mirror of
https://github.com/zkonduit/ezkl.git
synced 2026-01-14 00:38:15 -05:00
Compare commits
6 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f7b4067223 | ||
|
|
c19fa5218a | ||
|
|
eb205d0c73 | ||
|
|
db498f8d7c | ||
|
|
a363c91160 | ||
|
|
f7f04415fa |
2
.github/workflows/rust.yml
vendored
2
.github/workflows/rust.yml
vendored
@@ -781,6 +781,8 @@ jobs:
|
||||
run: python -m venv .env --clear; source .env/bin/activate; pip install -r requirements.txt; python -m ensurepip --upgrade
|
||||
- name: Build python ezkl
|
||||
run: source .env/bin/activate; unset CONDA_PREFIX; maturin develop --features python-bindings --profile=test-runs
|
||||
- name: Cat and Dog notebook
|
||||
run: source .env/bin/activate; cargo nextest run py_tests::tests::cat_and_dog_notebook_
|
||||
- name: All notebooks
|
||||
run: source .env/bin/activate; cargo nextest run py_tests::tests::run_notebook_ --test-threads 1
|
||||
- name: Voice tutorial
|
||||
|
||||
@@ -23,8 +23,6 @@ use halo2curves::bn256::{Bn256, Fr};
|
||||
use rand::rngs::OsRng;
|
||||
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
|
||||
|
||||
const L: usize = 10;
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
struct MyCircuit {
|
||||
image: ValTensor<Fr>,
|
||||
@@ -40,7 +38,7 @@ impl Circuit<Fr> for MyCircuit {
|
||||
}
|
||||
|
||||
fn configure(cs: &mut ConstraintSystem<Fr>) -> Self::Config {
|
||||
PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, 10>::configure(cs, ())
|
||||
PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE>::configure(cs, ())
|
||||
}
|
||||
|
||||
fn synthesize(
|
||||
@@ -48,7 +46,7 @@ impl Circuit<Fr> for MyCircuit {
|
||||
config: Self::Config,
|
||||
mut layouter: impl Layouter<Fr>,
|
||||
) -> Result<(), Error> {
|
||||
let chip: PoseidonChip<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, L> =
|
||||
let chip: PoseidonChip<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE> =
|
||||
PoseidonChip::new(config);
|
||||
chip.layout(&mut layouter, &[self.image.clone()], 0, &mut HashMap::new())?;
|
||||
Ok(())
|
||||
@@ -59,7 +57,7 @@ fn runposeidon(c: &mut Criterion) {
|
||||
let mut group = c.benchmark_group("poseidon");
|
||||
|
||||
for size in [64, 784, 2352, 12288].iter() {
|
||||
let k = (PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, L>::num_rows(*size)
|
||||
let k = (PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE>::num_rows(*size)
|
||||
as f32)
|
||||
.log2()
|
||||
.ceil() as u32;
|
||||
@@ -67,7 +65,7 @@ fn runposeidon(c: &mut Criterion) {
|
||||
|
||||
let message = (0..*size).map(|_| Fr::random(OsRng)).collect::<Vec<_>>();
|
||||
let _output =
|
||||
PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, L>::run(message.to_vec())
|
||||
PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE>::run(message.to_vec())
|
||||
.unwrap();
|
||||
|
||||
let mut image = Tensor::from(message.into_iter().map(Value::known));
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import ezkl
|
||||
|
||||
project = 'ezkl'
|
||||
release = '0.0.0'
|
||||
release = '20.0.4'
|
||||
version = release
|
||||
|
||||
|
||||
|
||||
1110
examples/notebooks/cat_and_dog.ipynb
Normal file
1110
examples/notebooks/cat_and_dog.ipynb
Normal file
File diff suppressed because it is too large
Load Diff
13
examples/notebooks/cat_and_dog_data.sh
Normal file
13
examples/notebooks/cat_and_dog_data.sh
Normal file
@@ -0,0 +1,13 @@
|
||||
# download tess data
|
||||
# check if first argument has been set
|
||||
if [ ! -z "$1" ]; then
|
||||
DATA_DIR=$1
|
||||
else
|
||||
DATA_DIR=data
|
||||
fi
|
||||
|
||||
echo "Downloading data to $DATA_DIR"
|
||||
|
||||
if [ ! -d "$DATA_DIR/CATDOG" ]; then
|
||||
kaggle datasets download tongpython/cat-and-dog -p $DATA_DIR/CATDOG --unzip
|
||||
fi
|
||||
@@ -337,6 +337,8 @@ enum PyInputType {
|
||||
Int,
|
||||
///
|
||||
TDim,
|
||||
///
|
||||
Unknown,
|
||||
}
|
||||
|
||||
impl From<InputType> for PyInputType {
|
||||
@@ -348,6 +350,7 @@ impl From<InputType> for PyInputType {
|
||||
InputType::F64 => PyInputType::F64,
|
||||
InputType::Int => PyInputType::Int,
|
||||
InputType::TDim => PyInputType::TDim,
|
||||
InputType::Unknown => PyInputType::Unknown,
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -361,6 +364,7 @@ impl From<PyInputType> for InputType {
|
||||
PyInputType::F64 => InputType::F64,
|
||||
PyInputType::Int => InputType::Int,
|
||||
PyInputType::TDim => InputType::TDim,
|
||||
PyInputType::Unknown => InputType::Unknown,
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -375,6 +379,7 @@ impl FromStr for PyInputType {
|
||||
"f64" => Ok(PyInputType::F64),
|
||||
"int" => Ok(PyInputType::Int),
|
||||
"tdim" => Ok(PyInputType::TDim),
|
||||
"unknown" => Ok(PyInputType::Unknown),
|
||||
_ => Err("Invalid value for InputType".to_string()),
|
||||
}
|
||||
}
|
||||
@@ -592,7 +597,7 @@ fn poseidon_hash(message: Vec<PyFelt>) -> PyResult<Vec<PyFelt>> {
|
||||
/// Arguments
|
||||
/// -------
|
||||
/// message: list[str]
|
||||
/// List of field elements represnted as strings
|
||||
/// List of field elements represented as strings
|
||||
///
|
||||
/// vk_path: str
|
||||
/// Path to the verification key
|
||||
@@ -651,7 +656,7 @@ fn kzg_commit(
|
||||
/// Arguments
|
||||
/// -------
|
||||
/// message: list[str]
|
||||
/// List of field elements represnted as strings
|
||||
/// List of field elements represented as strings
|
||||
///
|
||||
/// vk_path: str
|
||||
/// Path to the verification key
|
||||
@@ -1945,7 +1950,7 @@ fn deploy_da_evm(
|
||||
/// does the verifier use data attestation ?
|
||||
///
|
||||
/// addr_vk: str
|
||||
/// The addess of the separate VK contract (if the verifier key is rendered as a separate contract)
|
||||
/// The address of the separate VK contract (if the verifier key is rendered as a separate contract)
|
||||
/// Returns
|
||||
/// -------
|
||||
/// bool
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
/*
|
||||
An easy-to-use implementation of the Poseidon Hash in the form of a Halo2 Chip. While the Poseidon Hash function
|
||||
is already implemented in halo2_gadgets, there is no wrapper chip that makes it easy to use in other circuits.
|
||||
Thanks to https://github.com/summa-dev/summa-solvency/blob/master/src/chips/poseidon/hash.rs for the inspiration (and also helping us understand how to use this).
|
||||
Thanks to https://github.com/summa-dev/summa-solvency/blob/master/zk_prover/src/chips/poseidon/hash.rs for the inspiration (and also helping us understand how to use this).
|
||||
*/
|
||||
|
||||
use std::collections::HashMap;
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
/*
|
||||
An easy-to-use implementation of the Poseidon Hash in the form of a Halo2 Chip. While the Poseidon Hash function
|
||||
is already implemented in halo2_gadgets, there is no wrapper chip that makes it easy to use in other circuits.
|
||||
Thanks to https://github.com/summa-dev/summa-solvency/blob/master/src/chips/poseidon/hash.rs for the inspiration (and also helping us understand how to use this).
|
||||
Thanks to https://github.com/summa-dev/summa-solvency/blob/master/zk_prover/src/chips/poseidon/hash.rs for the inspiration (and also helping us understand how to use this).
|
||||
*/
|
||||
|
||||
pub mod poseidon_params;
|
||||
|
||||
@@ -156,25 +156,6 @@ pub(crate) fn div<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
claimed_output.reshape(input_dims)?;
|
||||
// implicitly check if the prover provided output is within range
|
||||
let claimed_output = identity(config, region, &[claimed_output], true)?;
|
||||
// check if x is too large only if the decomp would support overflow in the previous op
|
||||
if F::from_u128(IntegerRep::MAX as u128)
|
||||
< F::from_u128(region.base() as u128).pow([region.legs() as u64]) - F::ONE
|
||||
{
|
||||
// here we decompose and extract the sign of the input
|
||||
let sign = sign(config, region, &[claimed_output.clone()])?;
|
||||
|
||||
let abs_value = pairwise(
|
||||
config,
|
||||
region,
|
||||
&[claimed_output.clone(), sign],
|
||||
BaseOp::Mult,
|
||||
)?;
|
||||
let max_val = create_constant_tensor(integer_rep_to_felt(IntegerRep::MAX), 1);
|
||||
let less_than_max = less(config, region, &[abs_value.clone(), max_val])?;
|
||||
// assert the result is 1
|
||||
let comparison_unit = create_constant_tensor(F::ONE, less_than_max.len());
|
||||
enforce_equality(config, region, &[abs_value, comparison_unit])?;
|
||||
}
|
||||
|
||||
let product = pairwise(
|
||||
config,
|
||||
@@ -248,32 +229,6 @@ pub(crate) fn recip<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
&[equal_zero_mask.clone(), equal_inverse_mask],
|
||||
)?;
|
||||
|
||||
let masked_output = pairwise(
|
||||
config,
|
||||
region,
|
||||
&[claimed_output.clone(), not_equal_zero_mask.clone()],
|
||||
BaseOp::Mult,
|
||||
)?;
|
||||
|
||||
// check if x is too large only if the decomp would support overflow in the previous op
|
||||
if F::from_u128(IntegerRep::MAX as u128)
|
||||
< F::from_u128(region.base() as u128).pow([region.legs() as u64]) - F::ONE
|
||||
{
|
||||
// here we decompose and extract the sign of the input
|
||||
let sign = sign(config, region, &[masked_output.clone()])?;
|
||||
let abs_value = pairwise(
|
||||
config,
|
||||
region,
|
||||
&[claimed_output.clone(), sign],
|
||||
BaseOp::Mult,
|
||||
)?;
|
||||
let max_val = create_constant_tensor(integer_rep_to_felt(IntegerRep::MAX), 1);
|
||||
let less_than_max = less(config, region, &[abs_value.clone(), max_val])?;
|
||||
// assert the result is 1
|
||||
let comparison_unit = create_constant_tensor(F::ONE, less_than_max.len());
|
||||
enforce_equality(config, region, &[abs_value, comparison_unit])?;
|
||||
}
|
||||
|
||||
let err_func = |config: &BaseConfig<F>,
|
||||
region: &mut RegionCtx<F>,
|
||||
x: &ValTensor<F>|
|
||||
@@ -349,7 +304,7 @@ pub fn sqrt<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
.into()
|
||||
};
|
||||
claimed_output.reshape(input_dims)?;
|
||||
// force the output to be positive or zero, also implicitly checks that the ouput is in range
|
||||
// force the output to be positive or zero, also implicitly checks that the output is in range
|
||||
let claimed_output = abs(config, region, &[claimed_output.clone()])?;
|
||||
// rescaled input
|
||||
let rescaled_input = pairwise(config, region, &[input.clone(), unit_scale], BaseOp::Mult)?;
|
||||
@@ -1841,7 +1796,7 @@ pub(crate) fn get_missing_set_elements<
|
||||
|
||||
// get the difference between the two vectors
|
||||
for eval in input_evals.iter() {
|
||||
// delete first occurence of that value
|
||||
// delete first occurrence of that value
|
||||
if let Some(pos) = fullset_evals.iter().position(|x| x == eval) {
|
||||
fullset_evals.remove(pos);
|
||||
}
|
||||
@@ -1869,7 +1824,7 @@ pub(crate) fn get_missing_set_elements<
|
||||
region.increment(claimed_output.len());
|
||||
|
||||
// input and claimed output should be the shuffles of fullset
|
||||
// concatentate input and claimed output
|
||||
// concatenate input and claimed output
|
||||
let input_and_claimed_output = input.concat(claimed_output.clone())?;
|
||||
|
||||
// assert that this is a permutation/shuffle
|
||||
@@ -3396,7 +3351,7 @@ pub fn max_pool<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
/// Performs a deconvolution on the given input tensor.
|
||||
/// # Examples
|
||||
/// ```
|
||||
// // expected ouputs are taken from pytorch torch.nn.functional.conv_transpose2d
|
||||
// // expected outputs are taken from pytorch torch.nn.functional.conv_transpose2d
|
||||
///
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
@@ -3624,7 +3579,7 @@ pub fn deconv<
|
||||
|
||||
/// Applies convolution over a ND tensor of shape C x H x D1...DN (and adds a bias).
|
||||
/// ```
|
||||
/// // expected ouputs are taken from pytorch torch.nn.functional.conv2d
|
||||
/// // expected outputs are taken from pytorch torch.nn.functional.conv2d
|
||||
///
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
@@ -3908,7 +3863,7 @@ pub(crate) fn rescale<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>
|
||||
Ok(rescaled_inputs)
|
||||
}
|
||||
|
||||
/// Dummy (no contraints) reshape layout
|
||||
/// Dummy (no constraints) reshape layout
|
||||
pub(crate) fn reshape<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
values: &[ValTensor<F>; 1],
|
||||
new_dims: &[usize],
|
||||
@@ -3918,7 +3873,7 @@ pub(crate) fn reshape<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>
|
||||
Ok(t)
|
||||
}
|
||||
|
||||
/// Dummy (no contraints) move_axis layout
|
||||
/// Dummy (no constraints) move_axis layout
|
||||
pub(crate) fn move_axis<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
values: &[ValTensor<F>; 1],
|
||||
source: usize,
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
use std::any::Any;
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
|
||||
use tract_onnx::prelude::DatumType;
|
||||
|
||||
use crate::{
|
||||
graph::quantize_tensor,
|
||||
@@ -96,6 +98,8 @@ pub enum InputType {
|
||||
Int,
|
||||
///
|
||||
TDim,
|
||||
///
|
||||
Unknown,
|
||||
}
|
||||
|
||||
impl InputType {
|
||||
@@ -132,6 +136,7 @@ impl InputType {
|
||||
let int_input = input.clone().to_i64().unwrap();
|
||||
*input = T::from_i64(int_input).unwrap();
|
||||
}
|
||||
InputType::Unknown => {}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -152,6 +157,28 @@ impl std::str::FromStr for InputType {
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
|
||||
impl From<DatumType> for InputType {
|
||||
fn from(datum_type: DatumType) -> Self {
|
||||
match datum_type {
|
||||
DatumType::Bool => InputType::Bool,
|
||||
DatumType::F16 => InputType::F16,
|
||||
DatumType::F32 => InputType::F32,
|
||||
DatumType::F64 => InputType::F64,
|
||||
DatumType::I8 => InputType::Int,
|
||||
DatumType::I16 => InputType::Int,
|
||||
DatumType::I32 => InputType::Int,
|
||||
DatumType::I64 => InputType::Int,
|
||||
DatumType::U8 => InputType::Int,
|
||||
DatumType::U16 => InputType::Int,
|
||||
DatumType::U32 => InputType::Int,
|
||||
DatumType::U64 => InputType::Int,
|
||||
DatumType::TDim => InputType::TDim,
|
||||
_ => unimplemented!(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///
|
||||
#[derive(Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, Serialize, Deserialize)]
|
||||
pub struct Input {
|
||||
|
||||
@@ -455,6 +455,10 @@ pub struct GraphSettings {
|
||||
pub num_blinding_factors: Option<usize>,
|
||||
/// unix time timestamp
|
||||
pub timestamp: Option<u128>,
|
||||
/// Model inputs types (if any)
|
||||
pub input_types: Option<Vec<InputType>>,
|
||||
/// Model outputs types (if any)
|
||||
pub output_types: Option<Vec<InputType>>,
|
||||
}
|
||||
|
||||
impl GraphSettings {
|
||||
|
||||
@@ -379,9 +379,15 @@ pub struct ParsedNodes {
|
||||
pub nodes: BTreeMap<usize, NodeType>,
|
||||
inputs: Vec<usize>,
|
||||
outputs: Vec<Outlet>,
|
||||
output_types: Vec<InputType>,
|
||||
}
|
||||
|
||||
impl ParsedNodes {
|
||||
/// Returns the output types of the computational graph.
|
||||
pub fn get_output_types(&self) -> Vec<InputType> {
|
||||
self.output_types.clone()
|
||||
}
|
||||
|
||||
/// Returns the number of the computational graph's inputs
|
||||
pub fn num_inputs(&self) -> usize {
|
||||
self.inputs.len()
|
||||
@@ -491,6 +497,16 @@ impl Model {
|
||||
Ok(om)
|
||||
}
|
||||
|
||||
/// Gets the input types from the parsed nodes
|
||||
pub fn get_input_types(&self) -> Result<Vec<InputType>, GraphError> {
|
||||
self.graph.get_input_types()
|
||||
}
|
||||
|
||||
/// Gets the output types from the parsed nodes
|
||||
pub fn get_output_types(&self) -> Vec<InputType> {
|
||||
self.graph.get_output_types()
|
||||
}
|
||||
|
||||
///
|
||||
pub fn save(&self, path: PathBuf) -> Result<(), GraphError> {
|
||||
let f = std::fs::File::create(&path).map_err(|e| {
|
||||
@@ -574,6 +590,11 @@ impl Model {
|
||||
required_range_checks: res.range_checks.into_iter().collect(),
|
||||
model_output_scales: self.graph.get_output_scales()?,
|
||||
model_input_scales: self.graph.get_input_scales(),
|
||||
input_types: match self.get_input_types() {
|
||||
Ok(x) => Some(x),
|
||||
Err(_) => None,
|
||||
},
|
||||
output_types: Some(self.get_output_types()),
|
||||
num_dynamic_lookups: res.num_dynamic_lookups,
|
||||
total_dynamic_col_size: res.dynamic_lookup_col_coord,
|
||||
num_shuffles: res.num_shuffles,
|
||||
@@ -704,6 +725,11 @@ impl Model {
|
||||
nodes,
|
||||
inputs: model.inputs.iter().map(|o| o.node).collect(),
|
||||
outputs: model.outputs.iter().map(|o| (o.node, o.slot)).collect(),
|
||||
output_types: model
|
||||
.outputs
|
||||
.iter()
|
||||
.map(|o| Ok::<InputType, GraphError>(model.outlet_fact(*o)?.datum_type.into()))
|
||||
.collect::<Result<Vec<_>, GraphError>>()?,
|
||||
};
|
||||
|
||||
let duration = start_time.elapsed();
|
||||
@@ -862,6 +888,15 @@ impl Model {
|
||||
nodes: subgraph_nodes,
|
||||
inputs: model.inputs.iter().map(|o| o.node).collect(),
|
||||
outputs: model.outputs.iter().map(|o| (o.node, o.slot)).collect(),
|
||||
output_types: model
|
||||
.outputs
|
||||
.iter()
|
||||
.map(|o| {
|
||||
Ok::<InputType, GraphError>(
|
||||
model.outlet_fact(*o)?.datum_type.into(),
|
||||
)
|
||||
})
|
||||
.collect::<Result<Vec<_>, GraphError>>()?,
|
||||
};
|
||||
|
||||
let om = Model {
|
||||
@@ -1579,4 +1614,16 @@ impl Model {
|
||||
}
|
||||
Ok(instance_shapes)
|
||||
}
|
||||
|
||||
/// Input types of the computational graph's public inputs (if any)
|
||||
pub fn instance_types(&self) -> Result<Vec<InputType>, GraphError> {
|
||||
let mut instance_types = vec![];
|
||||
if self.visibility.input.is_public() {
|
||||
instance_types.extend(self.graph.get_input_types()?);
|
||||
}
|
||||
if self.visibility.output.is_public() {
|
||||
instance_types.extend(self.graph.get_output_types());
|
||||
}
|
||||
Ok(instance_types)
|
||||
}
|
||||
}
|
||||
|
||||
11
src/lib.rs
11
src/lib.rs
@@ -100,7 +100,6 @@ use std::str::FromStr;
|
||||
use circuit::{table::Range, CheckMode, Tolerance};
|
||||
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
|
||||
use clap::Args;
|
||||
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
|
||||
use fieldutils::IntegerRep;
|
||||
use graph::{Visibility, MAX_PUBLIC_SRS};
|
||||
use halo2_proofs::poly::{
|
||||
@@ -399,6 +398,16 @@ impl RunArgs {
|
||||
pub fn validate(&self) -> Result<(), String> {
|
||||
let mut errors = Vec::new();
|
||||
|
||||
// check if the largest represented integer in the decomposed form overflows IntegerRep
|
||||
// try it with the largest possible value
|
||||
let max_decomp = (self.decomp_base as IntegerRep).checked_pow(self.decomp_legs as u32);
|
||||
if max_decomp.is_none() {
|
||||
errors.push(format!(
|
||||
"decomp_base^decomp_legs overflows IntegerRep: {}^{}",
|
||||
self.decomp_base, self.decomp_legs
|
||||
));
|
||||
}
|
||||
|
||||
// Visibility validations
|
||||
if self.param_visibility == Visibility::Public {
|
||||
errors.push(
|
||||
|
||||
@@ -387,7 +387,7 @@ pub fn add<T: TensorType + Add<Output = T> + std::marker::Send + std::marker::Sy
|
||||
) -> Result<Tensor<T>, TensorError> {
|
||||
if t.len() == 1 {
|
||||
return Ok(t[0].clone());
|
||||
} else if t.len() == 0 {
|
||||
} else if t.is_empty() {
|
||||
return Err(TensorError::DimMismatch("add".to_string()));
|
||||
}
|
||||
|
||||
@@ -441,7 +441,7 @@ pub fn sub<T: TensorType + Sub<Output = T> + std::marker::Send + std::marker::Sy
|
||||
) -> Result<Tensor<T>, TensorError> {
|
||||
if t.len() == 1 {
|
||||
return Ok(t[0].clone());
|
||||
} else if t.len() == 0 {
|
||||
} else if t.is_empty() {
|
||||
return Err(TensorError::DimMismatch("sub".to_string()));
|
||||
}
|
||||
// calculate value of output
|
||||
@@ -492,7 +492,7 @@ pub fn mult<T: TensorType + Mul<Output = T> + std::marker::Send + std::marker::S
|
||||
) -> Result<Tensor<T>, TensorError> {
|
||||
if t.len() == 1 {
|
||||
return Ok(t[0].clone());
|
||||
} else if t.len() == 0 {
|
||||
} else if t.is_empty() {
|
||||
return Err(TensorError::DimMismatch("mult".to_string()));
|
||||
}
|
||||
// calculate value of output
|
||||
@@ -1326,7 +1326,6 @@ pub fn pad<T: TensorType>(
|
||||
///
|
||||
/// # Errors
|
||||
/// Returns a TensorError if the tensors in `inputs` have incompatible dimensions for concatenation along the specified `axis`.
|
||||
|
||||
pub fn concat<T: TensorType + Send + Sync>(
|
||||
inputs: &[&Tensor<T>],
|
||||
axis: usize,
|
||||
@@ -2102,7 +2101,6 @@ pub mod nonlinearities {
|
||||
/// let expected = Tensor::<IntegerRep>::new(Some(&[4, 25, 8, 1, 1, 0]), &[2, 3]).unwrap();
|
||||
/// assert_eq!(result, expected);
|
||||
/// ```
|
||||
|
||||
pub fn tanh(a: &Tensor<IntegerRep>, scale_input: f64) -> Tensor<IntegerRep> {
|
||||
a.par_enum_map(|_, a_i| {
|
||||
let kix = (a_i as f64) / scale_input;
|
||||
|
||||
Binary file not shown.
@@ -49,6 +49,23 @@ mod py_tests {
|
||||
std::env::set_var("VOICE_DATA_DIR", format!("{}", voice_data_dir));
|
||||
}
|
||||
|
||||
fn download_catdog_data() {
|
||||
let cat_and_dog_data_dir = shellexpand::tilde("~/data/catdog_data");
|
||||
|
||||
DOWNLOAD_VOICE_DATA.call_once(|| {
|
||||
let status = Command::new("bash")
|
||||
.args([
|
||||
"examples/notebooks/cat_and_dog_data.sh",
|
||||
&cat_and_dog_data_dir,
|
||||
])
|
||||
.status()
|
||||
.expect("failed to execute process");
|
||||
assert!(status.success());
|
||||
});
|
||||
// set VOICE_DATA_DIR environment variable
|
||||
std::env::set_var("CATDOG_DATA_DIR", format!("{}", cat_and_dog_data_dir));
|
||||
}
|
||||
|
||||
fn setup_py_env() {
|
||||
ENV_SETUP.call_once(|| {
|
||||
// supposes that you have a virtualenv called .env and have run the following
|
||||
@@ -225,6 +242,20 @@ mod py_tests {
|
||||
anvil_child.kill().unwrap();
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
fn cat_and_dog_notebook_() {
|
||||
crate::py_tests::init_binary();
|
||||
let mut anvil_child = crate::py_tests::start_anvil(false);
|
||||
crate::py_tests::download_catdog_data();
|
||||
let test_dir: TempDir = TempDir::new("cat_and_dog").unwrap();
|
||||
let path = test_dir.path().to_str().unwrap();
|
||||
crate::py_tests::mv_test_(path, "cat_and_dog.ipynb");
|
||||
run_notebook(path, "cat_and_dog.ipynb");
|
||||
test_dir.close().unwrap();
|
||||
anvil_child.kill().unwrap();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn reusable_verifier_notebook_() {
|
||||
crate::py_tests::init_binary();
|
||||
|
||||
@@ -337,7 +337,7 @@ mod wasm32 {
|
||||
// Run compiled circuit validation on onnx network (should fail)
|
||||
let circuit = compiledCircuitValidation(wasm_bindgen::Clamped(NETWORK.to_vec()));
|
||||
assert!(circuit.is_err());
|
||||
// Run compiled circuit validation on comiled network (should pass)
|
||||
// Run compiled circuit validation on compiled network (should pass)
|
||||
let circuit = compiledCircuitValidation(wasm_bindgen::Clamped(NETWORK_COMPILED.to_vec()));
|
||||
assert!(circuit.is_ok());
|
||||
// Run input validation on witness (should fail)
|
||||
|
||||
Reference in New Issue
Block a user