Compare commits

...

56 Commits

Author SHA1 Message Date
dante
ff563e93a7 fix: bump python version (#761) 2024-04-02 17:08:26 +01:00
dante
5639d36097 chore: verify aggr wasm unit test (#760) 2024-04-01 20:54:20 +01:00
dante
4ec8d13082 chore: verify aggr in wasm (#758) 2024-03-29 23:28:20 +00:00
dante
12735aefd4 chore: reduce softmax recip DR (#756) 2024-03-27 01:14:29 +00:00
dante
7fe179b8d4 feat: dictionary of reusable constants (#754) 2024-03-26 13:12:09 +00:00
Ethan Cemer
3be988a6a0 fix: use pnpm in build script for in-browser-evm-verifier (#752) 2024-03-25 23:23:02 +00:00
dante
3abb3aff56 feat: make selector polynomials optional (#753) 2024-03-22 09:28:28 +00:00
dante
338788cb8f fix: lookup safety = 1 during calibration falls OOR (#750) 2024-03-21 08:53:43 +00:00
Sung Jun Eun
feb3b1b475 fix: array element encapsulation in ezkl_demo.ipynb (#747) 2024-03-21 08:51:01 +00:00
dante
e134d86756 refactor: apply num-inner cols to constant assignments as well (#749) 2024-03-20 23:51:38 +00:00
dante
6819a3acf6 chore: more complete coverage tests (#748) 2024-03-20 18:53:47 +00:00
dante
2ccf056661 fix: logrows reset after graph creation can cause extended K overflow (#745) 2024-03-20 10:15:11 +00:00
dante
a5bf64b1a2 feat!: ipa commitments (#740)
BREAKING CHANGE: commitment is now an added flag
2024-03-16 16:31:01 +00:00
Ethan Cemer
56e2326be1 *nuke (#742) 2024-03-14 14:11:03 -05:00
Ethan Cemer
2be181db35 feat: merge @ezkljs/verify package into core repo. (#736) 2024-03-14 01:13:14 +00:00
jmjac
de9e3f2673 Add __version__ to python bindings (#739) 2024-03-13 14:22:20 +00:00
dante
a1450f8df7 feat: gather_nd/scatter_nd support (#737) 2024-03-11 22:05:40 +00:00
dante
ea535e2ecd refactor: use linear index constraints for gather and scatter (#735) 2024-03-09 18:00:21 +00:00
Alexander Camuto
f8aa91ed08 fix: windows compile 2024-03-06 11:40:44 +00:00
dante
a59e3780b2 chore: rm recip_int helper (#733) 2024-03-05 21:51:14 +00:00
dante
345fb5672a chore: cleanup unused args (#732) 2024-03-05 13:43:29 +00:00
dante
70daaff2e4 chore: cleanup calibrate (#731) 2024-03-04 17:52:11 +00:00
dante
a437d8a51f feat: "sub"-dynamic tables (#730) 2024-03-04 10:35:28 +00:00
Ethan Cemer
fe535c1cac feat: wasm felt to little endian string (#729)
---------

Co-authored-by: Alexander Camuto <45801863+alexander-camuto@users.noreply.github.com>
2024-03-01 14:06:20 +00:00
dante
3e8dcb001a chore: test for reduced-srs on wasm bundle (#728)
---------

Co-authored-by: Ethan <tylercemer@gmail.com>
2024-03-01 13:23:07 +00:00
dante
14786acb95 feat: dynamic lookups (#727) 2024-03-01 01:44:45 +00:00
dante
80a3c44cb4 feat: lookup-less recip by default (#725) 2024-02-28 16:35:20 +00:00
dante
1656846d1a fix: transcript should serialize as lc flag (#726) 2024-02-26 22:02:47 +00:00
dante
88098b8190 fix!: cleanup felt serialization language in python and wasm (#724)
BREAKING CHANGE: python and wasm felt utilities have new names
2024-02-25 14:06:48 +00:00
dante
6c0c17c9be fix: include tol check in fwd pass (#723) 2024-02-23 01:28:59 +00:00
dante
bf69b16fc1 fix: rm optional bool flags (#722) 2024-02-21 12:45:42 +00:00
dante
74feb829da feat: parse command ast into flag strings (#720) 2024-02-21 00:38:26 +00:00
dante
d429e7edab fix: buffer data read and writes (#719) 2024-02-19 11:49:15 +00:00
dante
f0e5b82787 refactor: selectable key ser (#718) 2024-02-19 11:26:18 +00:00
dante
3f7261f50b fix: set buf capacity for witness, settings, proof (#717) 2024-02-16 21:59:20 +00:00
dante
678a249dcb feat: allow for reduced n srs for verification (#716) 2024-02-16 18:28:54 +00:00
dante
0291eb2d0f fix: reduce verbosity of common operations (#715) 2024-02-15 17:27:33 +00:00
dante
1b637a70b0 refactor: print_proof_hex is redundant with proof file (#713) 2024-02-14 15:25:28 +00:00
dante
abcd5380db feat: programmable buffer capacity (#712) 2024-02-13 15:49:14 +00:00
dante
076b737108 chore: allow for a max circuit area cap (#711) 2024-02-12 14:36:51 +00:00
dante
97d9832591 refactor: calibration for resources and accuracy over same scale range (#710) 2024-02-11 15:03:38 +00:00
dante
e0771683a6 chore: update h2 curves (#709) 2024-02-10 22:54:38 +00:00
dante
319c222307 chore: more descriptive debug logs on forward pass (#708) 2024-02-10 16:10:33 +00:00
dante
85ee6e7f9d refactor: use layout as the forward function (#707) 2024-02-08 21:15:46 +00:00
dante
4c8daf773c refactor: lookup-less layer norm (#706) 2024-02-07 21:19:17 +00:00
dante
80041ac523 refactor: equals argument without lookups (#705) 2024-02-07 14:20:13 +00:00
dante
2a1ee1102c refactor: range check recip (#703) 2024-02-05 14:42:26 +00:00
dante
95d4fd4a70 feat: power of 2 div using type system (#702) 2024-02-04 02:43:38 +00:00
dante
e0d3f4f145 fix: uncomparable values in acc table (#701) 2024-02-02 15:13:29 +00:00
dante
bceac2fab5 ci: make gpu tests single threaded (#700) 2024-01-31 18:19:29 +00:00
dante
04d7b5feaa chore: fold div_rebasing parameter into calibration (#699) 2024-01-31 10:03:12 +00:00
dante
45fd12a04f refactor!: make rebasing multiplicative by default (#698)
BREAKING CHANGE: adds a `required_range_checks` field to `cs`
2024-01-30 18:37:57 +00:00
dante
bc7c33190f feat: allow for separate vk render on-chain (#697) 2024-01-25 19:48:13 +00:00
dante
df72e01414 feat: make selector compression optional (#696) 2024-01-24 00:09:00 +00:00
Tobin South
172e26c00d fix: link for CLI auto-install (#695) 2024-01-22 13:00:27 +00:00
Jason Morton
11ac120f23 fix: large test numbering(#689)
Co-authored-by: dante <45801863+alexander-camuto@users.noreply.github.com>
2024-01-21 21:01:46 +00:00
165 changed files with 22455 additions and 18116 deletions

View File

@@ -6,12 +6,12 @@ on:
description: "Test scenario tags"
jobs:
large-tests:
runs-on: self-hosted
runs-on: kaiju
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-08-24
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- name: nanoGPT Mock
@@ -23,6 +23,6 @@ jobs:
- name: Self Attention KZG prove and verify large tests
run: cargo test --release --verbose tests::large_kzg_prove_and_verify_::large_tests_0_expects -- --include-ignored
- name: mobilenet Mock
run: cargo test --release --verbose tests::large_mock_::large_tests_2_expects -- --include-ignored
run: cargo test --release --verbose tests::large_mock_::large_tests_3_expects -- --include-ignored
- name: mobilenet KZG prove and verify large tests
run: cargo test --release --verbose tests::large_kzg_prove_and_verify_::large_tests_2_expects -- --include-ignored
run: cargo test --release --verbose tests::large_kzg_prove_and_verify_::large_tests_3_expects -- --include-ignored

View File

@@ -1,4 +1,4 @@
name: Build and Publish WASM<>JS Bindings
name: Build and Publish EZKL npm packages (wasm bindings and in-browser evm verifier)
on:
workflow_dispatch:
@@ -14,7 +14,7 @@ defaults:
run:
working-directory: .
jobs:
wasm-publish:
publish-wasm-bindings:
name: publish-wasm-bindings
runs-on: ubuntu-latest
if: startsWith(github.ref, 'refs/tags/')
@@ -22,24 +22,21 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-08-24
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: jetli/wasm-pack-action@v0.4.0
- name: Add wasm32-unknown-unknown target
run: rustup target add wasm32-unknown-unknown
- name: Install wasm-server-runner
run: cargo install wasm-server-runner
- name: Add rust-src
run: rustup component add rust-src --toolchain nightly-2023-08-24-x86_64-unknown-linux-gnu
run: rustup component add rust-src --toolchain nightly-2024-02-06-x86_64-unknown-linux-gnu
- name: Install binaryen
run: |
set -e
curl -L https://github.com/WebAssembly/binaryen/releases/download/version_116/binaryen-version_116-x86_64-linux.tar.gz | tar xzf -
export PATH=$PATH:$PWD/binaryen-version_116/bin
wasm-opt --version
set -e
curl -L https://github.com/WebAssembly/binaryen/releases/download/version_116/binaryen-version_116-x86_64-linux.tar.gz | tar xzf -
export PATH=$PATH:$PWD/binaryen-version_116/bin
wasm-opt --version
- name: Build wasm files for both web and nodejs compilation targets
run: |
wasm-pack build --release --target nodejs --out-dir ./pkg/nodejs . -- -Z build-std="panic_abort,std"
@@ -95,7 +92,7 @@ jobs:
const jsonObject = JSONBig.parse(string);
return jsonObject;
}
function serialize(data) { // data is an object // return a Uint8ClampedArray
// Step 1: Stringify the Object with BigInt support
if (typeof data === "object") {
@@ -103,11 +100,11 @@ jobs:
}
// Step 2: Encode the JSON String
const uint8Array = new TextEncoder().encode(data);
// Step 3: Convert to Uint8ClampedArray
return new Uint8ClampedArray(uint8Array.buffer);
}
module.exports = {
deserialize,
serialize
@@ -126,7 +123,7 @@ jobs:
const jsonObject = parse(string);
return jsonObject;
}
export function serialize(data) { // data is an object // return a Uint8ClampedArray
// Step 1: Stringify the Object with BigInt support
if (typeof data === "object") {
@@ -134,7 +131,7 @@ jobs:
}
// Step 2: Encode the JSON String
const uint8Array = new TextEncoder().encode(data);
// Step 3: Convert to Uint8ClampedArray
return new Uint8ClampedArray(uint8Array.buffer);
}
@@ -177,3 +174,40 @@ jobs:
npm publish
env:
NODE_AUTH_TOKEN: ${{ secrets.NPM_TOKEN }}
in-browser-evm-ver-publish:
name: publish-in-browser-evm-verifier-package
needs: ["publish-wasm-bindings"]
runs-on: ubuntu-latest
if: startsWith(github.ref, 'refs/tags/')
steps:
- uses: actions/checkout@v4
- name: Update version in package.json
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
run: |
sed -i "s|\"version\": \".*\"|\"version\": \"${{ github.ref_name }}\"|" in-browser-evm-verifier/package.json
- name: Update @ezkljs/engine version in package.json
shell: bash
env:
RELEASE_TAG: ${{ github.ref_name }}
run: |
sed -i "s|\"@ezkljs/engine\": \".*\"|\"@ezkljs/engine\": \"${{ github.ref_name }}\"|" in-browser-evm-verifier/package.json
- name: Update the engine import in in-browser-evm-verifier to use @ezkljs/engine package instead of the local one;
run: |
sed -i "s|import { encodeVerifierCalldata } from '../nodejs/ezkl';|import { encodeVerifierCalldata } from '@ezkljs/engine';|" in-browser-evm-verifier/src/index.ts
- name: Set up Node.js
uses: actions/setup-node@v3
with:
node-version: "18.12.1"
registry-url: "https://registry.npmjs.org"
- name: Publish to npm
run: |
cd in-browser-evm-verifier
npm install
npm run build
npm ci
npm publish
env:
NODE_AUTH_TOKEN: ${{ secrets.NPM_TOKEN }}

View File

@@ -26,7 +26,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
with:
python-version: 3.7
python-version: 3.12
architecture: x64
- name: Set pyproject.toml version to match github tag

View File

@@ -25,7 +25,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
with:
python-version: 3.7
python-version: 3.12
architecture: x64
- name: Set Cargo.toml version to match github tag
@@ -70,7 +70,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
with:
python-version: 3.7
python-version: 3.12
architecture: ${{ matrix.target }}
- name: Set Cargo.toml version to match github tag
@@ -115,7 +115,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
with:
python-version: 3.7
python-version: 3.12
architecture: x64
- name: Set Cargo.toml version to match github tag
@@ -139,6 +139,20 @@ jobs:
target: ${{ matrix.target }}
manylinux: auto
args: --release --out dist --features python-bindings
before-script-linux: |
# If we're running on rhel centos, install needed packages.
if command -v yum &> /dev/null; then
yum update -y && yum install -y perl-core openssl openssl-devel pkgconfig libatomic
# If we're running on i686 we need to symlink libatomic
# in order to build openssl with -latomic flag.
if [[ ! -d "/usr/lib64" ]]; then
ln -s /usr/lib/libatomic.so.1 /usr/lib/libatomic.so
fi
else
# If we're running on debian-based system.
apt update -y && apt-get install -y libssl-dev openssl pkg-config
fi
- name: Install built wheel
if: matrix.target == 'x86_64'
@@ -162,7 +176,7 @@ jobs:
# - uses: actions/checkout@v4
# - uses: actions/setup-python@v4
# with:
# python-version: 3.7
# python-version: 3.12
# - name: Install cross-compilation tools for aarch64
# if: matrix.target == 'aarch64'
@@ -214,7 +228,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
with:
python-version: 3.7
python-version: 3.12
architecture: x64
- name: Set Cargo.toml version to match github tag
@@ -249,7 +263,7 @@ jobs:
apk add py3-pip
pip3 install -U pip
python3 -m venv .venv
source .venv/bin/activate
source .venv/bin/activate
pip3 install ezkl --no-index --find-links /io/dist/ --force-reinstall
python3 -c "import ezkl"
@@ -273,7 +287,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
with:
python-version: 3.7
python-version: 3.12
- name: Set Cargo.toml version to match github tag
shell: bash

View File

@@ -32,7 +32,7 @@ jobs:
token: ${{ secrets.RELEASE_TOKEN }}
tag_name: ${{ env.EZKL_VERSION }}
build-release-gpu:
build-release-gpu:
name: build-release-gpu
needs: ["create-release"]
runs-on: GPU
@@ -45,7 +45,7 @@ jobs:
steps:
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-08-24
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- name: Checkout repo
@@ -60,16 +60,15 @@ jobs:
- name: Set Cargo.toml version to match github tag
shell: bash
run: |
mv Cargo.toml Cargo.toml.orig
sed "s/0\\.0\\.0/${EZKL_VERSION//v}/" Cargo.toml.orig >Cargo.toml
mv Cargo.lock Cargo.lock.orig
sed "s/0\\.0\\.0/${EZKL_VERSION//v}/" Cargo.lock.orig >Cargo.lock
mv Cargo.toml Cargo.toml.orig
sed "s/0\\.0\\.0/${EZKL_VERSION//v}/" Cargo.toml.orig >Cargo.toml
mv Cargo.lock Cargo.lock.orig
sed "s/0\\.0\\.0/${EZKL_VERSION//v}/" Cargo.lock.orig >Cargo.lock
- name: Install dependencies
shell: bash
run: |
sudo apt-get update
sudo apt-get update
- name: Build release binary
run: cargo build --release -Z sparse-registry --features icicle
@@ -91,7 +90,6 @@ jobs:
asset_name: ${{ env.ASSET }}
asset_content_type: application/octet-stream
build-release:
name: build-release
needs: ["create-release"]

View File

@@ -26,7 +26,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-08-24
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- name: Build
@@ -38,7 +38,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-08-24
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- name: Docs
@@ -50,7 +50,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-08-24
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -73,7 +73,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-08-24
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -106,7 +106,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-08-24
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -139,7 +139,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-08-24
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -172,7 +172,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-08-24
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -184,12 +184,12 @@ jobs:
wasm32-tests:
runs-on: ubuntu-latest
# needs: [build, library-tests, docs]
needs: [build, library-tests, docs, python-tests, python-integration-tests]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-08-24
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: jetli/wasm-pack-action@v0.4.0
@@ -198,10 +198,8 @@ jobs:
# chromedriver-version: "115.0.5790.102"
- name: Install wasm32-unknown-unknown
run: rustup target add wasm32-unknown-unknown
- name: Install wasm runner
run: cargo install wasm-server-runner
- name: Add rust-src
run: rustup component add rust-src --toolchain nightly-2023-08-24-x86_64-unknown-linux-gnu
run: rustup component add rust-src --toolchain nightly-2024-02-06-x86_64-unknown-linux-gnu
- name: Run wasm verifier tests
# on mac:
# AR=/opt/homebrew/opt/llvm/bin/llvm-ar CC=/opt/homebrew/opt/llvm/bin/clang wasm-pack test --firefox --headless -- -Z build-std="panic_abort,std" --features web
@@ -209,12 +207,12 @@ jobs:
tutorial:
runs-on: ubuntu-latest
needs: [build, library-tests, docs]
needs: [build, library-tests, docs, python-tests, python-integration-tests]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-08-24
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -226,18 +224,20 @@ jobs:
mock-proving-tests:
runs-on: non-gpu
# needs: [build, library-tests, docs]
needs: [build, library-tests, docs, python-tests, python-integration-tests]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-08-24
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
with:
crate: cargo-nextest
locked: true
- name: public outputs and tolerance > 0
run: cargo nextest run --release --verbose tests::mock_tolerance_public_outputs_ --test-threads 32
- name: public outputs + batch size == 10
run: cargo nextest run --release --verbose tests::mock_large_batch_public_outputs_ --test-threads 32
- name: kzg inputs
@@ -281,12 +281,12 @@ jobs:
prove-and-verify-evm-tests:
runs-on: non-gpu
needs: [build, library-tests]
needs: [build, library-tests, docs, python-tests, python-integration-tests]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-08-24
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -303,16 +303,32 @@ jobs:
with:
node-version: "18.12.1"
cache: "pnpm"
- name: Install dependencies
- name: "Add rust-src"
run: rustup component add rust-src --toolchain nightly-2024-02-06-x86_64-unknown-linux-gnu
- name: Install dependencies for js tests and in-browser-evm-verifier package
run: |
pnpm install --no-frozen-lockfile
pnpm install --dir ./in-browser-evm-verifier --no-frozen-lockfile
env:
CI: false
NODE_ENV: development
- name: Build wasm package for nodejs target.
run: |
wasm-pack build --release --target nodejs --out-dir ./in-browser-evm-verifier/nodejs . -- -Z build-std="panic_abort,std"
- name: Replace memory definition in nodejs
run: |
sed -i "3s|.*|imports['env'] = {memory: new WebAssembly.Memory({initial:20,maximum:65536,shared:true})}|" in-browser-evm-verifier/nodejs/ezkl.js
- name: Build @ezkljs/verify package
run: |
cd in-browser-evm-verifier
pnpm build:commonjs
cd ..
- name: Install solc
run: (hash svm 2>/dev/null || cargo install svm-rs) && svm install 0.8.20 && solc --version
- name: Install Anvil
run: cargo install --git https://github.com/foundry-rs/foundry --rev 95a93cd397f25f3f8d49d2851eb52bc2d52dd983 --profile local --locked anvil --force
run: cargo install --git https://github.com/foundry-rs/foundry --rev c2233ec9fe61e0920c61c6d779bc707252852037 --profile local --locked anvil --force
- name: KZG prove and verify tests (EVM + VK rendered seperately)
run: cargo nextest run --release --verbose tests_evm::kzg_evm_prove_and_verify_render_seperately_ --test-threads 1
- name: KZG prove and verify tests (EVM + kzg all)
run: cargo nextest run --release --verbose tests_evm::kzg_evm_kzg_all_prove_and_verify --test-threads 1
- name: KZG prove and verify tests (EVM + kzg inputs)
@@ -338,23 +354,20 @@ jobs:
prove-and-verify-tests:
runs-on: non-gpu
needs: [build, library-tests]
needs: [build, library-tests, docs, python-tests, python-integration-tests]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-08-24
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: jetli/wasm-pack-action@v0.4.0
- name: Add wasm32-unknown-unknown target
run: rustup target add wasm32-unknown-unknown
- name: Install wasm-server-runner
run: cargo install wasm-server-runner
- name: Add rust-src
run: rustup component add rust-src --toolchain nightly-2023-08-24-x86_64-unknown-linux-gnu
run: rustup component add rust-src --toolchain nightly-2024-02-06-x86_64-unknown-linux-gnu
- uses: actions/checkout@v3
- name: Use pnpm 8
uses: pnpm/action-setup@v2
@@ -365,7 +378,7 @@ jobs:
with:
node-version: "18.12.1"
cache: "pnpm"
- name: Install dependencies
- name: Install dependencies for js tests
run: |
pnpm install --no-frozen-lockfile
env:
@@ -381,6 +394,12 @@ jobs:
- name: Replace memory definition in nodejs
run: |
sed -i "3s|.*|imports['env'] = {memory: new WebAssembly.Memory({initial:20,maximum:65536,shared:true})}|" tests/wasm/nodejs/ezkl.js
- name: KZG prove and verify tests (public outputs)
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_tight_lookup_::t
- name: IPA prove and verify tests
run: cargo nextest run --release --verbose tests::ipa_prove_and_verify_::t --test-threads 1
- name: IPA prove and verify tests (ipa outputs)
run: cargo nextest run --release --verbose tests::ipa_prove_and_verify_ipa_output
- name: KZG prove and verify tests (public outputs + column overflow)
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_with_overflow_::w
- name: KZG prove and verify tests single inner col
@@ -397,8 +416,6 @@ jobs:
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_with_overflow_fixed_params_
- name: KZG prove and verify tests (public outputs)
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_::t
- name: KZG prove and verify tests (public outputs + column overflow)
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_::t
- name: KZG prove and verify tests (public inputs)
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_public_input
- name: KZG prove and verify tests (fixed params)
@@ -414,71 +431,48 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-08-24
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- name: Add rust-src
run: rustup component add rust-src --toolchain nightly-2023-08-24-x86_64-unknown-linux-gnu
run: rustup component add rust-src --toolchain nightly-2024-02-06-x86_64-unknown-linux-gnu
- uses: actions/checkout@v3
- uses: baptiste0928/cargo-install@v1
with:
crate: cargo-nextest
locked: true
- name: KZG prove and verify tests (kzg outputs)
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_kzg_output --features icicle --test-threads 2
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_kzg_output --features icicle --test-threads 1
- name: KZG prove and verify tests (public outputs + column overflow)
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_with_overflow_::w --features icicle --test-threads 2
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_with_overflow_::w --features icicle --test-threads 1
- name: KZG prove and verify tests (public outputs + fixed params + column overflow)
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_with_overflow_fixed_params_ --features icicle --test-threads 2
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_with_overflow_fixed_params_ --features icicle --test-threads 1
- name: KZG prove and verify tests (public outputs)
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_::t --features icicle --test-threads 2
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_::t --features icicle --test-threads 1
- name: KZG prove and verify tests (public outputs + column overflow)
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_::t --features icicle --test-threads 2
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_::t --features icicle --test-threads 1
- name: KZG prove and verify tests (public inputs)
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_public_input --features icicle --test-threads 2
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_public_input --features icicle --test-threads 1
- name: KZG prove and verify tests (fixed params)
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_fixed_params --features icicle --test-threads 2
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_fixed_params --features icicle --test-threads 1
- name: KZG prove and verify tests (hashed outputs)
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_hashed --features icicle --test-threads 2
fuzz-tests:
runs-on: ubuntu-latest-32-cores
needs: [build, library-tests, python-tests]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-08-24
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
with:
crate: cargo-nextest
locked: true
- name: Install solc
run: (hash svm 2>/dev/null || cargo install svm-rs) && svm install 0.8.20 && solc --version
- name: Install Anvil
run: cargo install --git https://github.com/foundry-rs/foundry --rev 95a93cd397f25f3f8d49d2851eb52bc2d52dd983 --profile local --locked anvil --force
- name: fuzz tests (EVM)
run: cargo nextest run --release --verbose tests_evm::kzg_evm_fuzz_ --test-threads 2
# - name: fuzz tests
# run: cargo nextest run --release --verbose tests::kzg_fuzz_ --test-threads 6
run: cargo nextest run --release --verbose tests::kzg_prove_and_verify_hashed --features icicle --test-threads 1
prove-and-verify-mock-aggr-tests:
runs-on: self-hosted
needs: [build, library-tests]
needs: [build, library-tests, docs, python-tests, python-integration-tests]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-08-24
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
with:
crate: cargo-nextest
locked: true
- name: Mock aggr tests
- name: Mock aggr tests (KZG)
run: cargo nextest run --release --verbose tests_aggr::kzg_aggr_mock_prove_and_verify_ --test-threads 8
prove-and-verify-aggr-tests-gpu:
@@ -489,7 +483,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-08-24
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -501,29 +495,29 @@ jobs:
prove-and-verify-aggr-tests:
runs-on: large-self-hosted
needs: [build, library-tests, python-tests]
needs: [build, library-tests, docs, python-tests, python-integration-tests]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-08-24
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
with:
crate: cargo-nextest
locked: true
- name: KZG )tests
run: cargo nextest run --release --verbose tests_aggr::kzg_aggr_prove_and_verify_ --test-threads 8 -- --include-ignored
- name: KZG tests
run: cargo nextest run --release --verbose tests_aggr::kzg_aggr_prove_and_verify_ --test-threads 4 -- --include-ignored
prove-and-verify-aggr-evm-tests:
runs-on: large-self-hosted
needs: [build, library-tests, python-tests]
needs: [build, library-tests, docs, python-tests, python-integration-tests]
steps:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-08-24
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -533,7 +527,7 @@ jobs:
- name: Install solc
run: (hash svm 2>/dev/null || cargo install svm-rs) && svm install 0.8.20 && solc --version
- name: Install Anvil
run: cargo install --git https://github.com/foundry-rs/foundry --rev 95a93cd397f25f3f8d49d2851eb52bc2d52dd983 --profile local --locked anvil --force
run: cargo install --git https://github.com/foundry-rs/foundry --rev c2233ec9fe61e0920c61c6d779bc707252852037 --profile local --locked anvil --force
- name: KZG prove and verify aggr tests
run: cargo nextest run --release --verbose tests_evm::kzg_evm_aggr_prove_and_verify_::t --test-threads 4 -- --include-ignored
@@ -544,7 +538,7 @@ jobs:
- uses: actions/checkout@v4
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-08-24
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -563,34 +557,36 @@ jobs:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
with:
python-version: "3.7"
python-version: "3.12"
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-08-24
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- name: Install cmake
run: sudo apt-get install -y cmake
- name: Install solc
run: (hash svm 2>/dev/null || cargo install svm-rs) && svm install 0.8.20 && solc --version
- name: Setup Virtual Env and Install python dependencies
run: python -m venv .env; source .env/bin/activate; pip install -r requirements.txt;
run: python -m venv .env --clear; source .env/bin/activate; pip install -r requirements.txt;
- name: Install Anvil
run: cargo install --git https://github.com/foundry-rs/foundry --rev 95a93cd397f25f3f8d49d2851eb52bc2d52dd983 --profile local --locked anvil --force
run: cargo install --git https://github.com/foundry-rs/foundry --rev c2233ec9fe61e0920c61c6d779bc707252852037 --profile local --locked anvil --force
- name: Build python ezkl
run: source .env/bin/activate; maturin develop --features python-bindings --release
run: source .env/bin/activate; unset CONDA_PREFIX; maturin develop --features python-bindings --release
- name: Run pytest
run: source .env/bin/activate; pytest -vv
accuracy-measurement-tests:
runs-on: ubuntu-latest-32-cores
# needs: [build, library-tests, docs]
needs: [build, library-tests, docs, python-tests, python-integration-tests]
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
with:
python-version: "3.7"
python-version: "3.12"
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-08-24
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -598,9 +594,11 @@ jobs:
crate: cargo-nextest
locked: true
- name: Setup Virtual Env and Install python dependencies
run: python -m venv .env; source .env/bin/activate; pip install -r requirements.txt;
run: python -m venv .env --clear; source .env/bin/activate; pip install -r requirements.txt;
- name: Build python ezkl
run: source .env/bin/activate; maturin develop --features python-bindings --release
run: source .env/bin/activate; unset CONDA_PREFIX; maturin develop --features python-bindings --release
- name: Div rebase
run: source .env/bin/activate; cargo nextest run --release --verbose tests::accuracy_measurement_div_rebase_
- name: Public inputs
run: source .env/bin/activate; cargo nextest run --release --verbose tests::accuracy_measurement_public_inputs_
- name: fixed params
@@ -616,10 +614,10 @@ jobs:
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
with:
python-version: "3.9"
python-version: "3.11"
- uses: actions-rs/toolchain@v1
with:
toolchain: nightly-2023-08-24
toolchain: nightly-2024-02-06
override: true
components: rustfmt, clippy
- uses: baptiste0928/cargo-install@v1
@@ -629,11 +627,15 @@ jobs:
- name: Install solc
run: (hash svm 2>/dev/null || cargo install svm-rs) && svm install 0.8.20 && solc --version
- name: Install Anvil
run: cargo install --git https://github.com/foundry-rs/foundry --rev 95a93cd397f25f3f8d49d2851eb52bc2d52dd983 --profile local --locked anvil --force
run: cargo install --git https://github.com/foundry-rs/foundry --rev c2233ec9fe61e0920c61c6d779bc707252852037 --profile local --locked anvil --force
- name: Install pip
run: python -m ensurepip --upgrade
- name: Setup Virtual Env and Install python dependencies
run: python -m venv .env; source .env/bin/activate; pip install -r requirements.txt;
run: python -m venv .env --clear; source .env/bin/activate; pip install -r requirements.txt; python -m ensurepip --upgrade
- name: Build python ezkl
run: source .env/bin/activate; maturin develop --features python-bindings --release
run: source .env/bin/activate; unset CONDA_PREFIX; maturin develop --features python-bindings --release
- name: Tictactoe tutorials
run: source .env/bin/activate; cargo nextest run py_tests::tests::tictactoe_ --test-threads 1
# - name: authenticate-kaggle-cli
# shell: bash
# env:
@@ -643,14 +645,11 @@ jobs:
# # now dump the contents of the file into a file called kaggle.json
# echo $KAGGLE_API_KEY > /home/ubuntu/.kaggle/kaggle.json
# chmod 600 /home/ubuntu/.kaggle/kaggle.json
- name: All notebooks
run: source .env/bin/activate; cargo nextest run py_tests::tests::run_notebook_ --test-threads 1
- name: Voice tutorial
run: source .env/bin/activate; cargo nextest run py_tests::tests::voice_
- name: NBEATS tutorial
run: source .env/bin/activate; cargo nextest run py_tests::tests::nbeats_
- name: All notebooks
run: source .env/bin/activate; cargo nextest run py_tests::tests::run_notebook_ --test-threads 1
- name: Tictactoe tutorials
run: source .env/bin/activate; cargo nextest run py_tests::tests::tictactoe_ --test-threads 1
# - name: Postgres tutorials
# run: source .env/bin/activate; cargo nextest run py_tests::tests::postgres_ --test-threads 1

4
.gitignore vendored
View File

@@ -45,6 +45,8 @@ var/
*.whl
*.bak
node_modules
/dist
timingData.json
!tests/wasm/pk.key
!tests/wasm/vk.key
!tests/wasm/vk.key
!tests/wasm/vk_aggr.key

2023
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -15,70 +15,96 @@ crate-type = ["cdylib", "rlib"]
[dependencies]
halo2_gadgets = { git = "https://github.com/zkonduit/halo2", branch= "ac/lookup-modularity" }
halo2_proofs = { git = "https://github.com/zkonduit/halo2", branch= "ac/lookup-modularity" }
halo2curves = { version = "0.1.0" }
halo2_gadgets = { git = "https://github.com/zkonduit/halo2", branch = "ac/optional-selector-poly" }
halo2_proofs = { git = "https://github.com/zkonduit/halo2", branch = "ac/optional-selector-poly" }
halo2curves = { git = "https://github.com/privacy-scaling-explorations/halo2curves", rev = "9fff22c", features = [
"derive_serde",
] }
rand = { version = "0.8", default_features = false }
itertools = { version = "0.10.3", default_features = false }
clap = { version = "4.3.3", features = ["derive"]}
clap = { version = "4.5.3", features = ["derive"] }
serde = { version = "1.0.126", features = ["derive"], optional = true }
serde_json = { version = "1.0.97", default_features = false, features = ["float_roundtrip", "raw_value"], optional = true }
serde_json = { version = "1.0.97", default_features = false, features = [
"float_roundtrip",
"raw_value",
], optional = true }
log = { version = "0.4.17", default_features = false, optional = true }
thiserror = { version = "1.0.38", default_features = false }
hex = { version = "0.4.3", default_features = false }
halo2_wrong_ecc = { git = "https://github.com/zkonduit/halo2wrong", branch = "ac/chunked-mv-lookup", package = "ecc" }
snark-verifier = { git = "https://github.com/zkonduit/snark-verifier", branch = "ac/chunked-mv-lookup", features=["derive_serde"]}
halo2_solidity_verifier = { git = "https://github.com/alexander-camuto/halo2-solidity-verifier", branch= "ac/lookup-modularity" }
maybe-rayon = { version = "0.1.1", default_features = false }
snark-verifier = { git = "https://github.com/zkonduit/snark-verifier", branch = "ac/chunked-mv-lookup", features = [
"derive_serde",
] }
halo2_solidity_verifier = { git = "https://github.com/alexander-camuto/halo2-solidity-verifier", branch = "main" }
maybe-rayon = { version = "0.1.1", default_features = false }
bincode = { version = "1.3.3", default_features = false }
ark-std = { version = "^0.3.0", default-features = false }
unzip-n = "0.1.2"
num = "0.4.1"
portable-atomic = "1.6.0"
tosubcommand = { git = "https://github.com/zkonduit/enum_to_subcommand", package = "tosubcommand" }
# evm related deps
[target.'cfg(not(target_arch = "wasm32"))'.dependencies]
ethers = { version = "2.0.7", default_features = false, features = ["ethers-solc"] }
indicatif = {version = "0.17.5", features = ["rayon"]}
gag = { version = "1.0.0", default_features = false}
ethers = { version = "2.0.11", default_features = false, features = [
"ethers-solc",
] }
indicatif = { version = "0.17.5", features = ["rayon"] }
gag = { version = "1.0.0", default_features = false }
instant = { version = "0.1" }
reqwest = { version = "0.11.14", default-features = false, features = ["default-tls", "multipart", "stream"] }
reqwest = { version = "0.11.14", default-features = false, features = [
"default-tls",
"multipart",
"stream",
] }
openssl = { version = "0.10.55", features = ["vendored"] }
postgres = "0.19.5"
pg_bigdecimal = "0.1.5"
lazy_static = "1.4.0"
colored_json = { version = "3.0.1", default_features = false, optional = true}
colored_json = { version = "3.0.1", default_features = false, optional = true }
plotters = { version = "0.3.0", default_features = false, optional = true }
regex = { version = "1", default_features = false }
tokio = { version = "1.26.0", default_features = false, features = ["macros", "rt"] }
tokio = { version = "1.26.0", default_features = false, features = [
"macros",
"rt",
] }
tokio-util = { version = "0.7.9", features = ["codec"] }
pyo3 = { version = "0.20.2", features = ["extension-module", "abi3-py37", "macros"], default_features = false, optional = true }
pyo3-asyncio = { version = "0.20.0", features = ["attributes", "tokio-runtime"], default_features = false, optional = true }
pyo3 = { version = "0.20.2", features = [
"extension-module",
"abi3-py37",
"macros",
], default_features = false, optional = true }
pyo3-asyncio = { version = "0.20.0", features = [
"attributes",
"tokio-runtime",
], default_features = false, optional = true }
pyo3-log = { version = "0.9.0", default_features = false, optional = true }
tract-onnx = { git = "https://github.com/sonos/tract/", rev= "7b1aa33b2f7d1f19b80e270c83320f0f94daff69", default_features = false, optional = true }
tract-onnx = { git = "https://github.com/sonos/tract/", rev = "7b1aa33b2f7d1f19b80e270c83320f0f94daff69", default_features = false, optional = true }
tabled = { version = "0.12.0", optional = true }
[target.'cfg(not(all(target_arch = "wasm32", target_os = "unknown")))'.dependencies]
colored = { version = "2.0.0", default_features = false, optional = true}
env_logger = { version = "0.10.0", default_features = false, optional = true}
colored = { version = "2.0.0", default_features = false, optional = true }
env_logger = { version = "0.10.0", default_features = false, optional = true }
chrono = "0.4.31"
sha256 = "1.4.0"
[target.'cfg(target_arch = "wasm32")'.dependencies]
getrandom = { version = "0.2.8", features = ["js"] }
instant = { version = "0.1", features = [ "wasm-bindgen", "inaccurate" ] }
instant = { version = "0.1", features = ["wasm-bindgen", "inaccurate"] }
[target.'cfg(all(target_arch = "wasm32", target_os = "unknown"))'.dependencies]
wasm-bindgen-rayon = { version = "1.0", optional=true }
wasm-bindgen-test = "0.3.34"
serde-wasm-bindgen = "0.4"
wasm-bindgen = { version = "0.2.81", features = ["serde-serialize"]}
wasm-bindgen-rayon = { version = "1.2.1", optional = true }
wasm-bindgen-test = "0.3.42"
serde-wasm-bindgen = "0.6.5"
wasm-bindgen = { version = "0.2.92", features = ["serde-serialize"] }
console_error_panic_hook = "0.1.7"
wasm-bindgen-console-logger = "0.1.1"
[dev-dependencies]
criterion = {version = "0.3", features = ["html_reports"]}
criterion = { version = "0.3", features = ["html_reports"] }
tempfile = "3.3.0"
lazy_static = "1.4.0"
mnist = "0.5"
@@ -150,18 +176,36 @@ required-features = ["ezkl"]
[features]
web = ["wasm-bindgen-rayon"]
default = ["ezkl", "mv-lookup"]
render = ["halo2_proofs/dev-graph", "plotters"]
onnx = ["dep:tract-onnx"]
python-bindings = ["pyo3", "pyo3-log", "pyo3-asyncio"]
ezkl = ["onnx", "serde", "serde_json", "log", "colored", "env_logger", "tabled/color", "colored_json", "halo2_proofs/circuit-params"]
mv-lookup = ["halo2_proofs/mv-lookup", "snark-verifier/mv-lookup", "halo2_solidity_verifier/mv-lookup"]
ezkl = [
"onnx",
"serde",
"serde_json",
"log",
"colored",
"env_logger",
"tabled/color",
"colored_json",
"halo2_proofs/circuit-params",
]
mv-lookup = [
"halo2_proofs/mv-lookup",
"snark-verifier/mv-lookup",
"halo2_solidity_verifier/mv-lookup",
]
det-prove = []
icicle = ["halo2_proofs/icicle_gpu"]
empty-cmd = []
no-banner = []
# icicle patch to 0.1.0 if feature icicle is enabled
[patch.'https://github.com/ingonyama-zk/icicle']
icicle = { git = "https://github.com/ingonyama-zk/icicle?rev=45b00fb", package = "icicle", branch = "fix/vhnat/ezkl-build-fix"}
icicle = { git = "https://github.com/ingonyama-zk/icicle?rev=45b00fb", package = "icicle", branch = "fix/vhnat/ezkl-build-fix" }
[patch.'https://github.com/zkonduit/halo2']
halo2_proofs = { git = "https://github.com/zkonduit/halo2?branch=ac/optional-selector-poly#54f54453cf186aa5d89579c4e7663f9a27cfb89a", package = "halo2_proofs", branch = "ac/optional-selector-poly" }
[profile.release]
rustflags = [ "-C", "relocation-model=pic" ]
rustflags = ["-C", "relocation-model=pic"]

View File

@@ -31,9 +31,9 @@ EZKL
[![Notebook](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/zkonduit/ezkl/blob/main/examples/notebooks/simple_demo_all_public.ipynb)
In the backend we use [Halo2](https://github.com/privacy-scaling-explorations/halo2) as a proof system.
In the backend we use the collaboratively-developed [Halo2](https://github.com/privacy-scaling-explorations/halo2) as a proof system.
The generated proofs can then be used on-chain to verify computation, only the Ethereum Virtual Machine (EVM) is supported at the moment.
The generated proofs can then be verified with much less computational resources, including on-chain (with the Ethereum Virtual Machine), in a browser, or on a device.
- If you have any questions, we'd love for you to open up a discussion topic in [Discussions](https://github.com/zkonduit/ezkl/discussions). Alternatively, you can join the ✨[EZKL Community Telegram Group](https://t.me/+QRzaRvTPIthlYWMx)💫.
@@ -45,6 +45,8 @@ The generated proofs can then be used on-chain to verify computation, only the E
### getting started ⚙️
The easiest way to get started is to try out a notebook.
#### Python
Install the python bindings by calling.
@@ -65,15 +67,19 @@ More notebook tutorials can be found within `examples/notebooks`.
#### CLI
Install the CLI
``` shell
curl https://github.com/JSeam2/ezkl/blob/main/install_ezkl_cli.sh | bash
curl https://raw.githubusercontent.com/zkonduit/ezkl/main/install_ezkl_cli.sh | bash
```
https://user-images.githubusercontent.com/45801863/236771676-5bbbbfd1-ba6f-418a-902e-20738ce0e9f0.mp4
For more details visit the [docs](https://docs.ezkl.xyz).
For more details visit the [docs](https://docs.ezkl.xyz). The CLI is faster than Python, as it has less overhead. For even more speed and convenience, check out the [remote proving service](https://ei40vx5x6j0.typeform.com/to/sFv1oxvb), which feels like the CLI but is backed by a tuned cluster.
Build the auto-generated rust documentation and open the docs in your browser locally. `cargo doc --open`
#### In-browser EVM verifier
As an alternative to running the native Halo2 verifier as a WASM binding in the browser, you can use the in-browser EVM verifier. The source code of which you can find in the `in-browser-evm-verifier` directory and a README with instructions on how to use it.
### building the project 🔨
@@ -120,17 +126,6 @@ unset ENABLE_ICICLE_GPU
**NOTE:** Even with the above environment variable set, icicle is disabled for circuits where k <= 8. To change the value of `k` where icicle is enabled, you can set the environment variable `ICICLE_SMALL_K`.
### repos
The EZKL project has several libraries and repos.
| Repo | Description |
| --- | --- |
| [@zkonduit/ezkl](https://github.com/zkonduit/ezkl) | the main ezkl repo in rust with wasm and python bindings |
| [@zkonduit/ezkljs](https://github.com/zkonduit/ezkljs) | typescript and javascript tooling to help integrate ezkl into web apps |
----------------------
### contributing 🌎
If you're interested in contributing and are unsure where to start, reach out to one of the maintainers:
@@ -147,7 +142,7 @@ More broadly:
- To report bugs or request new features [create a new issue within Issues](https://github.com/zkonduit/ezkl/issues) to inform the greater community.
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you shall be licensed to Zkonduit Inc. under the terms and conditions specified in the [CLA](https://github.com/zkonduit/ezkl/blob/main/cla.md), which you agree to by intentionally submitting a contribution. In particular, you have the right to submit the contribution and we can distribute it under the Apache 2.0 license, among other terms and conditions.
Any contribution intentionally submitted for inclusion in the work by you shall be licensed to Zkonduit Inc. under the terms and conditions specified in the [CLA](https://github.com/zkonduit/ezkl/blob/main/cla.md), which you agree to by intentionally submitting a contribution. In particular, you have the right to submit the contribution and we can distribute it, among other terms and conditions.
### no security guarantees
@@ -155,4 +150,7 @@ Ezkl is unaudited, beta software undergoing rapid development. There may be bugs
> NOTE: Because operations are quantized when they are converted from an onnx file to a zk-circuit, outputs in python and ezkl may differ slightly.
### no warranty
Copyright (c) 2024 Zkonduit Inc. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

View File

@@ -2,11 +2,13 @@ use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Through
use ezkl::circuit::poly::PolyOp;
use ezkl::circuit::*;
use ezkl::pfsys::create_keys;
use ezkl::pfsys::create_proof_circuit_kzg;
use ezkl::pfsys::create_proof_circuit;
use ezkl::pfsys::srs::gen_srs;
use ezkl::pfsys::TranscriptType;
use ezkl::tensor::*;
use halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme;
use halo2_proofs::poly::kzg::multiopen::ProverSHPLONK;
use halo2_proofs::poly::kzg::multiopen::VerifierSHPLONK;
use halo2_proofs::poly::kzg::strategy::SingleStrategy;
use halo2_proofs::{
arithmetic::Field,
@@ -15,6 +17,7 @@ use halo2_proofs::{
};
use halo2curves::bn256::{Bn256, Fr};
use rand::rngs::OsRng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
static mut KERNEL_HEIGHT: usize = 2;
static mut KERNEL_WIDTH: usize = 2;
@@ -121,25 +124,35 @@ fn runcnvrl(c: &mut Criterion) {
group.throughput(Throughput::Elements(*size as u64));
group.bench_with_input(BenchmarkId::new("pk", size), &size, |b, &_| {
b.iter(|| {
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params)
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true)
.unwrap();
});
});
let pk = create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params)
let pk = create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true)
.unwrap();
group.throughput(Throughput::Elements(*size as u64));
group.bench_with_input(BenchmarkId::new("prove", size), &size, |b, &_| {
b.iter(|| {
let prover = create_proof_circuit_kzg(
let prover = create_proof_circuit::<
KZGCommitmentScheme<_>,
MyCircuit,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
None,
&pk,
TranscriptType::EVM,
SingleStrategy::new(&params),
CheckMode::UNSAFE,
ezkl::Commitments::KZG,
TranscriptType::EVM,
None,
None,
);
prover.unwrap();

View File

@@ -1,11 +1,13 @@
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Throughput};
use ezkl::circuit::poly::PolyOp;
use ezkl::circuit::*;
use ezkl::pfsys::create_proof_circuit_kzg;
use ezkl::pfsys::create_proof_circuit;
use ezkl::pfsys::TranscriptType;
use ezkl::pfsys::{create_keys, srs::gen_srs};
use ezkl::tensor::*;
use halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme;
use halo2_proofs::poly::kzg::multiopen::ProverSHPLONK;
use halo2_proofs::poly::kzg::multiopen::VerifierSHPLONK;
use halo2_proofs::poly::kzg::strategy::SingleStrategy;
use halo2_proofs::{
arithmetic::Field,
@@ -14,6 +16,7 @@ use halo2_proofs::{
};
use halo2curves::bn256::{Bn256, Fr};
use rand::rngs::OsRng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use std::marker::PhantomData;
static mut LEN: usize = 4;
@@ -90,25 +93,35 @@ fn rundot(c: &mut Criterion) {
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("pk", len), &len, |b, &_| {
b.iter(|| {
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params)
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true)
.unwrap();
});
});
let pk =
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params).unwrap();
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true).unwrap();
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("prove", len), &len, |b, &_| {
b.iter(|| {
let prover = create_proof_circuit_kzg(
let prover = create_proof_circuit::<
KZGCommitmentScheme<_>,
MyCircuit,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
None,
&pk,
TranscriptType::EVM,
SingleStrategy::new(&params),
CheckMode::UNSAFE,
ezkl::Commitments::KZG,
TranscriptType::EVM,
None,
None,
);
prover.unwrap();

View File

@@ -1,11 +1,13 @@
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Throughput};
use ezkl::circuit::poly::PolyOp;
use ezkl::circuit::*;
use ezkl::pfsys::create_proof_circuit_kzg;
use ezkl::pfsys::create_proof_circuit;
use ezkl::pfsys::TranscriptType;
use ezkl::pfsys::{create_keys, srs::gen_srs};
use ezkl::tensor::*;
use halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme;
use halo2_proofs::poly::kzg::multiopen::ProverSHPLONK;
use halo2_proofs::poly::kzg::multiopen::VerifierSHPLONK;
use halo2_proofs::poly::kzg::strategy::SingleStrategy;
use halo2_proofs::{
arithmetic::Field,
@@ -14,6 +16,7 @@ use halo2_proofs::{
};
use halo2curves::bn256::{Bn256, Fr};
use rand::rngs::OsRng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use std::marker::PhantomData;
static mut LEN: usize = 4;
@@ -94,25 +97,35 @@ fn runmatmul(c: &mut Criterion) {
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("pk", len), &len, |b, &_| {
b.iter(|| {
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params)
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true)
.unwrap();
});
});
let pk =
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params).unwrap();
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true).unwrap();
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("prove", len), &len, |b, &_| {
b.iter(|| {
let prover = create_proof_circuit_kzg(
let prover = create_proof_circuit::<
KZGCommitmentScheme<_>,
MyCircuit,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
None,
&pk,
TranscriptType::EVM,
SingleStrategy::new(&params),
CheckMode::UNSAFE,
ezkl::Commitments::KZG,
TranscriptType::EVM,
None,
None,
);
prover.unwrap();

View File

@@ -1,22 +1,26 @@
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Throughput};
use ezkl::circuit::table::Range;
use ezkl::circuit::*;
use ezkl::circuit::lookup::LookupOp;
use ezkl::circuit::poly::PolyOp;
use ezkl::pfsys::create_proof_circuit_kzg;
use ezkl::pfsys::create_proof_circuit;
use ezkl::pfsys::TranscriptType;
use ezkl::pfsys::{create_keys, srs::gen_srs};
use ezkl::tensor::*;
use halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme;
use halo2_proofs::poly::kzg::multiopen::ProverSHPLONK;
use halo2_proofs::poly::kzg::multiopen::VerifierSHPLONK;
use halo2_proofs::poly::kzg::strategy::SingleStrategy;
use halo2_proofs::{
circuit::{Layouter, SimpleFloorPlanner, Value},
plonk::{Circuit, ConstraintSystem, Error},
};
use halo2curves::bn256::{Bn256, Fr};
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use std::marker::PhantomData;
const BITS: (i128, i128) = (-32768, 32768);
const BITS: Range = (-32768, 32768);
static mut LEN: usize = 4;
const K: usize = 16;
@@ -111,25 +115,35 @@ fn runmatmul(c: &mut Criterion) {
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("pk", len), &len, |b, &_| {
b.iter(|| {
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params)
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true)
.unwrap();
});
});
let pk =
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params).unwrap();
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true).unwrap();
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("prove", len), &len, |b, &_| {
b.iter(|| {
let prover = create_proof_circuit_kzg(
let prover = create_proof_circuit::<
KZGCommitmentScheme<_>,
MyCircuit,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
None,
&pk,
CheckMode::UNSAFE,
ezkl::Commitments::KZG,
TranscriptType::EVM,
SingleStrategy::new(&params),
CheckMode::SAFE,
None,
None,
);
prover.unwrap();

View File

@@ -3,20 +3,24 @@ use ezkl::circuit::*;
use ezkl::circuit::lookup::LookupOp;
use ezkl::circuit::poly::PolyOp;
use ezkl::pfsys::create_proof_circuit_kzg;
use ezkl::circuit::table::Range;
use ezkl::pfsys::create_proof_circuit;
use ezkl::pfsys::TranscriptType;
use ezkl::pfsys::{create_keys, srs::gen_srs};
use ezkl::tensor::*;
use halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme;
use halo2_proofs::poly::kzg::multiopen::ProverSHPLONK;
use halo2_proofs::poly::kzg::multiopen::VerifierSHPLONK;
use halo2_proofs::poly::kzg::strategy::SingleStrategy;
use halo2_proofs::{
circuit::{Layouter, SimpleFloorPlanner, Value},
plonk::{Circuit, ConstraintSystem, Error},
};
use halo2curves::bn256::{Bn256, Fr};
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use std::marker::PhantomData;
const BITS: (i128, i128) = (-8180, 8180);
const BITS: Range = (-8180, 8180);
static mut LEN: usize = 4;
static mut K: usize = 16;
@@ -114,25 +118,35 @@ fn runmatmul(c: &mut Criterion) {
group.throughput(Throughput::Elements(k as u64));
group.bench_with_input(BenchmarkId::new("pk", k), &k, |b, &_| {
b.iter(|| {
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params)
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true)
.unwrap();
});
});
let pk =
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params).unwrap();
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true).unwrap();
group.throughput(Throughput::Elements(k as u64));
group.bench_with_input(BenchmarkId::new("prove", k), &k, |b, &_| {
b.iter(|| {
let prover = create_proof_circuit_kzg(
let prover = create_proof_circuit::<
KZGCommitmentScheme<_>,
MyCircuit,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
None,
&pk,
CheckMode::UNSAFE,
ezkl::Commitments::KZG,
TranscriptType::EVM,
SingleStrategy::new(&params),
CheckMode::SAFE,
None,
None,
);
prover.unwrap();

View File

@@ -1,11 +1,13 @@
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Throughput};
use ezkl::circuit::poly::PolyOp;
use ezkl::circuit::*;
use ezkl::pfsys::create_proof_circuit_kzg;
use ezkl::pfsys::create_proof_circuit;
use ezkl::pfsys::TranscriptType;
use ezkl::pfsys::{create_keys, srs::gen_srs};
use ezkl::tensor::*;
use halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme;
use halo2_proofs::poly::kzg::multiopen::ProverSHPLONK;
use halo2_proofs::poly::kzg::multiopen::VerifierSHPLONK;
use halo2_proofs::poly::kzg::strategy::SingleStrategy;
use halo2_proofs::{
arithmetic::Field,
@@ -14,6 +16,7 @@ use halo2_proofs::{
};
use halo2curves::bn256::{Bn256, Fr};
use rand::rngs::OsRng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use std::marker::PhantomData;
static mut LEN: usize = 4;
@@ -86,25 +89,35 @@ fn runsum(c: &mut Criterion) {
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("pk", len), &len, |b, &_| {
b.iter(|| {
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params)
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true)
.unwrap();
});
});
let pk =
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params).unwrap();
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true).unwrap();
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("prove", len), &len, |b, &_| {
b.iter(|| {
let prover = create_proof_circuit_kzg(
let prover = create_proof_circuit::<
KZGCommitmentScheme<_>,
MyCircuit,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
None,
&pk,
TranscriptType::EVM,
SingleStrategy::new(&params),
CheckMode::UNSAFE,
ezkl::Commitments::KZG,
TranscriptType::EVM,
None,
None,
);
prover.unwrap();

View File

@@ -2,11 +2,13 @@ use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Through
use ezkl::circuit::hybrid::HybridOp;
use ezkl::circuit::*;
use ezkl::pfsys::create_keys;
use ezkl::pfsys::create_proof_circuit_kzg;
use ezkl::pfsys::create_proof_circuit;
use ezkl::pfsys::srs::gen_srs;
use ezkl::pfsys::TranscriptType;
use ezkl::tensor::*;
use halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme;
use halo2_proofs::poly::kzg::multiopen::ProverSHPLONK;
use halo2_proofs::poly::kzg::multiopen::VerifierSHPLONK;
use halo2_proofs::poly::kzg::strategy::SingleStrategy;
use halo2_proofs::{
arithmetic::Field,
@@ -15,6 +17,7 @@ use halo2_proofs::{
};
use halo2curves::bn256::{Bn256, Fr};
use rand::rngs::OsRng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
static mut IMAGE_HEIGHT: usize = 2;
static mut IMAGE_WIDTH: usize = 2;
@@ -101,25 +104,35 @@ fn runsumpool(c: &mut Criterion) {
group.throughput(Throughput::Elements(*size as u64));
group.bench_with_input(BenchmarkId::new("pk", size), &size, |b, &_| {
b.iter(|| {
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params)
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true)
.unwrap();
});
});
let pk = create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params)
let pk = create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true)
.unwrap();
group.throughput(Throughput::Elements(*size as u64));
group.bench_with_input(BenchmarkId::new("prove", size), &size, |b, &_| {
b.iter(|| {
let prover = create_proof_circuit_kzg(
let prover = create_proof_circuit::<
KZGCommitmentScheme<_>,
MyCircuit,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
None,
&pk,
TranscriptType::EVM,
SingleStrategy::new(&params),
CheckMode::UNSAFE,
ezkl::Commitments::KZG,
TranscriptType::EVM,
None,
None,
);
prover.unwrap();

View File

@@ -1,11 +1,13 @@
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Throughput};
use ezkl::circuit::poly::PolyOp;
use ezkl::circuit::*;
use ezkl::pfsys::create_proof_circuit_kzg;
use ezkl::pfsys::create_proof_circuit;
use ezkl::pfsys::TranscriptType;
use ezkl::pfsys::{create_keys, srs::gen_srs};
use ezkl::tensor::*;
use halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme;
use halo2_proofs::poly::kzg::multiopen::ProverSHPLONK;
use halo2_proofs::poly::kzg::multiopen::VerifierSHPLONK;
use halo2_proofs::poly::kzg::strategy::SingleStrategy;
use halo2_proofs::{
arithmetic::Field,
@@ -14,6 +16,7 @@ use halo2_proofs::{
};
use halo2curves::bn256::{Bn256, Fr};
use rand::rngs::OsRng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use std::marker::PhantomData;
static mut LEN: usize = 4;
@@ -84,25 +87,35 @@ fn runadd(c: &mut Criterion) {
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("pk", len), &len, |b, &_| {
b.iter(|| {
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params)
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true)
.unwrap();
});
});
let pk =
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params).unwrap();
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true).unwrap();
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("prove", len), &len, |b, &_| {
b.iter(|| {
let prover = create_proof_circuit_kzg(
let prover = create_proof_circuit::<
KZGCommitmentScheme<_>,
MyCircuit,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
None,
&pk,
CheckMode::UNSAFE,
ezkl::Commitments::KZG,
TranscriptType::EVM,
SingleStrategy::new(&params),
CheckMode::SAFE,
None,
None,
);
prover.unwrap();

View File

@@ -2,11 +2,13 @@ use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Through
use ezkl::circuit::poly::PolyOp;
use ezkl::circuit::region::RegionCtx;
use ezkl::circuit::*;
use ezkl::pfsys::create_proof_circuit_kzg;
use ezkl::pfsys::create_proof_circuit;
use ezkl::pfsys::TranscriptType;
use ezkl::pfsys::{create_keys, srs::gen_srs};
use ezkl::tensor::*;
use halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme;
use halo2_proofs::poly::kzg::multiopen::ProverSHPLONK;
use halo2_proofs::poly::kzg::multiopen::VerifierSHPLONK;
use halo2_proofs::poly::kzg::strategy::SingleStrategy;
use halo2_proofs::{
arithmetic::Field,
@@ -15,6 +17,7 @@ use halo2_proofs::{
};
use halo2curves::bn256::{Bn256, Fr};
use rand::rngs::OsRng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
use std::marker::PhantomData;
static mut LEN: usize = 4;
@@ -83,25 +86,35 @@ fn runpow(c: &mut Criterion) {
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("pk", len), &len, |b, &_| {
b.iter(|| {
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params)
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true)
.unwrap();
});
});
let pk =
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params).unwrap();
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true).unwrap();
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("prove", len), &len, |b, &_| {
b.iter(|| {
let prover = create_proof_circuit_kzg(
let prover = create_proof_circuit::<
KZGCommitmentScheme<_>,
MyCircuit,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
None,
&pk,
CheckMode::UNSAFE,
ezkl::Commitments::KZG,
TranscriptType::EVM,
SingleStrategy::new(&params),
CheckMode::SAFE,
None,
None,
);
prover.unwrap();

View File

@@ -1,15 +1,18 @@
use std::collections::HashMap;
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Throughput};
use ezkl::circuit::modules::poseidon::spec::{PoseidonSpec, POSEIDON_RATE, POSEIDON_WIDTH};
use ezkl::circuit::modules::poseidon::{PoseidonChip, PoseidonConfig};
use ezkl::circuit::modules::Module;
use ezkl::circuit::*;
use ezkl::pfsys::create_keys;
use ezkl::pfsys::create_proof_circuit_kzg;
use ezkl::pfsys::create_proof_circuit;
use ezkl::pfsys::srs::gen_srs;
use ezkl::pfsys::TranscriptType;
use ezkl::tensor::*;
use halo2_proofs::circuit::Value;
use halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme;
use halo2_proofs::poly::kzg::multiopen::{ProverSHPLONK, VerifierSHPLONK};
use halo2_proofs::poly::kzg::strategy::SingleStrategy;
use halo2_proofs::{
arithmetic::Field,
@@ -18,6 +21,7 @@ use halo2_proofs::{
};
use halo2curves::bn256::{Bn256, Fr};
use rand::rngs::OsRng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
const L: usize = 10;
@@ -46,7 +50,7 @@ impl Circuit<Fr> for MyCircuit {
) -> Result<(), Error> {
let chip: PoseidonChip<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, L> =
PoseidonChip::new(config);
chip.layout(&mut layouter, &[self.image.clone()], 0)?;
chip.layout(&mut layouter, &[self.image.clone()], 0, &mut HashMap::new())?;
Ok(())
}
}
@@ -62,7 +66,7 @@ fn runposeidon(c: &mut Criterion) {
let params = gen_srs::<KZGCommitmentScheme<_>>(k);
let message = (0..*size).map(|_| Fr::random(OsRng)).collect::<Vec<_>>();
let output =
let _output =
PoseidonChip::<PoseidonSpec, POSEIDON_WIDTH, POSEIDON_RATE, L>::run(message.to_vec())
.unwrap();
@@ -76,25 +80,35 @@ fn runposeidon(c: &mut Criterion) {
group.throughput(Throughput::Elements(*size as u64));
group.bench_with_input(BenchmarkId::new("pk", size), &size, |b, &_| {
b.iter(|| {
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params)
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true)
.unwrap();
});
});
let pk =
create_keys::<KZGCommitmentScheme<Bn256>, Fr, MyCircuit>(&circuit, &params).unwrap();
create_keys::<KZGCommitmentScheme<Bn256>, MyCircuit>(&circuit, &params, true).unwrap();
group.throughput(Throughput::Elements(*size as u64));
group.bench_with_input(BenchmarkId::new("prove", size), &size, |b, &_| {
b.iter(|| {
let prover = create_proof_circuit_kzg(
let prover = create_proof_circuit::<
KZGCommitmentScheme<_>,
MyCircuit,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
Some(output[0].clone()),
&pk,
TranscriptType::EVM,
SingleStrategy::new(&params),
CheckMode::UNSAFE,
ezkl::Commitments::KZG,
TranscriptType::EVM,
None,
None,
);
prover.unwrap();

View File

@@ -1,11 +1,13 @@
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion, Throughput};
use ezkl::circuit::region::RegionCtx;
use ezkl::circuit::table::Range;
use ezkl::circuit::{ops::lookup::LookupOp, BaseConfig as Config, CheckMode};
use ezkl::pfsys::create_proof_circuit_kzg;
use ezkl::pfsys::create_proof_circuit;
use ezkl::pfsys::TranscriptType;
use ezkl::pfsys::{create_keys, srs::gen_srs};
use ezkl::tensor::*;
use halo2_proofs::poly::kzg::commitment::KZGCommitmentScheme;
use halo2_proofs::poly::kzg::multiopen::{ProverSHPLONK, VerifierSHPLONK};
use halo2_proofs::poly::kzg::strategy::SingleStrategy;
use halo2_proofs::{
circuit::{Layouter, SimpleFloorPlanner, Value},
@@ -13,8 +15,9 @@ use halo2_proofs::{
};
use halo2curves::bn256::{Bn256, Fr};
use rand::Rng;
use snark_verifier::system::halo2::transcript::evm::EvmTranscript;
const BITS: (i128, i128) = (-32768, 32768);
const BITS: Range = (-32768, 32768);
static mut LEN: usize = 4;
const K: usize = 16;
@@ -90,25 +93,35 @@ fn runrelu(c: &mut Criterion) {
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("pk", len), &len, |b, &_| {
b.iter(|| {
create_keys::<KZGCommitmentScheme<Bn256>, Fr, NLCircuit>(&circuit, &params)
create_keys::<KZGCommitmentScheme<Bn256>, NLCircuit>(&circuit, &params, true)
.unwrap();
});
});
let pk =
create_keys::<KZGCommitmentScheme<Bn256>, Fr, NLCircuit>(&circuit, &params).unwrap();
create_keys::<KZGCommitmentScheme<Bn256>, NLCircuit>(&circuit, &params, true).unwrap();
group.throughput(Throughput::Elements(len as u64));
group.bench_with_input(BenchmarkId::new("prove", len), &len, |b, &_| {
b.iter(|| {
let prover = create_proof_circuit_kzg(
let prover = create_proof_circuit::<
KZGCommitmentScheme<_>,
NLCircuit,
ProverSHPLONK<_>,
VerifierSHPLONK<_>,
SingleStrategy<_>,
_,
EvmTranscript<_, _, _, _>,
EvmTranscript<_, _, _, _>,
>(
circuit.clone(),
vec![],
&params,
None,
&pk,
CheckMode::UNSAFE,
ezkl::Commitments::KZG,
TranscriptType::EVM,
SingleStrategy::new(&params),
CheckMode::SAFE,
None,
None,
);
prover.unwrap();

View File

@@ -6,6 +6,7 @@ use ezkl::fieldutils;
use ezkl::fieldutils::i32_to_felt;
use ezkl::tensor::*;
use halo2_proofs::dev::MockProver;
use halo2_proofs::poly::commitment::Params;
use halo2_proofs::poly::kzg::multiopen::{ProverSHPLONK, VerifierSHPLONK};
use halo2_proofs::{
circuit::{Layouter, SimpleFloorPlanner, Value},
@@ -489,6 +490,7 @@ pub fn runconv() {
strategy,
pi_for_real_prover,
&mut transcript,
params.n(),
);
assert!(verify.is_ok());

View File

@@ -309,7 +309,7 @@
"metadata": {},
"outputs": [],
"source": [
"print(ezkl.vecu64_to_felt(res['processed_outputs']['poseidon_hash'][0]))"
"print(ezkl.felt_to_big_endian(res['processed_outputs']['poseidon_hash'][0]))"
]
},
{
@@ -325,7 +325,7 @@
"metadata": {},
"outputs": [],
"source": [
"from web3 import Web3, HTTPProvider, utils\n",
"from web3 import Web3, HTTPProvider\n",
"from solcx import compile_standard\n",
"from decimal import Decimal\n",
"import json\n",
@@ -338,7 +338,7 @@
"\n",
"def test_on_chain_data(res):\n",
" # Step 0: Convert the tensor to a flat list\n",
" data = [int(ezkl.vecu64_to_felt(res['processed_outputs']['poseidon_hash'][0]), 0)]\n",
" data = [int(ezkl.felt_to_big_endian(res['processed_outputs']['poseidon_hash'][0]), 0)]\n",
"\n",
" # Step 1: Prepare the data\n",
" # Step 2: Prepare and compile the contract.\n",
@@ -648,7 +648,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
"version": "3.9.15"
},
"orig_nbformat": 4
},

View File

@@ -695,17 +695,19 @@
"formatted_output = \"[\"\n",
"for i, value in enumerate(proof[\"instances\"]):\n",
" for j, field_element in enumerate(value):\n",
" onchain_input_array.append(ezkl.vecu64_to_felt(field_element))\n",
" formatted_output += str(onchain_input_array[-1])\n",
" onchain_input_array.append(ezkl.felt_to_big_endian(field_element))\n",
" formatted_output += '\"' + str(onchain_input_array[-1]) + '\"'\n",
" if j != len(value) - 1:\n",
" formatted_output += \", \"\n",
" formatted_output += \"]\"\n",
" if i != len(proof[\"instances\"]) - 1:\n",
" formatted_output += \", \"\n",
"formatted_output += \"]\"\n",
"\n",
"# This will be the values you use onchain\n",
"# copy them over to remix and see if they verify\n",
"# What happens when you change a value?\n",
"print(\"pubInputs: \", formatted_output)\n",
"print(\"proof: \", \"0x\" + proof[\"proof\"])"
"print(\"proof: \", proof[\"proof\"])"
]
},
{

View File

@@ -10,7 +10,7 @@
"\n",
"## Generalized Inverse\n",
"\n",
"We show how to use EZKL to prove that we know matrices $A$ and its generalized inverse $B$. Since these are large we deal with the KZG commitments, with $a$ the kzgcommit of $A$, $b$ the kzgcommit of $B$, and $ABA = A$.\n"
"We show how to use EZKL to prove that we know matrices $A$ and its generalized inverse $B$. Since these are large we deal with the KZG commitments, with $a$ the polycommit of $A$, $b$ the polycommit of $B$, and $ABA = A$.\n"
]
},
{
@@ -77,7 +77,7 @@
"outputs": [],
"source": [
"gip_run_args = ezkl.PyRunArgs()\n",
"gip_run_args.input_visibility = \"kzgcommit\" # matrix and generalized inverse commitments\n",
"gip_run_args.input_visibility = \"polycommit\" # matrix and generalized inverse commitments\n",
"gip_run_args.output_visibility = \"fixed\" # no parameters used\n",
"gip_run_args.param_visibility = \"fixed\" # should be Tensor(True)"
]
@@ -340,4 +340,4 @@
},
"nbformat": 4,
"nbformat_minor": 5
}
}

View File

@@ -161,7 +161,7 @@
"- `fixed`: known to the prover and verifier (as a commit), but not modifiable by the prover.\n",
"- `hashed`: the hash pre-image is known to the prover, the prover and verifier know the hash. The prover proves that the they know the pre-image to the hash. \n",
"- `encrypted`: the non-encrypted element and the secret key used for decryption are known to the prover. The prover and the verifier know the encrypted element, the public key used to encrypt, and the hash of the decryption hey. The prover proves that they know the pre-image of the hashed decryption key and that this key can in fact decrypt the encrypted message.\n",
"- `kzgcommit`: unblinded advice column which generates a kzg commitment. This doesn't appear in the instances of the circuit and must instead be inserted directly within the proof bytes. \n",
"- `polycommit`: unblinded advice column which generates a kzg commitment. This doesn't appear in the instances of the circuit and must instead be inserted directly within the proof bytes. \n",
"\n",
"\n",
"Here we create the following setup:\n",
@@ -510,4 +510,4 @@
},
"nbformat": 4,
"nbformat_minor": 2
}
}

View File

@@ -67,6 +67,7 @@
"model.add(Dense(128, activation='relu'))\n",
"model.add(Dropout(0.5))\n",
"model.add(Dense(10, activation='softmax'))\n",
"model.output_names=['output']\n",
"\n",
"\n",
"# Train the model as you like here (skipped for brevity)\n",

View File

@@ -154,11 +154,11 @@
"- `fixed`: known to the prover and verifier (as a commit), but not modifiable by the prover.\n",
"- `hashed`: the hash pre-image is known to the prover, the prover and verifier know the hash. The prover proves that the they know the pre-image to the hash. \n",
"- `encrypted`: the non-encrypted element and the secret key used for decryption are known to the prover. The prover and the verifier know the encrypted element, the public key used to encrypt, and the hash of the decryption hey. The prover proves that they know the pre-image of the hashed decryption key and that this key can in fact decrypt the encrypted message.\n",
"- `kzgcommit`: unblinded advice column which generates a kzg commitment. This doesn't appear in the instances of the circuit and must instead be modified directly within the proof bytes. \n",
"- `polycommit`: unblinded advice column which generates a kzg commitment. This doesn't appear in the instances of the circuit and must instead be modified directly within the proof bytes. \n",
"\n",
"Here we create the following setup:\n",
"- `input_visibility`: \"kzgcommit\"\n",
"- `param_visibility`: \"kzgcommit\"\n",
"- `input_visibility`: \"polycommit\"\n",
"- `param_visibility`: \"polycommit\"\n",
"- `output_visibility`: public\n",
"\n",
"We encourage you to play around with other setups :) \n",
@@ -186,8 +186,8 @@
"data_path = os.path.join('input.json')\n",
"\n",
"run_args = ezkl.PyRunArgs()\n",
"run_args.input_visibility = \"kzgcommit\"\n",
"run_args.param_visibility = \"kzgcommit\"\n",
"run_args.input_visibility = \"polycommit\"\n",
"run_args.param_visibility = \"polycommit\"\n",
"run_args.output_visibility = \"public\"\n",
"run_args.variables = [(\"batch_size\", 1)]\n",
"\n",
@@ -512,4 +512,4 @@
},
"nbformat": 4,
"nbformat_minor": 2
}
}

View File

@@ -38,7 +38,7 @@
"import logging\n",
"\n",
"import tensorflow as tf\n",
"from tensorflow.keras.optimizers.legacy import Adam\n",
"from tensorflow.keras.optimizers import Adam\n",
"from tensorflow.keras.layers import *\n",
"from tensorflow.keras.models import Model\n",
"from tensorflow.keras.datasets import mnist\n",
@@ -71,9 +71,11 @@
},
"outputs": [],
"source": [
"opt = Adam()\n",
"ZDIM = 100\n",
"\n",
"opt = Adam()\n",
"\n",
"\n",
"# discriminator\n",
"# 0 if it's fake, 1 if it's real\n",
"x = in1 = Input((28,28))\n",
@@ -114,8 +116,11 @@
"\n",
"gm = Model(in1, x)\n",
"gm.compile('adam', 'mse')\n",
"gm.output_names=['output']\n",
"gm.summary()\n",
"\n",
"opt = Adam()\n",
"\n",
"# GAN\n",
"dm.trainable = False\n",
"x = dm(gm.output)\n",
@@ -415,7 +420,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
"version": "3.12.2"
}
},
"nbformat": 4,

File diff suppressed because one or more lines are too long

View File

@@ -349,6 +349,8 @@
"z_log_var = Dense(ZDIM)(x)\n",
"z = Lambda(lambda x: x[0] + K.exp(0.5 * x[1]) * K.random_normal(shape=K.shape(x[0])))([z_mu, z_log_var])\n",
"dec = get_decoder()\n",
"dec.output_names=['output']\n",
"\n",
"out = dec(z)\n",
"\n",
"mse_loss = mse(Reshape((28*28,))(in1), Reshape((28*28,))(out)) * 28 * 28\n",

File diff suppressed because one or more lines are too long

View File

@@ -208,7 +208,7 @@
"- `private`: known only to the prover\n",
"- `hashed`: the hash pre-image is known to the prover, the prover and verifier know the hash. The prover proves that the they know the pre-image to the hash. \n",
"- `encrypted`: the non-encrypted element and the secret key used for decryption are known to the prover. The prover and the verifier know the encrypted element, the public key used to encrypt, and the hash of the decryption hey. The prover proves that they know the pre-image of the hashed decryption key and that this key can in fact decrypt the encrypted message.\n",
"- `kzgcommit`: unblinded advice column which generates a kzg commitment. This doesn't appear in the instances of the circuit and must instead be modified directly within the proof bytes. \n",
"- `polycommit`: unblinded advice column which generates a kzg commitment. This doesn't appear in the instances of the circuit and must instead be modified directly within the proof bytes. \n",
"\n",
"Here we create the following setup:\n",
"- `input_visibility`: \"public\"\n",
@@ -234,7 +234,7 @@
"run_args.input_scale = 2\n",
"run_args.logrows = 8\n",
"\n",
"ezkl.get_srs(logrows=run_args.logrows)"
"ezkl.get_srs(logrows=run_args.logrows, commitment=ezkl.PyCommitments.KZG)"
]
},
{
@@ -302,7 +302,7 @@
" assert res == True\n",
" assert os.path.isfile(vk_path)\n",
" assert os.path.isfile(pk_path)\n",
" \n",
"\n",
" res = ezkl.gen_witness(data_path, compiled_model_path, witness_path, vk_path)\n",
" run_args.input_scale = settings[\"model_output_scales\"][0]\n",
"\n",
@@ -330,14 +330,14 @@
" compiled_model_path,\n",
" pk_path,\n",
" proof_path,\n",
" \n",
" \"for-aggr\",\n",
" )\n",
"\n",
" print(res)\n",
" res_1_proof = res[\"proof\"]\n",
" assert os.path.isfile(proof_path)\n",
"\n",
" # Verify the proof\n",
" # # Verify the proof\n",
" if i > 0:\n",
" print(\"swapping commitments\")\n",
" # swap the proof commitments if we are not the first model\n",
@@ -356,12 +356,19 @@
"\n",
" res = ezkl.swap_proof_commitments(proof_path, witness_path)\n",
" print(res)\n",
" \n",
" # load proof and then print \n",
" proof = json.load(open(proof_path, 'r'))\n",
" res_2_proof = proof[\"hex_proof\"]\n",
" # show diff in hex strings\n",
" print(res_1_proof)\n",
" print(res_2_proof)\n",
" assert res_1_proof == res_2_proof\n",
"\n",
" res = ezkl.verify(\n",
" proof_path,\n",
" settings_path,\n",
" vk_path,\n",
" \n",
" )\n",
"\n",
" assert res == True\n",
@@ -378,9 +385,9 @@
"### KZG commitment intermediate calculations\n",
"\n",
"This time the visibility parameters are:\n",
"- `input_visibility`: \"kzgcommit\"\n",
"- `input_visibility`: \"polycommit\"\n",
"- `param_visibility`: \"public\"\n",
"- `output_visibility`: kzgcommit"
"- `output_visibility`: polycommit"
]
},
{
@@ -392,9 +399,9 @@
"import ezkl\n",
"\n",
"run_args = ezkl.PyRunArgs()\n",
"run_args.input_visibility = \"kzgcommit\"\n",
"run_args.input_visibility = \"polycommit\"\n",
"run_args.param_visibility = \"fixed\"\n",
"run_args.output_visibility = \"kzgcommit\"\n",
"run_args.output_visibility = \"polycommit\"\n",
"run_args.variables = [(\"batch_size\", 1)]\n",
"run_args.input_scale = 2\n",
"run_args.logrows = 8\n"
@@ -439,7 +446,7 @@
" proof_path = os.path.join('proof_split_'+str(i)+'.json')\n",
" proofs.append(proof_path)\n",
"\n",
"ezkl.mock_aggregate(proofs, logrows=23, split_proofs = True)"
"ezkl.mock_aggregate(proofs, logrows=22, split_proofs = True)"
]
}
],

View File

@@ -61,11 +61,10 @@
"from sklearn.datasets import load_iris\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.ensemble import RandomForestClassifier as Rf\n",
"import sk2torch\n",
"import torch\n",
"import ezkl\n",
"import os\n",
"from torch import nn\n",
"from hummingbird.ml import convert\n",
"\n",
"\n",
"\n",
@@ -77,28 +76,12 @@
"clr.fit(X_train, y_train)\n",
"\n",
"\n",
"trees = []\n",
"for tree in clr.estimators_:\n",
" trees.append(sk2torch.wrap(tree))\n",
"\n",
"\n",
"class RandomForest(nn.Module):\n",
" def __init__(self, trees):\n",
" super(RandomForest, self).__init__()\n",
" self.trees = nn.ModuleList(trees)\n",
"\n",
" def forward(self, x):\n",
" out = self.trees[0](x)\n",
" for tree in self.trees[1:]:\n",
" out += tree(x)\n",
" return out / len(self.trees)\n",
"\n",
"\n",
"torch_rf = RandomForest(trees)\n",
"torch_rf = convert(clr, 'torch')\n",
"# assert predictions from torch are = to sklearn \n",
"diffs = []\n",
"for i in range(len(X_test)):\n",
" torch_pred = torch_rf(torch.tensor(X_test[i].reshape(1, -1)))\n",
" torch_pred = torch_rf.predict(torch.tensor(X_test[i].reshape(1, -1)))\n",
" sk_pred = clr.predict(X_test[i].reshape(1, -1))\n",
" diffs.append(torch_pred[0].round() - sk_pred[0])\n",
"\n",
@@ -134,14 +117,12 @@
"\n",
"# export to onnx format\n",
"\n",
"torch_rf.eval()\n",
"\n",
"# Input to the model\n",
"shape = X_train.shape[1:]\n",
"x = torch.rand(1, *shape, requires_grad=False)\n",
"torch_out = torch_rf(x)\n",
"torch_out = torch_rf.predict(x)\n",
"# Export the model\n",
"torch.onnx.export(torch_rf, # model being run\n",
"torch.onnx.export(torch_rf.model, # model being run\n",
" # model input (or a tuple for multiple inputs)\n",
" x,\n",
" # where to save the model (can be a file or file-like object)\n",
@@ -158,7 +139,7 @@
"\n",
"data = dict(input_shapes=[shape],\n",
" input_data=[d],\n",
" output_data=[((o).detach().numpy()).reshape([-1]).tolist() for o in torch_out])\n",
" output_data=[o.reshape([-1]).tolist() for o in torch_out])\n",
"\n",
"# Serialize data into file:\n",
"json.dump(data, open(\"input.json\", 'w'))\n"
@@ -321,7 +302,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
"version": "3.12.2"
}
},
"nbformat": 4,

View File

@@ -78,7 +78,7 @@
"pk_path = os.path.join('test.pk')\n",
"vk_path = os.path.join('test.vk')\n",
"settings_path = os.path.join('settings.json')\n",
"",
"\n",
"witness_path = os.path.join('witness.json')\n",
"data_path = os.path.join('input.json')"
]
@@ -122,8 +122,8 @@
"# Loop through each element in the y tensor\n",
"for e in y_input:\n",
" # Apply the custom function and append the result to the list\n",
" print(ezkl.float_to_vecu64(e,7))\n",
" result.append(ezkl.poseidon_hash([ezkl.float_to_vecu64(e, 7)])[0])\n",
" print(ezkl.float_to_felt(e,7))\n",
" result.append(ezkl.poseidon_hash([ezkl.float_to_felt(e, 7)])[0])\n",
"\n",
"y = y.unsqueeze(0)\n",
"y = y.reshape(1, 9)\n",
@@ -343,7 +343,7 @@
"# we force the output to be 0 this corresponds to the set membership test being true -- and we set this to a fixed vis output\n",
"# this means that the output is fixed and the verifier can see it but that if the input is not in the set the output will not be 0 and the verifier will reject\n",
"witness = json.load(open(witness_path, \"r\"))\n",
"witness[\"outputs\"][0] = [[0, 0, 0, 0]]\n",
"witness[\"outputs\"][0] = [\"0000000000000000000000000000000000000000000000000000000000000000\"]\n",
"json.dump(witness, open(witness_path, \"w\"))\n",
"\n",
"witness = json.load(open(witness_path, \"r\"))\n",
@@ -353,7 +353,6 @@
" compiled_model_path,\n",
" vk_path,\n",
" pk_path,\n",
" \n",
" witness_path = witness_path,\n",
" )\n",
"\n",
@@ -520,4 +519,4 @@
},
"nbformat": 4,
"nbformat_minor": 5
}
}

View File

@@ -275,7 +275,6 @@
" proof_path,\n",
" settings_path,\n",
" vk_path,\n",
" \n",
" )\n",
"\n",
"assert res == True\n",
@@ -291,7 +290,7 @@
"source": [
"# Generate a larger SRS. This is needed for the aggregated proof\n",
"\n",
"res = ezkl.get_srs(settings_path=None, logrows=21)"
"res = ezkl.get_srs(settings_path=None, logrows=21, commitment=ezkl.PyCommitments.KZG)"
]
},
{

View File

@@ -210,7 +210,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 9,
"id": "b1c561a8",
"metadata": {},
"outputs": [],

View File

@@ -9,7 +9,7 @@
"source": [
"## Solvency demo\n",
"\n",
"Here we create a demo of a solvency calculation in the manner of [summa-solvency](https://github.com/summa-dev/summa-solvency). The aim here is to demonstrate the use of the new kzgcommit method detailed [here](https://blog.ezkl.xyz/post/commits/). \n",
"Here we create a demo of a solvency calculation in the manner of [summa-solvency](https://github.com/summa-dev/summa-solvency). The aim here is to demonstrate the use of the new polycommit method detailed [here](https://blog.ezkl.xyz/post/commits/). \n",
"\n",
"In this setup:\n",
"- the commitments to users, respective balances, and total balance are known are publicly known to the prover and verifier. \n",
@@ -126,7 +126,7 @@
"# Loop through each element in the y tensor\n",
"for e in user_preimages:\n",
" # Apply the custom function and append the result to the list\n",
" users.append(ezkl.poseidon_hash([ezkl.float_to_vecu64(e, 0)])[0])\n",
" users.append(ezkl.poseidon_hash([ezkl.float_to_felt(e, 0)])[0])\n",
"\n",
"users_t = torch.tensor(user_preimages)\n",
"users_t = users_t.reshape(1, 6)\n",
@@ -177,10 +177,10 @@
"- `private`: known only to the prover\n",
"- `hashed`: the hash pre-image is known to the prover, the prover and verifier know the hash. The prover proves that the they know the pre-image to the hash. \n",
"- `encrypted`: the non-encrypted element and the secret key used for decryption are known to the prover. The prover and the verifier know the encrypted element, the public key used to encrypt, and the hash of the decryption hey. The prover proves that they know the pre-image of the hashed decryption key and that this key can in fact decrypt the encrypted message.\n",
"- `kzgcommit`: unblinded advice column which generates a kzg commitment. This doesn't appear in the instances of the circuit and must instead be modified directly within the proof bytes. \n",
"- `polycommit`: unblinded advice column which generates a kzg commitment. This doesn't appear in the instances of the circuit and must instead be modified directly within the proof bytes. \n",
"\n",
"Here we create the following setup:\n",
"- `input_visibility`: \"kzgcommit\"\n",
"- `input_visibility`: \"polycommit\"\n",
"- `param_visibility`: \"public\"\n",
"- `output_visibility`: public\n",
"\n",
@@ -202,8 +202,8 @@
"outputs": [],
"source": [
"run_args = ezkl.PyRunArgs()\n",
"# \"kzgcommit\" means that the output of the hashing is not visible to the verifier and is instead fed into the computational graph\n",
"run_args.input_visibility = \"kzgcommit\"\n",
"# \"polycommit\" means that the output of the hashing is not visible to the verifier and is instead fed into the computational graph\n",
"run_args.input_visibility = \"polycommit\"\n",
"# the parameters are public\n",
"run_args.param_visibility = \"fixed\"\n",
"# the output is public (this is the inequality test)\n",
@@ -303,7 +303,7 @@
"# we force the output to be 1 this corresponds to the solvency test being true -- and we set this to a fixed vis output\n",
"# this means that the output is fixed and the verifier can see it but that if the input is not in the set the output will not be 0 and the verifier will reject\n",
"witness = json.load(open(witness_path, \"r\"))\n",
"witness[\"outputs\"][0] = [ezkl.float_to_vecu64(1.0, 0)]\n",
"witness[\"outputs\"][0] = [ezkl.float_to_felt(1.0, 0)]\n",
"json.dump(witness, open(witness_path, \"w\"))"
]
},
@@ -417,7 +417,7 @@
"# we force the output to be 1 this corresponds to the solvency test being true -- and we set this to a fixed vis output\n",
"# this means that the output is fixed and the verifier can see it but that if the input is not in the set the output will not be 0 and the verifier will reject\n",
"witness = json.load(open(witness_path, \"r\"))\n",
"witness[\"outputs\"][0] = [ezkl.float_to_vecu64(1.0, 0)]\n",
"witness[\"outputs\"][0] = [ezkl.float_to_felt(1.0, 0)]\n",
"json.dump(witness, open(witness_path, \"w\"))\n"
]
},
@@ -510,9 +510,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
"version": "3.9.15"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
}

View File

@@ -13,7 +13,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
@@ -57,7 +57,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -119,7 +119,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
@@ -163,7 +163,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
@@ -217,7 +217,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
@@ -227,6 +227,10 @@
" self.length = self.compute_length(self.file_good)\n",
" self.data = self.load_data(self.file_good)\n",
"\n",
" def __iter__(self):\n",
" for i in range(len(self.data)):\n",
" yield self.data[i]\n",
"\n",
" def parse_json_object(self, line):\n",
" try:\n",
" return json.loads(line)\n",
@@ -633,7 +637,7 @@
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"\n",
"ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
"ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\", scales = [11])"
]
},
{
@@ -664,7 +668,6 @@
" compiled_model_path,\n",
" vk_path,\n",
" pk_path,\n",
" \n",
")"
]
},
@@ -750,7 +753,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
"version": "3.12.2"
}
},
"nbformat": 4,

View File

@@ -209,6 +209,11 @@
" self.length = self.compute_length(self.file_good, self.file_bad)\n",
" self.data = self.load_data(self.file_good, self.file_bad)\n",
"\n",
" def __iter__(self):\n",
" for i in range(len(self.data)):\n",
" yield self.data[i]\n",
"\n",
"\n",
" def parse_json_object(self, line):\n",
" try:\n",
" return json.loads(line)\n",
@@ -520,7 +525,7 @@
"json.dump(data, open(cal_path, 'w'))\n",
"\n",
"\n",
"ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\")"
"ezkl.calibrate_settings(cal_path, model_path, settings_path, \"resources\", scales = [4])"
]
},
{
@@ -636,7 +641,8 @@
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3"
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,

View File

@@ -25,17 +25,9 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"voice_data_dir: .\n"
]
}
],
"outputs": [],
"source": [
"\n",
"import os\n",
@@ -43,7 +35,7 @@
"\n",
"voice_data_dir = os.environ.get('VOICE_DATA_DIR')\n",
"\n",
"# if is none set to \"\" \n",
"# if is none set to \"\"\n",
"if voice_data_dir is None:\n",
" voice_data_dir = \"\"\n",
"\n",
@@ -637,7 +629,7 @@
"source": [
"\n",
"\n",
"res = ezkl.calibrate_settings(val_data, model_path, settings_path, \"resources\")\n",
"res = ezkl.calibrate_settings(val_data, model_path, settings_path, \"resources\", scales = [4])\n",
"assert res == True\n",
"print(\"verified\")\n"
]
@@ -908,7 +900,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
"version": "3.9.15"
}
},
"nbformat": 4,

View File

@@ -503,11 +503,11 @@
"pyplot.arrow(0, 0, 1, 0, width=0.02, alpha=0.5)\n",
"pyplot.arrow(0, 0, 0, 1, width=0.02, alpha=0.5)\n",
"\n",
"arrow_x = ezkl.vecu64_to_float(witness['outputs'][0][0], out_scale)\n",
"arrow_y = ezkl.vecu64_to_float(witness['outputs'][0][1], out_scale)\n",
"arrow_x = ezkl.felt_to_float(witness['outputs'][0][0], out_scale)\n",
"arrow_y = ezkl.felt_to_float(witness['outputs'][0][1], out_scale)\n",
"pyplot.arrow(0, 0, arrow_x, arrow_y, width=0.02)\n",
"arrow_x = ezkl.vecu64_to_float(witness['outputs'][0][2], out_scale)\n",
"arrow_y = ezkl.vecu64_to_float(witness['outputs'][0][3], out_scale)\n",
"arrow_x = ezkl.felt_to_float(witness['outputs'][0][2], out_scale)\n",
"arrow_y = ezkl.felt_to_float(witness['outputs'][0][3], out_scale)\n",
"pyplot.arrow(0, 0, arrow_x, arrow_y, width=0.02)"
]
}

View File

@@ -0,0 +1,40 @@
from torch import nn
import torch
import json
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.layer = nn.LPPool2d(2, 1, (1, 1))
def forward(self, x):
return self.layer(x)[0]
circuit = Model()
x = torch.empty(1, 3, 2, 2).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.7549541592597961, 0.990360677242279, 0.9473411440849304, 0.3951031565666199, 0.8500555753707886, 0.9352139830589294, 0.11867779493331909, 0.9493132829666138, 0.6588345766067505, 0.1933223009109497, 0.12139874696731567, 0.8547163605690002]]}

Binary file not shown.

View File

@@ -0,0 +1,39 @@
from torch import nn
import torch
import json
class Circuit(nn.Module):
def __init__(self, inplace=False):
super(Circuit, self).__init__()
def forward(self, x):
return x/ 10000
circuit = Circuit()
x = torch.empty(1, 8).random_(0, 2)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0]]}

Binary file not shown.

42
examples/onnx/celu/gen.py Normal file
View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = nn.CELU()(x)
return m
circuit = MyModel()
x = torch.empty(1, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.35387128591537476, 0.030473172664642334, 0.08707714080810547, 0.2429301142692566, 0.45228832960128784, 0.496021032333374, 0.13245105743408203, 0.8497090339660645]]}

Binary file not shown.

41
examples/onnx/clip/gen.py Normal file
View File

@@ -0,0 +1,41 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = torch.clamp(x, min=0.4, max=0.8)
return m
circuit = MyModel()
x = torch.empty(1, 2, 2, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.03297048807144165, 0.46362626552581787, 0.6044231057167053, 0.4949902892112732, 0.48823297023773193, 0.6798646450042725, 0.6824942231178284, 0.03491640090942383, 0.19608813524246216, 0.24129939079284668, 0.9769315123558044, 0.6306831240653992, 0.7690497636795044, 0.252221941947937, 0.9167693853378296, 0.3882681131362915, 0.9307044148445129, 0.33559417724609375, 0.7815426588058472, 0.3435332179069519, 0.7871478796005249, 0.12240773439407349, 0.5295405983924866, 0.4874419569969177, 0.08262640237808228, 0.1124718189239502, 0.5834914445877075, 0.30927878618240356, 0.48899340629577637, 0.9376634955406189, 0.21893149614334106, 0.526070773601532]]}

View File

@@ -0,0 +1,24 @@
pytorch2.2.1:±
?/Constant_output_0 /Constant"Constant*
value*JÍÌÌ> 
C/Constant_1_output_0 /Constant_1"Constant*
value*JÍÌL? 
F
input
/Constant_output_0
/Constant_1_output_0output/Clip"Clip
main_graphZ)
input


batch_size


b*
output


batch_size


B

View File

@@ -0,0 +1,48 @@
from torch import nn
import json
import numpy as np
import tf2onnx
import tensorflow as tf
from tensorflow.keras.layers import *
from tensorflow.keras.models import Model
# gather_nd in tf then export to onnx
x = in1 = Input((15, 18,))
w = in2 = Input((15, 1), dtype=tf.int32)
x = tf.gather_nd(x, w, batch_dims=1)
tm = Model((in1, in2), x )
tm.summary()
tm.compile(optimizer='adam', loss='mse')
shape = [1, 15, 18]
index_shape = [1, 15, 1]
# After training, export to onnx (network.onnx) and create a data file (input.json)
x = 0.1*np.random.rand(1,*shape)
# w = random int tensor
w = np.random.randint(0, 10, index_shape)
spec = tf.TensorSpec(shape, tf.float32, name='input_0')
index_spec = tf.TensorSpec(index_shape, tf.int32, name='input_1')
model_path = "network.onnx"
tf2onnx.convert.from_keras(tm, input_signature=[spec, index_spec], inputs_as_nchw=['input_0', 'input_1'], opset=12, output_path=model_path)
d = x.reshape([-1]).tolist()
d1 = w.reshape([-1]).tolist()
data = dict(
input_data=[d, d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

File diff suppressed because one or more lines are too long

Binary file not shown.

41
examples/onnx/gru/gen.py Normal file
View File

@@ -0,0 +1,41 @@
import random
import math
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import json
model = nn.GRU(3, 3) # Input dim is 3, output dim is 3
x = torch.randn(1, 3) # make a sequence of length 5
print(x)
# Flips the neural net into inference mode
model.eval()
model.to('cpu')
# Export the model
torch.onnx.export(model, # model being run
# model input (or a tuple for multiple inputs)
x,
# where to save the model (can be a file or file-like object)
"network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=10, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
data_array = ((x).detach().numpy()).reshape([-1]).tolist()
data_json = dict(input_data=[data_array])
print(data_json)
# Serialize data into file:
json.dump(data_json, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.4145222008228302, -0.4043896496295929, 0.7545749545097351]]}

Binary file not shown.

View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = torch.argmax(x)
return m
circuit = MyModel()
x = torch.empty(1, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.5505883693695068, 0.0766521692276001, 0.12006187438964844, 0.9497959017753601, 0.9100563526153564, 0.968717098236084, 0.5978299379348755, 0.9419963359832764]]}

Binary file not shown.

View File

@@ -9,7 +9,7 @@ class MyModel(nn.Module):
super(MyModel, self).__init__()
def forward(self, x):
m = nn.Logsoftmax()(x)
m = nn.Hardsigmoid()(x)
return m

View File

@@ -1 +1 @@
{"input_data": [[0.2971532940864563, 0.3465197682380676, 0.05381882190704346, 0.058654189109802246, 0.014198064804077148, 0.06088751554489136, 0.1723427176475525, 0.5115123987197876]]}
{"input_data": [[0.8326942324638367, 0.2796096205711365, 0.600328266620636, 0.3701696991920471, 0.17832040786743164, 0.6247223019599915, 0.501872718334198, 0.6961578726768494]]}

View File

@@ -1,4 +1,4 @@
pytorch2.1.0:<3A>
pytorch2.2.1:<3A>
;
inputoutput /HardSigmoid" HardSigmoid*
alpha«ª*> 

View File

@@ -0,0 +1,41 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = nn.Hardswish()(x)
return m
circuit = MyModel()
x = torch.empty(1, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.6996762752532959, 0.42992985248565674, 0.5102168321609497, 0.5540387630462646, 0.8489438891410828, 0.8533616065979004, 0.36736780405044556, 0.5859147310256958]]}

View File

@@ -0,0 +1,15 @@
pytorch2.2.1:{
&
inputoutput
/HardSwish" HardSwish
main_graphZ!
input


batch_size
b"
output


batch_size
B

View File

@@ -9,7 +9,7 @@ class MyModel(nn.Module):
super(MyModel, self).__init__()
def forward(self, x):
m = nn.Hardsigmoid()(x)
m = nn.LogSoftmax()(x)
return m

View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = torch.logsumexp(x, dim=1)
return m
circuit = MyModel()
x = torch.empty(1, 2, 2, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.7973018884658813, 0.5245689153671265, 0.34149593114852905, 0.1455438733100891, 0.9482707381248474, 0.4221445322036743, 0.001363217830657959, 0.8736765384674072, 0.42954301834106445, 0.7199509739875793, 0.37641745805740356, 0.5920265316963196, 0.42270803451538086, 0.41761744022369385, 0.603948712348938, 0.7250819802284241, 0.047173500061035156, 0.5115441679954529, 0.3743387460708618, 0.16794061660766602, 0.5352339148521423, 0.037976861000061035, 0.65323406457901, 0.5585184097290039, 0.10559147596359253, 0.07827490568161011, 0.6717077493667603, 0.6480781435966492, 0.9780838489532471, 0.8353415131568909, 0.6491701006889343, 0.6573048233985901]]}

Binary file not shown.

42
examples/onnx/mish/gen.py Normal file
View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = nn.Mish()(x)
return m
circuit = MyModel()
x = torch.empty(1, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.18563222885131836, 0.4843214750289917, 0.9991059899330139, 0.02534431219100952, 0.8105666041374207, 0.9658406376838684, 0.681107759475708, 0.5365872979164124]]}

View File

@@ -0,0 +1,19 @@
pytorch2.2.1:ä
0
input/Softplus_output_0 /Softplus"Softplus
1
/Softplus_output_0/Tanh_output_0/Tanh"Tanh
*
input
/Tanh_output_0output/Mul"Mul
main_graphZ!
input


batch_size
b"
output


batch_size
B

View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = torch.norm(x, p=1, dim=1)
return m
circuit = MyModel()
x = torch.empty(1, 2, 2, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.02284395694732666, 0.7941043376922607, 0.07971876859664917, 0.8898420929908752, 0.8233054280281067, 0.11066079139709473, 0.4424799084663391, 0.4355071783065796, 0.6723723411560059, 0.6818525195121765, 0.8726171851158142, 0.17742449045181274, 0.054257750511169434, 0.5775953531265259, 0.7758923172950745, 0.8431423306465149, 0.7602444887161255, 0.29686522483825684, 0.22489851713180542, 0.0675363540649414, 0.981339693069458, 0.15771394968032837, 0.5801441669464111, 0.9044001698493958, 0.49266451597213745, 0.42621421813964844, 0.35345613956451416, 0.042848050594329834, 0.6908614039421082, 0.5422852039337158, 0.01975083351135254, 0.5772860050201416]]}

Binary file not shown.

View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = torch.norm(x, p=2, dim=1)
return m
circuit = MyModel()
x = torch.empty(1, 2, 2, 8).uniform_(0, 1)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.8709188103675842, 0.11553549766540527, 0.27376580238342285, 0.7518517971038818, 0.7879393100738525, 0.8765475749969482, 0.14315760135650635, 0.8982420563697815, 0.7274006605148315, 0.39007169008255005, 0.729040801525116, 0.11306107044219971, 0.658822774887085, 0.666404664516449, 0.3001367449760437, 0.45343858003616333, 0.7460223436355591, 0.7423691749572754, 0.7544230818748474, 0.5674425959587097, 0.8728761672973633, 0.27062875032424927, 0.1595977544784546, 0.22975260019302368, 0.6711723208427429, 0.8265992403030396, 0.48679041862487793, 0.689740777015686, 0.330846905708313, 0.5630669593811035, 0.8058932423591614, 0.5802426338195801]]}

Binary file not shown.

View File

@@ -0,0 +1,76 @@
import torch
import torch.nn as nn
import sys
import json
sys.path.append("..")
class Model(nn.Module):
"""
Just one Linear layer
"""
def __init__(self, configs):
super(Model, self).__init__()
self.seq_len = configs.seq_len
self.pred_len = configs.pred_len
# Use this line if you want to visualize the weights
# self.Linear.weight = nn.Parameter((1/self.seq_len)*torch.ones([self.pred_len,self.seq_len]))
self.channels = configs.enc_in
self.individual = configs.individual
if self.individual:
self.Linear = nn.ModuleList()
for i in range(self.channels):
self.Linear.append(nn.Linear(self.seq_len,self.pred_len))
else:
self.Linear = nn.Linear(self.seq_len, self.pred_len)
def forward(self, x):
# x: [Batch, Input length, Channel]
if self.individual:
output = torch.zeros([x.size(0),self.pred_len,x.size(2)],dtype=x.dtype).to(x.device)
for i in range(self.channels):
output[:,:,i] = self.Linear[i](x[:,:,i])
x = output
else:
x = self.Linear(x.permute(0,2,1)).permute(0,2,1)
return x # [Batch, Output length, Channel]
class Configs:
def __init__(self, seq_len, pred_len, enc_in=321, individual=True):
self.seq_len = seq_len
self.pred_len = pred_len
self.enc_in = enc_in
self.individual = individual
model = 'Linear'
seq_len = 10
pred_len = 4
enc_in = 3
configs = Configs(seq_len, pred_len, enc_in, True)
circuit = Model(configs)
x = torch.randn(1, seq_len, pred_len)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=15, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
# the model's input names
input_names=['input'],
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.1874287724494934, 1.0498261451721191, 0.22384068369865417, 1.048445224761963, -0.5670360326766968, -0.38653188943862915, 0.12878702580928802, -2.3675858974456787, 0.5800458192825317, -0.43653929233551025, -0.2511898875236511, 0.3324051797389984, 0.27960312366485596, 0.4763695001602173, 0.3796705901622772, 1.1334782838821411, -0.87981778383255, -1.2451434135437012, 0.7672272324562073, -0.24404007196426392, -0.6875824928283691, 0.3619358539581299, -0.10131897777318954, 0.7169521450996399, 1.6585893630981445, -0.5451845526695251, 0.429487019777298, 0.7426952123641968, -0.2543637454509735, 0.06546942889690399, 0.7939824461936951, 0.1579471379518509, -0.043604474514722824, -0.8621711730957031, -0.5344759821891785, -0.05880478024482727, -0.17351101338863373, 0.5095029473304749, -0.7864817976951599, -0.449171245098114]]}

Binary file not shown.

42
examples/onnx/tril/gen.py Normal file
View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = torch.triu(x)
return m
circuit = MyModel()
x = torch.empty(1, 3, 3).uniform_(0, 5)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.4870188236236572, 2.275230646133423, 3.126268148422241, 0.6412187218666077, 0.9967470169067383, 1.9814395904541016, 1.6355383396148682, 0.6397527456283569, 0.7825168967247009]]}

Binary file not shown.

42
examples/onnx/triu/gen.py Normal file
View File

@@ -0,0 +1,42 @@
from torch import nn
import torch
import json
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
m = torch.tril(x)
return m
circuit = MyModel()
x = torch.empty(1, 3, 3).uniform_(0, 5)
out = circuit(x)
print(out)
torch.onnx.export(circuit, x, "network.onnx",
export_params=True, # store the trained parameter weights inside the model file
opset_version=17, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=['input'], # the model's input names
output_names=['output'], # the model's output names
dynamic_axes={'input': {0: 'batch_size'}, # variable length axes
'output': {0: 'batch_size'}})
d1 = ((x).detach().numpy()).reshape([-1]).tolist()
data = dict(
input_data=[d1],
)
# Serialize data into file:
json.dump(data, open("input.json", 'w'))

View File

@@ -0,0 +1 @@
{"input_data": [[0.2898547053337097, 1.8070811033248901, 0.30266255140304565, 3.00581955909729, 0.5379888415336609, 1.7057424783706665, 2.415961265563965, 0.589233934879303, 0.03824889659881592]]}

Binary file not shown.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,60 @@
# inbrowser-evm-verify
We would like the Solidity verifier to be canonical and usually all you ever need. For this, we need to be able to run that verifier in browser.
## How to use (Node js)
```ts
import localEVMVerify from '@ezkljs/verify';
// Load in the proof file as a buffer
const proofFileBuffer = fs.readFileSync(`${path}/${example}/proof.pf`)
// Stringified EZKL evm verifier bytecode (this is just an example don't use in production)
const bytecode = '0x608060405234801561001057600080fd5b5060d38061001f6000396000f3fe608060405234801561001057600080fd5b50600436106100415760003560e01c8063cfae321714610046575b600080fd5b6100496100f1565b60405161005691906100f1565b60405180910390f35b'
const result = await localEVMVerify(proofFileBuffer, bytecode)
console.log('result', result)
```
**Note**: Run `ezkl create-evm-verifier` to get the Solidity verifier, with which you can retrieve the bytecode once compiled. We recommend compiling to the Shanghai hardfork target, else you will have to pass an additional parameter specifying the EVM version to the `localEVMVerify` function like so (for Paris hardfork):
```ts
import localEVMVerify, { hardfork } from '@ezkljs/verify';
const result = await localEVMVerify(proofFileBuffer, bytecode, hardfork['Paris'])
```
**Note**: You can also verify separated vk verifiers using the `localEVMVerify` function. Just pass the vk verifier bytecode as the third parameter like so:
```ts
import localEVMVerify from '@ezkljs/verify';
const result = await localEVMVerify(proofFileBuffer, verifierBytecode, VKBytecode)
```
## How to use (Browser)
```ts
import localEVMVerify from '@ezkljs/verify';
// Load in the proof file as a buffer using the web apis (fetch, FileReader, etc)
// We use fetch in this example to load the proof file as a buffer
const proofFileBuffer = await fetch(`${path}/${example}/proof.pf`).then(res => res.arrayBuffer())
// Stringified EZKL evm verifier bytecode (this is just an example don't use in production)
const bytecode = '0x608060405234801561001057600080fd5b5060d38061001f6000396000f3fe608060405234801561001057600080fd5b50600436106100415760003560e01c8063cfae321714610046575b600080fd5b6100496100f1565b60405161005691906100f1565b60405180910390f35b'
const result = await browserEVMVerify(proofFileBuffer, bytecode)
console.log('result', result)
```
Output:
```ts
result: true
```

View File

@@ -0,0 +1,42 @@
{
"name": "@ezkljs/verify",
"version": "0.0.0",
"publishConfig": {
"access": "public"
},
"description": "Evm verify EZKL proofs in the browser.",
"main": "dist/commonjs/index.js",
"module": "dist/esm/index.js",
"types": "dist/commonjs/index.d.ts",
"files": [
"dist",
"LICENSE",
"README.md"
],
"scripts": {
"clean": "rm -r dist || true",
"build:commonjs": "tsc --project tsconfig.commonjs.json && resolve-tspaths -p tsconfig.commonjs.json",
"build:esm": "tsc --project tsconfig.esm.json && resolve-tspaths -p tsconfig.esm.json",
"build": "npm run clean && npm run build:commonjs && npm run build:esm"
},
"dependencies": {
"@ethereumjs/common": "^4.0.0",
"@ethereumjs/evm": "^2.0.0",
"@ethereumjs/statemanager": "^2.0.0",
"@ethereumjs/tx": "^5.0.0",
"@ethereumjs/util": "^9.0.0",
"@ethereumjs/vm": "^7.0.0",
"@ethersproject/abi": "^5.7.0",
"@ezkljs/engine": "^9.4.4",
"ethers": "^6.7.1",
"json-bigint": "^1.0.0"
},
"devDependencies": {
"@types/node": "^20.8.3",
"ts-loader": "^9.5.0",
"ts-node": "^10.9.1",
"resolve-tspaths": "^0.8.16",
"tsconfig-paths": "^4.2.0",
"typescript": "^5.2.2"
}
}

1479
in-browser-evm-verifier/pnpm-lock.yaml generated Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,145 @@
import { defaultAbiCoder as AbiCoder } from '@ethersproject/abi'
import { Address, hexToBytes } from '@ethereumjs/util'
import { Chain, Common, Hardfork } from '@ethereumjs/common'
import { LegacyTransaction, LegacyTxData } from '@ethereumjs/tx'
// import { DefaultStateManager } from '@ethereumjs/statemanager'
// import { Blockchain } from '@ethereumjs/blockchain'
import { VM } from '@ethereumjs/vm'
import { EVM } from '@ethereumjs/evm'
import { buildTransaction, encodeDeployment } from './utils/tx-builder'
import { getAccountNonce, insertAccount } from './utils/account-utils'
import { encodeVerifierCalldata } from '../nodejs/ezkl';
import { error } from 'console'
async function deployContract(
vm: VM,
common: Common,
senderPrivateKey: Uint8Array,
deploymentBytecode: string
): Promise<Address> {
// Contracts are deployed by sending their deployment bytecode to the address 0
// The contract params should be abi-encoded and appended to the deployment bytecode.
// const data =
const data = encodeDeployment(deploymentBytecode)
const txData = {
data,
nonce: await getAccountNonce(vm, senderPrivateKey),
}
const tx = LegacyTransaction.fromTxData(
buildTransaction(txData) as LegacyTxData,
{ common, allowUnlimitedInitCodeSize: true },
).sign(senderPrivateKey)
const deploymentResult = await vm.runTx({
tx,
skipBlockGasLimitValidation: true,
skipNonce: true
})
if (deploymentResult.execResult.exceptionError) {
throw deploymentResult.execResult.exceptionError
}
return deploymentResult.createdAddress!
}
async function verify(
vm: VM,
contractAddress: Address,
caller: Address,
proof: Uint8Array | Uint8ClampedArray,
vkAddress?: Address | Uint8Array,
): Promise<boolean> {
if (proof instanceof Uint8Array) {
proof = new Uint8ClampedArray(proof.buffer)
}
if (vkAddress) {
const vkAddressBytes = hexToBytes(vkAddress.toString())
const vkAddressArray = Array.from(vkAddressBytes)
let string = JSON.stringify(vkAddressArray)
const uint8Array = new TextEncoder().encode(string);
// Step 3: Convert to Uint8ClampedArray
vkAddress = new Uint8Array(uint8Array.buffer);
// convert uitn8array of length
error('vkAddress', vkAddress)
}
const data = encodeVerifierCalldata(proof, vkAddress)
const verifyResult = await vm.evm.runCall({
to: contractAddress,
caller: caller,
origin: caller, // The tx.origin is also the caller here
data: data,
})
if (verifyResult.execResult.exceptionError) {
throw verifyResult.execResult.exceptionError
}
const results = AbiCoder.decode(['bool'], verifyResult.execResult.returnValue)
return results[0]
}
/**
* Spins up an ephemeral EVM instance for executing the bytecode of a solidity verifier
* @param proof Json serialized proof file
* @param bytecode The bytecode of a compiled solidity verifier.
* @param bytecode_vk The bytecode of a contract that stores the vk. (Optional, only required if the vk is stored in a separate contract)
* @param evmVersion The evm version to use for the verification. (Default: London)
* @returns The result of the evm verification.
* @throws If the verify transaction reverts
*/
export default async function localEVMVerify(
proof: Uint8Array | Uint8ClampedArray,
bytecode_verifier: string,
bytecode_vk?: string,
evmVersion?: Hardfork,
): Promise<boolean> {
try {
const hardfork = evmVersion ? evmVersion : Hardfork['Shanghai']
const common = new Common({ chain: Chain.Mainnet, hardfork })
const accountPk = hexToBytes(
'0xe331b6d69882b4cb4ea581d88e0b604039a3de5967688d3dcffdd2270c0fd109', // anvil deterministic Pk
)
const evm = new EVM({
allowUnlimitedContractSize: true,
allowUnlimitedInitCodeSize: true,
})
const vm = await VM.create({ common, evm })
const accountAddress = Address.fromPrivateKey(accountPk)
await insertAccount(vm, accountAddress)
const verifierAddress = await deployContract(
vm,
common,
accountPk,
bytecode_verifier
)
if (bytecode_vk) {
const accountPk = hexToBytes("0xac0974bec39a17e36ba4a6b4d238ff944bacb478cbed5efcae784d7bf4f2ff80"); // anvil deterministic Pk
const accountAddress = Address.fromPrivateKey(accountPk)
await insertAccount(vm, accountAddress)
const output = await deployContract(vm, common, accountPk, bytecode_vk)
const result = await verify(vm, verifierAddress, accountAddress, proof, output)
return true
}
const result = await verify(vm, verifierAddress, accountAddress, proof)
return result
} catch (error) {
// log or re-throw the error, depending on your needs
console.error('An error occurred:', error)
throw error
}
}

View File

@@ -0,0 +1,32 @@
import { VM } from '@ethereumjs/vm'
import { Account, Address } from '@ethereumjs/util'
export const keyPair = {
secretKey:
'0x3cd7232cd6f3fc66a57a6bedc1a8ed6c228fff0a327e169c2bcc5e869ed49511',
publicKey:
'0x0406cc661590d48ee972944b35ad13ff03c7876eae3fd191e8a2f77311b0a3c6613407b5005e63d7d8d76b89d5f900cde691497688bb281e07a5052ff61edebdc0',
}
export const insertAccount = async (vm: VM, address: Address) => {
const acctData = {
nonce: 0,
balance: BigInt('1000000000000000000'), // 1 eth
}
const account = Account.fromAccountData(acctData)
await vm.stateManager.putAccount(address, account)
}
export const getAccountNonce = async (
vm: VM,
accountPrivateKey: Uint8Array,
) => {
const address = Address.fromPrivateKey(accountPrivateKey)
const account = await vm.stateManager.getAccount(address)
if (account) {
return account.nonce
} else {
return BigInt(0)
}
}

Some files were not shown because too many files have changed in this diff Show More