Compare commits

...

5 Commits

Author SHA1 Message Date
github-actions[bot]
97e26ae5bf ci: update version string in docs 2025-02-13 17:35:32 +00:00
dante
73c813a81d feat: pass data directly in cli (#939) 2025-02-13 12:35:13 -05:00
dante
ae076aef09 refactor: rm tolerance parameter (#937) 2025-02-11 12:57:18 -05:00
dante
a7544f4060 feat: generalize conv mem layout and ND (#935) 2025-02-10 09:11:58 -05:00
dante
c19fa5218a refactor: enforce max decomp base/legs in args (#936) 2025-02-09 16:15:40 -05:00
29 changed files with 791 additions and 625 deletions

View File

@@ -276,6 +276,8 @@ jobs:
locked: true
# - name: The Worm Mock
# run: cargo nextest run --verbose tests::large_mock_::large_tests_5_expects -- --include-ignored
- name: Large 1D Conv Mock
run: cargo nextest run --verbose tests::large_mock_::large_tests_7_expects -- --include-ignored
- name: MNIST Gan Mock
run: cargo nextest run --verbose tests::large_mock_::large_tests_4_expects -- --include-ignored
- name: NanoGPT Mock
@@ -292,8 +294,6 @@ jobs:
run: cargo nextest run --verbose tests::mock_fixed_params_ --test-threads 32
- name: public outputs and bounded lookup log
run: cargo nextest run --verbose tests::mock_bounded_lookup_log --test-threads 32
- name: public outputs and tolerance > 0
run: cargo nextest run --verbose tests::mock_tolerance_public_outputs_ --test-threads 32
- name: public outputs + batch size == 10
run: cargo nextest run --verbose tests::mock_large_batch_public_outputs_ --test-threads 16
- name: kzg inputs

2
Cargo.lock generated
View File

@@ -1932,7 +1932,7 @@ dependencies = [
]
[[package]]
name = "ezkl-gpu"
name = "ezkl"
version = "0.0.0"
dependencies = [
"alloy",

View File

@@ -73,6 +73,8 @@ impl Circuit<Fr> for MyCircuit {
padding: vec![(0, 0)],
stride: vec![1; 2],
group: 1,
data_format: DataFormat::NCHW,
kernel_format: KernelFormat::OIHW,
}),
)
.unwrap();

View File

@@ -69,6 +69,7 @@ impl Circuit<Fr> for MyCircuit {
stride: vec![1, 1],
kernel_shape: vec![2, 2],
normalized: false,
data_format: DataFormat::NCHW,
}),
)
.unwrap();

View File

@@ -1,7 +1,7 @@
import ezkl
project = 'ezkl'
release = '0.0.0'
release = '20.2.0'
version = release

View File

@@ -32,6 +32,7 @@ use mnist::*;
use rand::rngs::OsRng;
use std::marker::PhantomData;
mod params;
const K: usize = 20;
@@ -208,6 +209,8 @@ where
padding: vec![(PADDING, PADDING); 2],
stride: vec![STRIDE; 2],
group: 1,
data_format: DataFormat::NCHW,
kernel_format: KernelFormat::OIHW,
};
let x = config
.layer_config

View File

@@ -0,0 +1,106 @@
{
"input_data": [
[
8761,
7654,
8501,
2404,
6929,
8858,
5946,
3673,
4131,
3854,
8137,
8239,
9038,
6299,
1118,
9737,
208,
7954,
3691,
610,
3468,
3314,
8658,
8366,
2850,
477,
6114,
232,
4601,
7420,
5713,
2936,
6061,
2870,
8421,
177,
7107,
7382,
6115,
5487,
8502,
2559,
1875,
129,
8533,
8201,
8414,
4775,
9817,
3127,
8761,
7654,
8501,
2404,
6929,
8858,
5946,
3673,
4131,
3854,
8137,
8239,
9038,
6299,
1118,
9737,
208,
7954,
3691,
610,
3468,
3314,
8658,
8366,
2850,
477,
6114,
232,
4601,
7420,
5713,
2936,
6061,
2870,
8421,
177,
7107,
7382,
6115,
5487,
8502,
2559,
1875,
129,
8533,
8201,
8414,
4775,
9817,
3127
]
]
}

Binary file not shown.

View File

@@ -0,0 +1 @@
{"run_args":{"input_scale":7,"param_scale":7,"scale_rebase_multiplier":1,"lookup_range":[-32768,32768],"logrows":17,"num_inner_cols":2,"variables":[["batch_size",1]],"input_visibility":"Private","output_visibility":"Public","param_visibility":"Private","rebase_frac_zero_constants":false,"check_mode":"UNSAFE","commitment":"KZG","decomp_base":16384,"decomp_legs":2,"bounded_log_lookup":false,"ignore_range_check_inputs_outputs":false},"num_rows":54,"total_assignments":109,"total_const_size":4,"total_dynamic_col_size":0,"max_dynamic_input_len":0,"num_dynamic_lookups":0,"num_shuffles":0,"total_shuffle_col_size":0,"model_instance_shapes":[[1,1]],"model_output_scales":[7],"model_input_scales":[7],"module_sizes":{"polycommit":[],"poseidon":[0,[0]]},"required_lookups":[],"required_range_checks":[[-1,1],[0,16383]],"check_mode":"UNSAFE","version":"0.0.0","num_blinding_factors":null,"timestamp":1739396322131,"input_types":["F32"],"output_types":["F32"]}

View File

@@ -28,6 +28,8 @@ use std::env;
#[tokio::main(flavor = "current_thread")]
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
pub async fn main() {
use log::debug;
let args = Cli::parse();
if let Some(generator) = args.generator {
@@ -42,7 +44,7 @@ pub async fn main() {
} else {
info!("Running with CPU");
}
info!(
debug!(
"command: \n {}",
&command.as_json().to_colored_json_auto().unwrap()
);

View File

@@ -4,8 +4,8 @@ use crate::circuit::modules::poseidon::{
PoseidonChip,
};
use crate::circuit::modules::Module;
use crate::circuit::CheckMode;
use crate::circuit::InputType;
use crate::circuit::{CheckMode, Tolerance};
use crate::commands::*;
use crate::fieldutils::{felt_to_integer_rep, integer_rep_to_felt, IntegerRep};
use crate::graph::TestDataSource;
@@ -155,9 +155,6 @@ impl pyo3::ToPyObject for PyG1Affine {
#[derive(Clone)]
#[gen_stub_pyclass]
struct PyRunArgs {
#[pyo3(get, set)]
/// float: The tolerance for error on model outputs
pub tolerance: f32,
#[pyo3(get, set)]
/// int: The denominator in the fixed point representation used when quantizing inputs
pub input_scale: crate::Scale,
@@ -225,7 +222,6 @@ impl From<PyRunArgs> for RunArgs {
fn from(py_run_args: PyRunArgs) -> Self {
RunArgs {
bounded_log_lookup: py_run_args.bounded_log_lookup,
tolerance: Tolerance::from(py_run_args.tolerance),
input_scale: py_run_args.input_scale,
param_scale: py_run_args.param_scale,
num_inner_cols: py_run_args.num_inner_cols,
@@ -250,7 +246,6 @@ impl Into<PyRunArgs> for RunArgs {
fn into(self) -> PyRunArgs {
PyRunArgs {
bounded_log_lookup: self.bounded_log_lookup,
tolerance: self.tolerance.val,
input_scale: self.input_scale,
param_scale: self.param_scale,
num_inner_cols: self.num_inner_cols,
@@ -1014,7 +1009,7 @@ fn gen_random_data(
/// bool
///
#[pyfunction(signature = (
data = PathBuf::from(DEFAULT_CALIBRATION_FILE),
data = String::from(DEFAULT_CALIBRATION_FILE),
model = PathBuf::from(DEFAULT_MODEL),
settings = PathBuf::from(DEFAULT_SETTINGS),
target = CalibrationTarget::default(), // default is "resources
@@ -1026,7 +1021,7 @@ fn gen_random_data(
#[gen_stub_pyfunction]
fn calibrate_settings(
py: Python,
data: PathBuf,
data: String,
model: PathBuf,
settings: PathBuf,
target: CalibrationTarget,
@@ -1081,7 +1076,7 @@ fn calibrate_settings(
/// Python object containing the witness values
///
#[pyfunction(signature = (
data=PathBuf::from(DEFAULT_DATA),
data=String::from(DEFAULT_DATA),
model=PathBuf::from(DEFAULT_COMPILED_CIRCUIT),
output=PathBuf::from(DEFAULT_WITNESS),
vk_path=None,
@@ -1090,7 +1085,7 @@ fn calibrate_settings(
#[gen_stub_pyfunction]
fn gen_witness(
py: Python,
data: PathBuf,
data: String,
model: PathBuf,
output: Option<PathBuf>,
vk_path: Option<PathBuf>,
@@ -1759,7 +1754,7 @@ fn create_evm_vka(
/// bool
///
#[pyfunction(signature = (
input_data=PathBuf::from(DEFAULT_DATA),
input_data=String::from(DEFAULT_DATA),
settings_path=PathBuf::from(DEFAULT_SETTINGS),
sol_code_path=PathBuf::from(DEFAULT_SOL_CODE_DA),
abi_path=PathBuf::from(DEFAULT_VERIFIER_DA_ABI),
@@ -1768,7 +1763,7 @@ fn create_evm_vka(
#[gen_stub_pyfunction]
fn create_evm_data_attestation(
py: Python,
input_data: PathBuf,
input_data: String,
settings_path: PathBuf,
sol_code_path: PathBuf,
abi_path: PathBuf,
@@ -1829,7 +1824,7 @@ fn create_evm_data_attestation(
#[gen_stub_pyfunction]
fn setup_test_evm_witness(
py: Python,
data_path: PathBuf,
data_path: String,
compiled_circuit_path: PathBuf,
test_data: PathBuf,
input_source: PyTestDataSource,
@@ -1907,7 +1902,7 @@ fn deploy_evm(
fn deploy_da_evm(
py: Python,
addr_path: PathBuf,
input_data: PathBuf,
input_data: String,
settings_path: PathBuf,
sol_code_path: PathBuf,
rpc_url: Option<String>,

View File

@@ -20,7 +20,6 @@ use crate::{
circuit::{
ops::base::BaseOp,
table::{Range, RangeCheck, Table},
utils,
},
tensor::{Tensor, TensorType, ValTensor, VarTensor},
};
@@ -85,55 +84,6 @@ impl CheckMode {
}
}
#[allow(missing_docs)]
/// An enum representing the tolerance we can accept for the accumulated arguments, either absolute or percentage
#[derive(Clone, Default, Debug, PartialEq, PartialOrd, Serialize, Deserialize, Copy)]
pub struct Tolerance {
pub val: f32,
pub scale: utils::F32,
}
impl std::fmt::Display for Tolerance {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{:.2}", self.val)
}
}
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
impl ToFlags for Tolerance {
/// Convert the struct to a subcommand string
fn to_flags(&self) -> Vec<String> {
vec![format!("{}", self)]
}
}
impl FromStr for Tolerance {
type Err = String;
fn from_str(s: &str) -> Result<Self, Self::Err> {
if let Ok(val) = s.parse::<f32>() {
Ok(Tolerance {
val,
scale: utils::F32(1.0),
})
} else {
Err(
"Invalid tolerance value provided. It should expressed as a percentage (f32)."
.to_string(),
)
}
}
}
impl From<f32> for Tolerance {
fn from(value: f32) -> Self {
Tolerance {
val: value,
scale: utils::F32(1.0),
}
}
}
#[cfg(feature = "python-bindings")]
/// Converts CheckMode into a PyObject (Required for CheckMode to be compatible with Python)
impl IntoPy<PyObject> for CheckMode {
@@ -158,29 +108,6 @@ impl<'source> FromPyObject<'source> for CheckMode {
}
}
#[cfg(feature = "python-bindings")]
/// Converts Tolerance into a PyObject (Required for Tolerance to be compatible with Python)
impl IntoPy<PyObject> for Tolerance {
fn into_py(self, py: Python) -> PyObject {
(self.val, self.scale.0).to_object(py)
}
}
#[cfg(feature = "python-bindings")]
/// Obtains Tolerance from PyObject (Required for Tolerance to be compatible with Python)
impl<'source> FromPyObject<'source> for Tolerance {
fn extract_bound(ob: &pyo3::Bound<'source, pyo3::PyAny>) -> PyResult<Self> {
if let Ok((val, scale)) = <(f32, f32)>::extract_bound(ob) {
Ok(Tolerance {
val,
scale: utils::F32(scale),
})
} else {
Err(PyValueError::new_err("Invalid tolerance value provided. "))
}
}
}
/// A struct representing the selectors for the dynamic lookup tables
#[derive(Clone, Debug, Default)]
pub struct DynamicLookups {

View File

@@ -1,9 +1,9 @@
use super::*;
use crate::{
circuit::{layouts, utils, Tolerance},
circuit::{layouts, utils},
fieldutils::{integer_rep_to_felt, IntegerRep},
graph::multiplier_to_scale,
tensor::{self, Tensor, TensorType, ValTensor},
tensor::{self, DataFormat, Tensor, TensorType, ValTensor},
};
use halo2curves::ff::PrimeField;
use serde::{Deserialize, Serialize};
@@ -57,11 +57,13 @@ pub enum HybridOp {
stride: Vec<usize>,
kernel_shape: Vec<usize>,
normalized: bool,
data_format: DataFormat,
},
MaxPool {
padding: Vec<(usize, usize)>,
stride: Vec<usize>,
pool_dims: Vec<usize>,
data_format: DataFormat,
},
ReduceMin {
axes: Vec<usize>,
@@ -77,7 +79,6 @@ pub enum HybridOp {
axes: Vec<usize>,
},
Output {
tol: Tolerance,
decomp: bool,
},
Greater,
@@ -154,10 +155,10 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
padding,
stride,
kernel_shape,
normalized,
normalized, data_format
} => format!(
"SUMPOOL (padding={:?}, stride={:?}, kernel_shape={:?}, normalized={})",
padding, stride, kernel_shape, normalized
"SUMPOOL (padding={:?}, stride={:?}, kernel_shape={:?}, normalized={}, data_format={:?})",
padding, stride, kernel_shape, normalized, data_format
),
HybridOp::ReduceMax { axes } => format!("REDUCEMAX (axes={:?})", axes),
HybridOp::ReduceArgMax { dim } => format!("REDUCEARGMAX (dim={})", dim),
@@ -165,9 +166,10 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
padding,
stride,
pool_dims,
data_format,
} => format!(
"MaxPool (padding={:?}, stride={:?}, pool_dims={:?})",
padding, stride, pool_dims
"MaxPool (padding={:?}, stride={:?}, pool_dims={:?}, data_format={:?})",
padding, stride, pool_dims, data_format
),
HybridOp::ReduceMin { axes } => format!("REDUCEMIN (axes={:?})", axes),
HybridOp::ReduceArgMin { dim } => format!("REDUCEARGMIN (dim={})", dim),
@@ -181,8 +183,8 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
input_scale, output_scale, axes
)
}
HybridOp::Output { tol, decomp } => {
format!("OUTPUT (tol={:?}, decomp={})", tol, decomp)
HybridOp::Output { decomp } => {
format!("OUTPUT (decomp={})", decomp)
}
HybridOp::Greater => "GREATER".to_string(),
HybridOp::GreaterEqual => "GREATEREQUAL".to_string(),
@@ -239,6 +241,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
stride,
kernel_shape,
normalized,
data_format,
} => layouts::sumpool(
config,
region,
@@ -247,6 +250,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
stride,
kernel_shape,
*normalized,
*data_format,
)?,
HybridOp::Recip {
input_scale,
@@ -287,6 +291,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
padding,
stride,
pool_dims,
data_format,
} => layouts::max_pool(
config,
region,
@@ -294,6 +299,7 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
padding,
stride,
pool_dims,
*data_format,
)?,
HybridOp::ReduceMax { axes } => {
layouts::max_axes(config, region, values[..].try_into()?, axes)?
@@ -319,14 +325,9 @@ impl<F: PrimeField + TensorType + PartialOrd + std::hash::Hash> Op<F> for Hybrid
*output_scale,
axes,
)?,
HybridOp::Output { tol, decomp } => layouts::output(
config,
region,
values[..].try_into()?,
tol.scale,
tol.val,
*decomp,
)?,
HybridOp::Output { decomp } => {
layouts::output(config, region, values[..].try_into()?, *decomp)?
}
HybridOp::Greater => layouts::greater(config, region, values[..].try_into()?)?,
HybridOp::GreaterEqual => {
layouts::greater_equal(config, region, values[..].try_into()?)?

View File

@@ -24,6 +24,7 @@ use crate::{
ops::{accumulated, add, mult, sub},
Tensor, TensorError, ValType,
},
tensor::{DataFormat, KernelFormat},
};
use super::*;
@@ -156,25 +157,6 @@ pub(crate) fn div<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
claimed_output.reshape(input_dims)?;
// implicitly check if the prover provided output is within range
let claimed_output = identity(config, region, &[claimed_output], true)?;
// check if x is too large only if the decomp would support overflow in the previous op
if F::from_u128(IntegerRep::MAX as u128)
< F::from_u128(region.base() as u128).pow([region.legs() as u64]) - F::ONE
{
// here we decompose and extract the sign of the input
let sign = sign(config, region, &[claimed_output.clone()])?;
let abs_value = pairwise(
config,
region,
&[claimed_output.clone(), sign],
BaseOp::Mult,
)?;
let max_val = create_constant_tensor(integer_rep_to_felt(IntegerRep::MAX), 1);
let less_than_max = less(config, region, &[abs_value.clone(), max_val])?;
// assert the result is 1
let comparison_unit = create_constant_tensor(F::ONE, less_than_max.len());
enforce_equality(config, region, &[abs_value, comparison_unit])?;
}
let product = pairwise(
config,
@@ -248,32 +230,6 @@ pub(crate) fn recip<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
&[equal_zero_mask.clone(), equal_inverse_mask],
)?;
let masked_output = pairwise(
config,
region,
&[claimed_output.clone(), not_equal_zero_mask.clone()],
BaseOp::Mult,
)?;
// check if x is too large only if the decomp would support overflow in the previous op
if F::from_u128(IntegerRep::MAX as u128)
< F::from_u128(region.base() as u128).pow([region.legs() as u64]) - F::ONE
{
// here we decompose and extract the sign of the input
let sign = sign(config, region, &[masked_output.clone()])?;
let abs_value = pairwise(
config,
region,
&[claimed_output.clone(), sign],
BaseOp::Mult,
)?;
let max_val = create_constant_tensor(integer_rep_to_felt(IntegerRep::MAX), 1);
let less_than_max = less(config, region, &[abs_value.clone(), max_val])?;
// assert the result is 1
let comparison_unit = create_constant_tensor(F::ONE, less_than_max.len());
enforce_equality(config, region, &[abs_value, comparison_unit])?;
}
let err_func = |config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
x: &ValTensor<F>|
@@ -3225,6 +3181,7 @@ pub fn neg<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
/// use ezkl::circuit::region::RegionSettings;
/// use ezkl::circuit::BaseConfig;
/// use ezkl::tensor::ValTensor;
/// use ezkl::tensor::DataFormat;
///
/// let dummy_config = BaseConfig::dummy(12, 2);
/// let mut dummy_region = RegionCtx::new_dummy(0,2,RegionSettings::all_true(65536, 4));
@@ -3234,12 +3191,12 @@ pub fn neg<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
/// Some(&[5, 2, 3, 0, 4, -1, 3, 1, 6]),
/// &[1, 1, 3, 3],
/// ).unwrap());
/// let pooled = sumpool::<Fp>(&dummy_config, &mut dummy_region, &[x.clone()], &vec![(0, 0); 2], &vec![1;2], &vec![2, 2], false).unwrap();
/// let pooled = sumpool::<Fp>(&dummy_config, &mut dummy_region, &[x.clone()], &vec![(0, 0); 2], &vec![1;2], &vec![2, 2], false, DataFormat::default()).unwrap();
/// let expected: Tensor<IntegerRep> = Tensor::<IntegerRep>::new(Some(&[11, 8, 8, 10]), &[1, 1, 2, 2]).unwrap();
/// assert_eq!(pooled.int_evals().unwrap(), expected);
///
/// // This time with normalization
/// let pooled = sumpool::<Fp>(&dummy_config, &mut dummy_region, &[x], &vec![(0, 0); 2], &vec![1;2], &vec![2, 2], true).unwrap();
/// let pooled = sumpool::<Fp>(&dummy_config, &mut dummy_region, &[x], &vec![(0, 0); 2], &vec![1;2], &vec![2, 2], true, DataFormat::default()).unwrap();
/// let expected: Tensor<IntegerRep> = Tensor::<IntegerRep>::new(Some(&[3, 2, 2, 3]), &[1, 1, 2, 2]).unwrap();
/// assert_eq!(pooled.int_evals().unwrap(), expected);
/// ```
@@ -3251,9 +3208,19 @@ pub fn sumpool<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
stride: &[usize],
kernel_shape: &[usize],
normalized: bool,
data_format: DataFormat,
) -> Result<ValTensor<F>, CircuitError> {
let batch_size = values[0].dims()[0];
let image_channels = values[0].dims()[1];
let mut image = values[0].clone();
data_format.to_canonical(&mut image)?;
if data_format.has_no_batch() {
let mut dims = image.dims().to_vec();
dims.insert(0, 1);
image.reshape(&dims)?;
}
let batch_size = image.dims()[0];
let image_channels = image.dims()[1];
let kernel_len = kernel_shape.iter().product();
@@ -3278,7 +3245,16 @@ pub fn sumpool<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
.map(|coord| {
let (b, i) = (coord[0], coord[1]);
let input = values[0].get_slice(&[b..b + 1, i..i + 1])?;
let output = conv(config, region, &[input, kernel.clone()], padding, stride, 1)?;
let output = conv(
config,
region,
&[input, kernel.clone()],
padding,
stride,
1,
DataFormat::default(),
KernelFormat::default(),
)?;
res.push(output);
Ok(())
})
@@ -3293,6 +3269,9 @@ pub fn sumpool<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
if normalized {
last_elem = div(config, region, &[last_elem], F::from(kernel_len as u64))?;
}
data_format.from_canonical(&mut last_elem)?;
Ok(last_elem)
}
@@ -3302,6 +3281,7 @@ pub fn sumpool<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::circuit::ops::layouts::max_pool;
/// use ezkl::tensor::DataFormat;
/// use halo2curves::bn256::Fr as Fp;
/// use ezkl::circuit::region::RegionCtx;
/// use ezkl::circuit::region::RegionSettings;
@@ -3316,7 +3296,7 @@ pub fn sumpool<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
/// Some(&[5, 2, 3, 0, 4, -1, 3, 1, 6]),
/// &[1, 1, 3, 3],
/// ).unwrap());
/// let pooled = max_pool::<Fp>(&dummy_config, &mut dummy_region, &[x], &vec![(0, 0); 2], &vec![1;2], &vec![2;2]).unwrap();
/// let pooled = max_pool::<Fp>(&dummy_config, &mut dummy_region, &[x], &vec![(0, 0); 2], &vec![1;2], &vec![2;2], DataFormat::default()).unwrap();
/// let expected: Tensor<IntegerRep> = Tensor::<IntegerRep>::new(Some(&[5, 4, 4, 6]), &[1, 1, 2, 2]).unwrap();
/// assert_eq!(pooled.int_evals().unwrap(), expected);
///
@@ -3328,8 +3308,16 @@ pub fn max_pool<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
padding: &[(usize, usize)],
stride: &[usize],
pool_dims: &[usize],
data_format: DataFormat,
) -> Result<ValTensor<F>, CircuitError> {
let image = values[0].clone();
let mut image = values[0].clone();
data_format.to_canonical(&mut image)?;
if data_format.has_no_batch() {
let mut dims = image.dims().to_vec();
dims.insert(0, 1);
image.reshape(&dims)?;
}
let image_dims = image.dims();
@@ -3388,38 +3376,38 @@ pub fn max_pool<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
region.apply_in_loop(&mut output, inner_loop_function)?;
let res: ValTensor<F> = output.into();
let mut res: ValTensor<F> = output.into();
data_format.from_canonical(&mut res)?;
Ok(res)
}
/// Performs a deconvolution on the given input tensor.
/// # Examples
/// ```
// // expected outputs are taken from pytorch torch.nn.functional.conv_transpose2d
///
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::circuit::ops::layouts::deconv;
/// use ezkl::tensor::{val::ValTensor, DataFormat, KernelFormat};
/// use halo2curves::bn256::Fr as Fp;
/// use ezkl::circuit::region::RegionCtx;
/// use ezkl::circuit::region::RegionSettings;
/// use ezkl::circuit::BaseConfig;
/// use ezkl::tensor::ValTensor;
///
/// let dummy_config = BaseConfig::dummy(12, 2);
/// let mut dummy_region = RegionCtx::new_dummy(0,2,RegionSettings::all_true(65536, 4));
///
/// // Original test case 1: Channel expansion
/// let c = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(Some(&[6, 0, 12, 4, 0, 8, 0, 0, 3, 0, 0, 2]), &[1, 2, 2, 3]).unwrap());
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[2, 4, 0, 1]),
/// &[1, 1, 2, 2],
/// ).unwrap());
///
/// let result = deconv::<Fp>(&dummy_config, &mut dummy_region, &[x, c], &vec![(1, 1); 2], &vec![1;2], &vec![2;2], 1).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, 32, 0, 32, 0, 6, 0, 12, 0, 4, 0, 8, 0, 4, 0, 8, 0, 0, 0, 3, 0, 0, 0, 2]), &[1, 2, 3, 4]).unwrap();
/// let result = deconv::<Fp>(&dummy_config, &mut dummy_region, &[x, c], &vec![(1, 1); 2], &vec![0;2], &vec![2;2], 1, DataFormat::NCHW, KernelFormat::OIHW).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, 32, 0, 0, 6, 0, 0, 4, 0, 0, 0, 0]), &[1, 2, 2, 3]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
///
/// // Original test case 2: Basic deconvolution
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[2, 4, 0, 1]),
/// &[1, 1, 2, 2],
@@ -3428,11 +3416,11 @@ pub fn max_pool<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
/// Some(&[3, 1, 1, 5]),
/// &[1, 1, 2, 2],
/// ).unwrap());
/// let result = deconv::<Fp>(&dummy_config, &mut dummy_region, &[x, k], &vec![(0, 0); 2], &vec![0;2], &vec![1;2], 1).unwrap();
/// let result = deconv::<Fp>(&dummy_config, &mut dummy_region, &[x, k], &vec![(0, 0); 2], &vec![0;2], &vec![1;2], 1, DataFormat::NCHW, KernelFormat::OIHW).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[6, 14, 4, 2, 17, 21, 0, 1, 5]), &[1, 1, 3, 3]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
///
///
/// // Original test case 3: With padding
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[2, 4, 0, 1]),
/// &[1, 1, 2, 2],
@@ -3441,11 +3429,11 @@ pub fn max_pool<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
/// Some(&[3, 1, 1, 5]),
/// &[1, 1, 2, 2],
/// ).unwrap());
/// let result = deconv::<Fp>(&dummy_config, &mut dummy_region, &[x, k], &vec![(1, 1); 2], &vec![0;2], &vec![1;2], 1).unwrap();
/// let result = deconv::<Fp>(&dummy_config, &mut dummy_region, &[x, k], &vec![(1, 1); 2], &vec![0;2], &vec![1;2], 1, DataFormat::NCHW, KernelFormat::OIHW).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[17]), &[1, 1, 1, 1]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
///
///
/// // Original test case 4: With stride
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[2, 4, 0, 1]),
/// &[1, 1, 2, 2],
@@ -3454,10 +3442,11 @@ pub fn max_pool<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
/// Some(&[3, 1, 1, 5]),
/// &[1, 1, 2, 2],
/// ).unwrap());
/// let result = deconv::<Fp>(&dummy_config, &mut dummy_region, &[x, k], &vec![(1, 1); 2], &vec![0;2], &vec![2; 2], 1).unwrap();
/// let result = deconv::<Fp>(&dummy_config, &mut dummy_region, &[x, k], &vec![(1, 1); 2], &vec![0;2], &vec![2; 2], 1, DataFormat::NCHW, KernelFormat::OIHW).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[10, 4, 0, 3]), &[1, 1, 2, 2]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
///
/// // Original test case 5: Zero padding with stride
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[2, 4, 0, 1]),
/// &[1, 1, 2, 2],
@@ -3466,10 +3455,11 @@ pub fn max_pool<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
/// Some(&[3, 1, 1, 5]),
/// &[1, 1, 2, 2],
/// ).unwrap());
/// let result = deconv::<Fp>(&dummy_config, &mut dummy_region, &[x, k], &vec![(0, 0); 2], &vec![0;2], &vec![2; 2], 1).unwrap();
/// let result = deconv::<Fp>(&dummy_config, &mut dummy_region, &[x, k], &vec![(0, 0); 2], &vec![0;2], &vec![2; 2], 1, DataFormat::NCHW, KernelFormat::OIHW).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[6, 2, 12, 4, 2, 10, 4, 20, 0, 0, 3, 1, 0, 0, 1, 5]), &[1, 1, 4, 4]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
///
/// // Original test case 6: Different kernel shape
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[2, 4, 0, 1]),
/// &[1, 1, 2, 2],
@@ -3478,10 +3468,11 @@ pub fn max_pool<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
/// Some(&[3, 2]),
/// &[1, 1, 2, 1],
/// ).unwrap());
/// let result = deconv::<Fp>(&dummy_config, &mut dummy_region, &[x, k], &vec![(1, 1); 2], &vec![0;2], &vec![2; 2], 1).unwrap();
/// let result = deconv::<Fp>(&dummy_config, &mut dummy_region, &[x, k], &vec![(1, 1); 2], &vec![0;2], &vec![2; 2], 1, DataFormat::NCHW, KernelFormat::OIHW).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, 0]), &[1, 1, 2, 1]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
///
/// // Original test case 7: Different kernel shape without padding
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[2, 4, 0, 1]),
/// &[1, 1, 2, 2],
@@ -3490,20 +3481,21 @@ pub fn max_pool<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
/// Some(&[3, 2]),
/// &[1, 1, 2, 1],
/// ).unwrap());
/// let result = deconv::<Fp>(&dummy_config, &mut dummy_region, &[x, k], &vec![(0, 0); 2], &vec![0;2], &vec![2; 2], 1).unwrap();
/// let result = deconv::<Fp>(&dummy_config, &mut dummy_region, &[x, k], &vec![(0, 0); 2], &vec![0;2], &vec![2; 2], 1, DataFormat::NCHW, KernelFormat::OIHW).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[6, 0, 12, 4, 0, 8, 0, 0, 3, 0, 0, 2]), &[1, 1, 4, 3]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
///
///
/// // Original test case 8: Channel expansion with stride
/// let c = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(Some(&[6, 0, 12, 4, 0, 8, 0, 0, 3, 0, 0, 2]), &[1, 2, 2, 3]).unwrap());
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[2, 4, 0, 1]),
/// &[1, 1, 2, 2],
/// ).unwrap());
///
/// let result = deconv::<Fp>(&dummy_config, &mut dummy_region, &[x, c], &vec![(1, 1); 2], &vec![0;2], &vec![2;2], 1).unwrap();
/// let result = deconv::<Fp>(&dummy_config, &mut dummy_region, &[x, c], &vec![(1, 1); 2], &vec![0;2], &vec![2;2], 1, DataFormat::NCHW, KernelFormat::OIHW).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[0, 32, 0, 0, 6, 0, 0, 4, 0, 0, 0, 0]), &[1, 2, 2, 3]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
///
/// // Original test case 9: With bias
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[3, 8, 0, 8, 4, 9, 8, 1, 8]),
/// &[1, 1, 3, 3],
@@ -3516,11 +3508,89 @@ pub fn max_pool<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
/// Some(&[1]),
/// &[1],
/// ).unwrap());
/// let result = deconv::<Fp>(&dummy_config, &mut dummy_region, &[x, k, b], &vec![(1, 1); 2], &vec![0;2], &vec![1;2], 1).unwrap();
/// let result = deconv::<Fp>(&dummy_config, &mut dummy_region, &[x, k, b], &vec![(1, 1); 2], &vec![0;2], &vec![1;2], 1, DataFormat::NCHW, KernelFormat::OIHW).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[55, 58, 66, 69]), &[1, 1, 2, 2]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
///
/// // Additional test case 1: NHWC format with HWIO kernel
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[2, 4, 0, 1]),
/// &[1, 2, 2, 1], // NHWC format
/// ).unwrap());
/// let k = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[1, 1, 5, 3]),
/// &[2, 2, 1, 1], // HWIO format
/// ).unwrap());
/// let result = deconv::<Fp>(&dummy_config, &mut dummy_region, &[x, k], &vec![(1, 1); 2], &vec![0;2], &vec![1;2], 1, DataFormat::NHWC, KernelFormat::HWIO).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[27]), &[1, 1, 1, 1]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
///
/// // Additional test case 2: 1D deconvolution with NCHW format
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3]),
/// &[1, 1, 3], // NCH format
/// ).unwrap());
/// let k = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[1, 2]),
/// &[1, 1, 2], // OIH format
/// ).unwrap());
/// let result = deconv::<Fp>(&dummy_config, &mut dummy_region, &[x, k], &vec![(0, 0)], &vec![0], &vec![1], 1, DataFormat::NCHW, KernelFormat::OIHW).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[1, 4, 7, 6]), &[1, 1, 4]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
///
/// // Additional test case 3: 3D deconvolution with NCHW format
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3, 4]),
/// &[1, 1, 2, 2, 1], // NCDHW format
/// ).unwrap());
/// let k = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[1, 1]),
/// &[1, 1, 1, 1, 2], // OIDHW format
/// ).unwrap());
/// let result = deconv::<Fp>(&dummy_config, &mut dummy_region, &[x, k], &vec![(0, 0); 3], &vec![0; 3], &vec![1; 3], 1, DataFormat::NCHW, KernelFormat::OIHW).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[1, 1, 2, 2, 3, 3, 4, 4]), &[1, 1, 2, 2, 2]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
///
/// // Additional test case 4: Multi-channel with NHWC format and OHWI kernel
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[2, 4, 0, 1, 3, 2, 1, 4]), // 2 channels, 2x2 spatial
/// &[1, 2, 2, 2], // NHWC format [batch, height, width, channels]
/// ).unwrap());
/// let k = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3, 4, 5, 6, 7, 8]),
/// &[1, 2, 2, 2], // OHWI format [out_channels, height, width, in_channels]
/// ).unwrap());
/// let result = deconv::<Fp>(&dummy_config, &mut dummy_region, &[x, k], &vec![(0, 0); 2], &vec![0;2], &vec![1;2], 1, DataFormat::NHWC, KernelFormat::OHWI).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[10, 24, 4, 41, 78, 27, 27, 66, 39]), &[1, 3, 3, 1]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
///
/// // Additional test case 5: CHW format (no batch dimension)
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[2, 4, 0, 1]),
/// &[1, 2, 2], // CHW format [channels, height, width]
/// ).unwrap());
/// let k = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3, 4]),
/// &[1, 1, 2, 2], // OIHW format [out_channels, in_channels, height, width]
/// ).unwrap());
/// let result = deconv::<Fp>(&dummy_config, &mut dummy_region, &[x, k], &vec![(0, 0); 2], &vec![0;2], &vec![1;2], 1, DataFormat::CHW, KernelFormat::OIHW).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[6, 6, 6]), &[1, 1, 1, 3]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
///
/// // Additional test case 6: HWC format with HWIO kernel
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[2, 3, 4, 1]),
/// &[2, 2, 1], // HWC format [height, width, channels]
/// ).unwrap());
/// let k = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 1, 2]),
/// &[2, 2, 1, 1], // HWIO format [height, width, in_channels, out_channels]
/// ).unwrap());
/// let result = deconv::<Fp>(&dummy_config, &mut dummy_region, &[x, k], &vec![(0, 0); 2], &vec![0;2], &vec![1;2], 1, DataFormat::HWC, KernelFormat::HWIO).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[6, 6, 6]), &[1, 1, 3, 1]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
/// ```
///
pub fn deconv<
F: PrimeField + TensorType + PartialOrd + std::hash::Hash + std::marker::Send + std::marker::Sync,
>(
@@ -3531,9 +3601,14 @@ pub fn deconv<
output_padding: &[usize],
stride: &[usize],
num_groups: usize,
data_format: DataFormat,
kernel_format: KernelFormat,
) -> Result<ValTensor<F>, CircuitError> {
let has_bias = inputs.len() == 3;
let (image, kernel) = (&inputs[0], &inputs[1]);
let (mut working_image, mut working_kernel) = (inputs[0].clone(), inputs[1].clone());
data_format.to_canonical(&mut working_image)?;
kernel_format.to_canonical(&mut working_kernel)?;
if stride.iter().any(|&s| s == 0) {
return Err(TensorError::DimMismatch(
@@ -3543,26 +3618,23 @@ pub fn deconv<
}
let null_val = ValType::Constant(F::ZERO);
let mut expanded_image = working_image.clone();
let mut expanded_image = image.clone();
// Expand image by inserting zeros according to stride
for (i, s) in stride.iter().enumerate() {
expanded_image.intercalate_values(null_val.clone(), *s, 2 + i)?;
}
// Pad to kernel size for each spatial dimension
expanded_image.pad(
kernel.dims()[2..]
working_kernel.dims()[2..]
.iter()
.map(|d| (d - 1, d - 1))
.collect::<Vec<_>>(),
2,
)?; // pad to the kernel size
// flip order
let channel_coord = (0..kernel.dims()[0])
.cartesian_product(0..kernel.dims()[1])
.collect::<Vec<_>>();
)?;
// Calculate slice coordinates considering padding and output padding
let slice_coord = expanded_image
.dims()
.iter()
@@ -3578,26 +3650,34 @@ pub fn deconv<
let sliced_expanded_image = expanded_image.get_slice(&slice_coord)?;
let mut inverted_kernels = vec![];
// Generate channel coordinates for kernel transformation
let (in_ch_dim, out_ch_dim) =
KernelFormat::default().get_channel_dims(working_kernel.dims().len());
let channel_coord = (0..working_kernel.dims()[out_ch_dim])
.cartesian_product(0..working_kernel.dims()[in_ch_dim])
.collect::<Vec<_>>();
// Invert kernels for deconvolution
let mut inverted_kernels = vec![];
for (i, j) in channel_coord {
let channel = kernel.get_slice(&[i..i + 1, j..j + 1])?;
let channel = working_kernel.get_slice(&[i..i + 1, j..j + 1])?;
let mut channel = Tensor::from(channel.get_inner_tensor()?.clone().into_iter().rev());
channel.reshape(&kernel.dims()[2..])?;
channel.reshape(&working_kernel.dims()[2..])?;
inverted_kernels.push(channel);
}
let mut deconv_kernel =
Tensor::new(Some(&inverted_kernels), &[inverted_kernels.len()])?.combine()?;
deconv_kernel.reshape(kernel.dims())?;
deconv_kernel.reshape(working_kernel.dims())?;
// tensorflow formatting patch
if kernel.dims()[0] == sliced_expanded_image.dims()[1] {
// Handle tensorflow-style input/output channel ordering
if working_kernel.dims()[0] == sliced_expanded_image.dims()[1] {
let mut dims = deconv_kernel.dims().to_vec();
dims.swap(0, 1);
deconv_kernel.reshape(&dims)?;
}
// Prepare inputs for convolution
let conv_input = if has_bias {
vec![
sliced_expanded_image,
@@ -3608,28 +3688,32 @@ pub fn deconv<
vec![sliced_expanded_image, deconv_kernel.clone().into()]
};
let conv_dim = kernel.dims()[2..].len();
let conv_dim = working_kernel.dims()[2..].len();
let output = conv(
// Perform convolution with canonical formats
let mut output = conv(
config,
region,
&conv_input,
&vec![(0, 0); conv_dim],
&vec![1; conv_dim],
num_groups,
data_format.canonical(), // Use canonical format
kernel_format.canonical(), // Use canonical format
)?;
// Convert output back to requested format
data_format.from_canonical(&mut output)?;
Ok(output)
}
/// Applies convolution over a ND tensor of shape C x H x D1...DN (and adds a bias).
/// ```
/// // expected outputs are taken from pytorch torch.nn.functional.conv2d
///
/// use ezkl::tensor::Tensor;
/// use ezkl::fieldutils::IntegerRep;
/// use ezkl::circuit::ops::layouts::conv;
/// use ezkl::tensor::val::ValTensor;
/// use ezkl::tensor::{val::ValTensor, DataFormat, KernelFormat};
/// use halo2curves::bn256::Fr as Fp;
/// use ezkl::circuit::region::RegionCtx;
/// use ezkl::circuit::region::RegionSettings;
@@ -3638,6 +3722,7 @@ pub fn deconv<
/// let dummy_config = BaseConfig::dummy(12, 2);
/// let mut dummy_region = RegionCtx::new_dummy(0,2,RegionSettings::all_true(65536, 4));
///
/// // Test case 1: Basic 2D convolution with NCHW format (default)
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[5, 2, 3, 0, 4, -1, 3, 1, 6]),
/// &[1, 1, 3, 3],
@@ -3650,44 +3735,64 @@ pub fn deconv<
/// Some(&[0]),
/// &[1],
/// ).unwrap());
/// let result = conv::<Fp>(&dummy_config, &mut dummy_region, &[x, k, b], &vec![(0, 0); 2], &vec![1;2], 1).unwrap();
/// let result = conv::<Fp>(&dummy_config, &mut dummy_region, &[x, k, b], &vec![(0, 0); 2], &vec![1;2], 1, DataFormat::NCHW, KernelFormat::OIHW).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[31, 16, 8, 26]), &[1, 1, 2, 2]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
///
/// // Now test single channel
/// // Test case 2: NHWC format with HWIO kernel
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[5, 2, 3, 0, 4, -1, 3, 1, 6, 5, 2, 3, 0, 4, -1, 3, 1, 6]),
/// &[1, 2, 3, 3],
/// Some(&[5, 2, 3, 0, 4, -1, 3, 1, 6]),
/// &[1, 3, 3, 1], // NHWC format
/// ).unwrap());
/// let k = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[5, 1, 1, 1, 5, 2, 1, 1]),
/// &[2, 1, 2, 2],
/// Some(&[1, 1, 5, 1]),
/// &[2, 2, 1, 1], // HWIO format
/// ).unwrap());
/// let result = conv::<Fp>(&dummy_config, &mut dummy_region, &[x, k], &vec![(0, 0); 2], &vec![1;2], 1, DataFormat::NHWC, KernelFormat::HWIO).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[11, 24, 20, 14]), &[1, 2, 2, 1]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
///
/// // Test case 3: Multi-channel NHWC with OHWI kernel
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[5, 2, 3, 0, 4, -1, 3, 1, 6, 5, 2, 3, 0, 4, -1, 3, 1, 6]),
/// &[1, 3, 3, 2], // NHWC format
/// ).unwrap());
/// let k = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[5, 1, 1, 2, 5, 2, 1, 2]),
/// &[1, 2, 2, 2], // OHWI format
/// ).unwrap());
/// let b = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[1, 1]),
/// &[2],
/// ).unwrap());
///
/// let result = conv::<Fp>(&dummy_config, &mut dummy_region, &[x, k, b], &vec![(0, 0); 2], &vec![1;2], 2).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[32, 17, 9, 27, 34, 20, 13, 26]), &[1, 2, 2, 2]).unwrap();
/// let result = conv::<Fp>(&dummy_config, &mut dummy_region, &[x, k, b], &vec![(0, 0); 2], &vec![1;2], 1, DataFormat::NHWC, KernelFormat::OHWI).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[64, 66, 46, 58]), &[1, 2, 2, 1]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
///
/// // Now test multi channel
/// // Test case 4: 1D convolution with NCHW format
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[5, 2, 3, 0, 4, -1, 3, 1, 6, 5, 2, 3, 0, 4, -1, 3, 1, 6]),
/// &[1, 2, 3, 3],
/// Some(&[1, 2, 3, 4, 5]),
/// &[1, 1, 5], // NCHW format
/// ).unwrap());
/// let k = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[5, 1, 1, 1, 5, 2, 1, 1, 5, 3, 1, 1, 5, 4, 1, 1, 5, 1, 1, 1, 5, 2, 1, 1, 5, 3, 1, 1, 5, 4, 1, 1]),
/// &[4, 2, 2, 2],
/// ).unwrap());
/// let b = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[1, 1, 1, 1]),
/// &[4],
/// Some(&[1, 2, 3]),
/// &[1, 1, 3], // OIHW format
/// ).unwrap());
/// let result = conv::<Fp>(&dummy_config, &mut dummy_region, &[x, k], &vec![(0, 0)], &vec![1], 1, DataFormat::NCHW, KernelFormat::OIHW).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[14, 20, 26]), &[1, 1, 3]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
///
/// let result =conv(&dummy_config, &mut dummy_region, &[x, k, b], &vec![(0, 0); 2], &vec![1;2], 1).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[65, 36, 21, 52, 73, 48, 37, 48, 65, 36, 21, 52, 73, 48, 37, 48]), &[1, 4, 2, 2]).unwrap();
/// // Test case 5: 3D convolution with NCHW format
/// let x = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[1, 2, 3, 4, 5, 6, 7, 8]),
/// &[1, 1, 2, 2, 2], // NCDHW format
/// ).unwrap());
/// let k = ValTensor::from_integer_rep_tensor(Tensor::<IntegerRep>::new(
/// Some(&[1, 1]),
/// &[1, 1, 1, 1, 2], // OIDHW format
/// ).unwrap());
/// let result = conv::<Fp>(&dummy_config, &mut dummy_region, &[x, k], &vec![(0, 0); 3], &vec![1; 3], 1, DataFormat::NCHW, KernelFormat::OIHW).unwrap();
/// let expected = Tensor::<IntegerRep>::new(Some(&[3, 7, 11, 15]), &[1, 1, 2, 2, 1]).unwrap();
/// assert_eq!(result.int_evals().unwrap(), expected);
/// ```
///
@@ -3700,9 +3805,14 @@ pub fn conv<
padding: &[(usize, usize)],
stride: &[usize],
num_groups: usize,
data_format: DataFormat,
kernel_format: KernelFormat,
) -> Result<ValTensor<F>, CircuitError> {
let has_bias = values.len() == 3;
let (mut image, mut kernel) = (values[0].clone(), values[1].clone());
let (mut working_image, mut working_kernel) = (values[0].clone(), values[1].clone());
data_format.to_canonical(&mut working_image)?;
kernel_format.to_canonical(&mut working_kernel)?;
if stride.iter().any(|&s| s == 0) {
return Err(TensorError::DimMismatch(
@@ -3711,47 +3821,40 @@ pub fn conv<
.into());
}
// we specifically want to use the same kernel and image for all the convolutions and need to enforce this by assigning them
// 1. assign the kernel
// Assign tensors
let mut assigned_len = vec![];
if !kernel.all_prev_assigned() {
kernel = region.assign(&config.custom_gates.inputs[0], &kernel)?;
assigned_len.push(kernel.len());
if !working_kernel.all_prev_assigned() {
working_kernel = region.assign(&config.custom_gates.inputs[0], &working_kernel)?;
assigned_len.push(working_kernel.len());
}
// 2. assign the image
if !image.all_prev_assigned() {
image = region.assign(&config.custom_gates.inputs[1], &image)?;
assigned_len.push(image.len());
if !working_image.all_prev_assigned() {
working_image = region.assign(&config.custom_gates.inputs[1], &working_image)?;
assigned_len.push(working_image.len());
}
if !assigned_len.is_empty() {
// safe to unwrap since we've just checked it has at least one element
region.increment(*assigned_len.iter().max().unwrap());
}
// if image is 3d add a dummy batch dimension
if image.dims().len() == kernel.dims().len() - 1 {
image.reshape(&[1, image.dims()[0], image.dims()[1], image.dims()[2]])?;
if data_format.has_no_batch() {
let mut dim = working_image.dims().to_vec();
dim.insert(0, 1);
working_image.reshape(&dim)?;
}
let image_dims = image.dims();
let kernel_dims = kernel.dims();
let image_dims = working_image.dims();
let kernel_dims = working_kernel.dims();
let mut padded_image = image.clone();
// Apply padding
let mut padded_image = working_image.clone();
padded_image.pad(padding.to_vec(), 2)?;
// Extract dimensions
let batch_size = image_dims[0];
let input_channels = image_dims[1];
let output_channels = kernel_dims[0];
log::debug!(
"batch_size: {}, output_channels: {}, input_channels: {}",
batch_size,
output_channels,
input_channels
);
// Calculate slides for each spatial dimension
let slides = image_dims[2..]
.iter()
.enumerate()
@@ -3766,8 +3869,6 @@ pub fn conv<
})
.collect::<Result<Vec<_>, TensorError>>()?;
log::debug!("slides: {:?}", slides);
let input_channels_per_group = input_channels / num_groups;
let output_channels_per_group = output_channels / num_groups;
@@ -3775,24 +3876,15 @@ pub fn conv<
return Err(TensorError::DimMismatch(format!(
"Given groups={}, expected input channels and output channels to be divisible by groups, but got input_channels={}, output_channels={}",
num_groups, input_channels, output_channels
))
.into());
)).into());
}
log::debug!(
"num_groups: {}, input_channels_per_group: {}, output_channels_per_group: {}",
num_groups,
input_channels_per_group,
output_channels_per_group
);
let num_outputs =
batch_size * num_groups * output_channels_per_group * slides.iter().product::<usize>();
log::debug!("num_outputs: {}", num_outputs);
let mut output: Tensor<ValType<F>> = Tensor::new(None, &[num_outputs])?;
// Create iteration space
let mut iterations = vec![0..batch_size, 0..num_groups, 0..output_channels_per_group];
for slide in slides.iter() {
iterations.push(0..*slide);
@@ -3804,6 +3896,13 @@ pub fn conv<
.multi_cartesian_product()
.collect::<Vec<_>>();
let batch_offset = if data_format.has_no_batch() {
2 // No batch dimension, start coordinates after channels
} else {
3 // Has batch dimension, start coordinates after batch and channels
};
// Main convolution loop
let inner_loop_function = |idx: usize, region: &mut RegionCtx<F>| {
let cartesian_coord_per_group = &cartesian_coord[idx];
let (batch, group, i) = (
@@ -3817,22 +3916,19 @@ pub fn conv<
let mut slices = vec![batch..batch + 1, start_channel..end_channel];
for (i, stride) in stride.iter().enumerate() {
let coord = cartesian_coord_per_group[3 + i] * stride;
let coord = cartesian_coord_per_group[batch_offset + i] * stride;
let kernel_dim = kernel_dims[2 + i];
slices.push(coord..(coord + kernel_dim));
}
let mut local_image = padded_image.get_slice(&slices)?;
local_image.flatten();
let start_kernel_index = group * output_channels_per_group + i;
let end_kernel_index = start_kernel_index + 1;
let mut local_kernel = kernel.get_slice(&[start_kernel_index..end_kernel_index])?;
let mut local_kernel = working_kernel.get_slice(&[start_kernel_index..end_kernel_index])?;
local_kernel.flatten();
// this is dot product notation in einsum format
let mut res = einsum(config, region, &[local_image, local_kernel], "i,i->")?;
if has_bias {
@@ -3853,21 +3949,16 @@ pub fn conv<
region.flush()?;
region.apply_in_loop(&mut output, inner_loop_function)?;
let reshape_output = |output: &mut Tensor<ValType<F>>| -> Result<(), TensorError> {
// remove dummy batch dimension if we added one
let mut dims = vec![batch_size, output_channels];
dims.extend(slides.iter().cloned());
output.reshape(&dims)?;
// Reshape output
let mut dims = vec![batch_size, output_channels];
dims.extend(slides.iter().cloned());
output.reshape(&dims)?;
Ok(())
};
// Convert output back to requested format
let mut final_output: ValTensor<F> = output.into();
data_format.from_canonical(&mut final_output)?;
// remove dummy batch dimension if we added one
reshape_output(&mut output)?;
let output: ValTensor<_> = output.into();
Ok(output)
Ok(final_output)
}
/// Power accumulated layout
@@ -5747,14 +5838,12 @@ pub fn softmax<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
/// Some(&[101, 201, 302, 403, 503, 603]),
/// &[2, 3],
/// ).unwrap());
/// let result = output::<Fp>(&dummy_config, &mut dummy_region, &[x, y], 1024.0.into(), 1.0, false).unwrap();
/// let result = output::<Fp>(&dummy_config, &mut dummy_region, &[x, y], false).unwrap();
/// ```
pub fn output<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
config: &BaseConfig<F>,
region: &mut RegionCtx<F>,
values: &[ValTensor<F>; 2],
scale: utils::F32,
tol: f32,
decomp: bool,
) -> Result<ValTensor<F>, CircuitError> {
let mut values = [values[0].clone(), values[1].clone()];
@@ -5769,43 +5858,6 @@ pub fn output<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
values[1] = layouts::identity(config, region, &[values[1].clone()], decomp)?;
}
if tol == 0.0 {
// regular equality constraint
return enforce_equality(config, region, &[values[0].clone(), values[1].clone()]);
}
// Calculate the difference between the expected output and actual output
let diff = pairwise(config, region, &values, BaseOp::Sub)?;
// integer scale
let int_scale = scale.0 as IntegerRep;
// felt scale
let felt_scale = integer_rep_to_felt(int_scale);
// input scale ratio we multiply by tol such that in the new scale range_check_len represents tol percent
let input_scale_ratio = (scale.0 * tol) as IntegerRep / 2 * 2;
let recip = recip(
config,
region,
&[values[0].clone()],
felt_scale,
felt_scale * F::from(100),
)?;
log::debug!("recip: {}", recip.show());
// Multiply the difference by the recip
let product = pairwise(config, region, &[diff, recip], BaseOp::Mult)?;
log::debug!("product: {}", product.show());
let rebased_product = div(
config,
region,
&[product],
integer_rep_to_felt(input_scale_ratio),
)?;
log::debug!("rebased_product: {}", rebased_product.show());
// check that it is within the tolerance range
range_check(config, region, &[rebased_product], &(-int_scale, int_scale))
// regular equality constraint
return enforce_equality(config, region, &[values[0].clone(), values[1].clone()]);
}

View File

@@ -4,6 +4,7 @@ use crate::{
utils::{self, F32},
},
tensor::{self, Tensor, TensorError},
tensor::{DataFormat, KernelFormat},
};
use super::{base::BaseOp, *};
@@ -43,6 +44,8 @@ pub enum PolyOp {
padding: Vec<(usize, usize)>,
stride: Vec<usize>,
group: usize,
data_format: DataFormat,
kernel_format: KernelFormat,
},
Downsample {
axis: usize,
@@ -54,6 +57,8 @@ pub enum PolyOp {
output_padding: Vec<usize>,
stride: Vec<usize>,
group: usize,
data_format: DataFormat,
kernel_format: KernelFormat,
},
Add,
Sub,
@@ -165,10 +170,12 @@ impl<
stride,
padding,
group,
data_format,
kernel_format,
} => {
format!(
"CONV (stride={:?}, padding={:?}, group={})",
stride, padding, group
"CONV (stride={:?}, padding={:?}, group={}, data_format={:?}, kernel_format={:?})",
stride, padding, group, data_format, kernel_format
)
}
PolyOp::DeConv {
@@ -176,11 +183,12 @@ impl<
padding,
output_padding,
group,
data_format,
kernel_format,
} => {
format!(
"DECONV (stride={:?}, padding={:?}, output_padding={:?}, group={})",
stride, padding, output_padding, group
)
"DECONV (stride={:?}, padding={:?}, output_padding={:?}, group={}, data_format={:?}, kernel_format={:?})",
stride, padding, output_padding, group, data_format, kernel_format)
}
PolyOp::Concat { axis } => format!("CONCAT (axis={})", axis),
PolyOp::Slice { axis, start, end } => {
@@ -242,6 +250,8 @@ impl<
padding,
stride,
group,
data_format,
kernel_format,
} => layouts::conv(
config,
region,
@@ -249,6 +259,8 @@ impl<
padding,
stride,
*group,
*data_format,
*kernel_format,
)?,
PolyOp::GatherElements { dim, constant_idx } => {
if let Some(idx) = constant_idx {
@@ -309,6 +321,8 @@ impl<
output_padding,
stride,
group,
data_format,
kernel_format,
} => layouts::deconv(
config,
region,
@@ -317,6 +331,8 @@ impl<
output_padding,
stride,
*group,
*data_format,
*kernel_format,
)?,
PolyOp::Add => layouts::pairwise(config, region, values[..].try_into()?, BaseOp::Add)?,
PolyOp::Sub => layouts::pairwise(config, region, values[..].try_into()?, BaseOp::Sub)?,

View File

@@ -1,5 +1,6 @@
use crate::circuit::ops::poly::PolyOp;
use crate::circuit::*;
use crate::tensor::{DataFormat, KernelFormat};
use crate::tensor::{Tensor, TensorType, ValTensor, VarTensor};
use halo2_proofs::{
circuit::{Layouter, SimpleFloorPlanner, Value},
@@ -1065,6 +1066,8 @@ mod conv {
padding: vec![(1, 1); 2],
stride: vec![2; 2],
group: 1,
data_format: DataFormat::default(),
kernel_format: KernelFormat::default(),
}),
)
.map_err(|_| Error::Synthesis)
@@ -1220,6 +1223,8 @@ mod conv_col_ultra_overflow {
padding: vec![(1, 1); 2],
stride: vec![2; 2],
group: 1,
data_format: DataFormat::default(),
kernel_format: KernelFormat::default(),
}),
)
.map_err(|_| Error::Synthesis)
@@ -1377,6 +1382,8 @@ mod conv_relu_col_ultra_overflow {
padding: vec![(1, 1); 2],
stride: vec![2; 2],
group: 1,
data_format: DataFormat::default(),
kernel_format: KernelFormat::default(),
}),
)
.map_err(|_| Error::Synthesis);

View File

@@ -396,8 +396,9 @@ pub enum Commands {
/// Generates the witness from an input file.
GenWitness {
/// The path to the .json data file
/// You can also pass the input data as a string, eg. --data '{"input_data": [1.0,2.0,3.0]}' directly and skip the file
#[arg(short = 'D', long, default_value = DEFAULT_DATA, value_hint = clap::ValueHint::FilePath)]
data: Option<PathBuf>,
data: Option<String>,
/// The path to the compiled model file (generated using the compile-circuit command)
#[arg(short = 'M', long, default_value = DEFAULT_COMPILED_CIRCUIT, value_hint = clap::ValueHint::FilePath)]
compiled_circuit: Option<PathBuf>,
@@ -429,7 +430,7 @@ pub enum Commands {
/// The path to the .onnx model file
#[arg(short = 'M', long, default_value = DEFAULT_MODEL, value_hint = clap::ValueHint::FilePath)]
model: Option<PathBuf>,
/// The path to the .json data file
/// The path to the .json data file to output
#[arg(short = 'D', long, default_value = DEFAULT_DATA, value_hint = clap::ValueHint::FilePath)]
data: Option<PathBuf>,
/// Hand-written parser for graph variables, eg. batch_size=1
@@ -442,8 +443,9 @@ pub enum Commands {
/// Calibrates the proving scale, lookup bits and logrows from a circuit settings file.
CalibrateSettings {
/// The path to the .json calibration data file.
/// You can also pass the input data as a string, eg. --data '{"input_data": [1.0,2.0,3.0]}' directly and skip the file
#[arg(short = 'D', long, default_value = DEFAULT_CALIBRATION_FILE, value_hint = clap::ValueHint::FilePath)]
data: Option<PathBuf>,
data: Option<String>,
/// The path to the .onnx model file
#[arg(short = 'M', long, default_value = DEFAULT_MODEL, value_hint = clap::ValueHint::FilePath)]
model: Option<PathBuf>,
@@ -626,8 +628,9 @@ pub enum Commands {
#[command(arg_required_else_help = true)]
SetupTestEvmData {
/// The path to the .json data file, which should include both the network input (possibly private) and the network output (public input to the proof)
/// You can also pass the input data as a string, eg. --data '{"input_data": [1.0,2.0,3.0]}' directly and skip the file
#[arg(short = 'D', long, value_hint = clap::ValueHint::FilePath)]
data: Option<PathBuf>,
data: Option<String>,
/// The path to the compiled model file (generated using the compile-circuit command)
#[arg(short = 'M', long, value_hint = clap::ValueHint::FilePath)]
compiled_circuit: Option<PathBuf>,
@@ -653,8 +656,9 @@ pub enum Commands {
#[arg(long, value_hint = clap::ValueHint::Other)]
addr: H160Flag,
/// The path to the .json data file.
/// You can also pass the input data as a string, eg. --data '{"input_data": [1.0,2.0,3.0]}' directly and skip the file
#[arg(short = 'D', long, value_hint = clap::ValueHint::FilePath)]
data: Option<PathBuf>,
data: Option<String>,
/// RPC URL for an Ethereum node, if None will use Anvil but WON'T persist state
#[arg(short = 'U', long, value_hint = clap::ValueHint::Url)]
rpc_url: Option<String>,
@@ -771,7 +775,7 @@ pub enum Commands {
/// view functions that return the data that the network
/// ingests as inputs.
#[arg(short = 'D', long, default_value = DEFAULT_DATA, value_hint = clap::ValueHint::FilePath)]
data: Option<PathBuf>,
data: Option<String>,
/// The path to the witness file. This is needed for proof swapping for kzg commitments.
#[arg(short = 'W', long, default_value = DEFAULT_WITNESS, value_hint = clap::ValueHint::FilePath)]
witness: Option<PathBuf>,
@@ -866,8 +870,9 @@ pub enum Commands {
#[command(name = "deploy-evm-da")]
DeployEvmDataAttestation {
/// The path to the .json data file, which should include both the network input (possibly private) and the network output (public input to the proof)
/// You can also pass the input data as a string, eg. --data '{"input_data": [1.0,2.0,3.0]}' directly and skip the file
#[arg(short = 'D', long, default_value = DEFAULT_DATA, value_hint = clap::ValueHint::FilePath)]
data: Option<PathBuf>,
data: Option<String>,
/// The path to load circuit settings .json file from (generated using the gen-settings command)
#[arg(long, default_value = DEFAULT_SETTINGS, value_hint = clap::ValueHint::FilePath)]
settings_path: Option<PathBuf>,

View File

@@ -383,7 +383,7 @@ pub async fn deploy_contract_via_solidity(
///
pub async fn deploy_da_verifier_via_solidity(
settings_path: PathBuf,
input: PathBuf,
input: String,
sol_code_path: PathBuf,
rpc_url: Option<&str>,
runs: usize,
@@ -391,7 +391,7 @@ pub async fn deploy_da_verifier_via_solidity(
) -> Result<H160, EthError> {
let (client, client_address) = setup_eth_backend(rpc_url, private_key).await?;
let input = GraphData::from_path(input).map_err(|_| EthError::GraphData)?;
let input = GraphData::from_str(&input).map_err(|_| EthError::GraphData)?;
let settings = GraphSettings::load(&settings_path).map_err(|_| EthError::GraphSettings)?;
@@ -688,10 +688,10 @@ fn parse_call_to_account(call_to_account: CallToAccount) -> Result<ParsedCallToA
pub async fn update_account_calls(
addr: H160,
input: PathBuf,
input: String,
rpc_url: Option<&str>,
) -> Result<(), EthError> {
let input = GraphData::from_path(input).map_err(|_| EthError::GraphData)?;
let input = GraphData::from_str(&input).map_err(|_| EthError::GraphData)?;
// The data that will be stored in the test contracts that will eventually be read from.
let mut calls_to_accounts = vec![];

View File

@@ -725,7 +725,7 @@ pub(crate) fn table(model: PathBuf, run_args: RunArgs) -> Result<String, EZKLErr
pub(crate) async fn gen_witness(
compiled_circuit_path: PathBuf,
data: PathBuf,
data: String,
output: Option<PathBuf>,
vk_path: Option<PathBuf>,
srs_path: Option<PathBuf>,
@@ -733,7 +733,7 @@ pub(crate) async fn gen_witness(
// these aren't real values so the sanity checks are mostly meaningless
let mut circuit = GraphCircuit::load(compiled_circuit_path)?;
let data: GraphData = GraphData::from_path(data)?;
let data = GraphData::from_str(&data)?;
let settings = circuit.settings().clone();
let vk = if let Some(vk) = vk_path {
@@ -1044,7 +1044,7 @@ impl AccuracyResults {
#[allow(clippy::too_many_arguments)]
pub(crate) async fn calibrate(
model_path: PathBuf,
data: PathBuf,
data: String,
settings_path: PathBuf,
target: CalibrationTarget,
lookup_safety_margin: f64,
@@ -1058,7 +1058,7 @@ pub(crate) async fn calibrate(
use crate::fieldutils::IntegerRep;
let data = GraphData::from_path(data)?;
let data = GraphData::from_str(&data)?;
// load the pre-generated settings
let settings = GraphSettings::load(&settings_path)?;
// now retrieve the run args
@@ -1522,7 +1522,7 @@ pub(crate) async fn create_evm_data_attestation(
settings_path: PathBuf,
sol_code_path: PathBuf,
abi_path: PathBuf,
input: PathBuf,
input: String,
witness: Option<PathBuf>,
) -> Result<String, EZKLError> {
#[allow(unused_imports)]
@@ -1536,7 +1536,7 @@ pub(crate) async fn create_evm_data_attestation(
// if input is not provided, we just instantiate dummy input data
let data =
GraphData::from_path(input).unwrap_or_else(|_| GraphData::new(DataSource::File(vec![])));
GraphData::from_str(&input).unwrap_or_else(|_| GraphData::new(DataSource::File(vec![])));
// The number of input and output instances we attest to for the single call data attestation
let mut input_len = None;
@@ -1625,7 +1625,7 @@ pub(crate) async fn create_evm_data_attestation(
}
pub(crate) async fn deploy_da_evm(
data: PathBuf,
data: String,
settings_path: PathBuf,
sol_code_path: PathBuf,
rpc_url: Option<String>,
@@ -1868,7 +1868,7 @@ pub(crate) fn setup(
}
pub(crate) async fn setup_test_evm_witness(
data_path: PathBuf,
data_path: String,
compiled_circuit_path: PathBuf,
test_data: PathBuf,
rpc_url: Option<String>,
@@ -1877,7 +1877,7 @@ pub(crate) async fn setup_test_evm_witness(
) -> Result<String, EZKLError> {
use crate::graph::TestOnChainData;
let mut data = GraphData::from_path(data_path)?;
let mut data = GraphData::from_str(&data_path)?;
let mut circuit = GraphCircuit::load(compiled_circuit_path)?;
// if both input and output are from files fail
@@ -1905,7 +1905,7 @@ pub(crate) async fn setup_test_evm_witness(
use crate::pfsys::ProofType;
pub(crate) async fn test_update_account_calls(
addr: H160Flag,
data: PathBuf,
data: String,
rpc_url: Option<String>,
) -> Result<String, EZKLError> {
use crate::eth::update_account_calls;

View File

@@ -33,7 +33,7 @@ pub enum GraphError {
#[error("a node is missing required params: {0}")]
MissingParams(String),
/// A node has missing parameters
#[error("a node is has misformed params: {0}")]
#[error("a node has misformed params: {0}")]
MisformedParams(String),
/// Error in the configuration of the visibility of variables
#[error("there should be at least one set of public variables")]

View File

@@ -528,6 +528,27 @@ impl GraphData {
}
}
/// Loads graph input data from a string, first seeing if it is a file path or JSON data
/// If it is a file path, it will load the data from the file
/// Otherwise, it will attempt to parse the string as JSON data
///
/// # Arguments
/// * `data` - String containing the input data
/// # Returns
/// A new GraphData instance containing the loaded data
pub fn from_str(data: &str) -> Result<Self, GraphError> {
let graph_input = serde_json::from_str(data);
match graph_input {
Ok(graph_input) => {
return Ok(graph_input);
}
Err(_) => {
let path = std::path::PathBuf::from(data);
GraphData::from_path(path)
}
}
}
/// Loads graph input data from a file
///
/// # Arguments
@@ -609,8 +630,12 @@ impl GraphData {
if input.len() % input_size != 0 {
return Err(GraphError::InvalidDims(
0,
"calibration data length must be evenly divisible by the original input_size"
.to_string(),
format!(
"calibration data length (={}) must be evenly divisible by the original input_size(={})",
input.len(),
input_size
),
));
}

View File

@@ -1,7 +1,6 @@
use super::errors::GraphError;
use super::extract_const_quantized_values;
use super::node::*;
use super::scale_to_multiplier;
use super::vars::*;
use super::GraphSettings;
use crate::circuit::hybrid::HybridOp;
@@ -1173,17 +1172,10 @@ impl Model {
})?;
if run_args.output_visibility.is_public() || run_args.output_visibility.is_fixed() {
let output_scales = self.graph.get_output_scales().map_err(|e| {
error!("{}", e);
halo2_proofs::plonk::Error::Synthesis
})?;
let res = outputs
.iter()
.enumerate()
.map(|(i, output)| {
let mut tol: crate::circuit::Tolerance = run_args.tolerance;
tol.scale = scale_to_multiplier(output_scales[i]).into();
let comparators = if run_args.output_visibility == Visibility::Public {
let res = vars
.instance
@@ -1206,7 +1198,6 @@ impl Model {
&mut thread_safe_region,
&[output.clone(), comparators],
Box::new(HybridOp::Output {
tol,
decomp: !run_args.ignore_range_check_inputs_outputs,
}),
)
@@ -1468,11 +1459,9 @@ impl Model {
let outputs = self.layout_nodes(&mut model_config, &mut region, &mut results)?;
if self.visibility.output.is_public() || self.visibility.output.is_fixed() {
let output_scales = self.graph.get_output_scales()?;
let res = outputs
.iter()
.enumerate()
.map(|(i, output)| {
.map(|output| {
let mut comparator: ValTensor<Fp> = (0..output.len())
.map(|_| {
if !self.visibility.output.is_fixed() {
@@ -1485,14 +1474,10 @@ impl Model {
.into();
comparator.reshape(output.dims())?;
let mut tol = run_args.tolerance;
tol.scale = scale_to_multiplier(output_scales[i]).into();
dummy_config.layout(
&mut region,
&[output.clone(), comparator],
Box::new(HybridOp::Output {
tol,
decomp: !run_args.ignore_range_check_inputs_outputs,
}),
)

View File

@@ -39,9 +39,8 @@ use tract_onnx::tract_hir::{
ops::array::{Pad, PadMode, TypedConcat},
ops::cnn::PoolSpec,
ops::konst::Const,
ops::nn::DataFormat,
tract_core::ops::cast::Cast,
tract_core::ops::cnn::{conv::KernelFormat, MaxPool, SumPool},
tract_core::ops::cnn::{MaxPool, SumPool},
};
/// Quantizes an iterable of f64 to a [Tensor] of IntegerRep using a fixed point representation.
@@ -1146,13 +1145,6 @@ pub fn new_op_from_onnx(
let pool_spec: &PoolSpec = &sumpool_node.pool_spec;
// only support pytorch type formatting for now
if pool_spec.data_format != DataFormat::NCHW {
return Err(GraphError::MissingParams(
"data in wrong format".to_string(),
));
}
let stride = extract_strides(pool_spec)?;
let padding = extract_padding(pool_spec, &input_dims[0])?;
let kernel_shape = &pool_spec.kernel_shape;
@@ -1161,6 +1153,7 @@ pub fn new_op_from_onnx(
padding,
stride: stride.to_vec(),
pool_dims: kernel_shape.to_vec(),
data_format: pool_spec.data_format.into(),
})
}
"Ceil" => {
@@ -1314,15 +1307,6 @@ pub fn new_op_from_onnx(
}
}
if ((conv_node.pool_spec.data_format != DataFormat::NCHW)
&& (conv_node.pool_spec.data_format != DataFormat::CHW))
|| (conv_node.kernel_fmt != KernelFormat::OIHW)
{
return Err(GraphError::MisformedParams(
"data or kernel in wrong format".to_string(),
));
}
let pool_spec = &conv_node.pool_spec;
let stride = extract_strides(pool_spec)?;
@@ -1350,6 +1334,8 @@ pub fn new_op_from_onnx(
padding,
stride,
group,
data_format: conv_node.pool_spec.data_format.into(),
kernel_format: conv_node.kernel_fmt.into(),
})
}
"Not" => SupportedOp::Linear(PolyOp::Not),
@@ -1373,14 +1359,6 @@ pub fn new_op_from_onnx(
}
}
if (deconv_node.pool_spec.data_format != DataFormat::NCHW)
|| (deconv_node.kernel_format != KernelFormat::OIHW)
{
return Err(GraphError::MisformedParams(
"data or kernel in wrong format".to_string(),
));
}
let pool_spec = &deconv_node.pool_spec;
let stride = extract_strides(pool_spec)?;
@@ -1406,6 +1384,8 @@ pub fn new_op_from_onnx(
output_padding: deconv_node.adjustments.to_vec(),
stride,
group: deconv_node.group,
data_format: deconv_node.pool_spec.data_format.into(),
kernel_format: deconv_node.kernel_format.into(),
})
}
"Downsample" => {
@@ -1489,13 +1469,6 @@ pub fn new_op_from_onnx(
let pool_spec: &PoolSpec = &sumpool_node.pool_spec;
// only support pytorch type formatting for now
if pool_spec.data_format != DataFormat::NCHW {
return Err(GraphError::MissingParams(
"data in wrong format".to_string(),
));
}
let stride = extract_strides(pool_spec)?;
let padding = extract_padding(pool_spec, &input_dims[0])?;
@@ -1504,6 +1477,7 @@ pub fn new_op_from_onnx(
stride: stride.to_vec(),
kernel_shape: pool_spec.kernel_shape.to_vec(),
normalized: sumpool_node.normalize,
data_format: pool_spec.data_format.into(),
})
}
"Pad" => {

View File

@@ -97,10 +97,9 @@ impl From<String> for EZKLError {
use std::str::FromStr;
use circuit::{table::Range, CheckMode, Tolerance};
use circuit::{table::Range, CheckMode};
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use clap::Args;
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
use fieldutils::IntegerRep;
use graph::{Visibility, MAX_PUBLIC_SRS};
use halo2_proofs::poly::{
@@ -275,10 +274,6 @@ impl From<String> for Commitments {
derive(Args, ToFlags)
)]
pub struct RunArgs {
/// Error tolerance for model outputs
/// Only applicable when outputs are public
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(short = 'T', long, default_value = "0", value_hint = clap::ValueHint::Other))]
pub tolerance: Tolerance,
/// Fixed point scaling factor for quantizing inputs
/// Higher values provide more precision but increase circuit complexity
#[cfg_attr(all(feature = "ezkl", not(target_arch = "wasm32")), arg(short = 'S', long, default_value = "7", value_hint = clap::ValueHint::Other))]
@@ -365,7 +360,6 @@ impl Default for RunArgs {
fn default() -> Self {
Self {
bounded_log_lookup: false,
tolerance: Tolerance::default(),
input_scale: 7,
param_scale: 7,
scale_rebase_multiplier: 1,
@@ -399,6 +393,16 @@ impl RunArgs {
pub fn validate(&self) -> Result<(), String> {
let mut errors = Vec::new();
// check if the largest represented integer in the decomposed form overflows IntegerRep
// try it with the largest possible value
let max_decomp = (self.decomp_base as IntegerRep).checked_pow(self.decomp_legs as u32);
if max_decomp.is_none() {
errors.push(format!(
"decomp_base^decomp_legs overflows IntegerRep: {}^{}",
self.decomp_base, self.decomp_legs
));
}
// Visibility validations
if self.param_visibility == Visibility::Public {
errors.push(
@@ -407,10 +411,6 @@ impl RunArgs {
);
}
if self.tolerance.val > 0.0 && self.output_visibility != Visibility::Public {
errors.push("Non-zero tolerance requires output_visibility to be public".to_string());
}
// Scale validations
if self.scale_rebase_multiplier < 1 {
errors.push("scale_rebase_multiplier must be >= 1".to_string());
@@ -459,11 +459,6 @@ impl RunArgs {
warn!("logrows exceeds maximum public SRS size");
}
// Validate tolerance is non-negative
if self.tolerance.val < 0.0 {
errors.push("tolerance cannot be negative".to_string());
}
// Performance warnings
if self.input_scale > 20 || self.param_scale > 20 {
warn!("High scale values (>20) may impact performance");
@@ -610,23 +605,6 @@ mod tests {
assert!(err.contains("num_inner_cols must be >= 1"));
}
#[test]
fn test_invalid_tolerance() {
let mut args = RunArgs::default();
args.tolerance.val = 1.0;
args.output_visibility = Visibility::Private;
let err = args.validate().unwrap_err();
assert!(err.contains("Non-zero tolerance requires output_visibility to be public"));
}
#[test]
fn test_negative_tolerance() {
let mut args = RunArgs::default();
args.tolerance.val = -1.0;
let err = args.validate().unwrap_err();
assert!(err.contains("tolerance cannot be negative"));
}
#[test]
fn test_zero_batch_size() {
let mut args = RunArgs::default();

View File

@@ -1,6 +1,6 @@
use thiserror::Error;
use super::ops::DecompositionError;
use super::{ops::DecompositionError, DataFormat};
/// A wrapper for tensor related errors.
#[derive(Debug, Error)]
@@ -44,4 +44,7 @@ pub enum TensorError {
/// Index out of bounds
#[error("index {0} out of bounds for dimension {1}")]
IndexOutOfBounds(usize, usize),
/// Invalid data conversion
#[error("invalid data conversion from format {0} to {1}")]
InvalidDataConversion(DataFormat, DataFormat),
}

View File

@@ -9,6 +9,7 @@ pub mod var;
pub use errors::TensorError;
use core::hash::Hash;
use halo2curves::ff::PrimeField;
use maybe_rayon::{
prelude::{
@@ -1767,6 +1768,229 @@ pub fn get_broadcasted_shape(
}
}
////////////////////////
///
/// The shape of data for some operations
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq, Default, Copy)]
pub enum DataFormat {
/// NCHW
#[default]
NCHW,
/// NHWC
NHWC,
/// CHW
CHW,
/// HWC
HWC,
}
// as str
impl core::fmt::Display for DataFormat {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
DataFormat::NCHW => write!(f, "NCHW"),
DataFormat::NHWC => write!(f, "NHWC"),
DataFormat::CHW => write!(f, "CHW"),
DataFormat::HWC => write!(f, "HWC"),
}
}
}
impl DataFormat {
/// Get the format's canonical form
pub fn canonical(&self) -> DataFormat {
match self {
DataFormat::NHWC => DataFormat::NCHW,
DataFormat::HWC => DataFormat::CHW,
_ => self.clone(),
}
}
/// no batch dim
pub fn has_no_batch(&self) -> bool {
match self {
DataFormat::CHW | DataFormat::HWC => true,
_ => false,
}
}
/// Convert tensor to canonical format (NCHW or CHW)
pub fn to_canonical<F: PrimeField + TensorType + PartialOrd + Hash>(
&self,
tensor: &mut ValTensor<F>,
) -> Result<(), TensorError> {
match self {
DataFormat::NHWC => {
// For ND: Move channels from last axis to position after batch
let ndims = tensor.dims().len();
if ndims > 2 {
tensor.move_axis(ndims - 1, 1)?;
}
}
DataFormat::HWC => {
// For ND: Move channels from last axis to first position
let ndims = tensor.dims().len();
if ndims > 1 {
tensor.move_axis(ndims - 1, 0)?;
}
}
_ => {} // NCHW/CHW are already in canonical format
}
Ok(())
}
/// Convert tensor from canonical format to target format
pub fn from_canonical<F: PrimeField + TensorType + PartialOrd + Hash>(
&self,
tensor: &mut ValTensor<F>,
) -> Result<(), TensorError> {
match self {
DataFormat::NHWC => {
// Move channels from position 1 to end
let ndims = tensor.dims().len();
if ndims > 2 {
tensor.move_axis(1, ndims - 1)?;
}
}
DataFormat::HWC => {
// Move channels from position 0 to end
let ndims = tensor.dims().len();
if ndims > 1 {
tensor.move_axis(0, ndims - 1)?;
}
}
_ => {} // NCHW/CHW don't need conversion
}
Ok(())
}
/// Get the position of the channel dimension
pub fn get_channel_dim(&self, ndims: usize) -> usize {
match self {
DataFormat::NCHW => 1,
DataFormat::NHWC => ndims - 1,
DataFormat::CHW => 0,
DataFormat::HWC => ndims - 1,
}
}
}
/// The shape of the kernel for some operations
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq, Default, Copy)]
pub enum KernelFormat {
/// HWIO
HWIO,
/// OIHW
#[default]
OIHW,
/// OHWI
OHWI,
}
impl core::fmt::Display for KernelFormat {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
KernelFormat::HWIO => write!(f, "HWIO"),
KernelFormat::OIHW => write!(f, "OIHW"),
KernelFormat::OHWI => write!(f, "OHWI"),
}
}
}
impl KernelFormat {
/// Get the format's canonical form
pub fn canonical(&self) -> KernelFormat {
match self {
KernelFormat::HWIO => KernelFormat::OIHW,
KernelFormat::OHWI => KernelFormat::OIHW,
_ => self.clone(),
}
}
/// Convert kernel to canonical format (OIHW)
pub fn to_canonical<F: PrimeField + TensorType + PartialOrd + Hash>(
&self,
kernel: &mut ValTensor<F>,
) -> Result<(), TensorError> {
match self {
KernelFormat::HWIO => {
let kdims = kernel.dims().len();
// Move output channels from last to first
kernel.move_axis(kdims - 1, 0)?;
// Move input channels from new last to second position
kernel.move_axis(kdims - 1, 1)?;
}
KernelFormat::OHWI => {
let kdims = kernel.dims().len();
// Move input channels from last to second position
kernel.move_axis(kdims - 1, 1)?;
}
_ => {} // OIHW is already canonical
}
Ok(())
}
/// Convert kernel from canonical format to target format
pub fn from_canonical<F: PrimeField + TensorType + PartialOrd + Hash>(
&self,
kernel: &mut ValTensor<F>,
) -> Result<(), TensorError> {
match self {
KernelFormat::HWIO => {
let kdims = kernel.dims().len();
// Move input channels from second position to last
kernel.move_axis(1, kdims - 1)?;
// Move output channels from first to last
kernel.move_axis(0, kdims - 1)?;
}
KernelFormat::OHWI => {
let kdims = kernel.dims().len();
// Move input channels from second position to last
kernel.move_axis(1, kdims - 1)?;
}
_ => {} // OIHW doesn't need conversion
}
Ok(())
}
/// Get the position of input and output channel dimensions
pub fn get_channel_dims(&self, ndims: usize) -> (usize, usize) {
// (input_ch, output_ch)
match self {
KernelFormat::OIHW => (1, 0),
KernelFormat::HWIO => (ndims - 2, ndims - 1),
KernelFormat::OHWI => (ndims - 1, 0),
}
}
}
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
impl From<tract_onnx::tract_hir::ops::nn::DataFormat> for DataFormat {
fn from(fmt: tract_onnx::tract_hir::ops::nn::DataFormat) -> Self {
match fmt {
tract_onnx::tract_hir::ops::nn::DataFormat::NCHW => DataFormat::NCHW,
tract_onnx::tract_hir::ops::nn::DataFormat::NHWC => DataFormat::NHWC,
tract_onnx::tract_hir::ops::nn::DataFormat::CHW => DataFormat::CHW,
tract_onnx::tract_hir::ops::nn::DataFormat::HWC => DataFormat::HWC,
}
}
}
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
impl From<tract_onnx::tract_hir::tract_core::ops::cnn::conv::KernelFormat> for KernelFormat {
fn from(fmt: tract_onnx::tract_hir::tract_core::ops::cnn::conv::KernelFormat) -> Self {
match fmt {
tract_onnx::tract_hir::tract_core::ops::cnn::conv::KernelFormat::HWIO => {
KernelFormat::HWIO
}
tract_onnx::tract_hir::tract_core::ops::cnn::conv::KernelFormat::OIHW => {
KernelFormat::OIHW
}
tract_onnx::tract_hir::tract_core::ops::cnn::conv::KernelFormat::OHWI => {
KernelFormat::OHWI
}
}
}
}
#[cfg(test)]
mod tests {

Binary file not shown.

View File

@@ -1,8 +1,7 @@
#[cfg(all(feature = "ezkl", not(target_arch = "wasm32")))]
#[cfg(test)]
mod native_tests {
use ezkl::circuit::Tolerance;
use ezkl::fieldutils::{felt_to_integer_rep, integer_rep_to_felt, IntegerRep};
// use ezkl::circuit::table::RESERVED_BLINDING_ROWS_PAD;
use ezkl::graph::input::{FileSource, FileSourceInner, GraphData};
use ezkl::graph::{DataSource, GraphSettings, GraphWitness};
@@ -187,7 +186,7 @@ mod native_tests {
const PF_FAILURE_AGGR: &str = "examples/test_failure_aggr_proof.json";
const LARGE_TESTS: [&str; 7] = [
const LARGE_TESTS: [&str; 8] = [
"self_attention",
"nanoGPT",
"multihead_attention",
@@ -195,6 +194,7 @@ mod native_tests {
"mnist_gan",
"smallworm",
"fr_age",
"1d_conv",
];
const ACCURACY_CAL_TESTS: [&str; 6] = [
@@ -522,7 +522,7 @@ mod native_tests {
use crate::native_tests::run_js_tests;
use crate::native_tests::render_circuit;
use crate::native_tests::model_serialization_different_binaries;
use rand::Rng;
use tempdir::TempDir;
use ezkl::Commitments;
@@ -543,7 +543,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "public", "fixed", "public", 1, "accuracy", None, 0.0, false, None, None);
mock(path, test.to_string(), "public", "fixed", "public", 1, "accuracy", None, false, None, None);
test_dir.close().unwrap();
}
});
@@ -608,7 +608,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "private", "private", "public", 1, "resources", None, 0.0, false, None, None);
mock(path, test.to_string(), "private", "private", "public", 1, "resources", None, false, None, None);
test_dir.close().unwrap();
}
@@ -618,22 +618,10 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "private", "private", "public", 1, "resources", None, 0.0, true, Some(8194), Some(4));
mock(path, test.to_string(), "private", "private", "public", 1, "resources", None, true, Some(8194), Some(4));
test_dir.close().unwrap();
}
#(#[test_case(TESTS[N])])*
fn mock_tolerance_public_outputs_(test: &str) {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
// gen random number between 0.0 and 1.0
let tolerance = rand::thread_rng().gen_range(0.0..1.0) * 100.0;
mock(path, test.to_string(), "private", "private", "public", 1, "resources", None, tolerance, false, Some(32776), Some(5));
test_dir.close().unwrap();
}
#(#[test_case(TESTS[N])])*
fn mock_large_batch_public_outputs_(test: &str) {
@@ -644,7 +632,7 @@ mod native_tests {
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
let large_batch_dir = &format!("large_batches_{}", test);
crate::native_tests::mk_data_batches_(path, test, &large_batch_dir, 10);
mock(path, large_batch_dir.to_string(), "private", "private", "public", 10, "resources", None, 0.0, false, None, None);
mock(path, large_batch_dir.to_string(), "private", "private", "public", 10, "resources", None, false, None, None);
test_dir.close().unwrap();
}
}
@@ -654,7 +642,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "public", "private", "private", 1, "resources", None, 0.0, false, None, None);
mock(path, test.to_string(), "public", "private", "private", 1, "resources", None, false, None, None);
test_dir.close().unwrap();
}
@@ -663,7 +651,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "public", "hashed", "private", 1, "resources", None, 0.0, false, None, None);
mock(path, test.to_string(), "public", "hashed", "private", 1, "resources", None, false, None, None);
test_dir.close().unwrap();
}
@@ -672,7 +660,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "fixed", "private", "private", 1, "resources", None, 0.0, false, None, None);
mock(path, test.to_string(), "fixed", "private", "private", 1, "resources", None, false, None, None);
test_dir.close().unwrap();
}
@@ -681,7 +669,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "private", "private", "fixed", 1, "resources", None, 0.0, false, None, None);
mock(path, test.to_string(), "private", "private", "fixed", 1, "resources", None, false, None, None);
test_dir.close().unwrap();
}
@@ -690,7 +678,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "private", "fixed", "private", 1, "resources", None, 0.0, false, None, None);
mock(path, test.to_string(), "private", "fixed", "private", 1, "resources", None, false, None, None);
test_dir.close().unwrap();
}
@@ -699,7 +687,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "hashed", "private", "public", 1, "resources", None, 0.0, false, None, None);
mock(path, test.to_string(), "hashed", "private", "public", 1, "resources", None, false, None, None);
test_dir.close().unwrap();
}
@@ -708,7 +696,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "polycommit", "private", "public", 1, "resources", None, 0.0, false, None, None);
mock(path, test.to_string(), "polycommit", "private", "public", 1, "resources", None, false, None, None);
test_dir.close().unwrap();
}
@@ -718,7 +706,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "private", "hashed", "public", 1, "resources", None, 0.0, false, None, None);
mock(path, test.to_string(), "private", "hashed", "public", 1, "resources", None, false, None, None);
test_dir.close().unwrap();
}
@@ -728,7 +716,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "private", "polycommit", "public", 1, "resources", None, 0.0, false, None, None);
mock(path, test.to_string(), "private", "polycommit", "public", 1, "resources", None, false, None, None);
test_dir.close().unwrap();
}
@@ -737,7 +725,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "public", "private", "hashed", 1, "resources", None, 0.0, false, None, None);
mock(path, test.to_string(), "public", "private", "hashed", 1, "resources", None, false, None, None);
test_dir.close().unwrap();
}
@@ -747,7 +735,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "public", "private", "polycommit", 1, "resources", None, 0.0, false, None, None);
mock(path, test.to_string(), "public", "private", "polycommit", 1, "resources", None, false, None, None);
test_dir.close().unwrap();
}
@@ -756,7 +744,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "public", "fixed", "hashed", 1, "resources", None, 0.0, false, None, None);
mock(path, test.to_string(), "public", "fixed", "hashed", 1, "resources", None, false, None, None);
test_dir.close().unwrap();
}
@@ -766,7 +754,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "public", "polycommit", "hashed", 1, "resources", None, 0.0, false, None, None);
mock(path, test.to_string(), "public", "polycommit", "hashed", 1, "resources", None, false, None, None);
test_dir.close().unwrap();
}
@@ -776,7 +764,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "polycommit", "polycommit", "polycommit", 1, "resources", None, 0.0, false, None, None);
mock(path, test.to_string(), "polycommit", "polycommit", "polycommit", 1, "resources", None, false, None, None);
test_dir.close().unwrap();
}
@@ -786,7 +774,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "hashed", "private", "hashed", 1, "resources", None, 0.0, false, None, None);
mock(path, test.to_string(), "hashed", "private", "hashed", 1, "resources", None, false, None, None);
test_dir.close().unwrap();
}
@@ -796,7 +784,7 @@ mod native_tests {
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
// needs an extra row for the large model
mock(path, test.to_string(),"hashed", "hashed", "public", 1, "resources", None, 0.0, false, None, None);
mock(path, test.to_string(),"hashed", "hashed", "public", 1, "resources", None, false, None, None);
test_dir.close().unwrap();
}
@@ -806,7 +794,7 @@ mod native_tests {
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
// needs an extra row for the large model
mock(path, test.to_string(),"hashed", "hashed", "hashed", 1, "resources", None, 0.0, false, None, None);
mock(path, test.to_string(),"hashed", "hashed", "hashed", 1, "resources", None, false, None, None);
test_dir.close().unwrap();
}
@@ -965,7 +953,7 @@ mod native_tests {
});
seq!(N in 0..=6 {
seq!(N in 0..=7 {
#(#[test_case(LARGE_TESTS[N])])*
#[ignore]
@@ -983,7 +971,7 @@ mod native_tests {
crate::native_tests::init_binary();
let test_dir = TempDir::new(test).unwrap();
let path = test_dir.path().to_str().unwrap(); crate::native_tests::mv_test_(path, test);
mock(path, test.to_string(), "private", "fixed", "public", 1, "resources", None, 0.0, false, None, Some(5));
mock(path, test.to_string(), "private", "fixed", "public", 1, "resources", None, false, None, Some(5));
test_dir.close().unwrap();
}
});
@@ -1459,12 +1447,10 @@ mod native_tests {
batch_size: usize,
cal_target: &str,
scales_to_use: Option<Vec<u32>>,
tolerance: f32,
bounded_lookup_log: bool,
decomp_base: Option<usize>,
decomp_legs: Option<usize>,
) {
let mut tolerance = tolerance;
gen_circuit_settings_and_witness(
test_dir,
example_name.clone(),
@@ -1475,7 +1461,6 @@ mod native_tests {
cal_target,
scales_to_use,
2,
&mut tolerance,
Commitments::KZG,
2,
bounded_lookup_log,
@@ -1483,128 +1468,17 @@ mod native_tests {
decomp_legs,
);
if tolerance > 0.0 {
// load witness and shift the output by a small amount that is less than tolerance percent
let witness = GraphWitness::from_path(
format!("{}/{}/witness.json", test_dir, example_name).into(),
)
.unwrap();
let witness = witness.clone();
let outputs = witness.outputs.clone();
// get values as i64
let output_perturbed_safe: Vec<Vec<halo2curves::bn256::Fr>> = outputs
.iter()
.map(|sv| {
sv.iter()
.map(|v| {
// randomly perturb by a small amount less than tolerance
let perturbation = if v == &halo2curves::bn256::Fr::zero() {
halo2curves::bn256::Fr::zero()
} else {
integer_rep_to_felt(
(felt_to_integer_rep(*v) as f32
* (rand::thread_rng().gen_range(-0.01..0.01) * tolerance))
as IntegerRep,
)
};
*v + perturbation
})
.collect::<Vec<_>>()
})
.collect::<Vec<_>>();
// get values as i64
let output_perturbed_bad: Vec<Vec<halo2curves::bn256::Fr>> = outputs
.iter()
.map(|sv| {
sv.iter()
.map(|v| {
// randomly perturb by a small amount less than tolerance
let perturbation = if v == &halo2curves::bn256::Fr::zero() {
halo2curves::bn256::Fr::from(2)
} else {
integer_rep_to_felt(
(felt_to_integer_rep(*v) as f32
* (rand::thread_rng().gen_range(0.02..0.1) * tolerance))
as IntegerRep,
)
};
*v + perturbation
})
.collect::<Vec<_>>()
})
.collect::<Vec<_>>();
let good_witness = GraphWitness {
outputs: output_perturbed_safe,
..witness.clone()
};
// save
good_witness
.save(format!("{}/{}/witness_ok.json", test_dir, example_name).into())
.unwrap();
let bad_witness = GraphWitness {
outputs: output_perturbed_bad,
..witness.clone()
};
// save
bad_witness
.save(format!("{}/{}/witness_bad.json", test_dir, example_name).into())
.unwrap();
let status = Command::new(format!("{}/{}", *CARGO_TARGET_DIR, TEST_BINARY))
.args([
"mock",
"-W",
format!("{}/{}/witness.json", test_dir, example_name).as_str(),
"-M",
format!("{}/{}/network.compiled", test_dir, example_name).as_str(),
])
.status()
.expect("failed to execute process");
assert!(status.success());
let status = Command::new(format!("{}/{}", *CARGO_TARGET_DIR, TEST_BINARY))
.args([
"mock",
"-W",
format!("{}/{}/witness_ok.json", test_dir, example_name).as_str(),
"-M",
format!("{}/{}/network.compiled", test_dir, example_name).as_str(),
])
.status()
.expect("failed to execute process");
assert!(status.success());
let status = Command::new(format!("{}/{}", *CARGO_TARGET_DIR, TEST_BINARY))
.args([
"mock",
"-W",
format!("{}/{}/witness_bad.json", test_dir, example_name).as_str(),
"-M",
format!("{}/{}/network.compiled", test_dir, example_name).as_str(),
])
.status()
.expect("failed to execute process");
assert!(!status.success());
} else {
let status = Command::new(format!("{}/{}", *CARGO_TARGET_DIR, TEST_BINARY))
.args([
"mock",
"-W",
format!("{}/{}/witness.json", test_dir, example_name).as_str(),
"-M",
format!("{}/{}/network.compiled", test_dir, example_name).as_str(),
])
.status()
.expect("failed to execute process");
assert!(status.success());
}
let status = Command::new(format!("{}/{}", *CARGO_TARGET_DIR, TEST_BINARY))
.args([
"mock",
"-W",
format!("{}/{}/witness.json", test_dir, example_name).as_str(),
"-M",
format!("{}/{}/network.compiled", test_dir, example_name).as_str(),
])
.status()
.expect("failed to execute process");
assert!(status.success());
}
#[allow(clippy::too_many_arguments)]
@@ -1618,7 +1492,6 @@ mod native_tests {
cal_target: &str,
scales_to_use: Option<Vec<u32>>,
num_inner_columns: usize,
tolerance: &mut f32,
commitment: Commitments,
lookup_safety_margin: usize,
bounded_lookup_log: bool,
@@ -1633,13 +1506,16 @@ mod native_tests {
"--settings-path={}/{}/settings.json",
test_dir, example_name
),
format!("--variables=batch_size->{}", batch_size),
format!(
"--variables=batch_size->{},sequence_length->100,<Sym1>->1",
batch_size
),
format!("--input-visibility={}", input_visibility),
format!("--param-visibility={}", param_visibility),
format!("--output-visibility={}", output_visibility),
format!("--num-inner-cols={}", num_inner_columns),
format!("--tolerance={}", tolerance),
format!("--commitment={}", commitment),
format!("--logrows={}", 22),
];
// if output-visibility is fixed set --range-check-inputs-outputs to False
@@ -1695,24 +1571,6 @@ mod native_tests {
.expect("failed to execute process");
assert!(status.success());
let mut settings =
GraphSettings::load(&format!("{}/{}/settings.json", test_dir, example_name).into())
.unwrap();
let any_output_scales_smol = settings.model_output_scales.iter().any(|s| *s <= 0);
if any_output_scales_smol {
// set the tolerance to 0.0
settings.run_args.tolerance = Tolerance {
val: 0.0,
scale: 0.0.into(),
};
settings
.save(&format!("{}/{}/settings.json", test_dir, example_name).into())
.unwrap();
*tolerance = 0.0;
}
let status = Command::new(format!("{}/{}", *CARGO_TARGET_DIR, TEST_BINARY))
.args([
"compile-circuit",
@@ -1725,7 +1583,6 @@ mod native_tests {
test_dir, example_name
),
])
.stdout(std::process::Stdio::null())
.status()
.expect("failed to execute process");
assert!(status.success());
@@ -1768,7 +1625,6 @@ mod native_tests {
cal_target,
None,
2,
&mut 0.0,
Commitments::KZG,
2,
false,
@@ -2054,7 +1910,6 @@ mod native_tests {
target_str,
scales_to_use,
num_inner_columns,
&mut 0.0,
commitment,
lookup_safety_margin,
false,
@@ -2489,7 +2344,6 @@ mod native_tests {
// we need the accuracy
Some(vec![4]),
1,
&mut 0.0,
Commitments::KZG,
2,
false,

View File

@@ -48,7 +48,6 @@ def test_py_run_args():
run_args = ezkl.PyRunArgs()
run_args.input_visibility = "hashed"
run_args.output_visibility = "hashed"
run_args.tolerance = 1.5
def test_poseidon_hash():
@@ -873,7 +872,8 @@ def get_examples():
'linear_regression',
"mnist_gan",
"smallworm",
"fr_age"
"fr_age",
"1d_conv",
]
examples = []
for subdir, _, _ in os.walk(os.path.join(examples_path, "onnx")):
@@ -900,7 +900,12 @@ async def test_all_examples(model_file, input_file):
proof_path = os.path.join(folder_path, 'proof.json')
print("Testing example: ", model_file)
res = ezkl.gen_settings(model_file, settings_path)
run_args = ezkl.PyRunArgs()
run_args.variables = [("batch_size", 1), ("sequence_length", 100), ("<Sym1>", 1)]
run_args.logrows = 22
res = ezkl.gen_settings(model_file, settings_path, py_run_args=run_args)
assert res
res = await ezkl.calibrate_settings(