )\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Oog3j6Kd-Wed",
"outputId": "5839d0c1-5b43-476e-c2f8-6707de562260"
},
"outputs": [],
"source": [
"# prove the zk circuit\n",
"# GENERATE A PROOF\n",
"proof_path = os.path.join('test.pf')\n",
"\n",
"\n",
"proof = ezkl.prove(\n",
" witness_path,\n",
" compiled_filename,\n",
" pk_path,\n",
" proof_path,\n",
" \"single\"\n",
" )\n",
"\n",
"\n",
"print(\"proved\")\n",
"\n",
"assert os.path.isfile(proof_path)\n",
"\n"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": ".env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -323,7 +323,7 @@
"res = ezkl.gen_settings(model_path, settings_path, py_run_args=run_args)\n",
"assert res == True\n",
"\n",
"res = await ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\", scales=[2,7])\n",
"res = ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\", scales=[2,7])\n",
"assert res == True"
]
},
@@ -362,7 +362,7 @@
"# now generate the witness file\n",
"witness_path = \"witness.json\"\n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},
@@ -504,8 +504,8 @@
"\n",
"res = await ezkl.deploy_evm(\n",
" address_path,\n",
" 'http://127.0.0.1:3030',\n",
" sol_code_path,\n",
" 'http://127.0.0.1:3030'\n",
")\n",
"\n",
"assert res == True\n",
@@ -527,8 +527,8 @@
"\n",
"res = await ezkl.verify_evm(\n",
" addr,\n",
" proof_path,\n",
" \"http://127.0.0.1:3030\"\n",
" \"http://127.0.0.1:3030\",\n",
" proof_path\n",
")\n",
"assert res == True"
]

View File

@@ -289,7 +289,7 @@
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"\n",
"await ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\", scales=[0,6])"
"ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\", scales=[0,6])"
]
},
{
@@ -321,7 +321,7 @@
"# now generate the witness file \n",
"witness_path = \"gan_witness.json\"\n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},
@@ -425,4 +425,4 @@
},
"nbformat": 4,
"nbformat_minor": 2
}
}

View File

@@ -341,7 +341,7 @@
"\n",
" # generate settings for the current model\n",
" res = ezkl.gen_settings(model_path, settings_path, py_run_args=run_args)\n",
" res = await ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\", scales=[run_args.input_scale], max_logrows=run_args.logrows)\n",
" res = ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\", scales=[run_args.input_scale], max_logrows=run_args.logrows)\n",
" assert res == True\n",
"\n",
" # load settings and print them to the console\n",
@@ -361,7 +361,7 @@
" assert res == True\n",
" assert os.path.isfile(vk_path)\n",
" assert os.path.isfile(pk_path)\n",
" res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path, vk_path)\n",
" res = ezkl.gen_witness(data_path, compiled_model_path, witness_path, vk_path)\n",
" run_args.input_scale = settings[\"model_output_scales\"][0]\n",
"\n",
"for i in range(3):\n",
@@ -484,4 +484,4 @@
},
"nbformat": 4,
"nbformat_minor": 2
}
}

View File

@@ -215,7 +215,7 @@
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"\n",
"await ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
"ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
]
},
{
@@ -247,7 +247,7 @@
"# now generate the witness file\n",
"witness_path = \"ae_witness.json\"\n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},
@@ -451,7 +451,7 @@
"res = ezkl.gen_settings(model_path, settings_path)\n",
"assert res == True\n",
"\n",
"res = await ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"res = ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"assert res == True\n",
"print(\"verified\")"
]
@@ -485,7 +485,7 @@
"# now generate the witness file \n",
"witness_path = \"vae_witness.json\"\n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},
@@ -590,4 +590,4 @@
},
"nbformat": 4,
"nbformat_minor": 2
}
}

View File

@@ -845,7 +845,7 @@
"res = ezkl.gen_settings(model_path, settings_path)\n",
"assert res == True\n",
"\n",
"res = await ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\", max_logrows = 20, scales = [3])\n",
"res = ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\", max_logrows = 20, scales = [3])\n",
"assert res == True"
]
},
@@ -881,7 +881,7 @@
},
"outputs": [],
"source": [
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},

File diff suppressed because it is too large Load Diff

View File

@@ -282,7 +282,7 @@
"\n",
" # generate settings for the current model\n",
" res = ezkl.gen_settings(model_path, settings_path, py_run_args=run_args)\n",
" res = await ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\", scales=[run_args.input_scale], max_logrows=run_args.logrows)\n",
" res = ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\", scales=[run_args.input_scale], max_logrows=run_args.logrows)\n",
" assert res == True\n",
"\n",
" # load settings and print them to the console\n",
@@ -303,7 +303,7 @@
" assert os.path.isfile(vk_path)\n",
" assert os.path.isfile(pk_path)\n",
"\n",
" res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path, vk_path)\n",
" res = ezkl.gen_witness(data_path, compiled_model_path, witness_path, vk_path)\n",
" run_args.input_scale = settings[\"model_output_scales\"][0]\n",
"\n",
"for i in range(2):\n",
@@ -472,4 +472,4 @@
},
"nbformat": 4,
"nbformat_minor": 2
}
}

View File

@@ -152,9 +152,11 @@
"metadata": {},
"outputs": [],
"source": [
"!RUST_LOG=trace\n",
"# TODO: Dictionary outputs\n",
"res = ezkl.gen_settings(model_path, settings_path)\n",
"run_args = ezkl.PyRunArgs()\n",
"# logrows\n",
"run_args.logrows = 20\n",
"\n",
"res = ezkl.gen_settings(model_path, settings_path, py_run_args=run_args)\n",
"assert res == True\n"
]
},
@@ -174,7 +176,7 @@
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"\n",
"await ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
"ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
]
},
{
@@ -208,7 +210,7 @@
"source": [
"# now generate the witness file \n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},
@@ -302,9 +304,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
}

View File

@@ -1,339 +1,336 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Reusable Verifiers \n",
"\n",
"This notebook demonstrates how to create and reuse the same set of separated verifiers for different models. Specifically, we will use the same verifier for the following four models:\n",
"\n",
"- `1l_mlp sigmoid`\n",
"- `1l_mlp relu`\n",
"- `1l_conv sigmoid`\n",
"- `1l_conv relu`\n",
"\n",
"When deploying EZKL verifiers on the blockchain, each associated model typically requires its own unique verifier, leading to increased on-chain state usage. \n",
"However, with the reusable verifier, we can deploy a single verifier that can be used to verify proofs for any valid H2 circuit. This notebook shows how to do so. \n",
"\n",
"By reusing the same verifier across multiple models, we significantly reduce the amount of state bloat on the blockchain. Instead of deploying a unique verifier for each model, we deploy a unique and much smaller verifying key artifact (VKA) contract for each model while sharing a common separated verifier. The VKA contains the VK for the model as well circuit specific metadata that was otherwise hardcoded into the stack of the original non-reusable verifier."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import torch.nn as nn\n",
"import torch.onnx\n",
"\n",
"# Define the models\n",
"class MLP_Sigmoid(nn.Module):\n",
" def __init__(self):\n",
" super(MLP_Sigmoid, self).__init__()\n",
" self.fc = nn.Linear(3, 3)\n",
" self.sigmoid = nn.Sigmoid()\n",
"\n",
" def forward(self, x):\n",
" x = self.fc(x)\n",
" x = self.sigmoid(x)\n",
" return x\n",
"\n",
"class MLP_Relu(nn.Module):\n",
" def __init__(self):\n",
" super(MLP_Relu, self).__init__()\n",
" self.fc = nn.Linear(3, 3)\n",
" self.relu = nn.ReLU()\n",
"\n",
" def forward(self, x):\n",
" x = self.fc(x)\n",
" x = self.relu(x)\n",
" return x\n",
"\n",
"class Conv_Sigmoid(nn.Module):\n",
" def __init__(self):\n",
" super(Conv_Sigmoid, self).__init__()\n",
" self.conv = nn.Conv1d(1, 1, kernel_size=3, stride=1)\n",
" self.sigmoid = nn.Sigmoid()\n",
"\n",
" def forward(self, x):\n",
" x = self.conv(x)\n",
" x = self.sigmoid(x)\n",
" return x\n",
"\n",
"class Conv_Relu(nn.Module):\n",
" def __init__(self):\n",
" super(Conv_Relu, self).__init__()\n",
" self.conv = nn.Conv1d(1, 1, kernel_size=3, stride=1)\n",
" self.relu = nn.ReLU()\n",
"\n",
" def forward(self, x):\n",
" x = self.conv(x)\n",
" x = self.relu(x)\n",
" return x\n",
"\n",
"# Instantiate the models\n",
"mlp_sigmoid = MLP_Sigmoid()\n",
"mlp_relu = MLP_Relu()\n",
"conv_sigmoid = Conv_Sigmoid()\n",
"conv_relu = Conv_Relu()\n",
"\n",
"# Dummy input tensor for mlp\n",
"dummy_input_mlp = torch.tensor([[-1.5737053155899048, -1.708398461341858, 0.19544155895709991]])\n",
"input_mlp_path = 'mlp_input.json'\n",
"\n",
"# Dummy input tensor for conv\n",
"dummy_input_conv = torch.tensor([[[1.4124163389205933, 0.6938204169273376, 1.0664031505584717]]])\n",
"input_conv_path = 'conv_input.json'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"names = ['mlp_sigmoid', 'mlp_relu', 'conv_sigmoid', 'conv_relu']\n",
"models = [mlp_sigmoid, mlp_relu, conv_sigmoid, conv_relu]\n",
"inputs = [dummy_input_mlp, dummy_input_mlp, dummy_input_conv, dummy_input_conv]\n",
"input_paths = [input_mlp_path, input_mlp_path, input_conv_path, input_conv_path]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import json\n",
"import torch\n",
"import ezkl\n",
"\n",
"for name, model, x, input_path in zip(names, models, inputs, input_paths):\n",
" # Create a new directory for the model if it doesn't exist\n",
" if not os.path.exists(name):\n",
" os.mkdir(name)\n",
" # Store the paths in each of their respective directories\n",
" model_path = os.path.join(name, \"network.onnx\")\n",
" compiled_model_path = os.path.join(name, \"network.compiled\")\n",
" pk_path = os.path.join(name, \"test.pk\")\n",
" vk_path = os.path.join(name, \"test.vk\")\n",
" settings_path = os.path.join(name, \"settings.json\")\n",
"\n",
" witness_path = os.path.join(name, \"witness.json\")\n",
" sol_code_path = os.path.join(name, 'test.sol')\n",
" sol_key_code_path = os.path.join(name, 'test_key.sol')\n",
" abi_path = os.path.join(name, 'test.abi')\n",
" proof_path = os.path.join(name, \"proof.json\")\n",
"\n",
" # Flips the neural net into inference mode\n",
" model.eval()\n",
"\n",
" # Export the model\n",
" torch.onnx.export(model, x, model_path, export_params=True, opset_version=10,\n",
" do_constant_folding=True, input_names=['input'],\n",
" output_names=['output'], dynamic_axes={'input': {0: 'batch_size'},\n",
" 'output': {0: 'batch_size'}})\n",
"\n",
" data_array = ((x).detach().numpy()).reshape([-1]).tolist()\n",
" data = dict(input_data=[data_array])\n",
" json.dump(data, open(input_path, 'w'))\n",
"\n",
" py_run_args = ezkl.PyRunArgs()\n",
" py_run_args.input_visibility = \"private\"\n",
" py_run_args.output_visibility = \"public\"\n",
" py_run_args.param_visibility = \"fixed\" # private by default\n",
"\n",
" res = ezkl.gen_settings(model_path, settings_path, py_run_args=py_run_args)\n",
" assert res == True\n",
"\n",
" await ezkl.calibrate_settings(input_path, model_path, settings_path, \"resources\")\n",
"\n",
" res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n",
" assert res == True\n",
"\n",
" res = await ezkl.get_srs(settings_path)\n",
" assert res == True\n",
"\n",
" # now generate the witness file\n",
" res = await ezkl.gen_witness(input_path, compiled_model_path, witness_path)\n",
" assert os.path.isfile(witness_path) == True\n",
"\n",
" # SETUP \n",
" # We recommend disabling selector compression for the setup as it decreases the size of the VK artifact\n",
" res = ezkl.setup(compiled_model_path, vk_path, pk_path, disable_selector_compression=True)\n",
" assert res == True\n",
" assert os.path.isfile(vk_path)\n",
" assert os.path.isfile(pk_path)\n",
" assert os.path.isfile(settings_path)\n",
"\n",
" # GENERATE A PROOF\n",
" res = ezkl.prove(witness_path, compiled_model_path, pk_path, proof_path, \"single\")\n",
" assert os.path.isfile(proof_path)\n",
"\n",
" res = await ezkl.create_evm_verifier(vk_path, settings_path, sol_code_path, abi_path, reusable=True)\n",
" assert res == True\n",
"\n",
" res = await ezkl.create_evm_vka(vk_path, settings_path, sol_key_code_path, abi_path)\n",
" assert res == True\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import subprocess\n",
"import time\n",
"\n",
"# make sure anvil is running locally\n",
"# $ anvil -p 3030\n",
"\n",
"RPC_URL = \"http://localhost:3030\"\n",
"\n",
"# Save process globally\n",
"anvil_process = None\n",
"\n",
"def start_anvil():\n",
" global anvil_process\n",
" if anvil_process is None:\n",
" anvil_process = subprocess.Popen([\"anvil\", \"-p\", \"3030\", \"--code-size-limit=41943040\"])\n",
" if anvil_process.returncode is not None:\n",
" raise Exception(\"failed to start anvil process\")\n",
" time.sleep(3)\n",
"\n",
"def stop_anvil():\n",
" global anvil_process\n",
" if anvil_process is not None:\n",
" anvil_process.terminate()\n",
" anvil_process = None\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Check that the generated verifiers are identical for all models."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"start_anvil()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import filecmp\n",
"\n",
"def compare_files(file1, file2):\n",
" return filecmp.cmp(file1, file2, shallow=False)\n",
"\n",
"sol_code_path_0 = os.path.join(\"mlp_sigmoid\", 'test.sol')\n",
"sol_code_path_1 = os.path.join(\"mlp_relu\", 'test.sol')\n",
"\n",
"sol_code_path_2 = os.path.join(\"conv_sigmoid\", 'test.sol')\n",
"sol_code_path_3 = os.path.join(\"conv_relu\", 'test.sol')\n",
"\n",
"\n",
"assert compare_files(sol_code_path_0, sol_code_path_1) == True\n",
"assert compare_files(sol_code_path_2, sol_code_path_3) == True"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here we deploy separate verifier that will be shared by the four models. We picked the `1l_mlp sigmoid` model as an example but you could have used any of the generated verifiers since they are all identical. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os \n",
"addr_path_verifier = \"addr_verifier.txt\"\n",
"sol_code_path = os.path.join(\"mlp_sigmoid\", 'test.sol')\n",
"\n",
"res = await ezkl.deploy_evm(\n",
" addr_path_verifier,\n",
" sol_code_path,\n",
" 'http://127.0.0.1:3030',\n",
" \"verifier/reusable\"\n",
")\n",
"\n",
"assert res == True\n",
"\n",
"with open(addr_path_verifier, 'r') as file:\n",
" addr = file.read().rstrip()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally we deploy each of the unique VK-artifacts and verify them using the shared verifier deployed in the previous step."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for name in names:\n",
" addr_path_vk = \"addr_vk.txt\"\n",
" sol_key_code_path = os.path.join(name, 'test_key.sol')\n",
" res = await ezkl.deploy_evm(addr_path_vk, sol_key_code_path, 'http://127.0.0.1:3030', \"vka\")\n",
" assert res == True\n",
"\n",
" with open(addr_path_vk, 'r') as file:\n",
" addr_vk = file.read().rstrip()\n",
" \n",
" proof_path = os.path.join(name, \"proof.json\")\n",
" sol_code_path = os.path.join(name, 'vk.sol')\n",
" res = await ezkl.verify_evm(\n",
" addr,\n",
" proof_path,\n",
" \"http://127.0.0.1:3030\",\n",
" addr_vk = addr_vk\n",
" )\n",
" assert res == True"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Reusable Verifiers \n",
"\n",
"TODO: Update the reusable verifier solidity contract name.. Make it less generic to H2 and more bespoke to us.\n",
"\n",
"This notebook demonstrates how to create and reuse the same set of separated verifiers for different models. Specifically, we will use the same verifier for the following four models:\n",
"\n",
"- `1l_mlp sigmoid`\n",
"- `1l_mlp relu`\n",
"- `1l_conv sigmoid`\n",
"- `1l_conv relu`\n",
"\n",
"When deploying EZKL verifiers on the blockchain, each associated model typically requires its own unique verifier, leading to increased on-chain state usage. \n",
"However, with the reusable verifier, we can deploy a single verifier that can be used to verify proofs for any valid H2 circuit. This notebook shows how to do so. \n",
"\n",
"By reusing the same verifier across multiple models, we significantly reduce the amount of state bloat on the blockchain. Instead of deploying a unique verifier for each model, we register a unique and much smaller verifying key artifact (VKA) on the reusable verifier contract for each model while sharing a common separated verifier. The VKA contains the VK for the model as well circuit specific metadata that was otherwise hardcoded into the stack of the original non-reusable verifier. The VKA is passed as a parameter to the verifyProof method. This VKA calldata needs to be d with the reusable verifier before it can start verifying proofs by calling the registerVKA method. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import torch.nn as nn\n",
"import torch.onnx\n",
"\n",
"# Define the models\n",
"class MLP_Sigmoid(nn.Module):\n",
" def __init__(self):\n",
" super(MLP_Sigmoid, self).__init__()\n",
" self.fc = nn.Linear(3, 3)\n",
" self.sigmoid = nn.Sigmoid()\n",
"\n",
" def forward(self, x):\n",
" x = self.fc(x)\n",
" x = self.sigmoid(x)\n",
" return x\n",
"\n",
"class MLP_Relu(nn.Module):\n",
" def __init__(self):\n",
" super(MLP_Relu, self).__init__()\n",
" self.fc = nn.Linear(3, 3)\n",
" self.relu = nn.ReLU()\n",
"\n",
" def forward(self, x):\n",
" x = self.fc(x)\n",
" x = self.relu(x)\n",
" return x\n",
"\n",
"class Conv_Sigmoid(nn.Module):\n",
" def __init__(self):\n",
" super(Conv_Sigmoid, self).__init__()\n",
" self.conv = nn.Conv1d(1, 1, kernel_size=3, stride=1)\n",
" self.sigmoid = nn.Sigmoid()\n",
"\n",
" def forward(self, x):\n",
" x = self.conv(x)\n",
" x = self.sigmoid(x)\n",
" return x\n",
"\n",
"class Conv_Relu(nn.Module):\n",
" def __init__(self):\n",
" super(Conv_Relu, self).__init__()\n",
" self.conv = nn.Conv1d(1, 1, kernel_size=3, stride=1)\n",
" self.relu = nn.ReLU()\n",
"\n",
" def forward(self, x):\n",
" x = self.conv(x)\n",
" x = self.relu(x)\n",
" return x\n",
"\n",
"# Instantiate the models\n",
"mlp_sigmoid = MLP_Sigmoid()\n",
"mlp_relu = MLP_Relu()\n",
"conv_sigmoid = Conv_Sigmoid()\n",
"conv_relu = Conv_Relu()\n",
"\n",
"# Dummy input tensor for mlp\n",
"dummy_input_mlp = torch.tensor([[-1.5737053155899048, -1.708398461341858, 0.19544155895709991]])\n",
"input_mlp_path = 'mlp_input.json'\n",
"\n",
"# Dummy input tensor for conv\n",
"dummy_input_conv = torch.tensor([[[1.4124163389205933, 0.6938204169273376, 1.0664031505584717]]])\n",
"input_conv_path = 'conv_input.json'"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"names = ['mlp_sigmoid', 'mlp_relu', 'conv_sigmoid', 'conv_relu']\n",
"models = [mlp_sigmoid, mlp_relu, conv_sigmoid, conv_relu]\n",
"inputs = [dummy_input_mlp, dummy_input_mlp, dummy_input_conv, dummy_input_conv]\n",
"input_paths = [input_mlp_path, input_mlp_path, input_conv_path, input_conv_path]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import json\n",
"import torch\n",
"import ezkl\n",
"\n",
"for name, model, x, input_path in zip(names, models, inputs, input_paths):\n",
" # Create a new directory for the model if it doesn't exist\n",
" if not os.path.exists(name):\n",
" os.mkdir(name)\n",
" # Store the paths in each of their respective directories\n",
" model_path = os.path.join(name, \"network.onnx\")\n",
" compiled_model_path = os.path.join(name, \"network.compiled\")\n",
" pk_path = os.path.join(name, \"test.pk\")\n",
" vk_path = os.path.join(name, \"test.vk\")\n",
" settings_path = os.path.join(name, \"settings.json\")\n",
"\n",
" witness_path = os.path.join(name, \"witness.json\")\n",
" sol_code_path = os.path.join(name, 'test.sol')\n",
" vka_path = os.path.join(name, 'vka.bytes')\n",
" abi_path = os.path.join(name, 'test.abi')\n",
" proof_path = os.path.join(name, \"proof.json\")\n",
"\n",
" # Flips the neural net into inference mode\n",
" model.eval()\n",
"\n",
" # Export the model\n",
" torch.onnx.export(model, x, model_path, export_params=True, opset_version=10,\n",
" do_constant_folding=True, input_names=['input'],\n",
" output_names=['output'], dynamic_axes={'input': {0: 'batch_size'},\n",
" 'output': {0: 'batch_size'}})\n",
"\n",
" data_array = ((x).detach().numpy()).reshape([-1]).tolist()\n",
" data = dict(input_data=[data_array])\n",
" json.dump(data, open(input_path, 'w'))\n",
"\n",
" py_run_args = ezkl.PyRunArgs()\n",
" py_run_args.input_visibility = \"private\"\n",
" py_run_args.output_visibility = \"public\"\n",
" py_run_args.param_visibility = \"fixed\" # private by default\n",
"\n",
" res = ezkl.gen_settings(model_path, settings_path, py_run_args=py_run_args)\n",
" assert res == True\n",
"\n",
" ezkl.calibrate_settings(input_path, model_path, settings_path, \"resources\")\n",
"\n",
" res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n",
" assert res == True\n",
"\n",
" res = await ezkl.get_srs(settings_path)\n",
" assert res == True\n",
"\n",
" # now generate the witness file\n",
" res = ezkl.gen_witness(input_path, compiled_model_path, witness_path)\n",
" assert os.path.isfile(witness_path) == True\n",
"\n",
" # SETUP \n",
" # We recommend disabling selector compression for the setup as it decreases the size of the VK artifact\n",
" res = ezkl.setup(compiled_model_path, vk_path, pk_path, disable_selector_compression=True)\n",
" assert res == True\n",
" assert os.path.isfile(vk_path)\n",
" assert os.path.isfile(pk_path)\n",
" assert os.path.isfile(settings_path)\n",
"\n",
" # GENERATE A PROOF\n",
" res = ezkl.prove(witness_path, compiled_model_path, pk_path, proof_path, \"single\")\n",
" assert os.path.isfile(proof_path)\n",
"\n",
" res = await ezkl.create_evm_verifier(vk_path, settings_path, sol_code_path, abi_path, reusable=True)\n",
" # TODO: Add a flag force equals true to in the deprication process to preserve OG single purpose verifier?\n",
" assert res == True\n",
"\n",
" # TODO: \n",
" res = await ezkl.create_evm_vka(vk_path, settings_path, vka_path, decimals=18)\n",
" assert res == True\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"import subprocess\n",
"import time\n",
"\n",
"# make sure anvil is running locally\n",
"# $ anvil -p 3030\n",
"\n",
"RPC_URL = \"http://localhost:3030\"\n",
"\n",
"# Save process globally\n",
"anvil_process = None\n",
"\n",
"def start_anvil():\n",
" global anvil_process\n",
" if anvil_process is None:\n",
" anvil_process = subprocess.Popen([\"anvil\", \"-p\", \"3030\", \"--code-size-limit=41943040\"])\n",
" if anvil_process.returncode is not None:\n",
" raise Exception(\"failed to start anvil process\")\n",
" time.sleep(3)\n",
"\n",
"def stop_anvil():\n",
" global anvil_process\n",
" if anvil_process is not None:\n",
" anvil_process.terminate()\n",
" anvil_process = None\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Check that the generated verifiers are identical for all models."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"import filecmp\n",
"\n",
"def compare_files(file1, file2):\n",
" return filecmp.cmp(file1, file2, shallow=False)\n",
"\n",
"sol_code_path_0 = os.path.join(\"mlp_sigmoid\", 'test.sol')\n",
"sol_code_path_1 = os.path.join(\"mlp_relu\", 'test.sol')\n",
"\n",
"sol_code_path_2 = os.path.join(\"conv_sigmoid\", 'test.sol')\n",
"sol_code_path_3 = os.path.join(\"conv_relu\", 'test.sol')\n",
"\n",
"\n",
"assert compare_files(sol_code_path_0, sol_code_path_1) == True\n",
"assert compare_files(sol_code_path_2, sol_code_path_3) == True"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here we deploy reusable verifier that will be shared by the four models. We picked the `1l_mlp sigmoid` model as an example but you could have used any of the generated verifiers since they are all identical. "
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"import os \n",
"addr_path_verifier = \"addr_verifier.txt\"\n",
"sol_code_path = os.path.join(\"mlp_sigmoid\", 'test.sol')\n",
"\n",
"res = await ezkl.deploy_evm(\n",
" addr_path_verifier,\n",
" 'http://127.0.0.1:3030',\n",
" sol_code_path,\n",
" \"verifier/reusable\" # TODO deprecate this option for selecting the type of verifier you want to deploy. \n",
" # verifier, verifier/reusable, vka\n",
")\n",
"\n",
"assert res == True\n",
"\n",
"with open(addr_path_verifier, 'r') as file:\n",
" addr = file.read().rstrip()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally we deploy each of the unique VK-artifacts and verify them using the shared verifier deployed in the previous step."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for name in names:\n",
" addr_path_vk = \"addr_vk.txt\"\n",
" vka_path = os.path.join(name, 'vka.bytes')\n",
" res = await ezkl.register_vka(\n",
" addr, # address of the reusable verifier. TODO: If we deploy the RV across all chains to a single canoncial address, we can hardcode that address and remove this param.\n",
" 'http://127.0.0.1:3030',\n",
" vka_path=vka_path, # TODO: Pass in private key and potentially create new command that both creates and registers the vka. Simplify testing pipeline for us and other folks. \n",
" )\n",
" assert res == True\n",
" \n",
" proof_path = os.path.join(name, \"proof.json\")\n",
" res = await ezkl.verify_evm(\n",
" addr,\n",
" \"http://127.0.0.1:3030\",\n",
" proof_path,\n",
" vka_path = vka_path # TODO: Turn this from optional to required if we deprecate the orignal verifier. \n",
" # TODO: Make it where the use only needs to deply a vka. \n",
" )\n",
" assert res == True"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -167,6 +167,8 @@
"run_args = ezkl.PyRunArgs()\n",
"# \"hashed/private\" means that the output of the hashing is not visible to the verifier and is instead fed into the computational graph\n",
"run_args.input_visibility = \"hashed/private/0\"\n",
"# as the inputs are felts we turn off input range checks\n",
"run_args.ignore_range_check_inputs_outputs = True\n",
"# we set it to fix the set we want to check membership for\n",
"run_args.param_visibility = \"fixed\"\n",
"# the output is public -- set membership fails if it is not = 0\n",
@@ -229,7 +231,7 @@
"source": [
"# now generate the witness file\n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},
@@ -265,7 +267,7 @@
" # Serialize data into file:\n",
"json.dump( data, open(data_path_faulty, 'w' ))\n",
"\n",
"res = await ezkl.gen_witness(data_path_faulty, compiled_model_path, witness_path_faulty)\n",
"res = ezkl.gen_witness(data_path_faulty, compiled_model_path, witness_path_faulty)\n",
"assert os.path.isfile(witness_path_faulty)"
]
},
@@ -310,7 +312,7 @@
"# Serialize data into file:\n",
"json.dump( data, open(data_path_truthy, 'w' ))\n",
"\n",
"res = await ezkl.gen_witness(data_path_truthy, compiled_model_path, witness_path_truthy)\n",
"res = ezkl.gen_witness(data_path_truthy, compiled_model_path, witness_path_truthy)\n",
"assert os.path.isfile(witness_path_truthy)"
]
},
@@ -519,4 +521,4 @@
},
"nbformat": 4,
"nbformat_minor": 5
}
}

View File

@@ -171,7 +171,7 @@
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"\n",
"await ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
"ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
]
},
{
@@ -205,7 +205,7 @@
"source": [
"# now generate the witness file \n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},
@@ -404,4 +404,4 @@
},
"nbformat": 4,
"nbformat_minor": 5
}
}

View File

@@ -171,7 +171,7 @@
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"\n",
"await ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
"ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
]
},
{
@@ -205,7 +205,7 @@
"source": [
"# now generate the witness file \n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},
@@ -304,4 +304,4 @@
},
"nbformat": 4,
"nbformat_minor": 5
}
}

View File

@@ -169,7 +169,7 @@
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"\n",
"await ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
"ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
]
},
{
@@ -203,7 +203,7 @@
"source": [
"# now generate the witness file \n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},
@@ -302,4 +302,4 @@
},
"nbformat": 4,
"nbformat_minor": 5
}
}

View File

@@ -170,7 +170,7 @@
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"\n",
"await ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
"ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
]
},
{
@@ -204,7 +204,7 @@
"source": [
"# now generate the witness file \n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},
@@ -303,4 +303,4 @@
},
"nbformat": 4,
"nbformat_minor": 5
}
}

View File

@@ -149,7 +149,7 @@
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"\n",
"await ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
"ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
]
},
{
@@ -183,7 +183,7 @@
"source": [
"# now generate the witness file \n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},

View File

@@ -204,6 +204,7 @@
"run_args = ezkl.PyRunArgs()\n",
"# \"polycommit\" means that the output of the hashing is not visible to the verifier and is instead fed into the computational graph\n",
"run_args.input_visibility = \"polycommit\"\n",
"run_args.ignore_range_check_inputs_outputs = True\n",
"# the parameters are public\n",
"run_args.param_visibility = \"fixed\"\n",
"# the output is public (this is the inequality test)\n",
@@ -297,7 +298,7 @@
"\n",
"witness_path = \"witness.json\"\n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path, vk_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path, vk_path)\n",
"assert os.path.isfile(witness_path)\n",
"\n",
"# we force the output to be 1 this corresponds to the solvency test being true -- and we set this to a fixed vis output\n",
@@ -411,7 +412,7 @@
"source": [
"# now generate the witness file\n",
"\n",
"res = await ezkl.gen_witness(data_path_faulty, compiled_model_path, witness_path, vk_path)\n",
"res = ezkl.gen_witness(data_path_faulty, compiled_model_path, witness_path, vk_path)\n",
"assert os.path.isfile(witness_path)\n",
"\n",
"# we force the output to be 1 this corresponds to the solvency test being true -- and we set this to a fixed vis output\n",
@@ -514,4 +515,4 @@
},
"nbformat": 4,
"nbformat_minor": 5
}
}

View File

@@ -167,7 +167,7 @@
"res = ezkl.gen_settings(model_path, settings_path)\n",
"assert res == True\n",
"\n",
"res = await ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"res = ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"assert res == True"
]
},
@@ -187,7 +187,7 @@
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"\n",
"await ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
"ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
]
},
{
@@ -221,7 +221,7 @@
"source": [
"# now generate the witness file \n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},

View File

@@ -152,7 +152,7 @@
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"\n",
"await ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
"ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
]
},
{
@@ -186,7 +186,7 @@
"source": [
"# now generate the witness file \n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},
@@ -392,7 +392,7 @@
"res = ezkl.gen_settings(model_path, settings_path)\n",
"assert res == True\n",
"\n",
"res = await ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"res = ezkl.calibrate_settings(data_path, model_path, settings_path, \"resources\")\n",
"assert res == True"
]
}
@@ -418,4 +418,4 @@
},
"nbformat": 4,
"nbformat_minor": 5
}
}

View File

@@ -637,7 +637,7 @@
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"\n",
"await ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\", scales = [11])"
"ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\", scales = [11])"
]
},
{
@@ -683,7 +683,7 @@
" data = json.load(f)\n",
" print(len(data['input_data'][0]))\n",
"\n",
"await ezkl.gen_witness(data_path, compiled_model_path, witness_path)"
"ezkl.gen_witness(data_path, compiled_model_path, witness_path)"
]
},
{
@@ -758,4 +758,4 @@
},
"nbformat": 4,
"nbformat_minor": 4
}
}

View File

@@ -525,7 +525,7 @@
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"\n",
"await ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\", scales = [4])"
"ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\", scales = [4])"
]
},
{
@@ -572,7 +572,7 @@
" data = json.load(f)\n",
" print(len(data['input_data'][0]))\n",
"\n",
"await ezkl.gen_witness(data_path, compiled_model_path, witness_path)"
"ezkl.gen_witness(data_path, compiled_model_path, witness_path)"
]
},
{
@@ -647,4 +647,4 @@
},
"nbformat": 4,
"nbformat_minor": 4
}
}

View File

@@ -1,763 +0,0 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# univ3-da-ezkl\n",
"\n",
"Here's an example leveraging EZKL whereby the inputs to the model are read and attested to from an on-chain source. For this setup we make a single call to a view function that returns an array of UniV3 historical TWAP price data that we will attest to on-chain. \n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"First we import the necessary dependencies and set up logging to be as informative as possible. "
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# check if notebook is in colab\n",
"try:\n",
" # install ezkl\n",
" import google.colab\n",
" import subprocess\n",
" import sys\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n",
"\n",
"# rely on local installation of ezkl if the notebook is not in colab\n",
"except:\n",
" pass\n",
"\n",
"\n",
"from torch import nn\n",
"import ezkl\n",
"import os\n",
"import json\n",
"import logging\n",
"\n",
"# uncomment for more descriptive logging \n",
"FORMAT = '%(levelname)s %(name)s %(asctime)-15s %(filename)s:%(lineno)d %(message)s'\n",
"logging.basicConfig(format=FORMAT)\n",
"logging.getLogger().setLevel(logging.DEBUG)\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we define our model. It is a very simple PyTorch model that has just one layer, an average pooling 2D layer. "
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"# Defines the model\n",
"\n",
"class MyModel(nn.Module):\n",
" def __init__(self):\n",
" super(MyModel, self).__init__()\n",
" self.layer = nn.AvgPool2d(2, 1, (1, 1))\n",
"\n",
" def forward(self, x):\n",
" return self.layer(x)[0]\n",
"\n",
"\n",
"circuit = MyModel()\n",
"\n",
"# this is where you'd train your model"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"We omit training for purposes of this demonstration. We've marked where training would happen in the cell above. \n",
"Now we export the model to onnx and create a corresponding (randomly generated) input. This input data will eventually be stored on chain and read from according to the call_data field in the graph input.\n",
"\n",
"You can replace the random `x` with real data if you so wish. "
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"x = 0.1*torch.rand(1,*[3, 2, 2], requires_grad=True)\n",
"\n",
"# Flips the neural net into inference mode\n",
"circuit.eval()\n",
"\n",
" # Export the model\n",
"torch.onnx.export(circuit, # model being run\n",
" x, # model input (or a tuple for multiple inputs)\n",
" \"network.onnx\", # where to save the model (can be a file or file-like object)\n",
" export_params=True, # store the trained parameter weights inside the model file\n",
" opset_version=10, # the ONNX version to export the model to\n",
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
" input_names = ['input'], # the model's input names\n",
" output_names = ['output'], # the model's output names\n",
" dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes\n",
" 'output' : {0 : 'batch_size'}})\n",
"\n",
"data_array = ((x).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data = dict(input_data = [data_array])\n",
"\n",
" # Serialize data into file:\n",
"json.dump(data, open(\"input.json\", 'w' ))\n",
"\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"We now define a function that will create a new anvil instance which we will deploy our test contract too. This contract will contain in its storage the data that we will read from and attest to. In production you would not need to set up a local anvil instance. Instead you would replace RPC_URL with the actual RPC endpoint of the chain you are deploying your verifiers too, reading from the data on said chain."
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
"import subprocess\n",
"import time\n",
"import threading\n",
"\n",
"# make sure anvil is running locally\n",
"# $ anvil -p 3030\n",
"\n",
"RPC_URL = \"http://localhost:3030\"\n",
"\n",
"# Save process globally\n",
"anvil_process = None\n",
"\n",
"def start_anvil():\n",
" global anvil_process\n",
" if anvil_process is None:\n",
" anvil_process = subprocess.Popen([\"anvil\", \"-p\", \"3030\", \"--fork-url\", \"https://arb1.arbitrum.io/rpc\", \"--code-size-limit=41943040\"])\n",
" if anvil_process.returncode is not None:\n",
" raise Exception(\"failed to start anvil process\")\n",
" time.sleep(3)\n",
"\n",
"def stop_anvil():\n",
" global anvil_process\n",
" if anvil_process is not None:\n",
" anvil_process.terminate()\n",
" anvil_process = None\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"We define our `PyRunArgs` objects which contains the visibility parameters for out model. \n",
"- `input_visibility` defines the visibility of the model inputs\n",
"- `param_visibility` defines the visibility of the model weights and constants and parameters \n",
"- `output_visibility` defines the visibility of the model outputs\n",
"\n",
"Here we create the following setup:\n",
"- `input_visibility`: \"public\"\n",
"- `param_visibility`: \"private\"\n",
"- `output_visibility`: public\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"import ezkl\n",
"\n",
"model_path = os.path.join('network.onnx')\n",
"compiled_model_path = os.path.join('network.compiled')\n",
"pk_path = os.path.join('test.pk')\n",
"vk_path = os.path.join('test.vk')\n",
"settings_path = os.path.join('settings.json')\n",
"srs_path = os.path.join('kzg.srs')\n",
"data_path = os.path.join('input.json')\n",
"\n",
"run_args = ezkl.PyRunArgs()\n",
"run_args.input_visibility = \"public\"\n",
"run_args.param_visibility = \"private\"\n",
"run_args.output_visibility = \"public\"\n",
"run_args.num_inner_cols = 1\n",
"run_args.variables = [(\"batch_size\", 1)]"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we generate a settings file. This file basically instantiates a bunch of parameters that determine their circuit shape, size etc... Because of the way we represent nonlinearities in the circuit (using Halo2's [lookup tables](https://zcash.github.io/halo2/design/proving-system/lookup.html)), it is often best to _calibrate_ this settings file as some data can fall out of range of these lookups.\n",
"\n",
"You can pass a dataset for calibration that will be representative of real inputs you might find if and when you deploy the prover. Here we create a dummy calibration dataset for demonstration purposes. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# TODO: Dictionary outputs\n",
"res = ezkl.gen_settings(model_path, settings_path, py_run_args=run_args)\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# generate a bunch of dummy calibration data\n",
"cal_data = {\n",
" \"input_data\": [(0.1*torch.rand(2, *[3, 2, 2])).flatten().tolist()],\n",
"}\n",
"\n",
"cal_path = os.path.join('val_data.json')\n",
"# save as json file\n",
"with open(cal_path, \"w\") as f:\n",
" json.dump(cal_data, f)\n",
"\n",
"res = await ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n",
"assert res == True"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The graph input for on chain data sources is formatted completely differently compared to file based data sources.\n",
"\n",
"- For file data sources, the raw floating point values that eventually get quantized, converted into field elements and stored in `witness.json` to be consumed by the circuit are stored. The output data contains the expected floating point values returned as outputs from running your vanilla pytorch model on the given inputs.\n",
"- For on chain data sources, the input_data field contains all the data necessary to read and format the on chain data into something digestable by EZKL (aka field elements :-D). \n",
"Here is what the schema for an on-chain data source graph input file should look like for a single call data source:\n",
" \n",
"```json\n",
"{\n",
" \"input_data\": {\n",
" \"rpc\": \"http://localhost:3030\", // The rpc endpoint of the chain you are deploying your verifier to\n",
" \"calls\": {\n",
" \"call_data\": \"1f3be514000000000000000000000000c6962004f452be9203591991d15f6b388e09e8d00000000000000000000000000000000000000000000000000000000000000040000000000000000000000000000000000000000000000000000000000000000c000000000000000000000000000000000000000000000000000000000000000b000000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000000000000000000000000000000000000000009000000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000000070000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000500000000000000000000000000000000000000000000000000000000000000040000000000000000000000000000000000000000000000000000000000000003000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000\", // The abi encoded call data to a view function that returns an array of on-chain data points we are attesting to. \n",
" \"decimals\": 0, // The number of decimal places of the large uint256 value. This is our way of representing large wei values as floating points on chain, since the evm only natively supports integer values.\n",
" \"address\": \"9A213F53334279C128C37DA962E5472eCD90554f\", // The address of the contract that we are calling to get the data. \n",
" \"len\": 12 // The number of data points returned by the view function (the length of the array)\n",
" }\n",
" }\n",
"}\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from web3 import Web3, HTTPProvider\n",
"from solcx import compile_standard\n",
"from decimal import Decimal\n",
"import json\n",
"import os\n",
"import torch\n",
"import requests\n",
"\n",
"# This function counts the decimal places of a floating point number\n",
"def count_decimal_places(num):\n",
" num_str = str(num)\n",
" if '.' in num_str:\n",
" return len(num_str) - 1 - num_str.index('.')\n",
" else:\n",
" return 0\n",
"\n",
"# setup web3 instance\n",
"w3 = Web3(HTTPProvider(RPC_URL)) \n",
"\n",
"def set_next_block_timestamp(anvil_url, timestamp):\n",
" # Send the JSON-RPC request to Anvil\n",
" payload = {\n",
" \"jsonrpc\": \"2.0\",\n",
" \"id\": 1,\n",
" \"method\": \"evm_setNextBlockTimestamp\",\n",
" \"params\": [timestamp]\n",
" }\n",
" response = requests.post(anvil_url, json=payload)\n",
" if response.status_code == 200:\n",
" print(f\"Next block timestamp set to: {timestamp}\")\n",
" else:\n",
" print(f\"Failed to set next block timestamp: {response.text}\")\n",
"\n",
"def on_chain_data(tensor):\n",
" # Step 0: Convert the tensor to a flat list\n",
" data = tensor.view(-1).tolist()\n",
"\n",
" # Step 1: Prepare the calldata\n",
" secondsAgo = [len(data) - 1 - i for i in range(len(data))]\n",
"\n",
" # Step 2: Prepare and compile the contract UniTickAttestor contract\n",
" contract_source_code = '''\n",
" // SPDX-License-Identifier: MIT\n",
" pragma solidity ^0.8.20;\n",
"\n",
" /// @title Pool state that is not stored\n",
" /// @notice Contains view functions to provide information about the pool that is computed rather than stored on the\n",
" /// blockchain. The functions here may have variable gas costs.\n",
" interface IUniswapV3PoolDerivedState {\n",
" /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp\n",
" /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing\n",
" /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,\n",
" /// you must call it with secondsAgos = [3600, 0].\n",
" /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.\n",
" /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in\n",
" /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned\n",
" /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp\n",
" /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block\n",
" /// timestamp\n",
" function observe(\n",
" uint32[] calldata secondsAgos\n",
" )\n",
" external\n",
" view\n",
" returns (\n",
" int56[] memory tickCumulatives,\n",
" uint160[] memory secondsPerLiquidityCumulativeX128s\n",
" );\n",
" }\n",
"\n",
" /// @title Uniswap Wrapper around `pool.observe` that stores the parameters for fetching and then attesting to historical data\n",
" /// @notice Provides functions to integrate with V3 pool oracle\n",
" contract UniTickAttestor {\n",
" /**\n",
" * @notice Calculates time-weighted means of tick and liquidity for a given Uniswap V3 pool\n",
" * @param pool Address of the pool that we want to observe\n",
" * @param secondsAgo Number of seconds in the past from which to calculate the time-weighted means\n",
" * @return tickCumulatives The cumulative tick values as of each `secondsAgo` from the current block timestamp\n",
" */\n",
" function consult(\n",
" IUniswapV3PoolDerivedState pool,\n",
" uint32[] memory secondsAgo\n",
" ) public view returns (int256[] memory tickCumulatives) {\n",
" tickCumulatives = new int256[](secondsAgo.length);\n",
" (int56[] memory _ticks,) = pool.observe(secondsAgo);\n",
" for (uint256 i = 0; i < secondsAgo.length; i++) {\n",
" tickCumulatives[i] = int256(_ticks[i]);\n",
" }\n",
" }\n",
" }\n",
" '''\n",
"\n",
" compiled_sol = compile_standard({\n",
" \"language\": \"Solidity\",\n",
" \"sources\": {\"UniTickAttestor.sol\": {\"content\": contract_source_code}},\n",
" \"settings\": {\"outputSelection\": {\"*\": {\"*\": [\"metadata\", \"evm.bytecode\", \"abi\"]}}}\n",
" })\n",
"\n",
" # Get bytecode\n",
" bytecode = compiled_sol['contracts']['UniTickAttestor.sol']['UniTickAttestor']['evm']['bytecode']['object']\n",
"\n",
" # Get ABI\n",
" # In production if you are reading from really large contracts you can just use\n",
" # a stripped down version of the ABI of the contract you are calling, containing only the view functions you will fetch data from.\n",
" abi = json.loads(compiled_sol['contracts']['UniTickAttestor.sol']['UniTickAttestor']['metadata'])['output']['abi']\n",
"\n",
" # Step 3: Deploy the contract\n",
" UniTickAttestor = w3.eth.contract(abi=abi, bytecode=bytecode)\n",
" tx_hash = UniTickAttestor.constructor().transact()\n",
" tx_receipt = w3.eth.wait_for_transaction_receipt(tx_hash)\n",
" # If you are deploying to production you can skip the 3 lines of code above and just instantiate the contract like this,\n",
" # passing the address and abi of the contract you are fetching data from.\n",
" contract = w3.eth.contract(address=tx_receipt['contractAddress'], abi=abi)\n",
"\n",
" # Step 4: Interact with the contract\n",
" call = contract.functions.consult(\n",
" # Address of the UniV3 usdc-weth pool 0.005 fee\n",
" \"0xC6962004f452bE9203591991D15f6b388e09E8D0\",\n",
" secondsAgo\n",
" ).build_transaction()\n",
" result = contract.functions.consult(\n",
" # Address of the UniV3 usdc-weth pool 0.005 fee\n",
" \"0xC6962004f452bE9203591991D15f6b388e09E8D0\",\n",
" secondsAgo\n",
" ).call()\n",
" \n",
" print(f'result: {result}')\n",
" calldata = call['data'][2:]\n",
"\n",
" time_stamp = w3.eth.get_block('latest')['timestamp']\n",
"\n",
" print(f'time_stamp: {time_stamp}')\n",
"\n",
" # Set the next block timestamp using the fetched time_stamp\n",
" set_next_block_timestamp(RPC_URL, time_stamp)\n",
"\n",
"\n",
" # Prepare the calls_to_account object\n",
" # If you were calling view functions across multiple contracts,\n",
" # you would have multiple entries in the calls_to_account array,\n",
" # one for each contract.\n",
" call_to_account = {\n",
" 'call_data': calldata,\n",
" 'decimals': 0,\n",
" 'address': contract.address[2:], # remove the '0x' prefix\n",
" 'len': len(data),\n",
" }\n",
"\n",
" print(f'call_to_account: {call_to_account}')\n",
"\n",
" return call_to_account\n",
"\n",
"# Now let's start the Anvil process. You don't need to do this if you are deploying to a non-local chain.\n",
"start_anvil()\n",
"\n",
"# Now let's call our function, passing in the same input tensor we used to export the model 2 cells above.\n",
"calls_to_account = on_chain_data(x)\n",
"\n",
"data = dict(input_data = {'rpc': RPC_URL, 'calls': calls_to_account })\n",
"\n",
"# Serialize on-chain data into file:\n",
"json.dump(data, open(\"input.json\", 'w'))"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"As we use Halo2 with KZG-commitments we need an SRS string from (preferably) a multi-party trusted setup ceremony. For an overview of the procedures for such a ceremony check out [this page](https://blog.ethereum.org/2023/01/16/announcing-kzg-ceremony). The `get_srs` command retrieves a correctly sized SRS given the calibrated settings file from [here](https://github.com/han0110/halo2-kzg-srs). \n",
"\n",
"These SRS were generated with [this](https://github.com/privacy-scaling-explorations/perpetualpowersoftau) ceremony. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"res = await ezkl.get_srs( settings_path)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"We now need to generate the circuit witness. These are the model outputs (and any hashes) that are generated when feeding the previously generated `input.json` through the circuit / model. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# !export RUST_BACKTRACE=1\n",
"\n",
"witness_path = \"witness.json\"\n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Here we setup verifying and proving keys for the circuit. As the name suggests the proving key is needed for ... proving and the verifying key is needed for ... verifying. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# HERE WE SETUP THE CIRCUIT PARAMS\n",
"# WE GOT KEYS\n",
"# WE GOT CIRCUIT PARAMETERS\n",
"# EVERYTHING ANYONE HAS EVER NEEDED FOR ZK\n",
"res = ezkl.setup(\n",
" compiled_model_path,\n",
" vk_path,\n",
" pk_path,\n",
" )\n",
"\n",
"assert res == True\n",
"assert os.path.isfile(vk_path)\n",
"assert os.path.isfile(pk_path)\n",
"assert os.path.isfile(settings_path)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we generate a full proof. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# GENERATE A PROOF\n",
"\n",
"proof_path = os.path.join('test.pf')\n",
"\n",
"res = ezkl.prove(\n",
" witness_path,\n",
" compiled_model_path,\n",
" pk_path,\n",
" proof_path,\n",
" \"single\",\n",
" )\n",
"\n",
"print(res)\n",
"assert os.path.isfile(proof_path)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"And verify it as a sanity check. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# VERIFY IT\n",
"\n",
"res = ezkl.verify(\n",
" proof_path,\n",
" settings_path,\n",
" vk_path,\n",
" )\n",
"\n",
"assert res == True\n",
"print(\"verified\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can now create and then deploy a vanilla evm verifier."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"abi_path = 'test.abi'\n",
"sol_code_path = 'test.sol'\n",
"\n",
"res = await ezkl.create_evm_verifier(\n",
" vk_path,\n",
" settings_path,\n",
" sol_code_path,\n",
" abi_path,\n",
" )\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"addr_path_verifier = \"addr_verifier.txt\"\n",
"\n",
"res = await ezkl.deploy_evm(\n",
" addr_path_verifier,\n",
" sol_code_path,\n",
" 'http://127.0.0.1:3030'\n",
")\n",
"\n",
"assert res == True"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"With the vanilla verifier deployed, we can now create the data attestation contract, which will read in the instances from the calldata to the verifier, attest to them, call the verifier and then return the result. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"abi_path = 'test.abi'\n",
"sol_code_path = 'test.sol'\n",
"input_path = 'input.json'\n",
"\n",
"res = await ezkl.create_evm_data_attestation(\n",
" input_path,\n",
" settings_path,\n",
" sol_code_path,\n",
" abi_path,\n",
" )"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can deploy the data attest verifier contract. For security reasons, this binding will only deploy to a local anvil instance, using accounts generated by anvil. \n",
"So should only be used for testing purposes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"addr_path_da = \"addr_da.txt\"\n",
"\n",
"res = await ezkl.deploy_da_evm(\n",
" addr_path_da,\n",
" input_path,\n",
" settings_path,\n",
" sol_code_path,\n",
" RPC_URL,\n",
" )\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Here we need to regenerate the witness, prove and then verify all within the same cell. This is because we want to reduce the amount of latency between reading on-chain state and verifying it on-chain. This is because the attest input values read from the oracle are time sensitive (their values are derived from computing on block.timestamp) and can change between the time of reading and the time of verifying.\n",
"\n",
"Call the view only verify method on the contract to verify the proof. Since it is a view function this is safe to use in production since you don't have to pass your private key."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# !export RUST_BACKTRACE=1\n",
"\n",
"calls_to_account = on_chain_data(x)\n",
"\n",
"data = dict(input_data = {'rpc': RPC_URL, 'calls': calls_to_account })\n",
"\n",
"# Serialize on-chain data into file:\n",
"json.dump(data, open(\"input.json\", 'w'))\n",
"\n",
"# setup web3 instance\n",
"w3 = Web3(HTTPProvider(RPC_URL)) \n",
"\n",
"time_stamp = w3.eth.get_block('latest')['timestamp']\n",
"\n",
"print(f'time_stamp: {time_stamp}')\n",
"\n",
"\n",
"witness_path = \"witness.json\"\n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"\n",
"res = ezkl.prove(\n",
" witness_path,\n",
" compiled_model_path,\n",
" pk_path,\n",
" proof_path,\n",
" \"single\",\n",
" )\n",
"\n",
"print(res)\n",
"assert os.path.isfile(proof_path)\n",
"# read the verifier address\n",
"addr_verifier = None\n",
"with open(addr_path_verifier, 'r') as f:\n",
" addr = f.read()\n",
"#read the data attestation address\n",
"addr_da = None\n",
"with open(addr_path_da, 'r') as f:\n",
" addr_da = f.read()\n",
"\n",
"res = await ezkl.verify_evm(\n",
" addr,\n",
" proof_path,\n",
" RPC_URL,\n",
" addr_da,\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@@ -458,7 +458,7 @@
"\n",
"\n",
"ezkl.gen_settings(onnx_filename, settings_filename)\n",
"await ezkl.calibrate_settings(\n",
"ezkl.calibrate_settings(\n",
" input_filename, onnx_filename, settings_filename, \"resources\", scales = [4])\n",
"res = await ezkl.get_srs(settings_filename)\n",
"ezkl.compile_circuit(onnx_filename, compiled_filename, settings_filename)\n",
@@ -527,7 +527,7 @@
"\n",
"witness_path = \"witness.json\"\n",
"\n",
"res = await ezkl.gen_witness(input_filename, compiled_filename, witness_path)\n",
"res = ezkl.gen_witness(input_filename, compiled_filename, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},
@@ -666,7 +666,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": null,
"metadata": {},
"outputs": [
{
@@ -689,8 +689,8 @@
"# await\n",
"res = await ezkl.deploy_evm(\n",
" address_path,\n",
" 'http://127.0.0.1:3030',\n",
" sol_code_path,\n",
" 'http://127.0.0.1:3030'\n",
")\n",
"\n",
"assert res == True\n",
@@ -701,7 +701,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": null,
"metadata": {},
"outputs": [
{
@@ -722,8 +722,8 @@
"\n",
"res = await ezkl.verify_evm(\n",
" addr,\n",
" \"http://127.0.0.1:3030\",\n",
" proof_path,\n",
" \"http://127.0.0.1:3030\"\n",
")\n",
"assert res == True"
]
@@ -743,7 +743,8 @@
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"display_name": ".env",
"language": "python",
"name": "python3"
},
"language_info": {
@@ -756,9 +757,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
"version": "3.12.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
}

View File

@@ -629,7 +629,7 @@
"source": [
"\n",
"\n",
"res = await ezkl.calibrate_settings(val_data, model_path, settings_path, \"resources\", scales = [4])\n",
"res = ezkl.calibrate_settings(val_data, model_path, settings_path, \"resources\", scales = [4])\n",
"assert res == True\n",
"print(\"verified\")\n"
]
@@ -680,7 +680,7 @@
"\n",
"witness_path = \"witness.json\"\n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},
@@ -849,8 +849,8 @@
"\n",
"res = await ezkl.deploy_evm(\n",
" address_path,\n",
" 'http://127.0.0.1:3030',\n",
" sol_code_path,\n",
" 'http://127.0.0.1:3030'\n",
")\n",
"\n",
"assert res == True\n",
@@ -870,8 +870,8 @@
"\n",
"res = await ezkl.verify_evm(\n",
" addr,\n",
" proof_path,\n",
" \"http://127.0.0.1:3030\"\n",
" \"http://127.0.0.1:3030\",\n",
" proof_path\n",
")\n",
"assert res == True"
]

View File

@@ -1,547 +0,0 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "cf69bb3f-94e6-4dba-92cd-ce08df117d67",
"metadata": {},
"source": [
"## World rotation\n",
"\n",
"Here we demonstrate how to use the EZKL package to rotate an on-chain world. \n",
"\n",
"![zk-gaming-diagram-transformed](https://hackmd.io/_uploads/HkApuQGV6.png)\n",
"> **A typical ZK application flow**. For the shape rotators out there — this is an easily digestible example. A user computes a ZK-proof that they have calculated a valid rotation of a world. They submit this proof to a verifier contract which governs an on-chain world, along with a new set of coordinates, and the world rotation updates. Observe that its possible for one player to initiate a *global* change.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "95613ee9",
"metadata": {},
"outputs": [],
"source": [
"# check if notebook is in colab\n",
"try:\n",
" # install ezkl\n",
" import google.colab\n",
" import subprocess\n",
" import sys\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"ezkl\"])\n",
" subprocess.check_call([sys.executable, \"-m\", \"pip\", \"install\", \"onnx\"])\n",
"\n",
"# rely on local installation of ezkl if the notebook is not in colab\n",
"except:\n",
" pass\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from torch import nn\n",
"import ezkl\n",
"import os\n",
"import json\n",
"import torch\n",
"import math\n",
"\n",
"# these are constants for the rotation\n",
"phi = torch.tensor(5 * math.pi / 180)\n",
"s = torch.sin(phi)\n",
"c = torch.cos(phi)\n",
"\n",
"\n",
"class RotateStuff(nn.Module):\n",
" def __init__(self):\n",
" super(RotateStuff, self).__init__()\n",
"\n",
" # create a rotation matrix -- the matrix is constant and is transposed for convenience\n",
" self.rot = torch.stack([torch.stack([c, -s]),\n",
" torch.stack([s, c])]).t()\n",
"\n",
" def forward(self, x):\n",
" x_rot = x @ self.rot # same as x_rot = (rot @ x.t()).t() due to rot in O(n) (SO(n) even)\n",
" return x_rot\n",
"\n",
"\n",
"circuit = RotateStuff()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This will showcase the principle directions of rotation by plotting the rotation of a single unit vector."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from matplotlib import pyplot\n",
"pyplot.figure(figsize=(3, 3))\n",
"pyplot.arrow(0, 0, 1, 0, width=0.02, alpha=0.5)\n",
"pyplot.arrow(0, 0, 0, 1, width=0.02, alpha=0.5)\n",
"pyplot.arrow(0, 0, circuit.rot[0, 0].item(), circuit.rot[0, 1].item(), width=0.02)\n",
"pyplot.arrow(0, 0, circuit.rot[1, 0].item(), circuit.rot[1, 1].item(), width=0.02)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b37637c4",
"metadata": {},
"outputs": [],
"source": [
"model_path = os.path.join('network.onnx')\n",
"compiled_model_path = os.path.join('network.compiled')\n",
"pk_path = os.path.join('test.pk')\n",
"vk_path = os.path.join('test.vk')\n",
"settings_path = os.path.join('settings.json')\n",
"srs_path = os.path.join('kzg.srs')\n",
"witness_path = os.path.join('witness.json')\n",
"data_path = os.path.join('input.json')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "82db373a",
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"# initial principle vectors for the rotation are as in the plot above\n",
"x = torch.tensor([[1, 0], [0, 1]], dtype=torch.float32)\n",
"\n",
"# Flips the neural net into inference mode\n",
"circuit.eval()\n",
"\n",
" # Export the model\n",
"torch.onnx.export(circuit, # model being run\n",
" x, # model input (or a tuple for multiple inputs)\n",
" model_path, # where to save the model (can be a file or file-like object)\n",
" export_params=True, # store the trained parameter weights inside the model file\n",
" opset_version=10, # the ONNX version to export the model to\n",
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
" input_names = ['input'], # the model's input names\n",
" output_names = ['output'], # the model's output names\n",
" )\n",
"\n",
"data_array = ((x).detach().numpy()).reshape([-1]).tolist()\n",
"\n",
"data = dict(input_data = [data_array])\n",
"\n",
" # Serialize data into file:\n",
"json.dump( data, open(data_path, 'w' ))\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### World rotation in 2D on-chain"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For demo purposes we deploy these coordinates to a contract running locally using Anvil. This creates our on-chain world. We then rotate the world using the EZKL package and submit the proof to the contract. The contract then updates the world rotation. For demo purposes we do this repeatedly, rotating the world by 1 transform each time."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import subprocess\n",
"import time\n",
"import threading\n",
"\n",
"# make sure anvil is running locally\n",
"# $ anvil -p 3030\n",
"\n",
"RPC_URL = \"http://localhost:3030\"\n",
"\n",
"# Save process globally\n",
"anvil_process = None\n",
"\n",
"def start_anvil():\n",
" global anvil_process\n",
" if anvil_process is None:\n",
" anvil_process = subprocess.Popen([\"anvil\", \"-p\", \"3030\", \"--code-size-limit=41943040\"])\n",
" if anvil_process.returncode is not None:\n",
" raise Exception(\"failed to start anvil process\")\n",
" time.sleep(3)\n",
"\n",
"def stop_anvil():\n",
" global anvil_process\n",
" if anvil_process is not None:\n",
" anvil_process.terminate()\n",
" anvil_process = None\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We define our `PyRunArgs` objects which contains the visibility parameters for out model. \n",
"- `input_visibility` defines the visibility of the model inputs\n",
"- `param_visibility` defines the visibility of the model weights and constants and parameters \n",
"- `output_visibility` defines the visibility of the model outputs\n",
"\n",
"Here we create the following setup:\n",
"- `input_visibility`: \"public\"\n",
"- `param_visibility`: \"fixed\"\n",
"- `output_visibility`: public"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d5e374a2",
"metadata": {},
"outputs": [],
"source": [
"py_run_args = ezkl.PyRunArgs()\n",
"py_run_args.input_visibility = \"public\"\n",
"py_run_args.output_visibility = \"public\"\n",
"py_run_args.param_visibility = \"private\" # private by default\n",
"py_run_args.scale_rebase_multiplier = 10\n",
"\n",
"res = ezkl.gen_settings(model_path, settings_path, py_run_args=py_run_args)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3aa4f090",
"metadata": {},
"outputs": [],
"source": [
"res = ezkl.compile_circuit(model_path, compiled_model_path, settings_path)\n",
"assert res == True"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We also define a contract that holds out test data. This contract will contain in its storage the data that we will read from and attest to. In production you would not need to set up a local anvil instance. Instead you would replace RPC_URL with the actual RPC endpoint of the chain you are deploying your verifiers too, reading from the data on said chain."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2007dc77",
"metadata": {},
"outputs": [],
"source": [
"ezkl.setup_test_evm_witness(\n",
" data_path,\n",
" compiled_model_path,\n",
" # we write the call data to the same file as the input data\n",
" data_path,\n",
" input_source=ezkl.PyTestDataSource.OnChain,\n",
" output_source=ezkl.PyTestDataSource.File,\n",
" rpc_url=RPC_URL)"
]
},
{
"cell_type": "markdown",
"id": "ab993958",
"metadata": {},
"source": [
"As we use Halo2 with KZG-commitments we need an SRS string from (preferably) a multi-party trusted setup ceremony. For an overview of the procedures for such a ceremony check out [this page](https://blog.ethereum.org/2023/01/16/announcing-kzg-ceremony). The `get_srs` command retrieves a correctly sized SRS given the calibrated settings file from [here](https://github.com/han0110/halo2-kzg-srs). \n",
"\n",
"These SRS were generated with [this](https://github.com/privacy-scaling-explorations/perpetualpowersoftau) ceremony. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8b74dcee",
"metadata": {},
"outputs": [],
"source": [
"# srs path\n",
"res = await ezkl.get_srs( settings_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "18c8b7c7",
"metadata": {},
"outputs": [],
"source": [
"# now generate the witness file \n",
"\n",
"witness = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},
{
"cell_type": "markdown",
"id": "ad58432e",
"metadata": {},
"source": [
"Here we setup verifying and proving keys for the circuit. As the name suggests the proving key is needed for ... proving and the verifying key is needed for ... verifying. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b1c561a8",
"metadata": {},
"outputs": [],
"source": [
"res = ezkl.setup(\n",
" compiled_model_path,\n",
" vk_path,\n",
" pk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
"assert os.path.isfile(vk_path)\n",
"assert os.path.isfile(pk_path)\n",
"assert os.path.isfile(settings_path)"
]
},
{
"cell_type": "markdown",
"id": "1746c8d1",
"metadata": {},
"source": [
"We can now create an EVM verifier contract from our circuit. This contract will be deployed to the chain we are using. In this case we are using a local anvil instance."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d1920c0f",
"metadata": {},
"outputs": [],
"source": [
"abi_path = 'test.abi'\n",
"sol_code_path = 'test.sol'\n",
"\n",
"res = await ezkl.create_evm_verifier(\n",
" vk_path,\n",
" settings_path,\n",
" sol_code_path,\n",
" abi_path,\n",
" )\n",
"assert res == True"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0fd7f22b",
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"addr_path_verifier = \"addr_verifier.txt\"\n",
"\n",
"res = await ezkl.deploy_evm(\n",
" addr_path_verifier,\n",
" sol_code_path,\n",
" 'http://127.0.0.1:3030'\n",
")\n",
"\n",
"assert res == True"
]
},
{
"cell_type": "markdown",
"id": "9c0dffab",
"metadata": {},
"source": [
"With the vanilla verifier deployed, we can now create the data attestation contract, which will read in the instances from the calldata to the verifier, attest to them, call the verifier and then return the result. \n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cc888848",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "c2db14d7",
"metadata": {},
"outputs": [],
"source": [
"abi_path = 'test.abi'\n",
"sol_code_path = 'test.sol'\n",
"input_path = 'input.json'\n",
"\n",
"res = await ezkl.create_evm_data_attestation(\n",
" input_path,\n",
" settings_path,\n",
" sol_code_path,\n",
" abi_path,\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5a018ba6",
"metadata": {},
"outputs": [],
"source": [
"addr_path_da = \"addr_da.txt\"\n",
"\n",
"res = await ezkl.deploy_da_evm(\n",
" addr_path_da,\n",
" input_path,\n",
" settings_path,\n",
" sol_code_path,\n",
" RPC_URL,\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "2adad845",
"metadata": {},
"source": [
"Now we can pull in the data from the contract and calculate a new set of coordinates. We then rotate the world by 1 transform and submit the proof to the contract. The contract could then update the world rotation (logic not inserted here). For demo purposes we do this repeatedly, rotating the world by 1 transform. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c384cbc8",
"metadata": {},
"outputs": [],
"source": [
"# GENERATE A PROOF\n",
"\n",
"\n",
"proof_path = os.path.join('test.pf')\n",
"\n",
"res = ezkl.prove(\n",
" witness_path,\n",
" compiled_model_path,\n",
" pk_path,\n",
" proof_path,\n",
" \n",
" \"single\",\n",
" )\n",
"\n",
"print(res)\n",
"assert os.path.isfile(proof_path)"
]
},
{
"cell_type": "markdown",
"id": "90eda56e",
"metadata": {},
"source": [
"Call the view only verify method on the contract to verify the proof. Since it is a view function this is safe to use in production since you don't have to pass your private key."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "76f00d41",
"metadata": {},
"outputs": [],
"source": [
"# read the verifier address\n",
"addr_verifier = None\n",
"with open(addr_path_verifier, 'r') as f:\n",
" addr = f.read()\n",
"#read the data attestation address\n",
"addr_da = None\n",
"with open(addr_path_da, 'r') as f:\n",
" addr_da = f.read()\n",
"\n",
"res = ezkl.verify_evm(\n",
" addr,\n",
" proof_path,\n",
" RPC_URL,\n",
" addr_da,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As a sanity check lets plot the rotations of the unit vectors. We can see that the unit vectors rotate as expected by the output of the circuit. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"witness['outputs'][0][0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"settings = json.load(open(settings_path, 'r'))\n",
"out_scale = settings[\"model_output_scales\"][0]\n",
"\n",
"from matplotlib import pyplot\n",
"pyplot.figure(figsize=(3, 3))\n",
"pyplot.arrow(0, 0, 1, 0, width=0.02, alpha=0.5)\n",
"pyplot.arrow(0, 0, 0, 1, width=0.02, alpha=0.5)\n",
"\n",
"arrow_x = ezkl.felt_to_float(witness['outputs'][0][0], out_scale)\n",
"arrow_y = ezkl.felt_to_float(witness['outputs'][0][1], out_scale)\n",
"pyplot.arrow(0, 0, arrow_x, arrow_y, width=0.02)\n",
"arrow_x = ezkl.felt_to_float(witness['outputs'][0][2], out_scale)\n",
"arrow_y = ezkl.felt_to_float(witness['outputs'][0][3], out_scale)\n",
"pyplot.arrow(0, 0, arrow_x, arrow_y, width=0.02)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -193,7 +193,7 @@
"with open(cal_path, \"w\") as f:\n",
" json.dump(cal_data, f)\n",
"\n",
"res = await ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
"res = ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
]
},
{
@@ -227,7 +227,7 @@
"source": [
"# now generate the witness file \n",
"\n",
"res = await ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"res = ezkl.gen_witness(data_path, compiled_model_path, witness_path)\n",
"assert os.path.isfile(witness_path)"
]
},

View File

@@ -0,0 +1,106 @@
{
"input_data": [
[
8761,
7654,
8501,
2404,
6929,
8858,
5946,
3673,
4131,
3854,
8137,
8239,
9038,
6299,
1118,
9737,
208,
7954,
3691,
610,
3468,
3314,
8658,
8366,
2850,
477,
6114,
232,
4601,
7420,
5713,
2936,
6061,
2870,
8421,
177,
7107,
7382,
6115,
5487,
8502,
2559,
1875,
129,
8533,
8201,
8414,
4775,
9817,
3127,
8761,
7654,
8501,
2404,
6929,
8858,
5946,
3673,
4131,
3854,
8137,
8239,
9038,
6299,
1118,
9737,
208,
7954,
3691,
610,
3468,
3314,
8658,
8366,
2850,
477,
6114,
232,
4601,
7420,
5713,
2936,
6061,
2870,
8421,
177,
7107,
7382,
6115,
5487,
8502,
2559,
1875,
129,
8533,
8201,
8414,
4775,
9817,
3127
]
]
}

Binary file not shown.

View File

@@ -0,0 +1 @@
{"run_args":{"input_scale":7,"param_scale":7,"scale_rebase_multiplier":1,"lookup_range":[-32768,32768],"logrows":17,"num_inner_cols":2,"variables":[["batch_size",1]],"input_visibility":"Private","output_visibility":"Public","param_visibility":"Private","rebase_frac_zero_constants":false,"check_mode":"UNSAFE","commitment":"KZG","decomp_base":16384,"decomp_legs":2,"bounded_log_lookup":false,"ignore_range_check_inputs_outputs":false},"num_rows":54,"total_assignments":109,"total_const_size":4,"total_dynamic_col_size":0,"max_dynamic_input_len":0,"num_dynamic_lookups":0,"num_shuffles":0,"total_shuffle_col_size":0,"model_instance_shapes":[[1,1]],"model_output_scales":[7],"model_input_scales":[7],"module_sizes":{"polycommit":[],"poseidon":[0,[0]]},"required_lookups":[],"required_range_checks":[[-1,1],[0,16383]],"check_mode":"UNSAFE","version":"0.0.0","num_blinding_factors":null,"timestamp":1739396322131,"input_types":["F32"],"output_types":["F32"]}

Binary file not shown.

37795
examples/onnx/fr_age/lol.txt Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

Binary file not shown.

View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
return x // 3
circuit = MyModel()
x = torch.randint(0, 10, (1, 2, 2, 8))
out = circuit(x)
print(x)
print(out)
print(x/3)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[3, 4, 0, 9, 2, 6, 2, 5, 1, 5, 3, 5, 5, 7, 0, 2, 6, 1, 4, 4, 1, 9, 7, 7, 5, 8, 2, 0, 1, 5, 9, 8]]}

Binary file not shown.

View File

@@ -104,5 +104,5 @@ json.dump(data, open("input.json", 'w'))
# ezkl.gen_settings("network.onnx", "settings.json")
# !RUST_LOG = full
# res = await ezkl.calibrate_settings(
# res = ezkl.calibrate_settings(
# "input.json", "network.onnx", "settings.json", "resources")

View File

@@ -160,30 +160,6 @@ def compile_circuit(model:str | os.PathLike | pathlib.Path,compiled_circuit:str
"""
...
def create_evm_data_attestation(input_data:str | os.PathLike | pathlib.Path,settings_path:str | os.PathLike | pathlib.Path,sol_code_path:str | os.PathLike | pathlib.Path,abi_path:str | os.PathLike | pathlib.Path,witness_path:typing.Optional[str | os.PathLike | pathlib.Path]) -> typing.Any:
r"""
Creates an EVM compatible data attestation verifier, you will need solc installed in your environment to run this
Arguments
---------
input_data: str
The path to the .json data file, which should contain the necessary calldata and account addresses needed to read from all the on-chain view functions that return the data that the network ingests as inputs
settings_path: str
The path to the settings file
sol_code_path: str
The path to the create the solidity verifier
abi_path: str
The path to create the ABI for the solidity verifier
Returns
-------
bool
"""
...
def create_evm_verifier(vk_path:str | os.PathLike | pathlib.Path,settings_path:str | os.PathLike | pathlib.Path,sol_code_path:str | os.PathLike | pathlib.Path,abi_path:str | os.PathLike | pathlib.Path,srs_path:typing.Optional[str | os.PathLike | pathlib.Path],reusable:bool) -> typing.Any:
r"""
Creates an EVM compatible verifier, you will need solc installed in your environment to run this
@@ -247,7 +223,7 @@ def create_evm_verifier_aggr(aggregation_settings:typing.Sequence[str | os.PathL
"""
...
def create_evm_vka(vk_path:str | os.PathLike | pathlib.Path,settings_path:str | os.PathLike | pathlib.Path,sol_code_path:str | os.PathLike | pathlib.Path,abi_path:str | os.PathLike | pathlib.Path,srs_path:typing.Optional[str | os.PathLike | pathlib.Path]) -> typing.Any:
def create_evm_vka(vk_path:str | os.PathLike | pathlib.Path,settings_path:str | os.PathLike | pathlib.Path,vka_path:str | os.PathLike | pathlib.Path,srs_path:typing.Optional[str | os.PathLike | pathlib.Path]) -> typing.Any:
r"""
Creates an Evm VK artifact. This command generated a VK with circuit specific meta data encoding in memory for use by the reusable H2 verifier.
This is useful for deploying verifier that were otherwise too big to fit on chain and required aggregation.
@@ -260,8 +236,8 @@ def create_evm_vka(vk_path:str | os.PathLike | pathlib.Path,settings_path:str |
settings_path: str
The path to the settings file
sol_code_path: str
The path to the create the solidity verifying key.
vka_path: str
The path to the create the vka calldata.
abi_path: str
The path to create the ABI for the solidity verifier
@@ -275,12 +251,6 @@ def create_evm_vka(vk_path:str | os.PathLike | pathlib.Path,settings_path:str |
"""
...
def deploy_da_evm(addr_path:str | os.PathLike | pathlib.Path,input_data:str | os.PathLike | pathlib.Path,settings_path:str | os.PathLike | pathlib.Path,sol_code_path:str | os.PathLike | pathlib.Path,rpc_url:typing.Optional[str],optimizer_runs:int,private_key:typing.Optional[str]) -> typing.Any:
r"""
deploys the solidity da verifier
"""
...
def deploy_evm(addr_path:str | os.PathLike | pathlib.Path,sol_code_path:str | os.PathLike | pathlib.Path,rpc_url:typing.Optional[str],contract_type:str,optimizer_runs:int,private_key:typing.Optional[str]) -> typing.Any:
r"""
deploys the solidity verifier
@@ -706,35 +676,6 @@ def setup_aggregate(sample_snarks:typing.Sequence[str | os.PathLike | pathlib.Pa
"""
...
def setup_test_evm_witness(data_path:str | os.PathLike | pathlib.Path,compiled_circuit_path:str | os.PathLike | pathlib.Path,test_data:str | os.PathLike | pathlib.Path,input_source:PyTestDataSource,output_source:PyTestDataSource,rpc_url:typing.Optional[str]) -> typing.Any:
r"""
Setup test evm witness
Arguments
---------
data_path: str
The path to the .json data file, which should include both the network input (possibly private) and the network output (public input to the proof)
compiled_circuit_path: str
The path to the compiled model file (generated using the compile-circuit command)
test_data: str
For testing purposes only. The optional path to the .json data file that will be generated that contains the OnChain data storage information derived from the file information in the data .json file. Should include both the network input (possibly private) and the network output (public input to the proof)
input_sources: str
Where the input data comes from
output_source: str
Where the output data comes from
rpc_url: str
RPC URL for an EVM compatible node, if None, uses Anvil as a local RPC node
Returns
-------
bool
"""
...
def swap_proof_commitments(proof_path:str | os.PathLike | pathlib.Path,witness_path:str | os.PathLike | pathlib.Path) -> None:
r"""
@@ -823,7 +764,7 @@ def verify_aggr(proof_path:str | os.PathLike | pathlib.Path,vk_path:str | os.Pat
"""
...
def verify_evm(addr_verifier:str,proof_path:str | os.PathLike | pathlib.Path,rpc_url:typing.Optional[str],addr_da:typing.Optional[str],addr_vk:typing.Optional[str]) -> typing.Any:
def verify_evm(addr_verifier:str,proof_path:str | os.PathLike | pathlib.Path,rpc_url:typing.Optional[str],vka_path:typing.Optional[str]) -> typing.Any:
r"""
verifies an evm compatible proof, you will need solc installed in your environment to run this
@@ -838,11 +779,8 @@ def verify_evm(addr_verifier:str,proof_path:str | os.PathLike | pathlib.Path,rpc
rpc_url: str
RPC URL for an Ethereum node, if None will use Anvil but WON'T persist state
addr_da: str
does the verifier use data attestation ?
addr_vk: str
The addess of the separate VK contract (if the verifier key is rendered as a separate contract)
vka_path: str
The path to the VKA calldata bytes file (generated using the create_evm_vka command)
Returns
-------
bool

View File

@@ -1,60 +0,0 @@
# inbrowser-evm-verify
We would like the Solidity verifier to be canonical and usually all you ever need. For this, we need to be able to run that verifier in browser.
## How to use (Node js)
```ts
import localEVMVerify from '@ezkljs/verify';
// Load in the proof file as a buffer
const proofFileBuffer = fs.readFileSync(`${path}/${example}/proof.pf`)
// Stringified EZKL evm verifier bytecode (this is just an example don't use in production)
const bytecode = '0x608060405234801561001057600080fd5b5060d38061001f6000396000f3fe608060405234801561001057600080fd5b50600436106100415760003560e01c8063cfae321714610046575b600080fd5b6100496100f1565b60405161005691906100f1565b60405180910390f35b'
const result = await localEVMVerify(proofFileBuffer, bytecode)
console.log('result', result)
```
**Note**: Run `ezkl create-evm-verifier` to get the Solidity verifier, with which you can retrieve the bytecode once compiled. We recommend compiling to the Shanghai hardfork target, else you will have to pass an additional parameter specifying the EVM version to the `localEVMVerify` function like so (for Paris hardfork):
```ts
import localEVMVerify, { hardfork } from '@ezkljs/verify';
const result = await localEVMVerify(proofFileBuffer, bytecode, hardfork['Paris'])
```
**Note**: You can also verify separated vk verifiers using the `localEVMVerify` function. Just pass the vk verifier bytecode as the third parameter like so:
```ts
import localEVMVerify from '@ezkljs/verify';
const result = await localEVMVerify(proofFileBuffer, verifierBytecode, VKBytecode)
```
## How to use (Browser)
```ts
import localEVMVerify from '@ezkljs/verify';
// Load in the proof file as a buffer using the web apis (fetch, FileReader, etc)
// We use fetch in this example to load the proof file as a buffer
const proofFileBuffer = await fetch(`${path}/${example}/proof.pf`).then(res => res.arrayBuffer())
// Stringified EZKL evm verifier bytecode (this is just an example don't use in production)
const bytecode = '0x608060405234801561001057600080fd5b5060d38061001f6000396000f3fe608060405234801561001057600080fd5b50600436106100415760003560e01c8063cfae321714610046575b600080fd5b6100496100f1565b60405161005691906100f1565b60405180910390f35b'
const result = await browserEVMVerify(proofFileBuffer, bytecode)
console.log('result', result)
```
Output:
```ts
result: true
```

View File

@@ -1,42 +0,0 @@
{
"name": "@ezkljs/verify",
"version": "v10.4.2",
"publishConfig": {
"access": "public"
},
"description": "Evm verify EZKL proofs in the browser.",
"main": "dist/commonjs/index.js",
"module": "dist/esm/index.js",
"types": "dist/commonjs/index.d.ts",
"files": [
"dist",
"LICENSE",
"README.md"
],
"scripts": {
"clean": "rm -r dist || true",
"build:commonjs": "tsc --project tsconfig.commonjs.json && resolve-tspaths -p tsconfig.commonjs.json",
"build:esm": "tsc --project tsconfig.esm.json && resolve-tspaths -p tsconfig.esm.json",
"build": "npm run clean && npm run build:commonjs && npm run build:esm"
},
"dependencies": {
"@ethereumjs/common": "4.0.0",
"@ethereumjs/evm": "2.0.0",
"@ethereumjs/statemanager": "2.0.0",
"@ethereumjs/tx": "5.0.0",
"@ethereumjs/util": "9.0.0",
"@ethereumjs/vm": "7.0.0",
"@ethersproject/abi": "5.7.0",
"@ezkljs/engine": "10.4.2",
"ethers": "6.7.1",
"json-bigint": "1.0.0"
},
"devDependencies": {
"@types/node": "^20.8.3",
"ts-loader": "^9.5.0",
"ts-node": "^10.9.1",
"resolve-tspaths": "^0.8.16",
"tsconfig-paths": "^4.2.0",
"typescript": "^5.2.2"
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,144 +0,0 @@
import { defaultAbiCoder as AbiCoder } from '@ethersproject/abi'
import { Address, hexToBytes } from '@ethereumjs/util'
import { Chain, Common, Hardfork } from '@ethereumjs/common'
import { LegacyTransaction, LegacyTxData } from '@ethereumjs/tx'
// import { DefaultStateManager } from '@ethereumjs/statemanager'
// import { Blockchain } from '@ethereumjs/blockchain'
import { VM } from '@ethereumjs/vm'
import { EVM } from '@ethereumjs/evm'
import { buildTransaction, encodeDeployment } from './utils/tx-builder'
import { getAccountNonce, insertAccount } from './utils/account-utils'
import { encodeVerifierCalldata } from '../nodejs/ezkl';
async function deployContract(
vm: VM,
common: Common,
senderPrivateKey: Uint8Array,
deploymentBytecode: string
): Promise<Address> {
// Contracts are deployed by sending their deployment bytecode to the address 0
// The contract params should be abi-encoded and appended to the deployment bytecode.
// const data =
const data = encodeDeployment(deploymentBytecode)
const txData = {
data,
nonce: await getAccountNonce(vm, senderPrivateKey),
}
const tx = LegacyTransaction.fromTxData(
buildTransaction(txData) as LegacyTxData,
{ common, allowUnlimitedInitCodeSize: true },
).sign(senderPrivateKey)
const deploymentResult = await vm.runTx({
tx,
skipBlockGasLimitValidation: true,
skipNonce: true
})
if (deploymentResult.execResult.exceptionError) {
throw deploymentResult.execResult.exceptionError
}
return deploymentResult.createdAddress!
}
async function verify(
vm: VM,
contractAddress: Address,
caller: Address,
proof: Uint8Array | Uint8ClampedArray,
vkAddress?: Address | Uint8Array,
): Promise<boolean> {
if (proof instanceof Uint8Array) {
proof = new Uint8ClampedArray(proof.buffer)
}
if (vkAddress) {
const vkAddressBytes = hexToBytes(vkAddress.toString())
const vkAddressArray = Array.from(vkAddressBytes)
let string = JSON.stringify(vkAddressArray)
const uint8Array = new TextEncoder().encode(string);
// Step 3: Convert to Uint8ClampedArray
vkAddress = new Uint8Array(uint8Array.buffer);
// convert uitn8array of length
console.error('vkAddress', vkAddress)
}
const data = encodeVerifierCalldata(proof, vkAddress)
const verifyResult = await vm.evm.runCall({
to: contractAddress,
caller: caller,
origin: caller, // The tx.origin is also the caller here
data: data,
})
if (verifyResult.execResult.exceptionError) {
throw verifyResult.execResult.exceptionError
}
const results = AbiCoder.decode(['bool'], verifyResult.execResult.returnValue)
return results[0]
}
/**
* Spins up an ephemeral EVM instance for executing the bytecode of a solidity verifier
* @param proof Json serialized proof file
* @param bytecode The bytecode of a compiled solidity verifier.
* @param bytecode_vk The bytecode of a contract that stores the vk. (Optional, only required if the vk is stored in a separate contract)
* @param evmVersion The evm version to use for the verification. (Default: London)
* @returns The result of the evm verification.
* @throws If the verify transaction reverts
*/
export default async function localEVMVerify(
proof: Uint8Array | Uint8ClampedArray,
bytecode_verifier: string,
bytecode_vk?: string,
evmVersion?: Hardfork,
): Promise<boolean> {
try {
const hardfork = evmVersion ? evmVersion : Hardfork['Shanghai']
const common = new Common({ chain: Chain.Mainnet, hardfork })
const accountPk = hexToBytes(
'0xe331b6d69882b4cb4ea581d88e0b604039a3de5967688d3dcffdd2270c0fd109', // anvil deterministic Pk
)
const evm = new EVM({
allowUnlimitedContractSize: true,
allowUnlimitedInitCodeSize: true,
})
const vm = await VM.create({ common, evm })
const accountAddress = Address.fromPrivateKey(accountPk)
await insertAccount(vm, accountAddress)
const verifierAddress = await deployContract(
vm,
common,
accountPk,
bytecode_verifier
)
if (bytecode_vk) {
const accountPk = hexToBytes("0xac0974bec39a17e36ba4a6b4d238ff944bacb478cbed5efcae784d7bf4f2ff80"); // anvil deterministic Pk
const accountAddress = Address.fromPrivateKey(accountPk)
await insertAccount(vm, accountAddress)
const output = await deployContract(vm, common, accountPk, bytecode_vk)
const result = await verify(vm, verifierAddress, accountAddress, proof, output)
return true
}
const result = await verify(vm, verifierAddress, accountAddress, proof)
return result
} catch (error) {
// log or re-throw the error, depending on your needs
console.error('An error occurred:', error)
throw error
}
}

Some files were not shown because too many files have changed in this diff Show More