mirror of
https://github.com/zkonduit/ezkl.git
synced 2026-01-13 16:27:59 -05:00
Compare commits
1 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f64d3ebfc8 |
@@ -1,7 +1,7 @@
|
||||
import ezkl
|
||||
|
||||
project = 'ezkl'
|
||||
release = '20.0.3'
|
||||
release = '20.0.2'
|
||||
version = release
|
||||
|
||||
|
||||
|
||||
@@ -597,7 +597,7 @@ fn poseidon_hash(message: Vec<PyFelt>) -> PyResult<Vec<PyFelt>> {
|
||||
/// Arguments
|
||||
/// -------
|
||||
/// message: list[str]
|
||||
/// List of field elements represented as strings
|
||||
/// List of field elements represnted as strings
|
||||
///
|
||||
/// vk_path: str
|
||||
/// Path to the verification key
|
||||
@@ -656,7 +656,7 @@ fn kzg_commit(
|
||||
/// Arguments
|
||||
/// -------
|
||||
/// message: list[str]
|
||||
/// List of field elements represented as strings
|
||||
/// List of field elements represnted as strings
|
||||
///
|
||||
/// vk_path: str
|
||||
/// Path to the verification key
|
||||
@@ -1950,7 +1950,7 @@ fn deploy_da_evm(
|
||||
/// does the verifier use data attestation ?
|
||||
///
|
||||
/// addr_vk: str
|
||||
/// The address of the separate VK contract (if the verifier key is rendered as a separate contract)
|
||||
/// The addess of the separate VK contract (if the verifier key is rendered as a separate contract)
|
||||
/// Returns
|
||||
/// -------
|
||||
/// bool
|
||||
|
||||
@@ -349,7 +349,7 @@ pub fn sqrt<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
.into()
|
||||
};
|
||||
claimed_output.reshape(input_dims)?;
|
||||
// force the output to be positive or zero, also implicitly checks that the output is in range
|
||||
// force the output to be positive or zero, also implicitly checks that the ouput is in range
|
||||
let claimed_output = abs(config, region, &[claimed_output.clone()])?;
|
||||
// rescaled input
|
||||
let rescaled_input = pairwise(config, region, &[input.clone(), unit_scale], BaseOp::Mult)?;
|
||||
@@ -1841,7 +1841,7 @@ pub(crate) fn get_missing_set_elements<
|
||||
|
||||
// get the difference between the two vectors
|
||||
for eval in input_evals.iter() {
|
||||
// delete first occurrence of that value
|
||||
// delete first occurence of that value
|
||||
if let Some(pos) = fullset_evals.iter().position(|x| x == eval) {
|
||||
fullset_evals.remove(pos);
|
||||
}
|
||||
@@ -1869,7 +1869,7 @@ pub(crate) fn get_missing_set_elements<
|
||||
region.increment(claimed_output.len());
|
||||
|
||||
// input and claimed output should be the shuffles of fullset
|
||||
// concatenate input and claimed output
|
||||
// concatentate input and claimed output
|
||||
let input_and_claimed_output = input.concat(claimed_output.clone())?;
|
||||
|
||||
// assert that this is a permutation/shuffle
|
||||
@@ -3396,7 +3396,7 @@ pub fn max_pool<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
/// Performs a deconvolution on the given input tensor.
|
||||
/// # Examples
|
||||
/// ```
|
||||
// // expected outputs are taken from pytorch torch.nn.functional.conv_transpose2d
|
||||
// // expected ouputs are taken from pytorch torch.nn.functional.conv_transpose2d
|
||||
///
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
@@ -3624,7 +3624,7 @@ pub fn deconv<
|
||||
|
||||
/// Applies convolution over a ND tensor of shape C x H x D1...DN (and adds a bias).
|
||||
/// ```
|
||||
/// // expected outputs are taken from pytorch torch.nn.functional.conv2d
|
||||
/// // expected ouputs are taken from pytorch torch.nn.functional.conv2d
|
||||
///
|
||||
/// use ezkl::tensor::Tensor;
|
||||
/// use ezkl::fieldutils::IntegerRep;
|
||||
@@ -3908,7 +3908,7 @@ pub(crate) fn rescale<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>
|
||||
Ok(rescaled_inputs)
|
||||
}
|
||||
|
||||
/// Dummy (no constraints) reshape layout
|
||||
/// Dummy (no contraints) reshape layout
|
||||
pub(crate) fn reshape<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
values: &[ValTensor<F>; 1],
|
||||
new_dims: &[usize],
|
||||
@@ -3918,7 +3918,7 @@ pub(crate) fn reshape<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>
|
||||
Ok(t)
|
||||
}
|
||||
|
||||
/// Dummy (no constraints) move_axis layout
|
||||
/// Dummy (no contraints) move_axis layout
|
||||
pub(crate) fn move_axis<F: PrimeField + TensorType + PartialOrd + std::hash::Hash>(
|
||||
values: &[ValTensor<F>; 1],
|
||||
source: usize,
|
||||
|
||||
@@ -337,7 +337,7 @@ mod wasm32 {
|
||||
// Run compiled circuit validation on onnx network (should fail)
|
||||
let circuit = compiledCircuitValidation(wasm_bindgen::Clamped(NETWORK.to_vec()));
|
||||
assert!(circuit.is_err());
|
||||
// Run compiled circuit validation on compiled network (should pass)
|
||||
// Run compiled circuit validation on comiled network (should pass)
|
||||
let circuit = compiledCircuitValidation(wasm_bindgen::Clamped(NETWORK_COMPILED.to_vec()));
|
||||
assert!(circuit.is_ok());
|
||||
// Run input validation on witness (should fail)
|
||||
|
||||
Reference in New Issue
Block a user